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Introduction

Historical outlook. The Thirring model was proposed in [T58]. It describes Dirac fermions
in d = 1+ 1 spacetime dimensions with local current-current interaction. With summation over
repeated indices, the classical Action for mass p and coupling A reads:

_ A ,
/dzx U, (1 @+ p) vy — B /d2x pu(x)p” (2) (0.0.1)
—de f 40 . def de f— . s
where ¢ and ¢ = 94" are 2-spinors; z = (zg, x1); pH(z) = 1, v"1), is the current; and the +’s
matrices are a realization of the Clifford algebra

def (0 1 def (0 —1 def . 0
7= (1 o> , A= <1 0 ) ;o =Ry = (o _Z.) 7 (0.0.2)

which, for n”’”déféuv,,(l — 20,,1), do satisfy the properties
(=2, (") = =R
2 t
(" =0, (") =-1, (") =""=-".
This model is enough simple to be analysed in full details; and yet it contains many of the typical
features of the quantization of relativistic quantum field theories (QFT), such as the anomalous
scaling — as conjectured in QED, [JZ]; and the anomalous phase and chiral symmetries — like
the anomalous chiral symmetry of QED or Standard Model.
As peculiarity of the 1 + 1 spacetime dimension, since there are only two independent com-
ponent of the current, the invariance of the classical massless Lagrangian under phase transfor-

mation v, — €*“1), and under chiral transformation 1, — e’ o 1, led to the hope to find an
exact solution also for the quantum massless model.



First, Thirring, [T58], derived many matrix elements of the interacting field; then, Glaser,
[G58], gave an explicit formula for such a field operator, arising the criticism of Pradhan and
Scarf. The breakthrough had place with Johnson, [J61], who first found the expression for the
two point Schwinger functions which, until nowadays, has been accepted as the exact solution.
In the end, Klaiber, [K64], with a slightly different technique, wrote out the general formula for
all the Schwinger functions. All this story is commented upon in [W64]; here it is worthwhile to
stress that all above papers were plagued by the typical infinities of relativistic QFT: the virtue
of Johnson’s development merely was a greater solidity of the final result.

A remarkable feature in [J61] is the presence of anomalies in the Ward-Takahashi identities
(WT1): they occur — some years before the discovery of Adler, [A70] — as a modification of the
field-current commutation relations, simply guessed in order to avoid triviality of the identities.

Remarkable as well is the procedure of joining of the Schwinger-Dyson equation (SDE) to-
gether to the phase and chiral WT1, in order to obtain a Closed Equation (CE) for the two
point Schwinger function which can be solved straightforwardly.

In order to clear the result of all the surreptitious calculations with infinities, Wightman,
[W64], stressed that the set of Schwinger function of Johnson and Klaiber, no matter how they
were derived, only represent good candidates: if they verified the requirements of an axiomatic
program, they would define a QFT to be called “Thirring model” essentially by definition. But
no kind of positive definiteness of inner product of physical Hilbert space has ever been possible
to prove; up to recent years, when in [M93] the reflection positivity was obtained as consequence
of the Hamiltonian formulation of a many particle model, the Luttinger model, exactly soluble
as showed in [ML65] and in a sense close to the massless Thirring model.

The massive theory is much less analysed, [GL72]. In such a case no “exact solution” was
ever found; as well as no physical positive metric.

Now, a different point of view can be considered, the Renormalization Group (RG) approach
a la Wilson. Such a technique has been revealed very profitable for certain QFT, like the
Yukaway model, [S75] and [MST76], or the ultraviolet part of Gross-Neveu model, [GK85] and
[FMRS85]; the subtle point being that all such models are superrinormalizable, or were studied
in asymptotically free regimes.

The Thirring model, instead, is renormalizable, but not superrinormalizable; and no regime is
asymptotically free, since the effective coupling remains essentially constant over every regime.
This property, called vanishing of Beta function, was already used in [BoM97| to point out the
critical behavior of the infrared regime of Yukawas; model; and it is a consequence of the phase
and chiral WTTI — in agreement with the general belief that, without the aid of symmetries, RG
can be effective only in constructing trivial theories.

As matter of fact, there is a basic conflict between the regularization of the theory and the
phase and chiral symmetries. The situation is very similar to the scaling transformation: the
classical theory is scale invariant; the theory regularized with a cutoff is no longer; removing
the cutoff, scale invariance is recovered, but with a different exponent, called anomalous. In the
same way, removing the cutoff, the WTI are recovered, but a change in the factor in front of
the currents makes such identities anomalous.

In recent times, Benfatto and Mastropietro, [BMO01],[BM02],[BM04],[BMO05], have developed
a technique to complete construction of Luttinger liquids without any reference to the exact
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solution of the Luttinger model. As byproduct of their developments, the anomaly of the WTT
arose.

The aim of this thesis is to use such a technique to construct, by a self-consistent RG approach,
uniform in the mass, the Thirring model at imaginary time. And then to make a continuation
to Minkowskian spacetime by verifying the Osterwalder and Schrader axioms, (OSA). The
occurrence of the phenomenon of fermion doubling — peculiar of the discretization on a lattice
— has been solved introducing a momentum dependent mass term, as suggested in [W76], but
also a mass counterterm which avoids the generation of mass in the massless theory.

As main applications, the anomalous W1 stated by Johnson are derived and, as consequence,
the current operator is proved not to need any renormalization. Anyway, the explicit value of the
anomaly obtained by Johnson are wrong by lowest order calculation, and this is in violation of
the Adler-Bardeen’s theorem, [A69]. Also the rigorous implementation of the Johnson’s closure
of the SDE is proved: it will be showed, anyway, the arising of a new anomaly, missed in the

formal developments, which have driven Johnson to a wrong anomalous exponent.






Chapter 1:

Definitions and Main Results

1.1 Euclidean Thirring Model

Many properties of a quantum field theory can be obtained from the Schwinger functions, the
“cumulants”, or the “truncated expectations” of a statistical measure which correspond to the
imaginary-time version of the model. Such a measure can be conveniently formulated in terms
of a “path integral” on a lattice spacetime. Since the fields dealt with are fermions — namely
only the case of anticommuting fields is considered — they are represented in the path integral

formulation by Grassmannian variables.

1.1.1 Weyl formalism. While in Dirac notation of (0.0.1) the independent fields are the
2-spinor ¢ and 1, in Weyl notation they are @kdéf($;+,$,;_)T7 Aldéf($z+7{/1\$_). The Eu-
clidean Clifford Algebra is defined to be:
(=26, (M) =",
2 T
(V*r=0, (*) =1, () =+"

Such requirements are fulfilled by the same s matrices in (0.0.2), by multiplying v and +° by
the imaginary unity; namely, from now on the definitions in (0.0.2) are turned into:

odef 0 1 1def 0 —2 5d£f_. 0.1 __ 1 0
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Accordingly, the Fuclidean Action, for mass ¢ and coupling A, is defined to be:

Z /dk¢kw WU( )¢ka

w,o==%
(1.1.1)
Z d2p d2q Pk~~~
/ 2 (2m)? ¥ vwwq,wwk,—wwp-%—q,—w’

where the coefficients of the quadratic part are

def (Di(k)  —p : def
Tyo(k)= < S0 D_(k) x with Dy (k)= —iko + wky .

)

1.1.2 Spacetime Lattice. Let a and L be respectively the spacing and the side length of
the lattice to be constructed, such that L/a is an integer. Then, in correspondence of such
parameters, let the quotient set ) be defined as

e L
Qd:f{(no,nl) €eZ’n~n'ifn—ne —22} ;

a

the spacetime lattice, A, and its reciprocal one, D, are defined as

def def | 2m 1\ 27 1
A= {ang,an;In e Q}, D—{L<m0+2>,L<m1+2 meQ; .

To shorten the notation, the Riemann sums on the lattices are denoted with integrals

/Ad%c F@) Y fla), /d2k: F(k) def( > S k) (1.1.2)

TENA keD

1.1.3 Grassmann Algebra. In correspondence of the fields in (1.1.1), there are four sets of

keD

o.w—t as well. The integra-

Grassmann variables that, with abuse of notation, are called {@gw
tion in such a finite algebra is defined so that the integral of a constant is zero, while

~ ~
/d¢lg’,w’ ¢Z,w = 50’,05k’,k5w’,w 5

then the operation is extended by linearity to any polynomial of fields, considering {d¢k w}keD
anticommuting with themselves and with all the fields. As consequence, the integration of the
monomial Q(¢9), [TIyep [Tues A0 A0y, Q(), assigns 1 to Q) = [Txep [loes Vro¥i.
and 0 to all the other Q’(1)) which cannot be obtained as permutation of fields in Q(v)).

The derivative in the Grassmann algebra is defined to be equivalent to the integration:

) o [~ 9 . _
20 fagr, 0w 2 fo) ady,
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— hence the derivative in Jk_ » acts from the right.

1.1.4 Schwinger functions. In order to give a meaning to the path integral formulation of the
Schwinger function, it is necessary to introduce a “cutoff function”, x 5 (k), made as follows. Let a
momentum unity, x, be fixed. Chosen any v > 1, let N be any integer such that ksy¥*! < 37 /4a.
Then, let Yn(t) be a C§°(R) function with compact support {t € R : [t| < xyV*1} and
Xn(t) =1in {t € R: |[t| < kyN}. Besides, because of technical reason, it is convenient to take
Xn in the Gevrey class «: for a positive constant C,

‘ d"Xn

)] < oy

sup

teR
in particular, @ = 2 will be good enough. The possibility of constructing such a compact support
function is discussed in A1.2. Finally, XN(k)défQN(ko)QN(kl). Calling Dx C D the support of
xn(k), the Generating Functional of the Schwinger functions of the Thirring model is defined
to be W(3, ¢): in correspondence of certain parameters Ay, gy, Zy and (1(\?), it is such that

eWW)déf/dPKN)(zp)exp{ )\NV<\/_'¢>+C(2) ,\/Ew)ﬁf(@,w)}. (1.1.3)

The explanation of the above formula is the following. The integration is done w.r.t. the nor-
malized Gaussian measure given by

dP(SN)(,(/})dé exp L2ON ZN Z / ( )) ¢k w¢k o
ot (1.1.4)
[I II aviudvi, .
keDy w==%

where the covariance g, (k) is such that:

1, def T(k) . def ( Dy(k) —u )
S S G

hence g(k) is periodic by the compact support of yy and well defined for any k£ € D, also
for pux = 0, since the point (0,0) does not belong to D. As well as g~ (k) is well defined in
Dy, since the points in which the cutoff is zero do not belong to Dy. The factor e“~ is the

normalization of the Gaussian measure:

o def/ d%k ln<L4]k]2>
N e Cm? TG (k)

The self-interaction is given by the potential

defl d2p d2q d2
Z/ )2 wp wwq wwk —w +]<; q,—w ;
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while the interaction with the external sources are

def ko d2 - ~
]7 Z/ 2]17 kw¢kaw p,ow
def d%k A+ ~ ~ 1

and {Jk,. }k,w are a commuting variable, while {(ﬁg’w};@w’a are anticommuting.

Finally, w.r.t. the classical Action (0.0.1), A has been replaced with Ay Z%, the “bare cou-
pling”; p with pn, the “bare mass”; the free action was multiplied times Zy, the “field strength”;
and the interaction with the external source j brings a coupling ZJ(\?) déf(:](\?) Zn, the “density
strength”: such parameters are essential in order to have a finite interactive quantum theory,
see Theorem 1.1. Besides, in has to be remarked that the introduction of the cutoff has required
a reference momentum, x, absent in the classical action of the massless theory, which will allow
the arising of the anomalous dimension without violating the scaling symmetry.

The Fourier transform of the fields defines a Grassmann algebra also in the lattice A. The

conventions are:

T,w D (271')2 k,w > T,w I (271‘)2 k,w
def ke
A e

€A TEA

The definition of derivative extends also to the fields {wf‘;w }w ot Phw }ZEUD:i and {apgw }W PR

while the derivative w.r.t. the fields {jkw}iili and { wa}ii/\i is the conventional one.

Well then, setting gdéfxl, ...,z™ and gdéle, ..., 2™, collections of points in A, for any given
choice of the labels gdg(al ey Om), gdéf(wl ... ,wy) and gdéf(al ...,En), the Schwinger func-
tions are defined as

(mim)(©) . e oW
e (2 )" (0,0) . (1.15)

8]2‘ o1 ajzmﬁma@ill,wl 89090” W
In order to shortening the notations of the Schwinger functions which will be most used in the
following, let

SPw— ) 0D @, y),  SED (2w — ) S (z50,y)

oW oWw,w

1.1.5 Remarks. The role of the lattice discretization is only to have a finite Grassmann algebra:
the continuous limit, kL, (ka)~! — oo is taken as soon as the Schwinger function are derived;
it is trivial, since, on the other hand, the use of the functional integral suggest, but it is not
strictly necessary to, the developments.
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On the contrary, the function x  is an essential cutoff on the large momenta: the parameters
AN, BN, Zn and C](\?) will be chosen in a way to compensate the divergences of the limit of
removed cutoff, N — +oo, of the Schwinger functions.

Theorem 1.1. There exists € > 0 and two positive constant, ¢ and C, such that, for any
AN <eandp:0<pu< kY, and for suitable Ay, jun, Zn and Z](Vz), analytic function of A,
the following properties of the Schwinger functions hold.

1. There exist three critical indices, 1), nE\Q), and 7, independent from the cutoff scale N

and from the mass u, analytic functions of A\ and such that
mo=m\+0(), ) =m0,

M =—TA+O0(\),
with s, néz) and 1, strictly positive; and, for any N,
Iy =y N (14002), 2@ =47 (14 00),

pn =y N (14 0(N)

where O(\) are finite in N.

2. In the limit of removed cutoff, the Schwinger function are well defined distribution, ful-
filling the OSA.

3. In the limit of removed cutoff, the two point Schwinger function verifies the bound

kC —ey/ (£) T kle—yl

5@ @ —y)| < RS ,

(k|z —yl

for 7 7\/(1+ 7). The same bound holds also for Sﬁ,[?;_zzj(_’ﬂ(x, Y).
4. In the limit of removed cutoff and of vanishing mass, i.e. u =0,

SLS)Q)(Z‘—y) _ (1+)‘B/\)/((217T])€2 e—ik(x—y) le(k) <|_:|> ’ , (116)

with By analytic and O(1) in A. While SCZ) ) (z,) = 0.

The proof of the first three statements is obtained by the analysis in Chapter 3, the study of
the flows of the effective couplings in 3.4, the convergence of the Schwinger functions, A.3.3 and
A3.6, and by the equivalence of the Euclidean and Hamiltonian regularization, 3.5. The fourth
statement is consequence of symmetries: see 4.3.

The OSA are reported in Appendix A2. When they hold, the Osterwalder-Schrader recon-
struction theorem guarantees the possibility of analytically continuing the set of Schwinger
functions to a set of functions obeying the Wightman axioms: this means the construction of a
consistent relativistic and quantum field theory.
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](\?) are vanishing in the limit of removed cutoff; whereas

By item 2., the parameters Zy and Z
u is vanishing or diverging according to the sign of .

1.1.6 Ward-Takahashi identities: first anomaly. In the massless case, the phase and chiral
symmetry makes current expectations and field expectations strictly related. By neglecting
formally the presence of the cutoffs, and performing a combination of the phase and chiral
transformation of the fields, it holds the following identity for the Fourier transform of such

Schwinger functions:

Da’ (1 ~ ~
) 502 (55 ) = b [S200) — B2 +1)] (117)
N

Fig 1: Graphical representation of (1.1.7)

This relation is actually wrong. Indeed, the presence of the cutoff — essential ingredient of
meaningful QFT’s — breaks the symmetries and generates a correction term H((,}f):

D (p) a1 = ~ =1
%ng) (3 k) = boo | S (k) = ST (k +p)| + HED (pik) - (1.1.8)
N

What is at first sight surprising is that in the limit of removed cutoff the corrections are not
vanishing; and yet anomalous WTTI, strictly different from (1.1.7), are valid.

Theorem 1.2. There exists ¢ > 0 and two positive constants, ¢ and C', such that, for any
A:i|M <eandp:0<pu<rky 't the following properties hold.

1. For pu = 0, there exists two “bare parameters”, A\, and Céz), analytic in A\, such that the
coupling A and the field strength C](\?), as chosen in Theorem 1.1, are independent form
the scale of the cutoff, N; and are Ay = Ap, ](\?) = ISQ).

2. For p = 0, there exist two coefficients, a and a, analytically dependent on A, such that

a+aow §5J2)(k:) - §£2)(k +p)
2 Do (p) ’

1 A
SED (p, k) =

—= S (1.1.9)
¢

with (a + Gow)/2 # 6, , whenever X # 0.
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3. The current-current correlation satisfies the bound

. C —c I‘i(ﬁ_)H?A |[z—y|
2;0 "

for any allowed value of the mass .

The coupling Ay and the density strength C](\?) do not depend on the cutoff scale since, the mass
being zero, the theory is scaling invariant. The second statement is a sub-case of Theorem 4.2;
while the third is proved in A3.7.

By item 3, the short distance behavior is the same as in the free theory: no critical index
occurs and changes the exponent 2 of 1/(k|x — y|).

It is interesting to see how the anomalous W'TT arises. It is possible to find two finite coun-
terterms, v(f) and v(7), analytically dependent on A and independent on N, such that the
correction can be decomposed as

HED (psk) =v D Dy (0) S5 (03 k) + v Dy () S5 (03 ) (1.1.11)
+ AHD (pik) 5 -

and, for p and k fixed independently from N, the rest Af[c(,}f) (p; k) is now really vanishing. To

adhere to the Johnson’s notation, let
def 1 def 1

a= a=

1= () + o) 1= (O — )’

then, replacing (1.1.11) in (1.1.8), and taking the limit of removed cutoff, gives (1.1.9). Johnson’s
WTT is precisely given by (1.1.9); and his explicit values for a and @ are in agreement with the
Adler-Bardeen theorem on absence of radiative correction to the anomaly. Anyway, these values
are wrong: while Johnson states v(f) = 0, by lowest order computation, for A small enough,
v+ <0 (see A9).

Despite the anomaly, and despite the phase and chiral symmetry hold only in the massless
case, it is possible to prove the finiteness of the limit value of C](\?), even in the massive model;
and accordingly the finiteness of the current-current Schwinger function, with no arising of an

anomalous exponent.

1.1.7 Closed equation: new anomaly. The fields equation can be turned into an equation
for the Schwinger function, the Dyson-Schwinger equation. In the massless case, the one for the
two point Schwinger function reads

SPk) 1 b d%p sa)
S = @ Koo U2 (pik —p) . (1.1.12)
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Fig 2: Graphical representation of (1.1.12)

Inserting the WT1 (1.1.8) and the identity (1.1.11) in (1.1.12), since [,d*p DZ}(p) = 0 by
oddness,

A d2p  ~. —-q 42 ASJQ) k—
5 / P52 (pik—p) =2 aAb/ L oo k)
¢ Jp (2m) ’ 2 p(2m)?  D_,(p)

a — pwa d?p 5 (132)
—A AH ik —p).
+Xu: SR /D am)z A (p;k —p)

(1.1.13)

In the limit of removed cutoff, if the integral of AH ,SIWQ) had been vanishing, (1.1.13) would have
been turned into

b d%p 5(1;2) a—a d%p §5J2) (k—p)
— U prk—p) = A . 1.1.14
(@ Jpamp PP R P = A L oo (LD

Replacing it into (1.1.12), it would have held the equation

(1.1.15)

SP) 1 a-a /de S (k — p)
b
b

gwk) ~ Zn 2 2m)2  D_(p)

where 1/Zy is divergent and should compensate the divergence of the integral. The above
equation, in a sense stated by Johnson — actually his operations were even more formal; but
his final finite solution is exactly the solution of (1.1.15) — is wrong. Indeed, AH SUJQ) was said
to be vanishing only for fixed arguments, while here it is integrated over all the scales allowed
by the cutoff. This seems to waste the possibility of the closure of the SDE; and yet, again, an
anomalous CE still holds.

Theorem 1.3. Under the same assumptions of Theorem 1.1:

1. The following equation holds, asymptotically in the limit of removed cutoff

) By et [ A S -
go(k) — Zn "o Jp@en)? D_up) o

where A, the “new anomaly”, is analytic and O(1) in \; while B is 1 + O(\) and analytic
in A as well.
2. It holds the following relations between the anomalous exponent and the coefficients in

the first and second anomaly:
A a—a
2 2

m=A (1.1.17)
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This result is a sub-case of Theorem 4.5, with the explicit expression of 7, is discussed in 4.3.

The name “new anomaly” is justified since such is an effect of using a symmetry, exact only
at removed cutoff, inside an integral which in the same limit is divergent; it has been overlooked
not only in rigorous works, but even in the physical literature. In particular, A # 1 would imply
a striking and net difference w.r.t. the Johnson critical index.

Such a difference could have been checked directly by lowest order computation of n) itself;
but, since the fourth is the first non-trivial order, the actual computation is almost prohibitive.
Therefore (1.1.17) is a shortcut, since it gives 7, in terms of the easier calculations of a —a@ and
A.

Now, by symmetry reasons, the first order of A is equal to 1, while a — @ = O(\): this is
in agreement with the the fact that 7, is an even function of A — as can be easily proved by
transformation @gw — ggk,aw in the functional-integral measure. But there is no general reason
for which this result should survive also at the second order, at least for a generic choice of the
cutoff function: in A9 there is a Montecarlo simulation which does not prove, but enforces the
clue that A # 1.

It is appropriate to disclose here the developments leading to (1.1.16), leaving to the next
chapters the proofs and the generalizations to the multi-point Schwinger functions. For a suitable

choice of four counterterms, {a(*)} p=+ and {om} u—+, analytically dependent on A,

— — a2
a— auw d’p =g a — auw Se (k)
A E AHL2) (e e — ) = 2:7 (mw)
. /D<27r>2 o W=D =\ 2T

J— 2 ’
Q=AW (uoyy | b / p s, >
+ a'tte) ), SE (pyk—p)+ AK (k)
<Zu: 2 ) C152) L (27)2 ;

where, for k fixed independently from N, the rest Al?w(k) is vanishing. Putting together the
above identity with (1.1.13) and (1.1.12), (1.1.16) holds for

def 1

T T (/2 5@ — ) (o) — o)
aer 1= (N/2)2,(a—au)a®
1= (/2) X, (a—ap) (e — o)

(1.1.18)







Chapter 2:

Hamiltonian Regularization

Two different regularizations of the Thirring model can be considered: the Euclidean one,
depicted in the previous Chapter, and the Hamiltonian one, introduced in the present Chapter.
As well as, two are the main requirements of the OSA: the Fuclidean invariance and the the
reflection positivity.

Well then, the former property is evident only in the former regularization — and even false
in the latter, if the limit of removed cutoff is not taken; while the latter property is built-in in
the latter, and not so clear in the former.

But it is possible to prove that, for two (in general) different choices of the parameters of the
Lagrangian, the two regularization, in the limit of removed cutoff, are equivalent, in the sense
that the Schwinger function derived in the one or in the other scheme are exactly the same.
And therefore they fulfill both the crucial properties.

This theorem is a first example of the effectiveness of the RG approach, which is introduced

in the next Chapter.

2.1 Hamiltonian Thirring Model

This time only the space is discretized. Then, a finite dimensional Fock space, together to a
many-body Hamiltonian, is built, guaranteeing a priori the validity of the reflection positivity
(see A2.2) also after taking the continuum space limit.
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Other constructions, different from the Hamiltonian formalism and verifying such positivity
property, would have been possible: e.g. a certain lattice discretization of both space and time
(different from the one in Chapter 1) would have turned the quantum field model into a sta-
tistical mechanical lattice model, nearest neighbours interactive, which is reflection positive by
standard proof, [OS77]. Anyway, despite of the popularity of the latter route, here the former
is preferred, since the consequent integration of the hard fermions (see later) was called upon,
but never explicitly proved in [BMO01] and in the following papers — where the setting can only
be Hamiltonian, since they deal with many-body quantum models. As consequence, space and
time are not managed on the same ground, and the phenomenon of light velocity modification
occurs (as first noticed in [M93]): it is necessary to introduce a counterterm to fix the light
velocity to 1.

In any case, lattice discretization of fermionic QFT — no matter if it affects only the space
or both space and time — encounters the well known problem of the doubling of fermions. In
order to make the effect of the double fermions to vanish, a possibility is to use a momentum
dependent mass term, [W76]; but it destroys the symmetries of the propagators and generates
a mass term even in the massless theory: a counterterm also for the mass is necessary, so that

the mass on physical scale can be fixed to chosen value p > 0.

2.1.1 Hamiltonian. A finite dimensional Fock space is constructed in terms of the periodic
spatial lattice, A, as follows. Let k be fixed. Choosing v > 1 and integer, let ¢ and L be
respectively the lattice spacing and the lattice side length, s.t. 4ka™ ~~N and 4/@Ld§f'y_h, for
N, —h large positive integers; then, the periodicity of the lattice is given by the quotient set

L
Qldéf{nEZ ‘ n~n'ifn—n'c —Z},
a
so that the lattice A, and its reciprocal D, are

e € 2 1
Ald:f{anl | n€Qi}, Dld:f{%r <m1 + 5) ‘ my € Ql} :

Now, let two couples of fermionic creation and destruction operators {aglw}zl“g\f be de-
fined with empty state |0); setting c(k:l)déf[l — cos(k1a)]/2a, e(kl)déf sin(kia)/a — the Fourier
transform of the discrete derivative in x; — and, for any choice of the mass pu > 0, letting

u(kl)défu + ¢(k1) be the “momentum dependent mass term”, the free Hamiltonian is

ML S welkatar o+ £ Y wlhad i

w ki1EA, w ki€A;

In the limit @ — 0, the energy dispersion e(k;) is asymptotic to two linear dispersion: one
containing k; = 0, which is the Euclidean Thirring dispersion; another one containing k1 = 7/a,
and representing the double fermions: the role of p(kq) is to assign to the doubles a mass which
is diverging with .
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The Hamiltonian is made interactive by the term

B) L3 Z Z a;;’wa;;hwa(;’_wa,;1+q1_p17_w . (2.1.1)
w ki1,p1,91€D1
As in the Euclidean regularization, the parameter of the Lagrangian have to be tuned so to
have a finite theory. Then, A and u are replaced with Ay and uy; and Hg is multiplied times
the field strength Z .
Furthermore, to fix the mass to the chosen value and to have Schwinger functions with light

velocity equal to 1 (as in the Euclidean regularization), it is necessary to introduce two further

. d d . .
counterterms dy and vV ny, such that, setting vy éan/ZN and oy éde/ZN7 the interactive
Hamiltonian finally reads

def 1 N
HY 237 3" welk)Zn (14 0n)af, Lap,
w ki1€D;

+ — Z > ( (k1) +7 VN)ZN%M p— (2.1.2)

w kl €D1

2
+ )\NZNLZ Z al ay .al _ap
2 I3 ki,w'p1,wq1,—wk1+q1 —p1,—w °

w ki,p1,91€D1

2.1.2 Correlations. Let the fields and the density be defined

def _pomg (1 k " R def (2,4) + — (2,-) 1+ _

g T xo 10 1T1 xo J 9 3

zw — € (Z E : € akl, € ) Pr.w = ZN ¢m,w¢x,w + ZN ¢ ,—w P, —w )
ki1€Dy

where ZJ(\?’H and Z](\?’_) are the density strengths: they are two, rather than one as in the
Euclidean regularization, since in this setting space and time are on different ground and the

symmetry which make 7 2+) _ =7y (2-) g missing.
For any zd3 2D ...,z(m) and zzx(l),...,x(”), fixed set on spacetime points such that
0< z(l) < 262) < x(()l) << x(()n), the correlations are defined to be,

—-LH R .. .R €1 oqhfm
Tr [e P oy sz),(,mw;,;(n,w1 %(n),wn

G(m n)(a)( ) _f ,I\r[e_LH] ’

(2.1.3)

where Tr is the trace over a complete set of states of the quantum lattice model.

2.1.3 Propagator. Also in this case the Schwinger function can be obtained in terms of a path
integral formula, and a Grassmannian integration. The free Hamiltonian can be diagonalized in

. . o ow==t . .
terms of a set of new creation and destruction operators, {b7 ,}7"c,, and energy dispersion

) + 2 (R):

Z Z wE(k1)b, bie, o

w kl 6/\1
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where bzhudif > ag. . (C_l(k1)> for

v,p

def (k1) E(kr) = e(kr)
C(kl) < (kl) — E(k‘l) ,U'(kl) ) \/M kl kl) - €(k1)]

Calling T the time ordering, it is useful to define the propagator as

difTr [ T (0, qay, ﬁ)} B Z Tr [ T (0 b
ga,ﬁ(:r)_ TY[e LHO] - TI'[@ LHO]

w
— l e—ixlkl—xowE(lﬁ)
L Z
ki1€Dy

Z{ X(®o>0)  x(mo < 0)e wBk)L } C(k1)w,aC(k1)w.p

)] C(k1)w,aC(k1)w,s

1+ e—wE(L 1+ e—wE(DL

By partial-fraction expansion of the meromorphic functions in the curl brackets (see A1.1), the
propagator is turned into:

— = —ik-x SC\M(kO) ’ik‘o + e(kl) MN(kl)
ga,ﬁ( o ]\JhE)noo LIB Z kl) + k2 + 62(1€1) ( /J,N(kl) tko — €(k1) >o¢,[3 ) (214)

with DdéfDo x Dy and Dodgf {%ﬂ(m + %)} ’ (namely D is the product of a periodic lattice
in the space direction times an unbounded :;IIGG in the time direction); Xas(ko) a non-negative,
smooth cutoff, introduced to give a meaning to the above expression — which is a generalized
summation of a series which does not converge in absolute sense. Specifically, with reference to

the function Xy (t) defined in 1.1.4, the cutoff is defined to be )?Mdgf)?N (v~ MHNE).

2.1.4 Schwinger functions. As well know consequence of the Trotter formula for the expan-
sion of the evolution operator, e**? and the Wick theorem (see for instance [FW]), the cor-

relations in (2.1.3) can be generated from the functional Z(3, cp)dgew(f’“’), where, in its turn,
W(3, ) is defined to be the generating functional of the Schwinger function in the Hamiltonian

regularization:

W) d /dP(SM)(q/J) exp {—)\NV <\/E1/1) + NN N <\/E1/J) +6nD <\/E¢>
+ZC§V2"’)JU(J, VZnY) +]—'(<p,¢)} .

(2.1.5)
The settings are the following. The Gaussian free measure is given by
T,
dP(SM)(w)d: exp{ L’Oy — Zy Z / = ok ;wk wwkw
af=t X (2.1.6)

IT II aof.ddp, .

k€Dy w==%
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where O is the normalization, ( U)defZ(2 0)/Z and the covariance g, ,, (k) is:

1y def T(K) def ((—iko +e(k1)  pn(k1)
T e (TR )
with
defsin(kia) def 1 — cos(kya)

e(kr)=———,  un(k)= ——————+pun; (2.1.7)

the lattice DMdéf{k € D : Xa (ko) # 0}; the self-interaction is given by the potentials

defl d2p d2q d2k A~y L~y
DY Rom o oo o AR TR T e

and def def d%k ~p o~
Z/ pl wpw pyw Z/ w p,—w *

In order to generate the Schwinger functions, there are also interactions with external sources:

def d?k d?p
'7’ Z/ 271'23;0 kwwka’wwpow'

Theorem 2.1. There exists € > 0, a suitable choice of the parameters of the Hamiltonian

](\?’+), Z](\?’_), vy, 0N, and a suitable choice of the parameters of the

mode], )\N; HUN, ZN, 7
Euclidean model, Ay, un Zn, ZJ(\?) — the analogous parameters of the two model being, in
general, different — such that, in the limit of removed cutoff, each Schwinger function in the

former regularization coincides with the analogous Schwinger function in the latter one.

The proof is deferred to the next Chapter: see 3.5.






Chapter 3:

Renormalization Group Analysis

After slicing the momenta in scales, the parameters of the generating functional are turned
into effective parameters for each given momentum scale; in this way obtaining a sequence, the
flow of the running coupling constants, which is controlled by the vanishing of the Beta function.

3.1 Renormalization Group Analysis for Hard Fermions

3.1.1 Momenta slicing. From now on, to be definite, the scaling parameter ~ is fixed to be
equal to 3 — but any other value would be fine, suitable changing the following definition of the
cutoff. Then, kyN+! = 37 /4a, and the cutoff function Xo(ko) is defined, for t € R,

1 for |t| <k
~ def
Xo(t)=1 0 for 3k < k|t| < 4k
€(0,1) otherwise ;

the actual shape in the third domain is here inessential: it will be chosen in 3.3.1. Accordingly,
for h=N,..., M, it is set )?h(t)déff(o (’y_ht). With Y it is possible to make a partition of the
momenta scales: for any h=N,..., M,

M
@ =%+ S0 ), with fu® ZRu() — i (1), (3.1.1)
k=h+1
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It is worthwhile to remark fk has compact support {t cryRTL <t < /f’yk+1}.

3.1.2 Multiscale integration. The decomposition (3.1.1) has the purpose to obtain the fol-
lowing scale integration of W(yp, ): for any integer h: N, ..., M,

V02) — oEn / APEM () V" (02 ZN0) (3.1.2)

where the vacuum energy on scale h, Fj, do not depend on the fields; the measure dP(=h) ig
the same as (1.1.4), with X/ (ko) replaced by X1 (ko); the effective potential on scale h, W),
is a functional of the fields:

W (.0, VZwe) " = 2¥ (V) 45" o (V) + oD (VZnw)
+ 30 0T, (5V2n0) + F o) + W (0,720 (3.1.3)
o==%

namely it has the same expression of the argument of the exponential in the r.h.s. member of
(1.1.3), apart from the irrelevant contribution Wi(r’;).

Scale integration (3.1.2) can be verified by induction. Indeed, it is true for h = M, with
Ey = 0 and Wi(r]y) = 0; while the procedure to obtain Ej,_1, W=1 and Wi(r’;_l) is the
following.

The field 9 is decomposed into the sum of fields ¢ — ¥ + (ZN)_1/2 &, both with Gaussian

distribution. The propagator on scale h of £, the hard fermion field on scale h, is given by

) vdes [Pk Fn(ko) iko +e(k1)  —pun(k1) .
9a.p(?) /D(%)26 M%V(kl)+kg+e2(k1)<—m(k1) iko—e(k1)>aﬁ’ (3.14)

hence, by decomposition (3.1.1), v is left with propagator

, _ :
(<h—1) d;f/ d*k i Xn—1(ko) <1/€0 +e(k)  —pn(k) > 3.1.5
A A (k) + kg +e2(k) \ —pn(k)  iko—e(k1) ), 5 1

Then, calling dﬁ(gh_l)(w) and dﬁ(h)(f) the measure (1.1.4), with propagators (3.1.4) and
(3.1.5) respectively, the hard fermion is integrated out:

/dﬁ(<h)(¢) WV (0 VZNY) — /d]3<<h_1)(¢) /dﬁ(h)(f) WV (0.0 VZNY+E)

(3.1.6)
def ABy_y /dﬁ(éh—l)w) N (0N Y)

where AFE) _1 is the part of the integration constant the fields. Therefore, the vacuum energy

on scale h — 1 is defined to be:

de
Eyn_q :fEh +AEL_1;
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while,

Wi (.07 Zn0)
def 1y /dp(h)(g) W (00 VZNY+HE) _ AE, 1

n¥ +n?+nI#£0

_ Z Z/de d2y d2z (3.1.7)

n¥Y nPni>1 w,o

H \/_wx(’) Wi H y( e H Jz(i)v"";/ WTSZ;_WB'W gz@’ Y g) ’

where z, y and z are short notations for x(l),...,x(”w), y® oy and 2D 207 re-
spectively. By the well known formula for the truncated expectation w.r.t. a Gaussian measure,
the function Wé}; nlw) n? a0, U(x,g, z) is a power series in the couplings Ay, vy, dy, and coefficient
given by all the Feynman graphs with n¥ + n¥ + n’ external legs of kind n¥,n%,n? attached
respectively to the points z,y, z, with eventually a constraint that some among the point in z
may coincide: this is explained in more details in Appendix A3. The remarkable fact is that the
number of the Feynman graphs at n-the order expansion is about n!; and yet, by cluster expan-

sion and anticommutativity of the fermion fields, it is possible to prove a C"-bound, making the
-1)

(h
power series defining W, /., w0

(see A3.2).

Finally, Wi(r’;_l) is defined by (3.1.3): in power series expansion, it corresponds to the terms

(z,y,z) absolutely convergent for A\y,vy,dn small enough

in (3.1.7) which are at least O(\y), except the terms for n¥ = 4, n¥ = n? = 0 and linear in \y.

3.1.3 Dimensional bounds. In order to have a bound for WT(LZ) it is possible to

n¥;nl,w,o’
prove the following decay property of the diagonal and antidiagonal propagators: there exist

two positive constants ¢ and C' such that

‘g(h) ‘<C’Y e—c\/'y K|z —C\/'y K|zo|

h) _ _ (3.1.8)
‘9 )‘ <y~ (h=NIoyNemeV “"”'e‘c\/V wlzol |

Since h > N, the more factor y~(*~N) in the bound of the antidiagonal propagator represents
a “gain factors” w.r.t. the bound of the diagonal one.
In the end of the integration of all hard fermions scales, (3.1.2) reads

NVO9) = BN / APEN () NV (2avZNi) (3.1.9)

which is the starting point of the analysis of the double and light fermions in the next sections.
Let d(z) be the tree distance of the points z, namely the length of the shortest tree path

connecting every point in z.
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Lemma 3.1. There exist € > 0 and the positive constants ¢ and C s.t., for any choice of the
couplings |An|,|dn|, |vn| < 2¢, the following bounds hold.

1. Ifn% +n? #0,

7N(2—(1/2)n¢—(3/2)n¢—n3)

<C
TP V1 Rd(y:2)

/A d*z ‘Wéﬁw;m&z(z, Y, 2)

2. If n¥* +n’ =0,
n¥;0;0,w,

[ W (0] < 07 am)
A S ’

where d2z means that the integration is performed w.r.t. all but any one variable among
) (n)
A A

The proof is the same of Lemma A.3.1.
3.1.4 Remark: superrinormalizability. The key feature, here, is the scaling (ZN)_I/2 of

hard fermion in the decomposition 7:/; =Y+ (Z N)_l/ 2
h > N, so that there is no generation of anomalous dimension in the hard fermion regime.

&: this factor is the same for all the scales

3.2 Renormalization Group Analysis for Double Fermions

3.2.1 Momenta slicing. At this point it is convenient to choose the image in (0,1) of the
cutoff function so that the constant function I = 1 on the periodic lattice D; is equal to the
sum of two Yy functions, the former centred in ky = 0, and the latter centred in k1 = 7/a:

Xn(t) +Xn <t - g) =1 (3.2.1)

(and such that X is a Gevrey function: see A1.2). After the integration of the hard fermions, it
was left the measure dﬁ(SN)(’(/J)7 with propagator given by (3.1.5) for h = N: it is possible now
to decompose the fields 1 into the sum ¢ — ¥ + (ZN)_I/2 &, where the double fermion field, &,

has propagator

), vdef [ Pk g Xn(ko)Xn (k1 — (n/a)) (iko +e(k1)  —pn (k1) .
N e ke ey (" iko—ewl))w’ (322)

therefore, because of (3.2.1) and setting XN(k)déf)?N(ko))?N(kl), 1 is left with propagator

) |
(<N.D) d;f/ d°k g xn (k) <“€0+6(k1) —pn (k1) > 3.2.3
Gait O | ¢ RO R @ \ () ko (k) ), )
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3.2.2 Dimensional bounds. Because of the definition of yy(k1), the propagator gp,(z) is
massive, and hence, without decomposition of X (ko)Xn (k1 — (7/a)) into scales, it enjoys the
bound, for ¢ and C' two positive constants,

ga76

<D>(x)( < CyNe—eV/AVnlal (3.2.4)

Indeed in the support of Xn(ko)Xn (k1 — (7/a)), it holds 7/4a < |k1| < w/4, while |kg| can
be very small: since the mass py is supposed non-negative, the denominator is not lower than
pi (k1) > (k1) > (kYN (2= V2)/ 27r)2. And the bound follows by dimensionality argument. In
this way the effects of the second pole are confined on the scale of the cutoff, N: since it will be
proved that the Schwinger functions do not depend on contribution on such scales, the addition
of ¢(kq) to the mass has had the effect to suppress the effects of the double fermions.

Integrating out the double field now requires a localization, which will be explained in the
next section.

3.3 Renormalization Group Analysis for Soft Fermions

3.3.1 Momenta slicing. The last, more involved regime to be studied is the set of momentum
scales below N. Let x (k) be decomposed over the scales

N
xn(to,t1) = xnlto, tr) + > fulto tr) (3.3.1)
k=h+1

where the function fy(to,¢1) is defined to be xx(to,t1) — xx—1(to,t1) and has squared support
{(to, t1) : k7% < max{|tol, [t1]} < wy* T}

3.3.2 Multiscale integration. As for the hard fermions, the functional integration of the soft
fermions is performed scale by scale. By induction, for any integer h : h < N, it holds:

W00) — B /dﬁ(sm(w) N (09V7iw) (3.3.2)

where the effective potential on scale h is

) () o () 59 (5

3.3.3
+ 3G, <J, \/Zw) + F (,9) + Wi (%37 % Zhw) ; 333)
o==%

(2,0)
h

the measure dP(<h) , the couplings Ay, vy, g, and the irrelevant potential Wi(r}i) are in-

ductively specified by the procedure to construct W"h—1),
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The field 1 is decomposed into the sum of two fields, ¢ — ¥+ (Zh)_l/2 &, both with Gaussian
distribution. The propagator of the soft fermion field, £ is, for h # N:

(h) o\ — Pk e F (k) iko +e(k1)  —pn(k)
9 (1) = /D(?W)2 ©RBE R T k) < —in(k) ko —e(k1)>a75 o (334)

FO®RS () C O (k) €h<k>d§f%c<kl>@?><k> ,

Fin(k) < i Ci2 (k) + G (k)
and the quantities Zj, up, 6’,5”(1{) and 6,(3) (k) will be constructed in the following localization.
For h = N, to the above expression for the propagator it has to be added the propagator
deriving from the the double fermions, géDB)(k:)
Since in presence of xp,—_1(k), by simply support compatibility, 6}(11)(/6‘) = 6’,@(1{) =1, by
(3.3.1), ¢ is left with propagator:

(<h-1), ydef [ Pk iy Xn—1(k) <iko+€(’f1) _”h—l(k1)> 3.35
G (@) /13(27r)2 © k) R (k) \ —mnoa(ky) iko —e(ky) ), 35

with
def

Z
n (k)= g+ )
h

without any residue of 6}(11)(16) or 6’,@(1{)

The soft fermions can be integrated out, scale by scale; this time this operation does not give
directly W=1_ but rather W=D Calling dP(S"=D(¢)) and dP™(¢) the measure (1.1.4),
with Zy replaced by Z;, and propagators respectively given by (3.3.5) and (3.3.4)

APEM () WV (0aVZiv) — [ qp(h-1) AP (&) N (03.VZnv+€)
(¥) (¥) (€)
(3.3.6)

= /dP(Sh—l)w}) ew<h71)(@7]7\/z_h’¢))+AEh_1 ’

where AFE),_; is the part of the integration constant in the fields. Again, by the well known
formulas of the truncated expectations:

W=D (sm, \/Z—h¢>

n+n¥®+n’#0

DD I ket
n¥ ne ni>1 wW,0 A (3.3.7)
n n® ()OU; n’t
o Y o — (1)
(};[1 v/ Zhwz(i),wi) };Il /7, jl;[ljz<i>,w;/ an;nw;na,g,g@’ Y, 2) .

For the light fermions a further step is necessary to extract parts of W(*=1) that can be absorbed
either into the free measure dP(S"=1 or in the couplings; this is the Localization. In the end
of this operation they are left a potential W(»~1 and a measure dP(="~1) which fulfil (3.3.3).
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3.3.3 Dimensional bounds. It is convenient to decompose the propagator gfdh(), into the one of

the Euclidean Model, gU(JEUh), plus the rest, gffi}h) , plus the eventual contribution of the double

fermion, gU(J 3, in their turn, let g(E1 h), gﬁigl oh) and gg?gl ) be respectively the part of gg?&h), gﬁi}h)

and gi,g which is constant or linear in the mass. Finally:

def
90 ()= g% () + 95 M (@) + 6, vgloy) () + 1050 (@) + 15 () (3.3.8)

with the following definitions

gb(u%h)(x)déf/ ((21;/)f ik xf(h)( ) ’ gfif)(x)déf/l)(g:; e—imk; (kgf(h)( k),
gfuRl’h)(x)déf/ e [ & ( ZkOJrJr/g;uiiz)(k ) _kl;r/i];)} fP (k)
gfﬁf)(x)@/ _m[ & :Z:Le (k) k%ﬂi(/f%] PR

0w [ (gw’; e |t - e

(1,h) def d*k —ik-x —pn (k) . —pn (k) Fh) (g
T () /D(2w)2 T Emirer )l B

1,N (R1,N)

then gfu]?gl) is given by the sum of gwa , with the cutoff fN(k:) replaced by

v (ko)X (k1 — (m/a)); and 73 (x) is defined in consequence of (3.3.8).
For e small enough, (so that, by the inductive hypothesis (3.3.14) 1 — cpe > 3/4), there exists
two positive constants, ¢ and C s.t.:

)andg

oE ()] < ot oI (@) < ~Gmw-n_ O
e = eV el e B eV el
El,h h ’Y R1,h h — - C’Yh
9ot () ‘ <l  |Pe)|< ‘ PR |y L
N Yk eCV Y ElT|
N (3.3.9)
w,w —= ec\/m ) w,—w — ’YN’Q ec\/’m )
2 h 3 h
(@) < | L ot r20(@) < ' i " —mov-m _CF"
Tw.o - ’yhli eC\/'yhnkL‘\ i ’}/ K ecw/'yhn\:ﬂ
It is remarkable the propagators gU(J ") and r(2 ") have a gain factor v~ G/Y NV =h) more than the

standard bounds. Clearly, the above bounds are useful whenever pj, < x7": when this condition
is not satisfied, then the mass in the propagator is so large that it is possible to integrate the
remaining scales all at once, as it was done for the double fermion propagator (see later the
definition of the scale h*).

3.3.4 Localization. The contribution to W("=1) of certain kinds of Feynman graphs is ex-
tracted from the rest by localization: it extracts the 0-th or the 1-th order Taylor expansion in
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the momenta and the 0-th or the 1-th order expansion in the mass parameters {py }x. Since the
space of the momenta, D, does not contain (0,0), and is not continuous, the Taylor expansion
should be done taking discrete derivatives in the four nearest neighbour lattice site surrounding
0. This subtlety cannot be very important, since the continuous limit (for the lattice D only),
L — 00, was not taken since the beginning, not to be involved with an infinite Grassmannian
algebra. (The analogous argument is not valid also for the lattice A, since it is essential to make
the limit N — 400 after the renormalization has taken place.) Therefore, for shake of simplicity,
the following developments, are as if the lattice D were continuous rather than discrete, leaving
the correct technicality to [BMO1].
Well then, it is convenient to introduce the directional derivatives

1 0 0
Qﬁdéf— {z— +w ] ,
2 | Ok, Ok,
which are orthogonal is the sense that the two relations are true: <8WDU) (k) = 0w, and
Zw::l: Dw(k)&J = koako + k18k1.

1. Let Wy} (k) be considered. If a = 8, W3")(0) =0 by (A4.3); if # = —a, independently

2,a,a

on a by (A4.4), it is possible to define

Wity (0) = sp—1 +" " Anp_g + AS;(lu_)l ;

2,0, —«

51”_) 1 is the sum of the graphs in the expansion of WQ(};_PQ(O) which are at least

where, As
quadratic in the masses {p, }x; while sj,_1 is the sum of all the graphs linear in the masses,
(E1,k) (RL,k) )
the sum of the graphs which are independent on the masses is in v*~'An;,_;. Then, let
(8(,@\2(}:;51)) (k) be considered. By (A4.3), for § = —a, (&;WUL_I) ) (0) = 0; while, for

2,0, —«

and therefore made with only antidiagonal propagator g or gS?_l finally,

a = f3, it is possible to define, independently on « by (A4.4),

def ,(+ 1+
N e
o) d;fd}(l—_)1 + Ad,(ll_’;) for 0= —a,

where Adg_’i) is the sum of the graphs which are at least linear in the masses; while

d;f_)l is the sum of the masses independent graphs. Defining zh_ldéfdgi)l + dé__)l, and

Adh_ldéf - 2al§1__)1 and, accordingly,

Ath—l(k)def <zh_1( — iko + e(k1)) Sh—1 ) 7

the localization is:
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Setting RY £

RIS [, e el Py ®

{z;k w¢k —w ZAd(M U)/

Dy 1

+Zh—12/ ) (d2)2 @kalﬁka[ o(k )_(_ik0+06(k1))]

(2m)?

1

A’k ~ ~ .
+ Z / (27T)2 wl—l—,awlzﬁDw(k)Da(k)/ dr (1 — 7‘) <8w60W2(Z¥7ﬁ1)> (Tk) )

0

The local part At;_; is absorbed in the free measure. Calling:

1+zp—1+Azpg

oY (k 7
O L+ xn-1(k)zn-1 + Xn—1(k)Azp—1

1+zp—1+Azpg 14 xn(k) (sh—1/th-1)

h=1 L4+ xn-1(B)zn—1 + xn—1(k)Azp—1 14 (Sp—1/ph-1)

. - . d .
and, since s;_1 is linear in the masses, my_1 éfsh_l/,uh_l, the effective field strength
and the effective mass on scale h — 1 are:
def

d Zn
Zh-1 éth(l + zp-1) , Hn—1= Hh—
h—1

(1+mp_1). (3.3.10)

Then, in the same way, the local parts Any,_; and Ady_1 are absorbed in the effective
counterterms on scale h — 1, v;,_1 and d;_1:

€ Z e Z
5h_1d:f (Zhh1> (5h + Adh_l) , Vh_ld:f <Zhh1> ’y(Vh + Anh_l) . (3311)

A remarkable feature is that Z5,_1, v,_1 and d,_1 are independent from the mass flow,
{p}. Finally, in changing free measure on scale h — 1 from dP(=P=1) to dP(Sh=1 it
has to be taken into account the change of the normalization:

~ 2
Ay 1 <Zh_1>2/ d?k [’f3+62(/€1)+u%_1(k1)] 1
Zn ) Jp 202 L kg + (k) +ank) ]\ OV, (k)

so that the effective vacuum energy on scale h — 1 is

By 1difEh +AEy_1 +AE),_; .

2. Let WY

4,w,—w

(k,p,q) be considered; and let

W (0,0,00Y ALy + ALY

4w, —w
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. Let W.

where Al,(ll_) 1 is the sum of all the graphs in the expansion of Wb (0,0,0) which are

4,w,—w

at least linear in the masses. Then

d2k d2p d2q -
Z/ 2 wk wwk—&—p q,w wp wwq wW4(w ?,u(k7p7 Q)
Dp -1 ( )
d2k: d2p d2q L
= Alh 1 Z/ (27T) wk wwk_hp qup,—w q,—w
d2k d2p d2q ,
[Z/ 2( ) wk wwk—&-p q,w + W4( w,i?,.)(k‘7p7 q)
Dy, 1
2 2 2
(1) d k d p d“q n N
= Alh 1 Z/ (271')2 wk wwk+p q,w ¢ ,—w g, —w

d2k d2p d%q B -
+Z Z / )2 (2m)? ¢;w¢k+p_q,w¢;:_w q,—wDU(p/)

w,0 p'=k,p,q” Ph—1

/ dr <8p W4(Z l)w) (Tk,mp,7q) .
0

The local part Al;,_q is absorbed in the effective coupling on scale h — 1:

er ( Zn \’
Ah_1d=f< h ) (An 4+ Alp—1) (3.3.12)

and also Ap_; is independent from the flow {py}r.

(h=1)

1:2.1:,(0,0) be considered; since by (A4.5), it does not depend on o, it is possible

to define

Fr(h=1)

1;2,05w

(0; O)def z}(f)l + Az(2 +) + Ad(2 -11-) foro=w
Az,(lz_;) + Adf_z) foroc = —w;

where Ad;f_’? is the sum of the graphs at least linear in the masses; then z,(lz_)l

and
Az,(lz_’J{) are mass independent: the former is the sum of all the graphs made only with
(diagonal) propagators {gg?f,’k)}k, and interaction V (namely all the mass-independent
graphs obtained in the case of the Euclidean model for such a kernel); while Az,(L ‘i) is

the sum of the graphs made with least one propagator {gﬁ;k)}k or an interaction A/ or
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D. Then

ko dp ,
[Z/D 2317 ko Ur, w¥p, waQUIZJ(k p)]
h—1
d2k d2
2,4
<(2)+AZ( ) Z/D 27T2jp ot
h—1
dzk d2
+Azh Z/ 2jp ku¢k —o¥p,—c s
Dp_1
d2k d2
Z/l; ij kawk wwp wWI(}; olzu(kap)]
h—1

2 2
_ZAZ(Qw)Z/ d k d 2jp kw¢kwa -

2
N Z Z / d k: dp2jp s Uy Dalg )/ dr <8QW1(’;,})V> (tk,Tp) .

Dhl

The local parts are absorbed into the effective density strength on scale h — 1, ¢, (2, U).
(2 +) def ( Z, > 1+ 2(2) + Az}(f_ﬁlr) Az (27—) <<}(L2,+)>
e Zn-1 e Lo, 5 A ) Lo
(3.3.13)

Multiscale integration goes on over all the scales k s.t. u, < k7", the first scale for which this
is not true being k = h*. It is simply to verify that , for h = h* + 1 the propagator (3.3.5) has
the same dimensional bound of (3.3.4)

10| < /T

Finally, it holds the following theorem.

Theorem 3.1. Let it be supposed there exists € > 0 and the constants ¢y > 0 such that at any
RG step h: h* < h < N, the effective parameters satisfy:

(2,0)

TS thl <y, TR g —ul:hl e A (?2_0) < 20 (3.3.14)
- * htl

vnl, |0nl, [An] < 2. (3.3.15)

Then, for suitable positive constants C, c:
1. If n¥ +nt #0,

h(2-(1/2)n? —(3/2)n% —n?)

//\ng ‘Wrgﬁ)nv nﬂwa(—’y’ )‘ Scﬁy ;

e 2w Ty VY rd(y:2)
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2. ifn® +n) =0,
/dzi ‘W(h) (g)‘ < oyt 2-a/2m7)
A

n¥;0;0,w,0

The proof is follows by simple dimensional analysis, and is consequence of the Appendices A3
and Ab. Since, by the first item, uy/y" is strictly decreasing in h, for any choice of the mass
0 < pu <y~ 1k, the scale h* is negative; and:

log, (u/K) | _ s logy(w/K)
1-— 2005 - - 1+ 2605

hence, in the massless case, h* = —oc.

3.4 Flows of the Running Coupling Constants

A remarkable feature of the Localization is that among the flows of the effective parameters,
only the one for the mass is constructed with massive propagator; the others are constructed
with propagators { gquik)} k4 ggﬁ’k)} k or { gf}?ﬁ ’k)} &, and therefore are independent on the mass
flow. Since the scale h* was introduced only to avoid bad bound on the massive propagators,
all the flow, except {u}x, can be extended from the range of scales h* < k < N, to the range
kE<N.

Other features of the flows of the effective parameters are depicted in the following Theorem.

Theorem 3.2. Fixed any ¥ : 0 < ¥ < 1/16, there exists € > 0 and two positive constants ¢ and
c2, such that in correspondence of any parameters i and \ satisfying 0 < p < ky~! and |\| < e,
there exist the parameters An, un, Zn, Z](\]z’+), Z](VZ’_) and 6y, vy, such that the following
properties hold.

1. The flow of Ay is such that

hlim Ab =X An_1 — M| < ce2y~0/DN=h) (3.4.1)
——00

2. The flows of Zxn and uy are such that pug = p and Zy = 1; furthermore there exist ny
and 7], independent from the regularization used (Euclidean or Hamiltonian) from the
cutoff N, and from the mass p, such that

Zp = mEAG pn = pyIIAEAGH (3.4.2)

with the rests, AG}, and AGy, summable in h: |AG}|, ‘A@h‘ < 02527_(19/2)(1\’_’1).

3. The flows of ZJ(\?’H and ZJ(\?’_) are such that Z(g2’+) = ZéQ’_) = 1; furthermore there exist
77/(\2) independent from the regularization, as well as from the mass p and the cutoff N,
such that

Z3" = DA Z>) = YD +aGE T (3.4.3)

)
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with the rests {AGS’U)}U:i summable in h: ‘AGS’U)‘ < ey~ (/N =h),
4. The flows of 65 and vy are such that |0y|, |vy| < 26y~ 7N =),
The proof is given in Appendix A5. It is based on the vanishing of the Beta function of
massless Thirring model.

3.5 Equivalence of the Euclidean and Hamiltonian Regularization

Proof of Theorem 2.1. It is a corollary of the Theorem 3.2. It can be obtained in the same
way as the proof of Lemma A.3.4. Anyway, using theshort memory property (see A3.5), and
the compact support of the propagators, a slightly easier proof is available for the Fourier
transform of the Schwinger functions with at least one field insertion. Indeed, the (m;n + 1)-
Schwinger functions calculated at fixed momenta p1,...,Dm, q1,---,qn, no matter if they are
obtained from the Hamiltonian or the Euclidean regularization, asymptotically in the limit of
removed cutoff are equal to the sum of the following Feynman graphs: all the graphs found in
the expansion of the Schwinger functions, excluding those ones having an interaction on scale
m > N, or an interaction D or N, or a propagator {g(R’k)}k, and replacing the parameters
ey i, Z,EQ’U) and yuy,, respectively with A, ¥, ’yk”(xm and py*" . Indeed, these graphs do
not depend on the regularization; then, the difference between the sum of such graphs and
the corresponding Schwinger function is bounded by the modulus of the sum of the graphs
with one external fermionic propagator on the scale of the momentum ¢;, called h; — fixed ¢,
by compact support function, h; can be chosen between two adjoining momenta scales — an
effective parameter or propagator on scale m, and falling in one of the following cases.

i. It is m > N. Then, by the short memory property, the sum of such graphs is bounded,
up to a constant, by y~?(N—h1),
ii. It is m < N and the parameter is d,, or v,,. By the property of the flows of 5 and vy,

and by the short memory property, the sum of such graphs is bounded, up to a constant,
by 4~ 0lm=hily=(0/2)(N=m) < y=(0/2)(N=h1)=(9/2)|m=ha]

iii. There is a propagator gde’m) on scale m < N. By the bound of such a propagator and the
short memory property, the sum of such graphs is bounded by y~?I"m—/1l~=B/H)(N-m) <
,y—(ﬂ/2)(N—h1),y—(19/2)\m—hl\7 for ¥ < 3/4.

iv. Itism < N and effective parameter \,, —\, or Z,,, —y™"™, or ft,, —7y™"*, or Zr(,f’g) —fym”(f).
By the property of the flows, and by the short memory property, the sum of such graphs
is bounded, up to a constant, by y~?Im=hly=(9/2)(N=m) < ~=(9/2)(N=h1) ,=(9/2)[m—ha|

Furthermore the scale A*, in the limit of removed cutoff, only depends on A, . Therefore, it is
possible to perform the sum over m and to get for the difference of the Schwinger function derived
in the two different settings a bound v~ (?/2(N=h1) ‘for 0 < 9 < 1/16, up to a constant. Anyway,
in order to have, for different regularizations, identical values of A and p (and consequently also

of nx, My and nE\Q)), the initial parameters will be generally different. ]
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Phase and Chiral Symmetries

4.1 Ward-Takahashi Identities

The classical Lagrangian is invariant under the global transformations of the fields:

7w = €T (4.1.1)
as the phase, {a,, },=+ does depend on the component of the fermion fields, w, this transfor-
mation is a combination of the phase and chiral transformations in the Dirac notation.

This symmetry can be implemented in the generating functional of the Euclidean Thirring
model; and in particular, in order to obtaining the identity n) = ?7&2) and the vanishing of the
Beta function it will be useful to consider the generating functional with infrared cutoff on scale
h. It has to be performed a real exponential transformation and to allow a dependence of the
parameter {a,, },—+ on the space points: a new real field, {ocx,w}ff:ﬁ[ arises — this prescription

looks like, but has not to be confused with, the implementation of a gauge symmetry.

4.1.1 WTI for the Schwinger functions. An essential condition to get the consequences of
the WTT in the functional integration framework is to transform the field in every site of A. This
seems to be forbidden by the choice of a compact support cutoff function, ad the consequent
restriction to the momenta in Dy. Therefore, let x4 (k) be the cutoff function obtained adding
to xn (k) an exponential decaying tail 0Ax y(k), alway strictly positive.
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Hence, let the following transformation of the integration variables in Fourier space be con-
sidered
AO' Ao‘ d2p -~ Ag-
wk,w — ¢k,w —0 | 753 Oép,oﬂﬂk_gp’w . (4.1.2)
p (2m)

Calling X27N(k) fx‘;v(k:) X2 (k), the (4.1.2) implies the following transformation of the kernel
of the free measure

2k~ Dy(k) ~ 2k ~, Dy(k) ~
/D<27r>2 L I (5 /D<27r>2 N

2p A2k . o~ ~ Dy(k)  Dy(k+p)
+/ (0% ,w¢+w¢ w -
D PeTheTRERC e v (k) xd y(k+p)

)

and
Dy(k) — Du(k+p) des
Xi,N(k) Xh ~n(k+p)

— _Dy(p) - [Dw(k) <1 — (xh.v)

— Du(p) — C (k. k +p)

-1

(@) — Dy (k +p) <1 ~ (b)) (k +P))] :

It is suitable to introduce the interactions with the external source a,,:

def d2q d2 -~
Z/ 5(q p)ap q,wwqw p,w ?

d f d2q d2 N =R -
= Z / Uw(p - Q)ap—q,ww(—;owwp7gw 5 for o = &+ ,

<<

Fig 3: Graphical representation of Ay, A_ and A

so that, the transformation of W™ reads

V0 — lim [aPIN () exp { ~In V(W) + 25 T (0,0) + Fle,v) |
-exp{ZNA+ (Oé '¢) +ZNA0 (a7¢)} (413)

d2p d2 A ~ = T~
" eXp { Z / Qp,w [(pk,wwk—l-p,w wk wgpk—&-p w} .
w==+
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Being that W™ is independent of «, summing and subtracting in the argument of the expo-
nential Zn 3, V(”)A (a,1), and then taking a derivative in &, ,, for a = 0, it yields:

_ ) (h) (=) (h)
1—vy ow N ow
—F | D R —— D_ h AN
( 2) ) u\P o ) — C(z) u(P) T 1 (2, ¢) "
A2k | o) W) 8W(h) o
= / 2 ~— alz-‘rp 8/52_;1 ~+ AA (Oaja QO) )
(2m) 0Py 4 {a 0Py ) o

where the last term is given is the derivative of the functional

e [apiNl () exp {-lyV(0) + 28T (,0) + Fle.0)}

(4.1.5)
eXp{ZN[AO-f— ZV(N) } (a’¢)} )

n==%

Its derivatives are remainders which will be proved to vanish in the limit of removed cutoff.
Anyway, this holds for {y](\‘,’)}(,:i having non-vanishing limit: w.r.t. the formal WTI, they
represent an anomaly. Adhering to the Johnson’s notations, let the following definitions be

considered:
def 1 def 1

aN:l <()+1/(+)) ¢ 1+<() (+)>;

an =
now, the WTI due to the phase symmetry (to be compared with formula (16) of [J61]) is

obtained summing (4.1.4) over u:

1 o d’k [ow® oW
D,(p)—m W) =a /—[7/\ oy - o = ]
zu: 3 )Q(\/?) Tlp.1 -¢) Nzu: p (2m)% | 0By, TFTPH TR OBk

whereas the one due to the chiral symmetry (to be compared with formula (17) of [J61]) is
obtained multiplying both members of (4.1.4) times p and summing over f:

1 oW A2k | oW owh)
pDu(p)— = (2,) = an u/ e | —— Py — Pr ==
2 D) oy 5 20 o | 0y, e~ Phuggr

Finally, being that (14 ou)/2 = 0,,,, summing the two above equations, the final expression
for the WT1 reads:

Du(p) 1 o :ZaN +anopu / d?k aw<h>¢_ o owh)
@5, 2 2n)2 | 0@y, PR TR
(4.1.6)
_ZaN—i—aNJu 8W( )(O] o)

dp,
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By taking suitable derivatives w.r.t. the field ¢ for y = ¢ = 0, (4.1.6) generates all the WT1
involving one density insertion: for instance, by taking derivatives w.r.t. (ﬁ;’w and @, S (4.1.6)
gives (1.1.8) and (1.1.11), for

def 8Wf4h)

- ~ ~+ o~
aapvua(pk,wa(pk-i-p,w

AHED (p; k) (0,0,0) .

4.1.2 Flows of u](\;r) and 1/](\,_). The remainder of the above WTT are the Schwinger functions
generated from the functional W;h) with one — and only one — derivation in the field @, and
various number of derivation in the fields ¢’s. Therefore it is necessary to study the renormal-
ization of the contraction of the vertices {Ag}a=0,+, up to linear order in &, which lead to the
flows of l/](V+) and 1/](\,_).

By induction, having integrated the scale from the N-th below to the j-th, it is possible to
prove that, up to the renormalization of the coupling constants already present in functional

W) the functional Wff) reads:
(h) o de . . .
€WA CD) :f /dP[h’J] (w) exp {W(J) <(Pu7a \/Zw) + W.%,)irr <047 5] \/Z¢>}

ol [(5) 40 T4 (ov70)

J

where W) and Wﬁf}irr are defined as in formula (3.3.7), but with propagators and couplings
obtained for the Euclidean massless Thirring model; besides in the monomials of the fields of
W(j,)irr there is also one a-field and either n¥ +n% > 2 or n? > 1.

From this section to the end, since all the developments will be about the Euclidean Massless

Thirring model, let §£E;h) be called, with abuse of notation, @(Jh).

Lemma 4.2. Let the kernel Ug(;i@j)(k,p)défCi(k,p)ﬁg)(k)gg)(p) be considered. It can be decom-
posed into

U (k,p)E S Do(p — k) S, (k,p)
and Sff,’sj), the limit € — 0 of Sglj)s, satisfies the bound

ooy st < {1 e 2N

otherwise .

The proof of the bound is given in appendix A6. It means that formally C% can be thought as
a l-dimensional kernel: since the monomial a1y has dimension 1, the power counting for the
graphs with insertion of the vertex Ay will be found to be always satisfied.

4.1.3 Improved localization I. As for the effective potential, also the multiscale integration of
W4 is companied by a localization and absorption in the effective parameters the graphs which
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are divergent according to the dimensional analysis. At the j — 1-th scale, with the inductive
hypothesis the previous scales were integrated and the local terms were extracted, they holds
the following cases.

1. One field QZ of the interaction Ay, contracted with a kernel W(j )(k), has vanishing local

part since W(J ) ,(0) = 0 by symmetries; furthermore, for compact support arguments, such
a contraction can only occur at scale j:

A’k d?*q o+ = 0 () (1T )
L D(27T)2 (27r)2 ak—q,w¢q,w¢k,w Cw(q’ k)gw (k)W2,w(k) =0,

d?k d%q . N .
R [/D (27)2 (27)2 O Qw¢ ¢kw 05(q’ k) (])(k)Wé;]a);(k):|
d?k  d%q . o~
= /D (277)2 (27.(_)2 ak—q,ww;:wwk7w
+

Du(k) {c:im,k)ag)(k) / ar (0,722) wfﬂ ;

the derivative clearly improves the bound on the kernel WQ(Q of one negative dimension,
at a loss of the bound on the kernel that will be obtained contracting the field Jk_ L ina
scale lower than j — 1. 7
This automatic dimensional gain is due to the fact that this situation cannot occur in more
than one node v in the tree expansion, and in its first preceding v’; hence an alternative
way to cure it is to multiply by v~2+?: the former factor makes negative the dimension
of such a graph, the latter worsen the bound of a constant.

2. As in the previous point, one QZ—ﬁeld of the vertex ) I/J(-U).AU, contracted with a kernel

Wéjgw(k) has vanishing local part; since %j ., has to be contracted on scale j:

2k d%q »
EUD%Q (o) Q-1 g Dub =) g,ag@)w;gw(k)}:o,

d?k  d?q ~ ~
RU (27)2 (2m)? Bk=q¥q,00 k00 Dok - )gﬁﬂ(k)Wé’ﬁw(k)]
ko d2 .
- Z/ ak qvwwq 0w¢k,aw Du(k)
pn==+

Dati= g [ ar (275L) ()]

Fig 4: Graphical representation of items 1. and 2.
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3. Both QZ—ﬁeld of the interaction Ay, contracted with a graph wl)

4w, - 18 identically vanishing,

except if at least one of the two propagators is on scale IV, or h. It is convenient to define:

r,s),(4 dif d2k s 177 (3)
200 [ 55 s+ b+ DT ().

By symmetry under rotation and under space reflection (A4.2 and A4.3), it holds:

s for p =ow .

=0 for p = —ow
M (9), (4)(() 0) { difA (0,0)
= nj

Hence the localization of such graphs gives:
&g d2 A
IS [ et o D= 08 B T2 )|
An (0 ) d q d%p D, ~_
- Z )2 (271')2 (p q)Oép q, wwq ow¥p,ow
d2q d2 rs
[Z/ (p q)ap q, wwq nwrp,p o(JO'rZJ,(;jL)( )]
d2q d2
-X 3 / Dol = 08y Do)
/0 dr (EBIGLD) (rp.7a)

4. For the contraction of both ¢-field of the vertex Yoo 1/1»(0),40 with a graph Wﬂzg 1t s

convenient to define:
7,8 de a d2k ~(r s
MG @ (p, ) o )/ orE Ga+K)GEp+ KW, (a.p.k) .
D

As in the previous item, by symmetries it holds:

=0 for u = —ow

M Girs),(4) 0,0 o
oW, ( ) d:fAng.a) for p=ow .

hence, the localization of such graphs gives:
d2q d2p i,1,5),(4
L [/D (27)2 (212 Do (p — Q)8p—g oy, MET9 D (p, )
d?2q d?p R
= An!® Do ) -
n; /1)(27T)2 (2r)2 (p— q@)0p—q, ¢q oV o
d2q d2p i,1,5),(4
R | [ s s D= g, B2 )

~

d?¢ d%p oy
= Z Z/ DO‘W(p—Q)ap—q,wwzuwp7uDU(k)

/0 dr <8k (7’ " S) (4)> (p,7q),
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Fig 13: Graphical representation of items 3. and 4.

5. The self-contraction of the interactions Ay would give divergences because of C¢,. Anyway,
such a self-contraction, either for Ay, and for {A4,},, cannot occur in the expansion of
the Schwinger function: in such expansions they cannot occur subgraphs with no external
fields of type ¢ or .

The local parts are absorbed into the effective parameter on scale h — 1:

7.

u](i)ldéf—J (u](a) + Anga) + Ango’a)) .
Zj—l

Theorem 4.1. Fixed any ¥ : 0 < 9 < 1/16, there exists € > 0, a positive constant ¢4 and two

counterterms vt) and v\7), analytically dependent on \, such that, for any fixed cutoff scale,

N, and choosing u](\[;) = (9 it holds

‘y](")( < gy WO/DWN=D) (4.1.7)

The proof is in appendix A7. It is a simple application of the fixed point theorem; once two
(o

counterterms {vy )}Uzi with the required property are found, it is easy to verify they are sum
of scaling invariant graphs, and therefore they are independent on the scale of the cutoff, N.
Accordingly, it is natural to define:
def 1 _def 1
a = a =

1— (1/(_) + 1/("")) ’ 1+ (1/(_) — 1/(+)) ’

Now it is possible to prove that, even removing the cutoff, the W'TT are not equal to the formal

one because of the non-vanishing anomaly a — @.

Theorem 4.2. In the same hypothesis of theorem 4.1, all the anomalous W'T'T for Schwinger
functions, with only one density insertion and calculated at fixed momenta w.r.t. the cutoff
scales, h and N, in the limit —h, N — oo are generated by suitable derivatives of the following
identity:

ow (2) a+aop / &2k | ow __ oW
Dy(p)- 225, 0) = ad —or OV L 4
(p) a]p,o- (] 90) Cb ZM: ) O (27T)2 6g0k“u spk-l-p,l—l« spk,p, a()/p\;g‘,——i_p’u ( 8)
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In particular, (a +aop)/2 = 0., + 05— p N/ 47 + O(N?).

The essence of the anomaly is that (a + @op)/2 # d,,,, which implies, in spite of the formal

result, the non-vanishing of ,/S’\(_lfzj A celebrated consequence of the WT1, not wasted by the

anomaly, is the following.

Theorem 4.3. The anomalous exponent of the field strength and the anomalous exponent of

the density strength coincide: 77&2) =M.

This is what in formal language is stated as Z(?) = Z.

Proof of Theorem 4.2. With reference to (4.1.6), it is only required to prove that the deriva-
tives of )/V(h)7 made w.r.t. one field a and various fermionic fields at fixed momenta, fulfil the
same bound of the derivatives of W™, with o replaced by j, with a more factor which is van-
ishing in the limit of removed cutoff. Hence, let any integer n € N, any set of labels e1,...,¢&,
and w1, ...,w,, and any momenta p, kq,...,k,, chosen independently from h, N, be considered.
It holds the bound

14+n (h)
1 _ i Wi _ < Cny;p,hl ..... B (V_w/z)(zv_hl) +,y—(19/2)(h1—h)> (4.1.9)
Pl | 00p wOPL, o, - - OPK s, [Li=1 V%,
where {h;}_, are the scales of {k;};: k7" ™! < |kj| < ky" and Crpny..o i,/ T1=1 \/Zh; 15
the bound for the same derivatives of the functional W), Such a bound can be obtained by

1=¢p=0

the following argument. The graphs in the expansion of the L.h.s. member of (4.1.9) has to have
an external propagator on scale h; — besides external propagators on scales ho, ..., h,; and they
fall in one of the following cases.

1. An interaction Ay is contracted: this can happen only on scale m = N, h. By the short
memory property (see A3.5), the sum of all such graphs is bounded, up to a constant,
with 4~ (/2 (N=h1) g 4=(0/2)(h1=h)

2. An interaction A, is first contracted on scale m, and hence brings a coupling 1/7(,? ). By
the short memory property and the bound in theorem 4.1, the sum of such graphs is
bounded, up to a constant, with y=?Im=h1l = (/2)(N=m) < ~=(3/2)(N=h1)y=(9/2)[m—h|

Hence it is possible to take the sum over m, obtaining (4.1.9). u

Proof of Theorem 4.3. It simply follows from lowest order expansion of (1.1.8), and from the
proof of Theorem 3.2 — in particular from the features of the anomalous exponents depicted in
A5.3. Indeed, since

s — D] < cey~?N=1) ‘,,7&2) _ 1“22)‘ < ceyPWN=h)
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then @
log,, (W) = (N — h) (m —n§2)) +0()2), (4.1.10)

where O(A?) is a term of the order of A? and bounded for every h. Calling k any momentum
k" < k| < 4"*1, by the lowest order graph expansion in Appendix A3, it holds,

G2 1+ 00 1 14 0(\?)

SU (2R = SEH) = 5
h

Zn DE(k) Dy(k)
1. — — 1 O(/\2) any +an
AHE2 2k k) = — 22 Y 14+ 0(0Y).
oo (2K k) Zn Dok 5 (A7)

Replacing the above identities into (1.1.8) and (1.1.11), the bound logv(C(Q)/C(Q)) O(A?) holds
for any h < N: to be consistent with (4.1.10), it cannot be but 7y — /(\2) =0. u

4.1.4 Remark: anomaly and anomalous exponents. Formally, by the phase and chiral
symmetry, it is possible to prove the identity of the field and density strength, Zny = Z](\?) , 8O
that the renormalization C](\?) = 1. But in a rigorous setting, W'T'T are seen to break this identity.
Anyway, since the anomaly only changes a factor in front of the current, the identity between
the exponents with which Zy and ZJ(\?) diverge remains true; therefore C](\?), although no longer
constant, is anyway bounded.

4.2 Closed Equations

4.2.1 Schwinger-Dyson equation. The fermionic fields satisfy an evolution equation which
can be turned into a set of equations for the Schwinger functions: see Appendix A8. Such
equations relate the m-points Schwinger functions to the m-points Schwinger function with
m < n and one density insertion. Using the WT1 to write the latter in terms of m-point
Schwinger functions, the CE’s arise.

4.2.2 Closed equations. In Appendix A8, the following equation, generator of all the SDE,
is proved for any k : y"x < |k| < ¥V k — where the cutoff x;, n(k) = 1:

D, (k) (4.2.1)

)

P )
8 w B Prwe” AN / d?p 82ev”
for y = 0 — since here only the CE for Schwinger function without density insertion are studied.

Since it is possible to prove the convergence of the last integral for small p; and since |p| < 2yVk,
it is convenient make in the argument of the integral the following replacement:

def__ —_
1= xn42(p) = Xnr2,N+2(P) + Xna2(P) = Xp n(P) + X0 (D) -
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where xp12 N+2 (p)défXN+2(p) —Xh+2(p). Then, from the generator of the WTT, (4.1.6), it holds
the following integral identity:

1 d2 §2e™
w/ (2n)? Yh,N(p)W
CN D \&T Ip,—w Spk—p,w

_ Z ay +anop / d’p d?q¢ Xpn(P) 2™ 92
B (

—— P SD =
p(2m)2 (2m)2 D_y(p) 89% pwa@qu e "o (—;-l-p u&pp—kw
_ — (h)
_ZaN—f—aNJu/ d?p Xh n(P)  0%eWa 0,7, )
2 D(27r) (p) 6ap Ma(lok —p,w e

(4.2.2)
Taking a derivative in (ﬁ,;w, and putting ¢ = 0, gives (1.1.13) — apart from the function X, y(p)
that had been skipped for reproducing the Johnson’s argument. By the general analysis of the
previous section, the term proportional to the derivatives of the functional W4 would have been
vanishing in the limit of removed cutoff if the external momenta had been fixed. But in this case
the external momenta are integrated over, and there is no reason that this term is vanishing —
differently from what implicitly stated in [J61].

4.2.3 Flows of E{]\? ) and XE{;) To overcome the problem of not having, neither in the limit, a
real closed equation, it is possible to write such a rest as addends that are already present in
the SDE. To this purpose, let the functionals W(}fl, for 4 = + be defined as

W;i,(ﬂ,a,w)dgf/dp[h,zvlw) exp{ awV (VZne) + 7 (5 \/_w)+f(w/1)}

- {

with {a#},—+ and {o"},=1 four real parameters later fixed; and

e d?k d2 d?q
(M) w /3 d f Z / p Yh,N(p)M/Bk wwk pwwq u¢p+q wo

T 4 Z AT — ) Ny BB — glme) g(1)
o==%

(VZnv. @6)} ,

7T) D_ w( )
. d2k d2 d2 o -~
T(u) (¥, B) d lef Z/ p 2 (2r)? Xn.n(P) H((Z;)) 5k wwk pwwq70#wp+%0ﬁ"’

!

Fig 6: Graphical representation of the interactions 76(” ) , T and TJ(r” )
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def d?k d2p d2 ~ _
SEEDS / o Bokaly ol o

e d k' = T
B(l)(ﬂawd:f;/w Br,wDuw (k)Y ,, -

Because of the identity

/ &*p XpnP) 0%V i@eW(Th’ o) /\N/ d%eV
(271')2 D_"J(p) 6&\?:#6@2_—1),1«} ZN 85]4:,0.) () a]p wa(pk —p,w (423)
oD, () 2
agpkw
it is possible to turn equation (4.2.2) into:
aN —aANE () 1 d?p e ™
- S0 IN T ONE G0y —/—y (—2
ZM: 2 ¢@ Jp(@2m)2 N0y, 081,
= W(h)
_ (Z MUm)) D, (k)L
I 2 a@kw
£y o e / p &g Xan) [ 0" e dev™
2 Jp(@m)?@m)? Dowlp) |00 ,u000m " T 08008 k.
W
_L aN—a,Nw,uﬁe 7%
_ 2 wh)
anN —anp (1) ) 1 / d*p _ Oe
- ———a" A | | o )
(%: 2 ¢ Jo @m0, 05,
(4.2.4)

The term proportional to the derivatives of Wéhi does vanish for a suitable choice of the coun-
terterms; as well as the second term in the last line vanishes, at least in some important cases —
the CE for S® and for S®. As consequence, it is suitable to replace (4.2.4) in (4.2.1), obtaining;

e wh) BN - W(h)
a@k Py ZN (pk w®€

= 2 2 & w)
Ay 3 anu/ (d p d*¢ Xpn(P) [ Oe
I

Dy (k) =

— 0,
2 p(2m)2 (27)2 D_,(p) |05, p.00Pan KAEdy
S (4.2.5)
~Pangar oot
s0q+pu Pp—kw

)\NANZCLN—anuﬁe (ThL /\NAN/ d?p _ () e ™
- XW\P) (< >

Zn ~ 2 Brw D Jpm)? 05, w08,
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where it was set

def 1

YT /) D (an — awp) (@ — o)
_ 4.2.6

wr 1= O/ T, (an —axp)al (429)

NT IS (1/2) 2 (an —awp) (@®) — o) |
Deriving (4.2.5) w.r.t. @,;w, for ¢ = 0; since by the tree expansion, see A3,
2

‘/ D (S (s k)| < OOt (4.2.7)

for any 9 : 0 < 9 < 1 and for h; the scale of the momentum k; and supposing the derivatives of
Wr . are vanishing, in the limit of removed cutoff, it holds the asymptotic formula (1.1.16).

More in general, in order to prove the derivatives of Wy, are vanishing in the limit of removed
cutoff, it is necessary a multiscale expansion.

4.2.4 Improved localization II. After the multiscale integration, down to the j-th scale, it
holds:

L [apaly) e (WO (0. VZ50) + WL (B0 Vo) }
(%) 2 S o) (vv)|

(4.2.8)

(VZiVZi8) ¢

N
= w L~ w
. exp [nga,u )B(S)JFZ?%CIEW )B(l)
k=5 77

where E](\}O”“)déf—a(”))\]v, while, for j < N—1, ZJ(.S’“)déf <X§.“) — a(“))\j>; and, g](\}’”)difa(”), while,
for j < N —1, E(.l’“)dif (N(“) — a(“)zj). Indeed, these are the following possible contractions of

the interactions in W( )

1. The contraction of the interactions 76(“ ), 7}(“ ), B®) and BM) through only one external
field 12,; » With a kernel /WQ(JJ are apparently marginal; instead the localization is propor-
tional to /W(j ) ,(0), vanishing by symmetries; for instance, in the case of the occurring of
the interaction T(“) it holds:

d?k  d?p d?q C.(q, (8) T
£ [/ (27)2 (27?1)9 2 (2m)? X, NP - q)ﬂkﬂ’ qwk wwq7 p,uD Eq p)q) QSJ )(k)WQ(]u);(k):| =0,
d?k d?p d?q C.(q, e) T
RU( )2 (27:)9 3 (am)? XN (P Brp-a0i g M%ggmwgg(@}
d2k d2 d2 PN C.(q, .
= Z/ p )2 Xh N(p Q)ﬂk—l-p q¢k w (k) ;1’:# ;uﬁif)q)g& )(k)
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The above case is given by one-particle reducible graphs, therefore an alternative argu-

ment is the one similar to item 1. and 2. of the previous section.

Fig 7: Graphical representation of items 1.

2. The fields ﬁk_ . and ﬁp_ ., of the vertex 76(” ) with the kernel /I/IZL(’JZM, is non-irrelevant; by
the explicit expression of C9, it holds:

a*F < Cogp+ k) .
G T =05 K 0 o KWL Kb

D,(q) (1 - (Xi,w)‘l(q)> fs(p+ k')
D_u(p+k —q  Dulp+¥)

& RO
(5T,N + 6s,h)us (p + k,)

HONE =) D_y(p—q+Fk)

Wi w(k' 0. k) ;

only the second term has a non-irrelevant part; indeed, for j > h+2, because of fs(p+k'),
with s > j, and because of <1 - (thN)_l(q)) , which, for ¢ — 0 compels ¢ to be contracted
on scale h,

1Du(p+ k' = @)l > |Dyulp + k)| = [Du(g)] = 7771 =41

> (1—"")y 7t

this means that the bound of such a kernel, w.r.t. the standard bound, has a more factor
~v~0U=") which gives a gain of one unity in the dimension of the kernel, making it strictly
negative down to scale h, where the third field of the interaction, QZq,ua is compelled to
be contracted by <1 - (Xg,N)_l(Q)>- On the contrary, the other term

M3 (p, k, q)

def d2k‘/ .
Z/ )QXhN(P q+ kg (k- k)

57‘,]\7 + 5s,h us(p + k/) X7
& ( ) WL k)

D_,(p—q+ k) o

can occur only if 7 in on scale N, or s is on scale h; and requires the extraction of the

coefficient:
ifwp=1

—~ =0
M9:3(0,0,0) { gef  ~
H,w ( ) d:fAlj(_vo) if wp = —1 ,
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so that the above contraction is equal to

A%k d%p d%q -
| | G ot eer- i

d2k’ _ 0 C‘S(q,p—i—k’) »

2 2 2
o) [ 2k d%p d%g ~
_Al] / (27‘(‘) (27‘(’) ( ) 5k+p q,w¢k w¢ p,—w

A2k d%p d%q -
R || o g o e o B

Cﬁ(q,er k/) ~(s)
)
—wp+k —q)7*

'/gzk); Xnn P+ K =035 (k= K5 (p+/~€)W4(ﬂfw(k’,p,k)]

A2k d?p d%q _
= | G e e Ve

Du(a) (1= (6.0 @) £ o+ k)
D_,(p+k —q)  Dulp+¥)

[ G R+ ¥ = 0 #)

1
Y Y e st T D0 [ e (TGO (e

p'=k,p v
With similar developments it is extracted AX(J“O) the local part of the graphs with the
fields 12,; and ¢+ of the interaction T(“ ) contracted with the kernel W%

4w
3. The contraction of the fields wk . and wp op Of the interaction 7}(“ ) with the kernel Wfﬁ w
is non-irrelevant. Setting:
r,s),(4
NIL O, k.q)
def d<k ~(1) I\— ’ Dau(p+ K — )A(s) () ! ’
= k—k k' — KW, k'p k
/(27T)2 gw ( )Xh,N(p + q) D_w(p—f— k/ o )g (p+ ) 4 P"W( ’p7 )
such a contraction requires the extraction of the coefficient:
—~ = if wi = 0
NE@(0.0,0)d 2p '
e ) d:fAlj( ) if wp=-1,

so that the above contraction is equal to
d?k d?p d%q N
w N4 (0 ke
C[/(%) 2 (2m)% (2m)? 3BtV Vg VLD (0, K, 0)

— &2k d2p d2q -
_ AT ,0)/ }
7 | ep e e e i

&k _dp I RO
R | [ s o e s Pl Ty S0 )

d’k  d? d? ~ ~_ o~ o~ ,
:/(27r)2 (27:)92 (2732 Z Zﬁ“rp—qvwwk,ww;ulbp,ul)“(p)

p'=k,p,q Vv

1
/ dr <85/NL(LT(’,SZ;(4)> (tp, 7k, Tq) .
0 K K
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With similar developments it is extracted AX(J“U) the local part of the graphs with the

fields wk . and w+ of the interaction 7'(“ ) contracted with the kernel ng o

Fig 8: Graphical representation of items 2. and 3.

4. The contraction of all and three 1-field of 76(“ ) with the kernel Wéjﬁ W

if at least one between the two propagators g, has scale N or h, otherwise the product

is non-vanishing

C.(p,k)gu(k)gu(p + k) vanish; it generates non-irrelevant operators. Let the contraction
be:

e [ A2k’ d%¢ Do (p+k —q)
MT50:0) () o ) ief / 9k —K K —q) =7
W,0, 4y P ( ,q,p) (27T)2 (27T)2 ( )Xh N(p + )D—w(p + k/ _ q)

SE(a+d o+ K +OWE, (a9, kK q)

and let the following coefficient be considered:

if p=w

_ ~0
(r,5,t),(6)
; wa.’ﬁ%p (07 07 O) { défAX§0707uW) if p=—w

Then, the decomposition into marginal operator plus irrelevant one is:

d?k d?p d%q i
" M(T7S7t) (6) k
/m) 2 or? omp oV 2 e
2 2 2
_ AyO0oue) [ Pk dPp dPq o ot a
_A)‘j /(27r) 2 (2m)2 (2m)? O~ quk wwq_ S

2k d%p d%q -
/( ) 6p+k quk‘ wwq PwppZMcga/f)ﬂm)(k:%p)]

R

m)? (2m)? (2
Z Z ptq— kwwqukuwpl/D ( )

d2k’ d2q’ 1 .
'/(gﬂ)z (27r)2/0 dr (85,M£7;,7;f?;)(6)> (tk,7q,Tp) .

Besides, similar decomposition is done when 76(“ ) is replaced by T(“) with the replace-
ments of S;(fgt& with 1, and of A)\go,o,w) with A)\go’a’””).
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Fig 9: Graphical representation of item 4

5. The contraction of all and three -fields of T(”) with the kernel W)

A'j,» 18 non-vanishing if

at least one between the two above propagators g,,, has scale IV or h. Let the contraction
M0 @)

def [ A%k d%q o, Dyu(p—Fk) s
< | e B W+ K — )G LS — b )W ()

then J\?Lf;”;;f) (@) (0) = 0 by transformation under rotation; while

r,s =0 ifo=—-w
Z (8 M(7b ;j) (4)> (0) { dEfAN([),uw) . B
p =82z

fo=w.
Finally:
Ms0:(4) — A0 d’p > D (p)-
Z 6pw p,p " w,p, 1 ( ) - Zj W 6p,w w(p) Dyw I
[Z/ ﬂpvwwp pM(T}fﬁ) G )]

R R 1
=3 By De D) | ar (1= 7) (0L IS ()

Besides, similar decomposition is done when 76(“ ) is replaced by T(” ) with the replace-
ments of S,(f,})t,z with 1, and of A}éo’/‘“) with A%U’W)-

Fig 10: Graphical representation of item 5
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6. The self-contraction of the fields z/p\; , and sz__ pw of the interactions T(” ) is non-vanishing
for w = p and ¢ = k — p. The kernel is

51 _
/ (212)72 99 (k — p)x N(p)%

/ [X ») (85,5 + 0.1 )us(k — p)
R R s Yo
fl—p) DB (1= 0407 )

-~ Xnn (P ;
Dy, (k —p)*"N D_.(p)

only the former addend has non-irrelevant part. Indeed, in the latter one, for j > h + 2,
because of fs(k — p), with s > j, and because of (1 - (Xi,N)_l(k))a which compels the

momentum k to stay on scale h,

|D—w(p)| = [D-w(k —p)| — [D—u (k)|
> Adl kL > (1 - 7—1) AI-1

hence, as in item 2, there is a more factor y~U~") in the bound of such a kernel, which
gives it negative dimension down to scale h, where the field v, ., 1s compelled to be

contracted by <1 - (Xz,N)_l(k)) in the limit 6 — 0. Then, let the former addend be

7(s),(0 def d2p — (55, + ds, Jus(k —p)
LO®= /W X () D]\iw(p)l};w(k_p)

It is ﬁﬁs)’(o)(()) = 0 by transformation under rotation; while

s =0 if g = —Ww
<6UT£ )7(0)) (0) { défA%T,o) .

fo=w.

Finally:

d®p S0 (| - Az [ 4P 2 o
E |:/ (27T) /3]3 w¢p7 T ( ):| - AZ] / (27T)2 y Dw(p) p,w ?
d’p 5(5,(0) }
R| [ et 1O 0)

1
= Zﬁpw%;pDa(p)D(,/ (p)/ dr (1 —7) (85,85,258)’(0)) (tp) .
o,0’ 0

7. The self-contraction of the fields wk o and ¢ of the interaction T(” ) is non-irrelevant.

Setting:

q,0p

oy ondef [ APp _
700 [ k= )T )
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since ﬁﬁs) (@) (0), such a contraction requires the extraction of the coefficient:

~ =0 if wr=-1
8PT<S>) 0){ 2
( vitw ( ) d:ngjT) if oy =1 ’

so that the above contraction is equal to
c { / (‘iQ—I;ZEk,wi,;wﬁSS)(k)} = Az / (d ’; Brewtpy o D (k) |
ST
= [ S BeiDiD ) [ i (0BT (rh).

v, 0

-->—<:§)—>— -->-(:’—>— -->—©—>—

Fig 11: Graphical representation of items 6. and 7.

8. The self-contraction of the fields 121\; and ?/Jp +q,u Of the interaction T(“ ), or the fields
and 1/1

don v+q,0p Of the interactions {7}” )}U:i, would give problems; but it arises only
for p = 0 and it is forbidden by the cutoff function X}, y(p)-
9. The contraction of one of or both the fields {b\ and z/p\_ was already discussed in the

previous section, and give rise to the flow of {I/(U) }

Finally, the same above developments can be done for the contractions of the interactions B():
the localization containing the couplings )\5-” “) and %é“ “) are A)\g”_ wl) and A%yi ﬁ); while the
localization containing a(#“) are exactly the same of the flows of Ay and Zy. Then:

2
T(uwydef [ Z; T(uw) | AT (hw) =(a,0)
M= (Z—J> <)\j“ + AN + 00y E ALY
a==+

7j—1

4 Z
+5WLL,—1 Z 4N (O)Al (ao)+Al (00#w)+ Z N (O‘)Al (Oo‘pw)> ’
o,a=+

e w ~ w Z g ~(o,uw
E'J(Ii"i)d:f (Agyil)_f_AZj(_Ole )+(5wu71AZ (T0)+ Z N ()<A ( M )+5wu,lAZ (T))> )

The remarkable point is that the following theorem holds.

Theorem 4.4. For any fixed 9 : 0 < ¥ < 1, there exist € > 0, a constant ¢ and two counterterms
{a(“)} , analytically dependent on A, such that, for any fixed cutoff scale, N, and choosing
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ag\’;) = oW it holds:

‘ngs,u)‘ < cey~ /DN =)

gj(l,u)‘ < ce2y~ (/DN =j) (4.2.9)

The proof is given in appendix A7. It is a simple application of the fixed point theorem in

(k)
N

Banach spaces. Once two {ay’}, are found with the required properties, it is simply to verify

that they are actually independent from N.

Theorem 4.5. In the same hypothesis of theorem 4.4 and choosing

o0 =~ 3 é~]§1,u>;

A
k<N—1 N

in the limit of removed cutoff, the following asymptotic identity

= = Pput
0oL, Zn Pk,

ay —anwp [ d’p d%g 1 oew
—AnA
" N; 2 /D(27T)2 (2m)2 D_,(p) 3@_19@3@;”%”’“ (4.2.10)

D.,(k)

deVV

_(’5+
1 s+ ~ ’
a(pq—i-p,ua@p—k,w

generates the anomalous CE of those Schwinger functions which have no density insertion and
86W<h)

the addend relative to which generated by fD(gQT’)} X1 (D) == T

is vanishing.
9Ip,—w Pr_

p,w

The last requirement is fulfilled, as already stated, for the S(2) Schwinger function, see (4.2.7).
A similar bound is valid also for S®).

Theorem 4.6. For € small enough, for ¥ : 0 < ¥ < 1/16, and for any scale h < N, the effective
coupling is almost constant:
A — Axy = O(\?). (4.2.11)

where O(\?) is bounded uniformly in h.

Proof of Theorem 4.5. The choice of o(*) makes sense: by (4.2.9) and (3.3.14), for coe? < 9/4
it is finite:
Z ég}gm) < ce? (1 B V_(6/4))_1 .

VA
k<N—1 N

With reference to (4.2.5), the theorem is proved once it is shown the bound for the derivatives
of W,(rh L has a vanishing factor more than the bound of the derivatives of W("). Hence, let any
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integer n € N, any choice of the label §d§f(€1, ...,€pn) and gdéf(w, Wi,...,wy), and any momenta
Edef(k k1,...,ky) be considered. The CE equation for the Schwinger function §$;n+1)(§) (; k)
is obtained by suitable derivatives of the above functional, plus the limit —h, N — oo of the
following rest:

1 81+nw(h)
OB wdB5. o, - OB

kn,wn

I=¢=0 (4.2.12)
Crihohy.. it <7—<z9/4>(N—ho> +7w/4)<ho—h)) ,

= V7 s\,

where {h;}7_, are the scales of the momenta (k, k): kyhi =l < k| < kyPi, with kdéfko; and
Crihohyooion/ H?:o \/Zn, is the bound for the derivatives of W) The bound derives from the

following arguments. By the explicit choice of ¢(#), and by (4.2.9), (3.3.14), for coe? smaller
than ¥/4, it holds:

N

Zr =1 Zk =1,
S Zge] - ¥ fgen
k=m =™ k<m—1 "™ (4.2.13)
< ce? Z 007 (k) ~(/2)(N—K) < g2 ~(0/2)(N=m)

k<m-—1

forc > ¢ (1 — 'y_w/‘l))_l. Then, the graphs in the expansion of the r.h.s. member of (4.2.12)
has one external propagator on scale h, and fall in one of the following classes.

1. An interaction 76(“ ) is contracted: there has to be one propagator on scale m = h, N. The
factor 1/Zx in the r.h.s. member of (4.2.12), times factors coming form the multiscale
integration (see (4.2.8)) gives (Zn/Zm)*(VZm/ZN) < (Zn)Zm)(1]\/Zng )" colm=hol.
And Zy/Z,, < 1 since )\ < 0; while 75260"“_}“" is transformed into y~(#/2Im—hol by 5
short memory factor.

2. An interaction T(” ) is first contracted on scale m. The factor to be studied is now
(ZN ] Zm) (N 2 | Z ) ‘V,Ss’) (1/\/Zng )= colho=mly=(/2)(N=ho). and, as in the previ-

ous item, extracting a short memory factor, v5200|h0_m| is turned into v~ (¥/2lho—m],

3. An interaction B®) first contracted on scale m. In this case the factor to be studied
is (\/_/ZN ‘C(S wu)‘ < (1/\/Z—ho),yano(N—m),YEQCo\m—ho\,y—(ﬁ/2)(N—h0); then 75200|m—h0|

is changed by the short memory factor intoy~(?/2Im="lol. while, for e small, it holds
,YEQCO(N—m),y—(ﬂ/Q)(N—hO) < VEQCO(N—hO).

4. The contraction of the interaction B(!) can only occur in a scale compatible with the
momentum k (hence two possible contiguous scales): let it be hg. Then there is a factor

tho/ZN(Zm iy (Zm/Zn,) C“)( < (1) Zpy )y~ O/ DN =ho)

Besides the decay factor, in the first three items there is also v~ (?/2)m=hol controlling the
summation over m. This proves (4.2.12). Hence, keeping k fixed and non-zero, in the limit of
removed cutoff, such derivatives are vanishing. u
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Proof of Theorem 4.6. Taking in (4.2.5) the derivatives &p,;ﬂ_s,w&p;“’_w&p;_w, for ¢ =0,
it holds the following CE for S(%

w,—w

9e (k)

SW (K q,5)

an + an §(_2£(s) - g(—zl(Q)

= _MvA SO (k _
ANAN 5 D (s —q) W (k+q—s)
—-a d?p ¥
+/\NANaN 2 aN/ @ 1)9 X, N(i 5(4) »(k—D,q,5)

+ ANAnN

)

(p) “

ay +ay / d?p Xh ~n(P) 0 5(4)
w—wlk—pq,8—p) =S, _,(k—p,q+p,s
. o Do) [S( )= 85 )
A ZaN—Equ 1 64W7(y)

— ANAN 7 = — PN o~
2 ZN 6/3k,w6§0k+q_37w680;:—4‘;6805,—0.)

I
AvAn [ dp (1:4) . 52 ()51
-5 [ s 1) [SU ik = pa.0) = 3= 983 ik )]

(4.2.14)
where Ay was defined in (4.2.6). Now, fixing —q = s = k = k, for any k : k" < |k| < vyt

by lowest order computation it holds:

§(EJZ%)—W(E7 _Ev E) o i )\h + O(/\z)
G () Zi B'D_(F)

an +an §(_22,(E)
2 D_,(k)

1 Ay +0(V?)
Zi % D_o (k)

S (k) =

while (see also [BM04] for more details)

aN —an d*>p Xn.n(P) 5(4) T =7 y3h 2
A : —p,— <
‘)\N N 2 /D (27T)2 D_w(p) Sw,—w(k b, k? k) = O()‘ ) )

and identical bound for

-G d2p ¥ ~ - & = T T
'ANANQN;N/( P Xnnp) (S = p,~FF —p) = 88 (R~ p.p — )]

om)2 D_,(p) @ |
and
Ay [ A s oz _
2) /13(27T)2 X (0)SUY, (0% —p,—F, k)
N

Finally, by the study of the flow of Wy, it also hold

AnAn Z aN — aNwi L 34)/\/(#) _ ,Y—Sh O()\Q)
2 IN 0p; 00 0P 05 _ |~ i
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(namely, in this case, since k is on the infrared cutoff scale, the rest is not vanishing; but it
diverges in h — —oo with the same exponent, 3—2n,, of the other terms in (4.2.14)). Considering
together the above bound with (4.2.14), it holds the theorem. u

4.2.5 Vanishing of the Beta function. In the end, it is remarkable how (4.2.11) is read
in terms of the Beta function for the effective couplings. In agreement with (A5.2), the Beta
function for the massless Thirring model, in Euclidean regularization is such that

N
de
Met = M E B )+ S0 B A — An) (4.2.15)
m=h

(see A5.2 for the explanation of the addends). As done for the anomalous exponent, by scaling
invariance of the graphs in the expansion of {B,(LT)};L, it is possible to prove that there exist a
real function B such that

1817 On) = BOW)| < ey (4.2.16)

Well then, as consequence of (4.2.11), B = 0. Otherwise, if the coefficient of the m-th order
n>0 CEL") A" in
(4.2.16), it would be possible to prove — by an iterative procedure similar to the one in A5.2 —

expansion of B(\), B(™) where non-zero, then replacing the expansion )\hdéf >

that for any h, and for any n < m:

N
Z ﬁgn,j)(n)()\m )| < Cn,y—(ﬂ/Q)(N—h) ’ ‘Cén—)l _ an)

m=h

< Oy (P72 (N=h)

while, for n = m,
ey = e + B 4 O(y~(/DIN=h)y

Therefore {c,(lm)} n<n would be a diverging sequence, in contradiction with (4.2.11).

4.3 Solution of the closed equation

With simple symmetry considerations and multiscale integration, it possible to prove the
following general expression for the two point Schwinger function:

. 1 (R\™ k|
Apy=— () g Ll 4.3.1
Sy (k) Do (k) ( n) N ) (4.3.1)
where F}, n is finite, uniformly in A, N, and such that, for a suitable real constant F,

sup
v M2 k< |p| <y N2k

Fhn (%) - F‘ ~C (y—<‘9/4>N + fy<19/4>h) . (4.3.2)
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Indeed, once the factor 1/(D,(k)Zp,) is extracted (with hg the scale of k), the expansion of
5 ,(123\, ., (k) is given by scaling invariant graphs. Calling F' the limit of F}, , with all the couplings
{\;}; replaced by A, all the ratios {Z;_1/Z;}; replaced by 4" and the factor (|k|/x)"™(1/Z,)
with 1, the difference between Fj, y and F'is the sum of all the graphs with an external propa-

gator on scale hy and falling in one of the following cases.

1. There is an interaction on scale m > N or m < h. By the short memory property, given
any ¥ : 0 < ¥ < 1/16, the sum of all such graphs is bounded with V(N =ho) 4 n=0(ho—h)
up to a constant.

2. There is a coupling [(|k|/x)"™(1/Zp,) — 1]. By the feature of the flow of the field strength
— namely the analogous for the Euclidean regularization of (3.4.2) — the sum of all such
graphs is bounded with 4~ (?/2(N=ho) up to a constant.

3. There is an interaction A, — A, or (Z,,—1/Z;,) — "™ on scale m : h < m < N . By the
short memory factor an features of the flows — analogous for the Euclidean regularization
of (3.4.1) and (3.4.2) — the sum of such graphs is bounded by = ?Im=hol 4=(@/2)(N=m) <
y~ 0/ (N=ho) ~=(9/2)Im=hol ' yp to a constant.

Hence, after summing over m, (4.3.2) holds.

Now, replacing (4.3.1) in the CE for the two point Schwinger function, and taking the limit
h — —o0, it holds:

DN — 2
By aNy —an d*p |p
Fa(k) =2 Ay A (—
(k) =70 AN T /D(27r)2 K

+ AI?N,w(k) )

A Fy(p)
D_,(k—p)D.(p)

' k

where, by (4.2.12),

AIA(Nw(k)‘ < pr—(ﬂ/ES)N .
s Zho

sup
| <y /2

The equation for k = 0 — then Z;, = 400 — gives

By _ A aN_aN/ = ‘BWFN(p)-
N NN 2 p(2m)? |k p?
therefore:
A A k* + D_y,(p)Do(k)

aN —an d*p |p
F, n(k) = Ay A k
B Ao

+ ARy (K) .

Fn(p)

‘E
(k —p)?p?

Now it is possible to take the limit N — 400, for k fixed: since the rest is vanishing, by finiteness
of Fy uniformly in N and by (4.3.2), the limit can be exchanged with the integral in d?p, it

holds: &2 2D ( )D (k)
a—a D + D_w(p)Dw

™ = A\ A M .
M = 0A ST [ bl
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The integral can be elementarily computed: the pure imaginary part is zero by symmetries, while
for the real one it holds, for ¥ the angle between the vector p and the vector k, for % tan(d/2),

and calling, with abuse of notation, k and p the moduli of the vectors k£ and p themselves,

1 o T k2 —
/ dp pm—l/ 40 pk cos()
0

(2m)? _r k%4 p? —2pkcos(¥)
o0 o0 2 —
_ 12/dppn>‘_1/ a2 (k:+pgt + (k p)2
(27m)% Jo oo 1+ (k+p) 2+ (k—p)

1 > ° 2k 1 — 1 2
o k1 28 \112 42+ (k—p)?

k) " o0 1 1
= dp p"™— dt —— = k™
(2n)? / pp /_oo L+ 2m

This gives the following expression for the critical index 7y:

VS

[\&}
I

SN—

[\&)

Apa—a
o2r 2

m=A

to be compared with the formula for the half value of n) given in [J61] just after (36) — with the

following identification: Johnson’s « is here 71, /2; Johnson’s A is Ap/2; while a — @ is, according

to Johnson, equal to 2%-



Appendix 1:

Simple Analytical Properties

A1.1 Partial-fraction expansion. The functions

—(zo+L)z

—XoZ

— dife
fr(z)= Tz

are both meromorphic, since in any circles, Cgr, of radius R and centre the origin, their only

. oy . . . d
singularities are a finite number of poles. In particular, setting Dg éf{ %’T (m+ %) }m 7 they are

def €

fOI'—L<$0<O, fz_(Z):m

for0 < axp < L,

on the imaginary axis, in {ikg : kg € Do}. Therefore, by the Cauchy theorem, for any e € R,

R > |e| and o = &,
‘kO‘SR e—ia?ok()

dz f7(z) 1
oy A dz 1 e A1l
file) féRm z—e+0Lk§0 “iko + e (AL1)
Since, for 0 <9 < 7/2, cos¥ > 1 — 2¢9/7, then it holds the following bound:
% E fz-(z) - 2R /ﬂd,ﬂ e~ Lol cosd - 2) |: T N T |
Cr2ml z—e R —le| J,

1+eLReosd = R_e| |22 = 2(L — x0)
and similarly for f; . Hence the first addend in the r.h.s. member of (A1.1) vanish for R — oo,
and than, for any zo # 0: |xg| < L,

1 IkOISR e—ixoko
+ —_ - — 1 — -
frlex(eo>0) = fu(ehx(zo <0) = lim 7 kZeD “iko e
0 0]

Such a series, not absolutely convergent, can be written as sin~!(wzo/L), times an absolutely
convergent series — and border terms vanishing for large R — so that it is clear the possibility of
replacing the sharp constraint |kg| < R with a smooth cutoff function.
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A1.2 Gevrey compact-support functions It is easy to construct a compact support-function
which also fulfil the Gevrey constraint on the derivatives.
Indeed, let the following C*° function be considered for any number p > 0:

0 fort <0
ﬁ(t)déf =0/ foro<t<1
1 fort>1.

Fort < 0andt > 1 all the derivatives are identically zero. For ¢t : 0 < ¢t < 1, it is possible to find a
bound for the derivatives using the analyticity of 9(t) in the half-plane C+d3f{z € C: Re(z) > 0}.
For any ¢t : 0 < t < 1, let the disc Dt {z € C: |z —t| < tsin(n/4p)} be considered. By the

Cauchy theorem:
n!

[0 ()] < max [J(z)] .

27 (t sin(ﬂ'/4p)) ZE D

For any zdifrei“’ € Dy, since the lines passing through z = 0 and tangent to D; have angular
parameter £7/4p, then Re (277) > r~P cos(gop) (2t)~P cos(m/4). Hence, since for any = > 0,
and any constant ¢ > 0, it holds z"e~*" < C"(n!)(/P), then for a certain constant C' > 1,

[9(8)] < O (nl) AP

namely ¥(t) is a Gevrey function of order @ = 1 + (1/p). Finally, if )?O(t)défl - (7 1) then

j?j( )de Xo(ty™7) — Xo(ty~™7T1) is a compact-support Gevrey function for any integer j.

A1.3 Bounds for the propagators. If K is the compact support of fy(k), the n-th derivatives
of 1/D, (k) are bounded in K by Ckcln!, for suitable K-dependent constants Cx and ck.
Therefore, by Leibniz formula it follows that it f(k) is a Gevrey, compact-support function of
class o > 1, also f(k)/D,(k) is. Therefore, for any ng,n1 € N, by partial derivation and Stirling

o(k) ‘

(0) < 5
9.7 @) < o S )

c 1/ n ango 1/« n aniy
€ €

Lo
Therefore, choosing for n; such that (|z;|/c)'/* — 1 < n; < (Jz;|/¢)'/?, it holds:

formula,

p (0,007

D,

C

€1

99(2)] < Cemallaal/o* =allanl/

Finally, with similar argument, it is possible to obtain the same bounds for lattice-spacetime
propagators.
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OS axioms

A2.1 Test functions. For any n € N, setting gdéf(x(l),...,x(”)), let S(R%) be the space

of the complex functions on R*", with labels, gdg(wl, cee W), gdéf(gl, ...,En), s.t., for any
integer m, and any fr(f)g(g) € S(Rzn), the Schwartz norm

(1 + Z ’x(i)‘m> oo éé)g@)'
i=1

is finite. Let Sy (]RZn) be the space of the functions in S(R2n) which vanish, together with all
their partial derivatives, if (¥ = 2() for some 1 < i < j < n; and let S (R%) be the space of

1F)nY max  sup
T jTjémw<j>eR4

the functions in S« (R%) which vanish, together with all their partial derivatives, if the ordering

of the times 35(()1), . ,xén) is different from 0 < xél) < CC(()Z) <...< xén).
Let the “space translation”, 7, for y = (0,41), be defined as

() @Y 1)

with Tygdéf(x(l) +y, .. ,z™ 4y).
Let the “time reflection” be defined as

©NE, @ (1)) (oz)

with ﬁogdg(ﬁox(l), ., Pox™), where 9o (zo, xl)déf(—xo, z1); f* (2™, ..., 2() is the complex
conjugate of f(z(™,...,z(M); and the labels w* and £* are defined respectively to be wy,, ... ,w;
and —&,,...,—&1 (see [0S72], formula (6.2)).
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In the end, it has to be noticed the following fact: for W being the generating functional

W is the generating functional of the correlations. Hence,

of the Schwinger functions, then e
each Schwinger function — also called “truncated correlation” — can be written as finite linear
combination of correlations, in term of which the OSA are now listed — with the simplification

in the notation that Gg;)(g) (2, g)défGS)(g) (z).

Lemma A.2.1. Given € small enough, for any X : |\| < e and pu: 0 < u < ky~!, the correlations
satisfy the Osterwalder-Schrader axioms:

E1l. Ggl)(é) (z) is a distribution on Sc (R(Qn)); indeed, for any integer m, there exist two
constants c,,, Cy, > 0 s.t.

wes (G(ﬂn)(é)7 f)

sup

< Cp(nh)em
S R T )

E2. G&n )© s invariant under the Euclidean group of translation and rotation of all the
coordinates.

E3. G(J)(é) is antisymmetric under the exchange of the ("), w;, e; respectively with 29, Wi, €5,
forany 1 <i < j <n.

E4. For any finite sequence of “time ordered” test functions, {fr(f)g(g) € S< (R(2n))}

b
n>0,w,e
the correlations are “reflection invariant”:

G(;)(é) <(@f)(£) ) _ G(;)(é)( 7(L§)£)
and “reflection positive”:

Y S alrimeE 5)<(®f)mw, f<6>) (A2.1)

m,w’, e’ n,w,e

E5. For any fy(f; € Sc (R(Qn)) and gr(,i:)g, € Sc (R(Qm)), decorrelation holds:

lim G(m+n)(€ €) <(®g)§,)§ ® (Tyf)(a) )

ly|2o00 =
— G (092, )62 (15))

The last property, called cluster decomposition, in terms of the Schwinger function reads:

lim S0TEVEE ((09)5) @ (7)) =0 (42.2)
ly| 200 ==

From the OSA, it is possible to derive the theory in Minkowskian spacetime, from the Eu-
clidean one. The main difficulty, here, is to prove the validity of E2 and E4: a regularization
that makes clear the one, usually makes obscure the other.



OS axioms 69

A2.2 Reflection Positivity for the Hamiltonian Regularization
The Euclidean fields operator in Heisemberg picture are:

def _pom [ 1 ik H def
g xo Otk 0 xo .
ew =€ ( E e ap. | e , x = (zg,r1) e RxT;

keD

therefore 97 , is not the Hermitian conjugate of ¢, 7, — as it were in the Minkowskian picture:
it is therefore suitable to define the operator ¥ “time reflection” s.t. Y= = (—xzg,x1), so that
Y3 ., is the Hermitian of ¢, 7 .

Let now the space F of the linear functionals of the operator-valued fields: namely the oper-
ators on the Fock space of the form:

Fp) =% / 22D ™ f (xu)’ ,”7x<n>) Wiy T

n>0 w,o

for any choice of the test functions f, , € S< ((R X T)”) Then, it is simply to verify that ©
on the space F is the Hermitian conjugation. Hence, for any real L, the following quantity is

non-negative:

Tr [e” " (OF)F] > 0.

Such an inequality, by the definition of the correlations, reads as in (A2.1).






Appendix 3:

Tree Expansion and Convergence
of the Schwinger functions

The renormalization procedure used here is slightly different from the classical one, the BPHZ
scheme.

As noticed in the early works on the renormalization, the localization is necessary and effective
in extracting the divergent contribution of the subgraphs whenever the momenta flowing in the
internal propagators of the subgraphs are in some sense higher than the momenta flowing on
the external ones (Hepp’s sectors). Anyway, the localization has a further complication in the
massless case: while it improves the convergence at large momenta, it worsen consequently the
convergence at small ones.

Accordingly, in the BPHZ scheme, the propagators of the graphs are decomposed a posteriori
in scales, and the subgraphs, selected by the Hepp procedure, are localized: this is done by
extracting the first orders of the Taylor expansion around zero external momenta, if the theory
is massive; around any fixed non-zero value, if the theory is massless: in the latter case some
discrete symmetries are broken, and more “relevant” and “marginal” terms, even a mass term,
are generated.

In the scheme here depicted, instead, the multiscale integration not only produces directly
only subgraphs satisfying the Hepp’s property; but it makes clear the possibility of localizing at
zero external momenta even the subgraphs with massless propagators, since such a localization
is naturally stopped below the scales of the momenta of the Schwinger function at hand.

A3.1 Tree structure. By expanding iteratively the truncated expectations (3.1.6) and (3.3.6),
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starting from W) it is possible to write the effective potential on scale W, for h < M, in

terms of a tree expansion, quite similar to that described, for example, in [BGPS].

1.

Let a tree, 7, be a tree graph with the following features: if there are n 4+ 1 points with
incidence number equal to 1, one of such points is the root; the other n points are the
endpoints; the integer n is the order of the tree. All the points of the tree graphs, except
the root and the endpoint, are called nodes. The only node paired to the root by the tree
graph is the first node: it is required not to be an endpoint.

The nodes, the root and the endpoints are partially ordered in the natural way by the
tree structure, so that the root is lower than the endpoints: v < v' means v is lower that
v’. In correspondence of any node v, the integer s, is the number of minimal nodes or
endpoints greater than v: such nodes or endpoints are also said to be first followers of v,
and are denoted vy, ...,vs,. If s, > 1, then v is a branching node. In correspondence of
a node or an end point v, the unique maximal node lower than it is the first preceding of
v, and is denoted v’.

Let the topological trees be the quotient set of the above depicted trees, in which any
two of them are identified if, by a suitable continuous deformation of the length of the
links and of the angled between them, — included permutation of the links coming out of
the same branching node — they can be superposed. It is then easy to verify that, since
the number of the branching nodes of a tree with n endpoints is not larger than n — 1,
then the number of all the topological tree with n endpoints is bounded by 42"~! < 16™.
With each node v of the tree, a scale h, : h < h, < M is assigned, with the compat-
ibility condition that v" < v imply h,, < h,: therefore it is possible to draw the trees
as lying vertically along a family of horizontal parallel lines, each one marking a scale
j:h—1<j7<M+1, so that the each node v is contained in the horizontal line with
index h,. The scale h, of the endpoint u ranges from h + 1 to M + 1; if v is the first
preceding of such an endpoint, h, = h, + 1. The scale of the first node is h: because of the
distinction that will be done between the nodes in correspondence of the hard fermion
regime and the soft fermion regime, h is allowed to be < N + 1; the scale of the root is
h.=h-—1.

There are two kinds of endpoints, normal and special. With each normal endpoint u,
it is associated one of the three self-interactions A, 1V, ¥~ tv,, 1N or 6y, 1D, if
h, — 1 < N; otherwise the interactions AnxV, 'yN vNN or dnD. They are called the
endpoints of type A, v, §, with an obvious correspondence. With each special endpoint u

it is associated one of the three interactions with the external sources, ¢ ,(f:i T, ¢ ,(12’_)

or F,if h, —1 < N; otherwise the interactions (1(\?’+)j+, ](\?’_).7_ or F. They are called
the endpoints of type ¢, 3+ and j_. The endpoints of type 7 are the union of the ones of
type 7+ and j_.

Given a node v, n¥ and nJ, are respectively the number of endpoints of type ¢, and of

type 7 greater than v; nq(,4), nq(jz) are respectively the number of normal endpoint of type
d .

A and of type v or d greater than v; n, éfnq(fl) + nq(JZ). Analogously, given a tree 7, the

integers n¥,n’, n$4),n.(r2) and n, are respectively the number of endpoints of type ¢, of

type 7, of type A, of type v or § and the total number of normal endpoints of the tree.



Tree Expansion and Convergence of the Schwinger functions 73

7. For any node v, the cluster L, with frequency h,, is the set of endpoints greater than the

10.

11.

12.

node v; if v is an endpoint, it is itself a (trivial) cluster. The tree provides an organization
of endpoints into a hierarchy of clusters: L,, < L,, if L, C L,

A field label f distinguishes a field involved in the interactions. If v is an endpoint, I, is
the the set of all the fields ¥, ¢ and 7 involved in the interaction in v. If v is a node, I,
is defined as the union of the sets I,,, for any endpoint u : u > v; z(f), o(f) and w(f)
denote the spacetime point, the (eventual) ¢ index and the w index, respectively, of the
field f. If h, < N, one of the field variables belonging to I, may also carry a derivative.
It is associated with each field label f an integer m(f) € {0,1,2}, denoting the order of
the derivative.

In correspondence of any node or endpoint v, let P, C I,, the external fields of v, be
constructed as follows. In each endpoint u all the fields are external: Pudéflv. Ifvisa
node, and vy, ...,vs, are its first followers, then P, can be any set s.t. P, C (U;P,,). Let

d . . .
Qu, éfPU N P,,: the union of the complementary ones, U; P,,\Q.,, is the set of the internal
fields of v — or the fields contracted in correspondence of the node v — and have not to

be an empty at least

e in the first node, except if its scale is h = N + 1.
e in the branching points;
e in the first preceding nodes of the endpoints.

Hence, the endpoints are attached to nodes where some of their external fields are actually
contracted; while the first point is the lowest node in correspondence of which some
contraction actually occur, except in the case of trees lying only on the scales > N + 1,
for which the first point has been set to be on scale N + 1. Among the fields in P,, the set
of all the fields of type ¢ and jy will be called .5, the set of the “special fields”. Finally,
|P,| = n¥ + n¥ +n?, where n¥ is the number of external fields of type v, while n¢, nJ,
as already defined, are the the number of external fields ¢ and j — indeed there is only
one source field in the special endpoint.

Let ﬁ:ﬁwng be the set of all topological trees, with all the above depicted constraints,
with root on scale h, first node w on scale h+1, and with n normal endpoints, n¥ external
fields of type ¥, n¥ endpoints of type ¢ and n? endpoints of type 5. To each such tree it
corresponds a sequence of instructions to built a class of Feynman graphs.

7n‘4’7n3

P
Let G one of the Feynman graphs corresponding to the tree 7 € 7.,

n

. The endpoints
of T represents the vertices of G, with the specified couplings. Any node v is in correspon-
dence with a subgraph G, C G = G,,, in which the external legs are the external fields of
v. Specifically, if vy,...,vs, (s, > 1) are the first followers of v, the Feynman graph G,
is constructed by pairing the internal fields of v with propagators ¢!, in a way that the
subgraphs G(v1),...,G(vs,) remains connected. There are many possible way to chose
{P,}v, or equivalently many possible ways of selecting the internal fields to be involved
in the contractions; and there are many possible connecting contractions: that is why to
each 7 is associated a family of many different Feynman graphs.

Let the set of the nodes of 7 — hence considering neither the root, nor the endpoints — be
denoted, with abuse of notation, 7 as well. For each node v, the integer [, is the number
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of lines of the Feynman graph §G,; while [, ,, is the number of lines in G,,, which are not in
U;*, Gy, . Similarly, [2n8 and lf}ﬁfi count the number of lines of the graph which correspond
to antidiagonal propagators. Two fundamental relations are

u>v

Z(S“_l) =n,+nf+nl -1,

uUeET

> (A3.1)
D low =1y =20 + 0 + (1/2)nf + nl, — (1/2)nY .

UET

For instance, from them, by telescopic decomposition of the differences of the scales,
hy — hy = Zv<w§u hy — hy, other two identities descend:

weT
u>v u>v
S = ho)(su = 1) = S (hy = b ) (o 40 40— 1)
ueT ueT
u>v u>v (A3.2)
Z(hu - hv)lo,v = Z(hu - hu/)lu .
ueT ueT

The above formulas are stated as they are for shake of clarity; but sometimes it will be
used that, by definition, h,, — h, = 1.

13. It is natural to consider the following decomposition. Given any 7 € E"l,izvnj, let the
“auxiliary tree”, 7 C T, be the union of the paths in 7 which connects the special
endpoint with the root r; for any w € 79, let s}, the number of the nodes first followers
of v and in 7% Besides, if w is one of the maximal nodes in 7%, let the integers ni ,,,
n¥ ., be the number of the external fields of type j or of type ¢ which are in the cluster
L,,; otherwise, for w € 7% but not maximal, let them be the number of the external
fields of type 7 or of type ¢ which are in the cluster L,,, but not in the following clusters
Ly, Ly, - Finally, the “main tree”, 7% C 7%, is given by the auxiliary tree, deprived
of the nodes above the maximal nodes with s} > 2; for w € 7%, let the integer b}, be the

. — 7
number of nodes of 7* first followers of w: hence s¥ = b¥ + nf , + nl ..

14. Given any set of fields M, let x(M)déf Uren z(f). Let D, be the tree distance among
x(Iy,),...,x (I, ) the sets of the spacetime points of the clusters Ly, ... Ly, : namely

Dvdéf mingec Y ¢, ||, where C the set of all the possible tree graphs g connecting the
spacetime points in x ([,,),...,z (Ivsv)7 and [ are the links. Similarly, Dg,, and Dy,
are respectively the “time” and “space” tree distance and are defined as the tree dis-
tance among the time component and the space component of the spacetime points in

z(Ly),.. o (Ly,,).

A3.2 Cluster expansion. A standard tool in the fermionic Renormalization Group — first
introduced in [Le87] — is the cluster expansion of the truncated expectations (see [B84]). It
explains why in the bounds it is better to consider altogether all Feynman graphs corresponding
to one tree, rather than one Feynman graph singly.



Tree Expansion and Convergence of the Schwinger functions 75

Let Py, ..., Ps be disjoint sets of ¢ fields s.t. |U; P;| = 2n; and let P;’dg{f €Pj:o(f)=0}.
A pairing [ is the couple of a field f;" in UijJr and a field f;~ in U; P;": let z(f5) —x(f7) = a;
and (w( I, w( fl_))défgl. Then, the truncated expectation w.r.t. the Gaussian measure of prop-

agator ¢g(") is given, up to a global sign, by:

Ep [0(Py), .. o(P)] = (Hg;’?m)) / dPr(t) det G (t) (43.3)

T leT

where T is a set of pairings of elements of U; P;, which would be a connected tree graph if all
the points in the same set P; where identified; the parameters ¢ = {¢; ; € [0,1] :4,j =1,...,s}
have a certain normalized distribution dPr(t); finally G"T(t) isa (n — s+ 1) x (n — s + 1)
matrix, the entries of which are given by G;l:ff = ggll) (z,)ti,, where g‘d;f(il‘*', i, ) st fi € Pil_,
and fl+ € Pit, for any possible pair [ of elements of U; P;, s.t. [ ¢ T

The impoétance of this formula is that, if all the entries M; ; of an n x n matrix M are give by
scalar products, M; ; = (v(i), w(j)), where v ... 0™ and w®, ... w( are vectors, bounded
in norm by a constant Cp, the sum of n! monomials that gives the determinant of M can be
bounded with C{', by a simple application of the volume inequality. In this way factorial bounds
are avoided.

A3.3 Bounds for the kernels. Setting (h A N)déf min{h, N}, the effective potential on scale
h is a polynomial of the fields with coeflicients given by the kernels:

W™ (g, 7,9)

| P, |=n¥4+n®+n?

> X X S @R WO (<P P)

n>0n¥ ne ni>0 n¥ n® ni P,CI
- 7-'U61711;(}:,/\1\7);71, Y v

where, f(P,) denotes the product of every external field in P,. In its turn, the kernel is a
sum over the Feynman graphs of the product of a propagator for each line of the graphs,
KM <X(Iv); To; Pv> integrated w.r.t. all the internal points of the cluster L,:

WO (x(Pi i P,) = [@a(T\P) KO (x(L)imiP,)

A useful norm to bound the kernels is obtained by integrating the product of the propagators
w.r.t. all the spacetime points x (I,), except the “fixed points”, x(F,): they are, if S, is not
empty, the points in deéfSU; otherwise the point in deéf{xv}, for any choice of x, € P,. It
holds the following lemma.

Lemma A.3.1. If h > N, there exists a constant C'y > C' such that, for any choice of the tree



76 Appendix 3.

T, € 7'1;’;;’;?’"], with root r,
Ja(AR) [KO (an)imi )

< non?4+n’  Nd, oy +T0

{Pw}w>r WETy

5,22 A (Nthaw)(s7,—1) | " ZJ(\/?)
H *(\/'yNDw—I-\/’thDo,w) H \/E H E 7

wers e2(nP+nd)

with
3 1—ny —nd, —n? for hy,, > N +1
- 12-(1/2) nw—(3/2)n¢’—n7 forw=r,

and r,, such that d,, +r, < —1/2 — (1/8)n%.

Proof. Let 7,,,...,7,, be the subtrees of 7, branching from v — namely with root in v, and

first nodes vy, ..., vs,; the product of propagators KUW)( (Lv); 7o PU> is obtained as

KO (x(Lyimi P) == Y (HKW”( )nl,Pv))

Py, Poy, (A3.5)
n (PP \Qur)s -y (Po, \ Q)] -
Applying (A3.3), and iterating till the endpoints, it holds:
K )< ( Tva v) (Hpu> :
(A3.6)

NI (H gl ( )/dPTw(t) det Gl T (1) |

WETy Py T

where p, denotes the coupling in the endpoints: Ay, vNvy or dy, if u is a normal endpoint;

](\?’U) if u is an endpoint of type 7(°); 1 if u is an endpoint of type ¢. Then, a bound for the

integral of (A3.6) can be obtained as follows.

1. Calling by, (z — y)défe_(Cp)(\/'YN‘xZH\/'Yh‘xO’”), by (3.1.8) each of the s,, — 1 propagators
in a tree T, is bounded with C'be,QLw(x — y); while ‘det GhwTw (t)! is bounded with a
factor CoCyY for each of the I, ,, — (s, — 1) Tows of the matrix GM» T« (t): globally, the
product of the propagators can be bounded with

C()C’}/ o H bh xl

leTy,
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2. Collecting the products over by, (x;) for any node of the tree 7, since the branching nodes

of the main tree are not more than the special endpoints n¥ + n’,

IT IT %%, G0 < IT 11 bru @)

WETy LETy, WETy LETy,

H e~ TP AN (\/WNDer\/vhw Do,w) ‘

*
wWETY

(A3.7)

3. The integrations in d?z(I,/F,) are performed, the left integrand being the product of
the by, ’s, increased by replacing in them " |x;| with vV |21 |, times constant factors. It
holds

Jeatt/m) TT TT tneton < T (G o) ™70 (ans)

WETy IETY, weT

Indeed, the above formula is obtained iteratively starting from the first node, v. Let the
labels wq,...,ws, be assigned to the nodes following w so that: for j = 1,...,s} the
cluster L,,; contains at least a special endpoint, S, # (0, and is called “special cluster”;
for j = s, 41,..., 5y, the cluster L,,, contains no special endpoints, S,,, = () — eventually
it may be s}, = 0,s,. Now, the graph T, can be thought as a tree graph: the cluster
Ly, is its root, Ly,,..., Ly, are its nodes, while the factors by, ’s are its links. Then,
considering the first node v, and starting from the endpoints of T, let L, be the first
followers of LU]_,, and let by, be the link connecting them. If L, ; is a special cluster, than

by, is simply bounded with its maximum, ||by, || .; Whereas, if L,; is a normal cluster,

0o
the link by, is bounded with [|by,||;, the integral being taken w.r.t. the point in F,,.
Since ||bp, ||, < 1, while [[by, [|; < C1y~ W+ this gives the factor in (A3.8) for w = v.
Iterating to all the nodes following the first, the complete bound is found.

4. The sum over T, is bounded by the number of the topological graphs with s,, nodes,
4%+ times the number of the possible permutations of such nodes, s,,! .

5. Each factor p, are bounded, by (3.3.15), with 2¢ if u is a normal endpoint; otherwise

pu=1//Zy or ZJ(\?)/ZN if respectively wu is of type ¢ or j.

In the end, the factorial in item 4. is compensated by the one in the denominator of (A3.6);
while the powers of 2¢, C, Cy, C; and 4%+ is all together bounded with

[T (4C1) ™ (CoC)'o (26) < (Coe)" O™

WETy
for Cy > (400001)2. And the rest of the bound is reduced to simple dimensional analysis.
For each of the [, ., propagators there is a factor AN for each of the s, — s¥ integrals there
is a factor 4y~ (N*+hw) more. Furthermore, not yet counted in the above items, by (3.1.8) there

(hw_

is a factor v~ N) more for any antidiagonal propagator. Finally, in correspondence of each



78 Appendix 3.

endpoint of type § and v there is a factor ¥VV. Therefore the collection of all such factors gives

T A+ttt | TT e (1w i) (N (oG24t n()
WET, WETy
(A3.9)
N hw r— Ndr dw w
H A (NFhw)(s,=1) ] H Atwtre
WETS WETy
where 7, el 120 for n,, = 1, ¥, =nd, =0, and rwdéfO otherwise. Now it is possible to prove

that dy, + 7 < —(1/2) — (1/16)n¥ . Indeed, there are the following possibilities.

1. The number of normal endpoints is zero. Then, since in the nodes of the tree there has
to be at least a contraction, and since the self-contraction of the fields in the endpoint
of type 7 is zero by oddness of the diagonal propagator, n¥ + n/, > 2. Then, since in
such graphs the external fields of type ¢ cannot be more than 2(nf + n?,), it holds
dw < —(1/2)(n¢ +nd,) < —(1/2) — (1/8)n¥.

2. The number of the normal endpoints is 1, while n¢ +n?, = 0. Then d,,+r, < —[2"%. By ex-
plicit inspection, such graphs, made of self-contractions, either are zero by oddness of the
diagonal propagator, or have at least one antidiagonal propagator; furthermore the num-
ber of external 9 fields cannot be more than two. Therefore d, + 7, < —(1/2) — (1/4)n¥.

3. The number of the total endpoints, n,, + n¥, 4+ nJ,, is greater or equal to 2. Since in such
graphs the external fields ¢ cannot be more than 4(n,, + n¥, + n/,), and r,, = 0, then
Ay + 7 < —(1/2)(ny + 1% +ni,) < —(1/2) — (1/16)n.

The proof is complete. n

Lemma A.3.2. If h < N — 1, and for € small enough, there exists a constant Cy > C' such that

feextaamy [ (sctemr)

<(Cseyney e | N T et

A3.10
{Py }w>r WETy ( )

55>2 s* — n’ (2)

1 ,Y((thN)Jrhw)( L1 H i AN

s em (\/fy(thN)Dw-t,-\/’th Do,w) A /Z(h AN) Py Z(k:i/\N) ’
where

ddef 1—ny —nf —nl, for hy > N +1
v 2 —(1/2)n% — (3/2)ng, — nl, for hyy < N 7

and 1, is such that d,, +r, < —1/4 — (1/12)n¥.

Proof. Neglecting the effects of the localization, with argument similar to the proof of the
previous lemma, the bound is reduced to simple dimensional analysis: for each of the [, ,
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propagators there is a factor 4" ; for each of the the s,, — s* integrals there is a factor y~2hw.

Finally, regarding the endpoints, there is a factor 2¢ for each endpoint of type \; 2ey" for
each endpoint of type d or v. Therefore, collecting only the factors coming from the dimensional

analysis,
[T o) I A" (lo,w—2(sw—1)+n{2), )
WET WETy,
(A3.11)
= II 7= [ I] v* .
WETY WET,
with dwdéf2 —(1/2)n¥% — (3/2)n¥ — n,. Now the point is that they can occur nodes with non-

negative dimension: here comes the role of the localization, which improves their dimension by
absorbing the localized part of the graphs into the coupling constants. Indeed, for the kernel
bringing an R-operator, with reference to the items at point 3.3.4, the following facts have to
be considered.

1. The local part 2, D,, occurring in a certain node w, is bounded, up to a constant, by
Alw~y=(hw=hwo) if 4 is the node, lower than w, in correspondence of which one of the field
of momenta k is contracted. While the local part z, | — iko + we (k1) — D,,(k)| is instead
bounded, up to a constant, with y/w~y~(rw=hwe)y=(N=hug) < yhwy=(N=huwg) y=2(hw—hw) .
the standard power counting, as it were using only the factor v, because of v~ 2w —lwo)
is improved in all the nodes u along the path connecting w with wqg by r, = 2. Further-
more, with reference to the proof of the equivalence of the Euclidean and the Hamiltonian
regularization, the factor v~ ~="w) makes such a kernel — generated only in the latter
regularization — vanishing in the limit of removed cutoff.

2. One or two increments D,,, and respectively one or two derivatives in the companying
kernels — the kernel occurring at node w, the increment having the same momenta of a

1-field contracted on a lower node, wg — gives a gain w.r.t. the standard power counting:

each derivative gives a factor y~» more, while each increment gives a factor 7/»o more.
Since
wo <u<w
(R =huwg )1 — H N forr=1,2,
u

all the nodes u in the path connecting the node w with the node wg have a gain r, = 1
or 2.

3. The local terms which are linear or quadratic in the factors {ux/v*}x gives a gain in the
bounds since, if they occur in the node w on scale h, k has to be greater or equal to h,
and, by (3.3.14) and the definition of h*:

r r
Ui Hh* —r(1—2coe)(k—h™) | | —r(1-2co¢)
L < 0 <

<I€’}/k> — <I€’}/h’* ) v = v )

u<w

and therefore, for € small enough, the dimension of every node u occurring along the path
connecting the node w with the root is improved by r, = r3/4.
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4. In the kernels corresponding to nodes w with n, = 0, and n¥, = n¥ = 1, the dimension is
zero. It is possible to obtain a gain r,, = 1 at the price of worsening the final constant C3
of a factor 2. Indeed, because of the compact support of the propagators, it is clear that
such nodes can be both among the preceding ones of the n¥ special endpoints of type ¢,
let them be wq,...,w,, and among the ones preceding w, ..., w, themselves: namely no

more than 2n?% nodes.

Therefore, with developments similar to the ones in the previous proof, it is possible to prove
that d,, + r, < —(1/4) — (1/12)n¥%. But since the localization produces the flows of the field
and densities strengths, (A3.11) has to be replaced with

n’ Z]S:Q) b (1 7 (n¥/2) .
(i) ) () (")

WETS WETy

This completes the proof. u

A3.4 Remark. The argument in the last item does not apply in the case n/ = 1 and n¥ = 2.
This is the main difference of the external sources j and ¢: while the former requires a coupling
constant for absorbing divergences due to interaction with the source, the latter need not, since

it in interacts only by one particle reducible graphs.

Lemma A.3.3. For ¢ small enough, the perturbative expansion for the (n’;n¥)-Schwinger

functions is absolutely convergent to a distribution fulfilling property E1 and E5. of the OSA.

Proof. The expansion for the Schwinger function is given by the expansion for the effective
potential in the case P, = S, and for any scale of the first node h : h* =1 < h < N + 1.

Since the case h* finite is much more easier of the case h* = —oo, the following development

will concern only the latter.

Calling TO ik h ,, the set of trees 7 € TO having the n¥ external fields of type ¢ on scales
hi,...,hue, and the n? external fields of type 7 on scales kq,...,kys, it holds

<M h<

hj <M
SEEMIE (3:0) % 3 Z Z Z > w ) (X(Sv);Tv;SU> (A3.12)
n<0R<M Kk h

M LT n® . n

v, (hAN) hik;n
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and, by the just proved bound on the kernels,

hw>N+1
WO (x(S.)ims 8, )| < (Cae)mcy =yt [ emzmmn VDo
weET)

v

55>2 ((hw/\N)""hw) (s—1) n’ (2)
o A

H H H (kinAN) |
wers e 7Ty VA Dy \ /Z(h AN) 1 Zk ANy (A3.13)

ne

S O] < Z(hyAN) )T St

{P }w>r WETy (h /)/\N

Let the following facts be considered.

1. For the main tree it holds an identity similar to (A3.2), with s, replaced by s}, and with

n, removed from the r.h.s. member; so that:

3 ((hw AN) + hw)(s; —1) = 2h(n® +n! — 1)

WETS
hw<N hw>N+1
+ > (n 2(nf +nd, — 1)+ Y (hw = hw)(nf +nl, — 1)
WETY WETY
Chad, + Y (he — ha)Ad, .
wWETY

These factors can be absorbed into the dimension of any node w of the main tree, changing

it from d,, to

nd, + (1/2)n¢ — (1/2)n¥  for h, < N
—Naw otherwise.

dw—i—Adw:{

2. Since nf = nﬁiv for f = ¢, , then

v>w

how <N hw=N+1
> (hw—h)(nl, +(1/208,) + Y (N =h)(nd, + (1/2)n8)
N N

= Z (hw — hw’)(n{u + (1/2)71‘5)) )

w>v
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which formula gives:
hy<N
,yh(n1+(1/2)nv) H ,y(hw_hw,)(ngu+(1/2)ng—(1/2)n1j)
weT)
hw>N+1
H ,Y—(hw—hw/)nw
weTr
’ (A3.14)
hw<N how<N
~ 11 P (7 (17200 ) [ e tun@/2nt
WETS WETY
hw=N+1 huw>N+1
H ,yN(ngu+(1/2)n;g) H T L
wWETY wWETY

3. In view of the proof of cluster decomposition, since it can be, for w = v, the lowest

branching point of 7*, nl ., + (1/2)nf ., = 0, a further modification of the above decom-

position is performed. Setting m™ s + (1/2)n?, mwdéfnfw +(1/2)n¥ and m*,wdgni,w +

(1/2)n¥ ; and letting ho be the scale of v, the following identity

1= oy (o) 35 (o) 25

9

for each node w € 7* : h,, < N turns (A3.14) into

hyw <N hyw <N

o (1/8) H ,thm*,w(1—(1/sm)) H 7(hw—hw,)((mw/sm)—(1/2)nﬁ)
WETS WETy
s R (A3.15)
. H ,mew(l—(l/Sm)) H L
wWETY WETy

. Let each factor 1/1/Zj,An be considered for h; < N: if the w € ¢, is the highest

branching point in 7 lower than the i-th endpoint of type ¢, w;, by (3.3.14), such a
factor can be moved to the node w, 1/1/Zj, < 1/%7(60/2)52(’“_’“”), at the price of
the factor 7(00/2)52(}”_’%) = Hg,ﬁwlgui 7(00/2)52: it is absorbed in the dimension of the
nodes along the path connecting u; with the node w — by definition such nodes are not in
the main tree — changing it, for ¢ small enough, from d,, + 7, < —1/4 — (1/12)n¥ to the
new dimension d,, < —1 /8 — (1/12)n¥. Similar decomposition is done in case h; > N+ 1:
the lost in the dimension is only in the nodes on scales h,, < N.

. Similar procedure is executed for each factor Z,EZ)A N/ZkinN, for hy, < N:if w e 7%,

is the highest branching point in 7 lower than the ¢—th endpoint of type j, u; by
(3.3.14), 22 ) 2y, < 27 ) Zy, 720 i =hw); the factor 42°0=(i—w) is absorbed in the di-
mension of the nodes along the path connecting u; with w, again changing it from
dy + 1 = —1/4 — (1/12)n¥ to the new dimension dy, < —1/8 — (1/12)n¥, for & small
enough. Similar decomposition is done in case k; > N + 1.
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6. The exponent (1m.,,/8m)—(1/2)nY of the factors in the second product in formula (A3.15)
can be bounded with —1/8 — (1/12)n¥.

7. Since in every node w : h,, < N, both in the main tree and in the rest of the tree,
the dimension has been left to be d,, = —1/8 — (1/12)n¥, and since for ¢ small enough,
(Zh,/Zn:,) < yo0t < 4(1/12) it s possible to absorb all the factors (Zhw/Zhiu)(l/Q)”ﬁ
into the dimension d,,, turning it into d, < —1/8 — (1/24)n.

8. Regarding the nodes w : hy, > N, if n,, > 0, by inspection of the graphs — eventually
involving the interaction of type 7 and ¢ — it can be n,, # 0, and than —n,,, < —(1/4)n¥% <
—1/8 — (1/24)n¥;

w?

otherwise n,, = 0: this can happen only on the highest node, in the
sense that a node with n,, = 0 cannot be lower than any node v with n, # 0 — since n,, is
a cumulative counter — then the graphs corresponding to this latter case are contractions
of special vertices only, and n¥ < 2. Hence in the region of the tree where n,, = 0 there
can be no more than n¥ 4+ n’ branching points: it is in any case possible, multiplying Cs
by a factor 42/24, to extract a factor 7_(1/24)”3 for every node w : h,, > N such that
P, # P, , namely where some contraction really occur.

9. The product over the nodes where at least a contraction of internal fields does occur,
Hb'p' 7_(19/24)”3, allows to control the summation in P, — which, fixed the tree 7,, is

WETy
actually only a summation in P, \S,,:

ﬁ Z,Y—(l/zz;)n;@ < ﬁ Z,Y—(l/zz;)n;@ <”§f;1 + nf’f ”Zﬂw>

WETy Py, WETy niﬁ
e-p- —n¥ —4(n+n¥+n’
< II (1-77020) ™ < (1 470720) (bt
UETy

where the last-but-one inequality can be easily proved by induction by thinking the
endpoints u as the node at which are attached one or more further branches; while the
last simply follows from the fact that n¥ < 4.

Finally, once Cs is taken greater or equal to Coy?/?*(1—~~(1/24))=4 the bound for the Schwinger
function has become

‘W(h) <X(Sv); o Sv)

hyw=N m — m
,yho(m—&—l/S) b w(1=(1/8m))

———— | 1l =
e2(n?+nd) 70Dy weTH e Fan VY Duw

nl., .
hﬁN A (1=(1/8m)) Z}(Li) : 1\ (/2n,
/YW Dy, Zhw Zhw

wery XN

ko ok sk h
. H 7_1/8 H /-Yz(n%’:)-nj) 6_ 2(n<PC+nJ) V 'th Do,w .

WETy WETy

<(Cse)"Cy™

(A3.16)
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The product HZ*GTU is over all the nodes in the tree, except the ones higher than the branching

points w with h,, > N 4+ 1 and n,, = 0. The product H:Zn, is over all the branching points w
ha

with h, > N + 1 and n,, = 0; and the factors v2®®+»)) — strictly greater than 1 — are added

for later purposes.

This bound is enough to prove the convergence of the Schwinger function. Indeed, for any
m > (1/4) and d, 3,z > 0, the two inequalities hold:

ZMeB/mIVE < 02m (4m)! (A3.17)
= m h h
Y (3"d) e (B/mIVAd < S oA Z,yhme—w/m)\/w_
h=—o00 h<0 h>0 (A3.18)
< CFm™(8m)I(1 — 4~ W/&) =1
hw<N

Then (A3.17) allows to bound each factor of the product [] as:

*
WET)

ni w nf w
,thm*,w (1—(1/8m)) Zf(iu) ) 1 ,
eQ(nsoC+nJ) Ve Dy Zhw \/Zhw
J (2)

o (1 e o (1= (1/8m) =15+ 1
< _
<cu(p) ,

(2
how <N ~—Mu,w(1=(1/8m)—nx)—ni ,n" . .
wers Dy is in-

tegrable against test functions which vanish with all their derivatives for each D,, = 0. Fur-

for Cy, ~ (m!)?, for some positive integer p; and []

thermore, (A3.18) allows in a similar manner to control the summation over the scales of the

ok

wer, apart a constant, it gives

branching points with n,, = 0 of the factors in the product []
sk ok —[1/2(n®+n’)] . .. . . JP.
a factor [[,c,. Do , which is integrable against a test function, even if it does not
vanish for Dy ,,, since the number of the factor is not larger than n¥ + n’.
The summation over the scales h, k, taking fixed the lowest, h, and also over the scales of all

—1/8 and,

the remaining branching point in the tree 7, is clearly controlled by the factors [, Y
since the number of the branches in a tree is no more than twice the number of the endpoints,
it is bounded by (1 — y~1/8)=2(ndn"+n),

Then it is possible to take the summation also over —oco < hg < N, which is convergent
by (A3.18), and gives a further factor D, (m+1/ 8), which, besides not to waste the integrability
against the test function, guarantees the cluster decomposition, namely that the Schwinger
function vanish if the distance of any two points is sent to infinity.

The summation over the topology of the trees, is bounded by 16(**"“+"") Finally the sum-

mation over n is convergent for any € < <16C’3(1 - 7_1/8)_2)> B

The lemma is proved. n

A3.5 Short memory property. Before performing the summation over the scales in the

product [] ~v~1/8 it is possible to extract a factor 7_(1/16)((}““*’\]\7)_”““), for hpax and

WETy
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hmin respectively the scale of the one of the maximal nodes and of the minimal node of the tree,
leaving Hwe” ~~1/16 to control such a summation.
Many consequences derives from such a factor. An example is the following lemma.

Lemma A.3.4. In the limit of removed cutoff, the trees with unbounded maximal scale gives
vanishing contribution to the integration of the Schwinger function against the test functions.

Proof . Before removing the cutoff, let MNdéfhmax A N; then My — +4o0o. With reference to

___c h w
the summation over —oco < h < N of the factor y"(m+1/8)¢™ 207 a7 OD”O, the following
facts hold.

1. Since the integration against test functions over all the space time is finite, the integration

in the region H]DUS < 4~ (M~/4) is vanishing.
2. In the domain k|Dy:| < = (Mx/4) " the summation for h > (My/2) is vanishing faster

_ c Mn /8
than e 1w "

3. Trees with first node on scale h < (My/2) have a short memory factor < —(1/16)(My /2)
which is vanishing too.

A3.6 Completion of the proof of Theorem 1.1 The bound for the two point Schwinger
function is, accordingly to (A3.16), for € small enough,

N h
1
S (p — ‘<C§ _r -
‘ @yl < o/ ulz—y| Z,

h=h*

(4.3.19)

Setting h, s.t. Y~ P < k|z —y| <y~ PetL if h, < h*, then
N h 1 ,yh* 1

Y
1 - <K ;
,Z,;* /DA Rla—yl Zn T (e/8)NAP Rle—yl Zn-

while, if h, > h*, then

N h
1 1
Z PY—_ S K,yho_ X
St ele/ OV mla—yl 2 Zh,

Since i+ is proportional to ky"", then: py- is proportional to (u/k)M/147): Z,. is pro-
portional to (u/k)~(/1F7); for h, < N/2, in the limit N — oo, Z,, is proportional to
(k|x — y|)"™. Hence the item is proved for 1 + ?Adéf(l/l + 7). u

A3.7 Completion of the proof of Theorem 1.2 The bound for the current-current Schwinger

function is the same of (4.3.19), with the replacement of 4" /Zj, with 'VQh(Z,(f)/Zh)Q. Therefore,

with the same developments of Proof A3.6, using also the identity 7, = 77;2) , also this item is

verified. n






Appendix 4:

Exact symmetries

The following symmetries will be useful to prove some kernels are less divergent than what

seems from dimensional bounds:

A4.1 Reflection. Let the “reflection” be ¥(ko, kl)déf(—ko, —ky). It is easy to verify the inter-

actions V, N and D, as well as the free action, are all invariant under the transformation of the

fields
ng,w - /L‘wﬁ‘z}gk,w . (A4'1)
In terms of graphs, under reflection the propagator @(f L(k) transforms as follows

9L (k) = =g, (k) ; (A4.2)

while the interactions are all invariant, except the ones corresponding to the interactions D,
(k) be considered:

calling ms(w) and my(—w) respectively the number of vertices with interaction linear in 1,

which is odd. Specifically, let any graph contributing to the kernel /W?Q({gw
and ©_,1_,,, after the contraction of only the off-diagonal propagators, they are left 2(I +
mao(w) — 1) half lines of kind w and 2(I + ma(—w)) half lines of kind —w to be contracted with
diagonal (odd) propagators. As the number of odd vertices is my(w) +mo(—w), and the number
of odd propagators is 2] +ma(w) +ma(—w) — 1, then W)

2,w,w

(k) is odd. With a similar argument

it is possible to prove /Wéjz_w(k) is even. Therefore

Wi 5(0k) = —aB W (k) (0, W10) ) (k) = aB (0, W75 ) (k). (A4.3)
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A4.2 Space reflection. Let the “space reflection” be 4 (ko, kl)déf(ko, —k1). It is easy to verify
the interactions V, N and D, as well as the free action, are all invariant under the transformation
of the fields

¢Z,w — ¢glk,—w .

In terms of graphs, under space reflection the propagator Zj((j )B(k) transforms as follows

3 p(0k) =% (k)
while the vertices are invariant; therefore,
W s(k) =W k), (9,00 5) k) = (0.W, 5 ) (B) . (44.4)
Furthermore, with similar arguments, it is easy to prove

WL s (O10391k) = WD s(pik) - (A4.5)

A4.3 Rotation. Let the “rotation” of 7/2 be (ko,kl)*dg(—kl,ko). It is easy to verify the

interactions V and N, as well as the free action of the massive Thirring model, are invariant
under the transformation of the fields:

Vrw — eiw%w,‘g*,w .

In terms of graphs, under rotation the propagator Z]\((XEBK)(,I{:) transforms as follows

Gop (k) = —iwglZ) (k) .

o, gw,w
g0 (k) = g0 (k) .

Let /W?Q(EHJV) (k) be defined as the sum of the graphs of /W?Q(JZU

propagators g, ;. (k) and only with vertices V.

(k) which are made only with

Then, each graph of Wik (k) is made of [ diagonal propagators @](JEW] ) and [ + 1 diagonal

2,w,w
propagators fq\(_]i] ) »; Whereas each graph of Wéi@w(k) is made of [ diagonal propagators @(UEWJ )
and [ diagonal propagators §(_ij)_£0 (and also at least one off-diagonal propagator). Therefore it
holds
WD) = WS h) (0, WEED) (k) = ow (9, WEED) (k) |
. P s e (A4.6)
WiED L) = WS (k) (0,557, ) () = i (0,357, ) (k)

and, with similar definitions and arguments:

WS, w5 k) = W52, (pi k) - (A4.7)
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Proof of Theorem 3.2

A5.1 Beta and Gamma functions. Let deéf(yNﬁN), uhdéfuih and A/\hdéf/\h - X a

conventional way of writing the relation (3.3.10), (3.3.13) and (3.3.11), (3.3.12) is in terms of
the Gamma functions:

A
log., ZA=L — TrnAn,xh;. 3 AN, TN)

"z
Zh-1 =
log, —— = T'n(Ans b, T - -3 AN INS TN (A5.1)
Zn
1(12’? (2,0)
log — = 7 (Ah,xh;...;)\N,xN);
Y Z,(f’a) h
and Beta functions:
Vh—1— VWp = 5;(;/)()%73511; AN, TN
Oh—1 —0p = ;(f)(/\h,ﬂﬁh; S ANLIN) (A5.2)

AN — AN = /B;SA)()\haxm AN EN)

Furthermore, such Gamma and Beta function are given by convergent graph expansion.

Lemma A.5.1. In the domain of the effective parameters given by (3.3.15), if (3.3.14) are
satisfied, the Gamma and Beta function in (A5.1) and (A5.2) are well defined and analytic in

{ Ak, Oy Vi < N -

Proof . Like the proof of the convergence of the Schwinger function, it is a consequence of the
Lemmas A.3.1 and A.3.2, for the set of fixed points, F,,, given by only one point. u
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The evolution of the effective parameters is determined by the equations (A5.1) and (A5.2),
and by fixing the “initial data”; they are chosen to be:

AN =0, 0—0o =0, Voo =0,
log,(Zy) =0, log., (Zy) =0, (A5.3)
log, (28 =0, log, (7)) =0.
Well then, the strategy to find the solution of the evolution problem is first to skip the flow

of the mass, and to find the solution of the other flows by a fixed point theorem in a suitable
linear space; then to solve also the flow of the mass with the other flow already fixed.

A5.2 Flows of the couplings. Let )1 be the linear space of sequences ,

ydéf{<A)\k75kyyka10g7(zk)a10g7 <Z,g2’+)) log, <Z£2,—)>> €R": ki < N} ’

such that, for any ¥ < 1/16, the following properties hold.

i. The initial data are as in (A5.3).
ii. The increments of the effective coupling satisfy (3.4.1), for any h: h < N.

Then, let such a space be endowed with the norm ||y||,,, which is the smallest real number such
that all the following inequalities hold.

iii. There exist two positive constants, ¢y and ¢1, such that, for every k < N,

[AN] < ey R=B ||,

64 < 259 ORNR ) ] < 26y~ AN By
Ab5.4
log, (Zi1/Z0)] < ool .
flog, (/220 < 2c0lyly . J1og, (237 /28370 < 2e022yll, -

The space My is defined as {y € M : |ly||, < 1} and is clearly complete. Let the equation
y = Ty read in My:

_ Z BN 8y = — Z 5O vy = — Z,y—(h—k—i-l)lgliy) ’

k<h k<h k<h

log. (Z1,) = Z Iy, log ( Z(2 U) Z F(2 U)

(45.5)

where, for h < 0, let ZZ:O o Zzzh.

Lemma A.5.2. There exist € > 0, and ¢, cg,c; > 0 such that there exists a (unique) solution
to (A5.5) in the space MMy, for co and c; the constants in (A5.4), and c the constant in (3.4.1).
Furthermore, such a solution is analytic in A.
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Proof . The equation makes sense since ||y||, < 1 and |A| < €, together to the first of (A5.4),
for € small enough, imply (3.3.14) and (3.3.15), and hence Lemma A.5.1.

The existence of a solution is consequence of the fact that 7" is a contraction from ¥y into
itself. Indeed, because of the following arguments, if y € My, then Ty € M.

1. By inductive hypothesis and convergence of the graph expansion, there exists a constant
co > 0, such that |zp—1| < c2€2; hence, for ¢ small enough and ¢y > 2c¢, it holds the
statement in (A5.4) regarding the field strength flow.

2. For the density strengths by definitions (3.3.13), it is more convenient to define two new
strengths, Cku)dg( 24 4 §(2’ ))/2 and C,gd)déf( ,52’+) — 22’_))/2, so that the their flows
are given by

Zn
h=1 _ <1—|—z(2) +AZ5D 4 AT )> ,
(u) Zn—1
i 2 (2) (2,4) (2,-)
— = (1+2", +Az" —Az_’_>.
79 Zna < e e

Then, an argument similar to the one of the previous item proves statement in (3.3.14)
regarding the density strengths.

3. For the flow of the effective coupling, the argument is more involved: it is based on a
cancellation, the vanishing of the Beta function, which exactly holds only in the limit
of removed cutoff. Let B,ET)()%,...,)\N) be the sum of the graphs of B,EA) which are
made only with diagonal propagators {gg?i)’k}k and interactions V; then, setting all
the arguments equal, let B,(fT)()\k)dgﬁ,gT)()\k, ...y Ak). As proved in 4.2.5, there exists a
constant ¢y > 0 such that \ﬁ,gT)()\k)] < 92y PIN=K) - Accordingly, it is convenient to
expand each coupling A, in the function B,ET)()\;W o AN) as Ay = A+ (A — M), so
that the following decomposition of the whole Beta function holds:

N
I(c/\):I(cT) +Z (T/\) +ZIB(R/\)+Z Zﬁl(c/\'rr(:)m’
m=k

a=0d6,v m=~k

where ﬂ,gn’j‘) is the sum of the graphs in ﬁ,iT)()\k, ..., An), with the replacement of the

all the couplings An ik <n <m with A\g, and a coupling A, — A\x on scale m put apart

) is the sum of the graphs made with interactions V and with at least one

propagator gL(U W ™) on scale m; ﬂ,?;g ) is the sum of the graphs with at least one coupling

am, on scale m and only diagonal propagators ggj:f,’m) — if a graph falls in more than

from it; ﬂk

one category the assignment is arbitrary. By the convergence of power expansion in A, as
stated in A.5.1, and the short memory property of the tree ordering, the following bounds
holds for the same constant c, — if it is chosen large enough:

BN < eazy ) |BIN) <y G gy i)

‘5(/\ )‘ < epe? ~ —9(m—k)
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It is straightforward to conclude that, to obtain (A5.4) and (3.4.1), as far as the flow {\, }n
is regarded, ¢; and ¢ have to be chosen ¢ > 4co(1 — 'y_w/Q))_l and ¢; > ¢(1 —7_(19/2))_1
4. Similarly, it is possible to decompose the Beta function for the couplings a = §,v:

(@)def Z ,5(a R) + Z Z ,5(a b)b

b=v,0 m=k

where ﬂ (@R) Contains all the graphs made only with interactions V and with at least one

diagonal propagator gl(u w ™ on scale m; whereas ﬁ,ga;s) is made with all the graphs with

an interaction b on scale m and only diagonal propagators g&%’m) — in ambiguous cases
the assignment is arbitrary. Again, by convergence of the power expansion in A, and by

the short memory property of the tree ordering,

a, — — — — a,b _ _
W;(wj)’ <~ 9(N m)c2€2,y 9(m k)’ \Bé,m)\ < 62827 9(m k);

and since for € small enough 5cpe? (1 — 7_(‘9/2))_1 < 2¢, then (A5.4) holds also for what
concerns {0y} and {v}g.

Therefore Ty is in My for £ small enough; and, by Lemma A.5.1, if y is analytic in A : [A| < e,
then also Ty does. The next step is to prove that, taken any two y,3’ € 9My, it holds
Ty —Ty'||y < plly — ¥'|| 4, for a constant p < 1.

1. The variation of the Beta function SV due to the variation of the y is given by:

/81(:\) B /(A) Z A,B()‘) . )\/ ) + Z B(T >\) — M) — (/\;n _ )\2:)]

+ Z ABY e 3y Z ABN (a — ')
( 7 )

a=6,v m=k

where Aﬂ,(j‘r)n corresponds to a variation of the coupling \,, in one of the two previously
defined ﬂ(T) and ﬁ(T’A)' the term Aﬁ,gA;nZ) is due to a variation one factor Z,,_1/Z;

k,m
and Aﬁ(/\ @) to a variation of a,,. Since the power series of the variation has the same
domain of convergence of the Beta function itself, and since the vanishing of the Beta
function holds for each order of the power series, using also the short memory property,

the following bounds holds for a suitable constant c3 > 0:
’Aﬁé%‘ < 7—(19/2)(N—k)c3€,y—19(m—k) 7 ‘Aﬁl(gi;;z)’ < 63627—19(771—1@) 7
|Aﬂ,(€f;f)| < ,y—(ﬁ/2)(N—k)6352,y—19(m—k) 7

where the factors 4~ (?/2(N=k) in the first and third bound come from the bound on the

Beta function on its own, which has been made previously.



Proof of Theorem 3.2 93

2. The variation of the Beta functions {3(*)},_, s is given by:

(a) _ (a)def (a, /\) (a,Z) Lm—1 Z7/n_1
e +ZM o »
m=k — m m
FY S AN (=)
b=v,6 m=k

where AB,(C“;);\ ) is due to the variation of the coupling A,; Aﬁlgaf ) to the variation of the
ratio Zy—1/Zm; Aﬁ(a N 0 the variation of the coupling 3,,. And they holds the bounds:

| M;m), < cqey M=k A= (9/2)(N=k) | M}(&b)’ < a2y mk)
‘Aﬁl(ff)’ < ,y—(ﬂ/2)(N—k)c382,Y—z9(m—k) '

3. The variation of the Gamma function of the field strength is

def N (7) Zq
| S mZkM m—AL) +ZAF < - Z,’n>
+ 3 ZAFU’) — V)
b=v,0 m=k

with clear justification of the various addends. Now, by the short memory property,
AT < eaey™ R AT | < ege?y M

|AF§€b3n| < czey MR
4. Similar arguments hold for the field strengths.
By such bounds, the operator 7' is a contraction with rate pdéfe2 (cscy + 2ca¢1 + 3¢ + 2¢3): for

€ small enough, p < 1. The proof of the Lemma is obtained by the fixed point theorem with
analytic parameterization. u

Once the flows y has been found, it is possible to consider the flow for the mass:

h
log.(Z),) = Z (A5.6)

restricted to the range 0 < k < N. In the remaining scales, h* < k < 0, in fact, the flow is
determined directly, and not by an equation; and since h*, in its turn, depends on the flow, it
is more convenient to exclude it from the fixed point theorem.

As for the other flow, it is defined the linear space M of the sequences

2 {log (Zy) eR:0< k< N}
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such that
i. the initial datum is as in (A5.3).
Furthermore, such a space is endowed with the norm ||z||, the lowest real number such that

ii. for the same constant ¢g in (A5.4), and for 0 < k < N,

log(Zr—1/Zk)| < 2c0e”||z]| - (A5.7)

The equation x = Tz, which is defined to be (A5.6), can be solved in ﬁg, the subspace of
N of the sequences = with ||z|| < 1, with the fixed point theorem.

Lemma A.5.3. There exists ¢ > 0 and the positive constant cq such that there exists a (unique)
solution of (A5.6) in the space My, for co the constant in (A5.7).

1. If z € ﬁﬁ, then also Tz € ﬁﬁ by the following argument. The local part sp_; is the
(E1,k)

sum of the graphs with one antidiagonal propagator g, " or gff}if). As consequence of

the convergence of the graphs expansion and of the dimensional bounds of s;_1, calling
(ELk) (R1,k)

Sh—1,k the sum of all the graphs of s;_1 with g, or g,, ;" on scale k and divided by
Mk/H7k7
def al Hi
€ . —
Sp—1 = Zsh—Lk—k ; with [sp_ 1k < 7" eae .
k=h s

By (A5.7), for & small enough, it holds (ug/pn) < y2¢0eF=n) < ~(1/2)(k=h) "and hence
mp_1 = (sn_1/pn) < c1(1 —~y~ /)~ 1e: since by (A5.4) W_COEQ(Zh_l/Zh) < ~0¢* and
log., (14+mp_1) < ‘mh_l In(v) foldt(l + tmh_l)_l‘, it is straightforward to obtain that
2008 < (pp_1/pn) < 20 for e small enough and ¢y > 2¢9(1 — (/) =1,

2. If 2,2’ € My, then ||Tx — Ta'|| < p|lz — 2'||, for p < 1. Indeed, under variation of the
mass flow, — having fixed all the other flows —

N /

= =/ def =) [ Bm B

I L Y <———m>
— SN

Now, by the short memory property, and by (A5.7),

— —

< ey VDM qup T, T, ;
n>0

!
ATY) | < pyeq=0m—h) ‘M_m M
o [

. m |5 /
—indeed, |(ttm/px) = (/1) < max { (s / 1), (1 / 17) } In(y) 2205 (Fn -T,
by (A5.7), is less or equal to (4/9) ln(fy)fy(%oeﬂﬂ/‘l))(m_k) sup,, ‘fn - f;‘ Then the as-

sertion follows enlarging ¢y chosen for the field strength to ¢y > cacq(1 — = (?/2))~1,

, which,
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This proves the Lemma. u

A5.3 Further properties of the Gamma functions. In order to complete the proof of
the Theorem 3.2, it is left to prove the existence of the critical indexes 7y, 77&2) and 7y, which
only depends on the choice of A and on the graphs that can be obtained using the diagonal
propagator {gﬁ},’h) } and the interaction V, and not from the mass, or from the regularization
of the model. Indeed, let it be inductively supposed that there exists a positive constant co such

that, for any k: h < k < N,

Ly _ (0) 4 (1)
)

7 with |I’,(€1)| < ey O/DWN=R) (A5.8)
k

while I‘,(CO) is given in terms of graphs made only with the diagonal propagator { go(fi’h) } and the

interaction AV, and bounded, \I‘,(lo)\ < c9€2. Then, let the following decomposition be considered:

N N
Ly, (0
Zh—1 :zl(z(gl + Z AZ}(L)\_)L,{A)% + Z Azf(LZ—)l,k < gkl — ,yFk )

k=h k=h
= (2) = (a)
2 a
+ Z Azh_Lk + Z Z Azh_lykak )
k=h a=0d,v k=h
where z,(LO_)l is the sum of the graphs contributing to z,_; which are made only with propa-

gators {g(FLR)} and interactions V, with all the coupling {\.} replaced by coupling A and
all the ratios (Zx_1/Zx) replaced by ,ng”; Az,(;\_)lvk is due to the replacement of A\, with
AMg; Az,(LZ_)Lk (Zk-1/Zk) — 'yFEcm] is the sum of the same graphs, but with at least a factor
(Zk-1/Zk) — ,er) in place of the ratio (Zy_1/Zx); Az,(lz_)l is the sum of the graphs which do not
contain interactions A or D, and have a propagator ¢(81%) on scale k; Az,(la_)Lk is the sum of

the graphs with an interaction a = J, v on scale k — whenever a graph falls in more than one of
the above categories, the assignment is made in arbitrary way. Because of the following bound

| <ese” |AZY, ] S ey AZT) ] < epe?y D
A5 ] 9 Regety T AR, | S ety T,
|ANg| < 182y~ W/DN—R) (Zio—1/2Z1) — VF§f>| < 20,2y~ O/DIN=R)

the property (A5.8) follows straightforwardly for ¢y > 5¢3(1 4 ¢;)(1 — 4~ (?/2)~1 and
def
I‘,(lo) = log,, (1 + z,(f?l> .

By construction, F;LO) is the sum of scaling invariant graphs: again using the fixed point theorem
theorem with analytic parameterization, it is possible to prove the existence of 7, limit for
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N — oo of F( ), analytic in A and such that there exists a constant c5 for which ‘Féo) — m‘ <

c5e2y~(0/2(N=h) “and then the statements in (3.4.2) referring to the field strength flow holds
for co > (cq + 05)(1 — (@21

For the Gamma function of the mass a similar argument can be applied. Let it be inductively
supposed for any k: h < k < N that

) — —
e OETATEL with TV < eae, [T < caeyPDWNR) (A5.9)
Hk+1

and fko only made with the propagator {g(®1%)}, and interactions V. It follows that (ux /) =

k—1 =(0)
v I + Ak p with [Ag 5] < ceey ~(W0/2D(N=F) for cg > 2¢42(1—y~?)~! and ¢ small enough.
Then, with a decomposition similar to the case of the field strength:

Zy— (0)
LD W NESED W I (P

+ Z Amg—)l,kzkﬁ + Z m§12—)1,k + Z Z méa—)l,kak )
k=h k=h

a=04,v k=h

(0 )

where m; ", is the sum of the graphs made only with interactions /\V all the ratios {Z,,—1/Zm}

replaced with v , all the ratios {p,,/un } replaced with ~ =T " and all diagonal propaga-
tors g&%’k) on scale k > h, except one, which is antidiagonal, gU(J 15), Amg;\) 1Lk
graphs of my_; with all the couplings {\,, }., replaced, for m < k, by A, and at a coupling A

neglected; Amél_)L . is the sum of the graphs in which one ratio puy/pn neglected. Then equation

is the sum of the

(A5.9) holds true also in the case k = h — 1 for ¢4 large enough and

(O)defF(O) +10g7 <1+m(0) ) '

Finally, since F}go) is given by scale invariant graphs, using the fixed point theorem with analytic
parameterization, it would be possible to prove the existence of an 7, analytic in A and such
that ‘f,&o) — ﬁx‘ < 56y ?W=F) and the statements about the mass flow in (3.4.2) holds for
c2 > (e +ca)(1—~7")"1

Finally, with similar arguments, it is straightforward to prove (3.4.3).
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Proof of Lemma 4.2

By definition

i de ~(i N
UG (k, p) & ., (k, p)30 (k)39 (p)

- ~ fi(p) - fi(k)
=filk) (L= () 5L 05 = 450) (1= () 555
Setting: N
def 0 for |k| < ky
un (k) = {1 — fn(k)  for |k| > kN,
def 0 for [k] > "
up(k) = { 1— fn(k) for |k| < ry",

the expansion of ul-d) (k,p) in terms of {Sffg) (k, p)} can be explicitly given in each of the

o=

possible case.

1. Fori=j =N,

(N,N) _un(p)fn(k)  un(k)fn(p)
N N B X

— ;:;Dg(p— k) [6”’0Dw(p)Dw(k) + Dol /0 dr (Byun) (p +7(k —p))
(

de
ST Do(p— k)SEN (k,p)
o=+
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2. Fori=Nand h<j<N:

U(N’j)(k,p) _ _uN(k)fj(p) .

Dy (p)
Being that un(p)f;(p) = 0, it holds
(N.7)( i@ [ T (Osu T(k —
UWNI (, p) = ZD w(p)/o dr (Osun)(p+7(k —p))

de
:fZDU(p - k)SLS;],\QJ)(kvp) :

3. Fori=Nand j=nh

TN (, p) = _un(k)fu(p) | un(p)fn(k)

Dw(p) Dw(k)

The first addend was already studied in point 2. For the second, the expansion is similar
to the first since uy (k) f (k) = 0; finally:

UMD (k,p) = ZD [fj((p))/ dr (9sun) (p+7(k —p))
N (k)

Dw(k)/ dr (E)SuN)(k:—i—T(p—k))

0
de
=N Do(p— k)SP (k,p)

4. For h<t < N and j = h:
Uf}’h)(k,p) — Uh(p) ( ) )

Being that up (k) f;(k) = 0 it holds

fip) [
()/0 dr (Osup) (k+7(p— k)

=4 Z Dy (p—k)SG7 (k. p) -

U(NJ) k,p)

For i = j = h, expanding like in point 1

U (k, p) = ZDp k[ M

+g’;(g’k))/o dr (9pun) (p+7(k —p))
un(p) [*
—D’;(k)/o dr (8, fn) (k +7(p — k)
defZD p k (hh)(k )
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By inspection in each case, since for n = N, h it holds ‘(8(, fn)(k)

JOrun) (0)] < ey it is
simply to get the following bound

(070 S62) (k)| < ey 07202050
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Proof of Theorems 4.1 and 4.4

It is natural to introduce the Beta functions also for the flow of the counterterms {I/](\?)}U:i,
and the coupling Ay _;, generated in the multiscale integration of the generating functional
(h).
Wi
Vj('i)l — Vj(»g) = ﬂj(a—) ()\]7 Vii... 7)\N, VN) s

N =X = B (M A5 )

It has to be remarked that the above Beta function are defined for the generating functionals
Wﬁf) and Wéfl L with infrared cutoff h = —oo: this is not restrictive, since, by inspection of the
properties of the kernel ngi’j ) , the flows obtained have the property that X,(f ) and 1/,530), are,
in the range £ : h +1 < k < N, exactly equal to the effective coupling of such generating
functionals with infrared cutoff on scale h finite.

Proof of Theorem 4.1. Let By be the Banach space of all the finite sequences of vectors
= {(u§+),u§_)) 1< N} s.t.

def ()|, (9/2)(N—j)
l=lly = max ol ]y <ce.
In this space, it is possible to find a solution for the fixed point equation x = T'x, which explicitly

reads 4
j
V== 3 @) (A7.1)

m=—0o0
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(where the argument of the Beta function has been abridged); such a solution gives a choice of
) o+, such that their flows 1/ have the required decay property. Indeed, given
N h+1<] <N
x, 7 € By:

N
o de o, o o o o de o o) g
LN S O SR TR IR LZE S ) (v =)

n=m n=m

where 6( '~ 1s the localization of the sum of the graphs made with no interaction {uk o) As i

and one propagator connecting the interaction Ay contracted on scale N; whereas ﬁm n is the
(o)

localization of the sum of the graphs made with an interaction vy ).AU, and deprived of vy
The following bounds hold:

B < casr 0, |30 < gy, (432

Therefore, if 2 € By, then also Tx € By for £ small enough and if ¢; > 2¢y(1 — 4~ (?/2)~1
and ||z — 2’| < Ce||Tx — Ta'|| for C > c3(1 — v~ ¥/2))=2 50 that, for £ small enough, T is a
contraction in a Banach space; therefore there exists x € By, solution of the fixed point equation,

with analytic parameterization in A : [A| <e.
Finally, since all the graphs contributing to (o ), are scale invariant, by (A7.1) for j = N it
is easy to realize that {V](\?)}ozi are constant in the scale of the cutoff, N: hence

WO =10) =@

The proof of the theorem is completed. u

Proof of Theorem 4.4. The strategy is based on the fixed point theorem as the previous proof.

Let 2"/ { <X§+) (+))\], )\g ) ag\r_))‘j) 1§ < N} (with )\S\’;) = 0): the fixed point equation to

be solved in By, is © = T'z, which explicitly reads:

J

m=—00

Given off and o’§ such that both X" — alA; and AP — o’ ); are in By)s, it holds:

~ def ,0 Ned o
/37(7/;) _O‘S\llj)ﬁm 6(# ) (H))\ 6(/\ + Z Z IB(H ) ( )

N—-1 T
+ > B (Xﬁf‘) - ag\?)An) ;

while

de
(O/S\if) _ Oég\l;)) Bm :f <a/§\ﬁ;) o ag\/;)) )\N/B(A)N + Z /an ( r(p) Oég\l;)) An
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where E(” ;\),) is the sum of the graphs made with an interaction A,, contracted on scale N;
Nfﬁf ’;{) is the sum of the graphs with an interaction T(“) on scale n, deprived of the coupling

VT(LU)(ZN/Zn), )N is the sum of the graphs contributing to he flow of ag\‘;))\m which have an
interaction B®) on scale N, deprived of the coupling ozg\’;))\ N} Bm,n is the sum of the graphs

contributing to the flow of a(“ ))\ with an interaction B®) on scale n, deprived of the coupling
alt ))\ Since the following bounds hold,

B 1B < oy N BRI < ety IO B ] S ey

if x € Byjs, also Tw € By/s, for € small enough and ¢; > 2c2(1 — 7_(19/4))_1; moreover,m for
C > 2co(1 — 4~ /)72 ||z — 2|y, < Ce|| Tz —Ta'||y, so that, for € small enough, T is a
contraction: by the fixed point theorem, the solution of such an equation exists and is in By /o.

As consequence, since

o o Z
5;“) —ag\‘,‘)z] _ Eij) (u))\ Z(A) Z ~<u, ) (a) N + Z Zim (/\(u) %L)/\n) ’

o=+ n=j

where z

~(u)

s

?f}a) is the sum of the graphs made with an interaction A,, contracted on scale N;

is the sum of the graphs with an interaction 7}(“ ) on scale n, deprived of the coupling
ff)(ZN/Z ); ( ) is the sum of the graphs contributing to the flow of ag\‘;)zj which have an
interaction B(S) on scale N, deprived of the coupling ag\‘;))\N; Zm n is the sum of the graphs

contributing to the flow of a%‘) zj with an interaction B®) on scale n, deprived of the coupling

a{®),,. Since the following bounds hold,

EED 11200 < oy WD) B < a2y ] < epey D)

also {(E§+) ag\f)z],%_) —ag\,_)zj)}' € By/o. Finally, since all the graphs contributing to
J

{X% ) }m and to { A}, are scale invariant,

at) = alf), =l

The proof of the theorem is completed. u
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Schwinger-Dyson equation

AS8.1 Functional derivation. By decomposing the fermionic fields w,;’:w — w,:w + Bk,w, it
holds:

&2k -
WM (3,0) =W (8,3, 0) + Z/ 5 BrwPr

=3 [ o Bk [1+ Zn (i (]) — 1) 52 0) + O(5%)
S Lo w8 )] g
where Wéh) is the following functional with the further source field 3:

e (Bae) e / PN () exp { V() + 25 T (0,0) + Flo,0) }
exp {~InBO(8,v) + 2B (.5,0) — 2nBV(B,0) | |

with:

def ko d2p d2 2 o= b
B(S) ﬁ w Z/ ) Bp—l—k—q,wq/)p,w ;_,—w¢k,—w’

de d2]€ d2 =~ o~
8(2) 67]7 f Z / 6k,w]p—k,wwp7w b

. 2k ~
3(1)(ﬁ,w)d:fu;/W Bre,wDew (k)y , -
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Therefore, extracting the linear part of (A8.1), for k : vk < |k| < vV (so that X;:}v(k)—l =0),
it yield the SDE:

— Ws o OWs

1

9w (k)/\—(o7ja 90) = P w + A—(Oajv 80) . (A82)
agpk‘iw k’ 85]43 w

)

Now, writing the last derivative in terms of the derivative of W — but loosing in this way the
evidence of the renormalization of composite operators — and multiplying both members by
'™ in order to shorten the equations, it simply holds (4.3.3) . By derivatives in the sources 7
and @, for 7= @ = 0, such an equation generates all the SDE: for instance, taking a derivative

in ¢y, gives (1.1.12).
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Lowest Order Computations

It is interesting to calculate the lowest order expansion of the anomalies. The computation
of the anomaly of the WTT shows a violation of the Adler-Bardeen theorem: the correction to
the classical identity is not linear in the coupling, but has at least also a non-vanishing second
order term. Then, the computation of the anomaly of the CE — made in a quite approximate
way — would imply the incorrectness of the Johnson solution.

A9.1 WTI anomaly Simplifying the notations, let X(k)défXO(k) and u(k:)défuo(k:). A useful
identity is

Us(k, k +p) — {u(k +p) gilgz) . u(k)%}

_ u(k + p)x(k) L (8ux)(k + 7p)
_Dw(p){Dw(k+p)Dw(k) —/0 dr TR }
(

1 (6_wx) k + p)
_D—w(p)/o dr Dw(k-i—p) .

To simplify the computations, it is performed the following modification to the shape of the
cutoff which, as can be easily checked, it completely harmless to the development done in the
previous Chapters. Let X(If)défj<\(|k:|)7 and Y(t) is a Gevrey function with compact support

{t: [t < kYN0, for 70 : 1 < 40 < 7, and equal to 1 in {t: [t| < kyV}.

1. Computation of v(~). The lowest order expansion of v(~) is given by only one Feynman
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graph, which can be computed exactly:

o %k (0_ox)(k) 1 e o]
= [ e = w ), #XO=1

where it was used that (0_,x)(k)/Dw(k) = —(1/2|k|)X’' (k).

Fig 12: Graphical representation of the lowest order contribution to v(~)

2. Computation of v(f). Also the lowest order contribution to v(*) is given by only one

Feynman graph:

d?p u(p)x(p) (9ux) (p) d’k .

[y {Dw@ww(p) 0.0 }/ @mpd - PI-eP 4 E)

/ a?p | u(p)x(p) — D (p) (9uX) (p) / d*k x(k)x(p+F) s
(2m)? p* 2m)? k2(k+p)2 ¢

(p)De(k) Doy (K + p) -
(49.1)

The explicit computation is not so simple as the previous; anyway it is possible to prove it

is strictly non-zero. Since —D,,(p) (9,X) (p) = —(|p|/2)X'(Ip]) = 0, as well as u(p)x(p) > 0,

while, calling ¥ the angle between p and k and fdéf(\k\/]p\),

D2, (p) Dus(k) Dok +p) = [Kl|pl? | cos(9) + € cos(20) | " k[ |pl? e (0) .

up to a pure imaginary contribution which integrated gives zero by symmetries. Now,
since by support of the cutoff functions |k| < vy and 1 < [p| < 49, then cos(d) < 1/2
if 7o is chosen < 3/2. Hence, Ji(¥) = [cos(¥) — (1/2)][cos(¥) + 1] < 0, except for
¥ = *(m/3), m, where it vanishes. Then, the integral over ¥ of J¢(¥) is continuous in &,
and strictly negative for £ = 1; therefore it remains strictly negative also for & = |k|/|p|,
if v9 — 1 > |k|/|p| — 1 is small enough. Therefore, for such values of vy, the lowest order

contribution to v(*) is strictly negative.
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Fig 13: Graphical representation of the lowest order contribution to v(+)

A9.2 CE anomaly. From (1.1.18), and since a — @ = O(\), while a + @ = 1 + O(\?), the
contribution O()\) to A is proportional to the terms O(1) of a{™) — ().

1. The 0-th order of a(~) is given by two graphs with values cancelling each other.
2. There is no possible graph for o(=) at the 0-th order, since there are no possible tadpoles.

Fig 14: Graphical of item 1

Well then, A = 1 + O()\?). Then, the quadratic order in A\ comes from the linear order of
™) — (=) and the O(1) order of o) — (),

1. There are more than one Feynman graphs contributing to the linear order of a{=).

e First graph. A first contribution are the two graphs with all and three external leg
of T involved: they are two, with the same value. Furthermore, the factor 1/2! of the
expansion of the interaction is compensated by multiplicity obtained by exchanging the
labels to the two vertices V of each graph. Therefore the sum of them gives the first

graph:

&2k dp U_u(k,k+p)
e oo+ bgulh)
o [ @ x(p) [ Pk uk)xP(k+p)
B 2/(%)2 p? /(27T)2 (p+ k)2
/dzp x(p)/ A%k u(k + p)x(k + p)x (k)
(2m)2 p? (2m)2 D_,(k)D,(p+k)
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The latter addend is vanishing in the limit vy — 1. The former is convergent. Indeed

/ d?p x(p)/ d*k u(k)x*(k + p)

wi<12 (2m)2 p2 ) (2m)2 (p+k)?

:/ d*p x(p)/ A%k u(k) (O (k +p) — x*(F))
\p\<1/2(277)2 p? (2m)? (p+k)? ’

and |p + k| > [k| — |p| > 1/2; while

/ d?p x(p)/ d*k u(k)x*(k + p)

pi>1/2 (2m)2 p? ) (2m)2 (p+ k)2

:/ d*p (x(p)—x(k))/ 4k u(k)x*(k+p)
p|>1/2 (27)3 p (2m)2 (p+k)?

2

Fig 15: First graph

e Second graphs. The second contribution is given by the graph

d2p  d%k U_o(k, k +p)
/ CHEE 9 (p )gw(p)?(m

:/ d?p d%k x2(p) ~u(k+p)x(k) +/1d7' (0—wx)(k +7p)
(2m)? (2m)? Du(p)Du(p) | D-w(k+p)D-w(k)  Jo D_u,(k+p)

d2p  d%k Y2(p) b (Oux)(E+Tp)
+/(27T)2 (2m)? Dw(p)D—w(p)/o ar D_,(k+p)

and, subtracting the graph containing the counterterm V](V_),

/ d?p x2(p) / A%k (9ux) (k)
(2m)% Dy(p)D—u(p) J (2m)% D_u(k)

the last addend is convergent; while the first two terms are convergent automatically

/de d?k xX*(p) u(k + p)x(k)
(2m)2 (27)% Dy (p)Deu(p) D—o(k + p) Do (k)
{ uk +p)x(k)  u(k)x(k) }
—w(k+p)D_y(k)  D_u(k)D_y(k)

:/ d’p &%k X*(p)
(2m)? (2m)* Des(p) Des(p)
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/ d?p d%k xX2(p) / ! & (0—wx) (k + 7p)
(2m)2 (2m)? Dy (p)Du(p) Jo D_,(k+p)

[ A% &% Y2(p) L . (0—wx)(k+71p)  (0-wx)(k)
/ (p)/od { }

(2m)2 (2m)2 Dy (p) D D_u(k+p)  D_y(k)

since the subtracted terms are zero by transformation under rotation.

Fig 16: Second graphs

e Vanishing graphs. There are four graphs subleading in the limit vy — 1: their total

value is the double of the two vanishing graphs

Fig 17: Vanishing graphs

2. The linear order of o(=) is given by only one graph.

e Third graph. Such graph is very similar to the previous: it is given by the the second
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graph, with the replacement of g2 (p) with (9,,9.,)(p):

d?p A%k U_..(k,k+p)
| et 00 =

:/ d’p  d%k {(dux)(p)_ x(p) H_ u(k + p)x(k)
(2m)2 (2m)2 | Du(p)  Duw(p)Du(p) D_y,(k+p)D_.,(k)

N /ldT (G_WX)(kJer)}

D_,(k+p)

’p &k [(@)®)  x(p) ' Qux) (k£ 7p)
+/ (2r)2 (272 [D_up) Dw<p>D_w<p>} / oD v

and, subtracting the graph containing the counterterm v(~),

/de {(&u )(p) x(p) }/ d?k (9uwx) (k)

2m)?2 | D-w(p)  Du(p)D-u(p)] ) (2m)? D_.(k)

—Ww
)
R e
w w w
w
w

Fig 19: Third graph

the last addend is convergent.

3. The 0-th order of a(*) is given by only one graph, which is subleading: it vanishes in the
limit 9 — 1.

Fig 20: Graph in item 3.

4. The 0-th order of (1) is only given by a tadpole.
e Fourth graph. It derives from the tadpole of Té+): for any N’ > 2

/ d?q un(@)xnin(k—q)
2m)2  D_,(k—q)
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the localization of this term is the extraction of the zeroth and first order Taylor expansion
in the external momentum k: the former is clearly summable and zero by symmetries;
the latter is:

/ d2q u(q)(Duxnr)(q) :/ d*q u_n'(q)(9ux)(9)
(2m)?  D_u(q) 2m)?  D_u(9)

Fig 21: Fourth graph

A9.3 Explicit computation. To make the computation easier, the cutoff is chosen to be a
distribution
de de
XK F ko) f(ke), for fa) (@ +1) = (e —1) .
Then f/(z) = §(z 4+ 1) — 6(x — 1). Since, by definition of D,,(k), it holds ko = (i/2) [D., (k) +
D_, (k)] while ki = (w/2)[Dy,(k) — D_,,(k)], then:

(0) ) = 5 (ko) £ ) + 5 (ko) £ (k)

It is suitable to remark that the above choice of the cutoff function, in contrast with what
done for the anomaly of the WT1, is not allowed in the developments of the previous Chapter.
Furthermore the computation of the following integrals is not exact, but rather is performed
with a simple Montecarlo simulation. That is way the incorrectness is not proved, but it has to
be considered as a conjecture, enforced by such a calculation.

e F. For the first graph it holds:

def d’p x(p) [ d®k u(k)x*(k+p)
- e

2 [ e 1— f(ko — po)f(k1 —p1) 1
- — dpodp; — dkodk =52.64—— .
(271')4 /_1 pO pl p2 /_1 0] 1 k2 5 6 (271')4

e S. Calling p™ = (1 — 7)p, for the second graph it holds:

Sa’! / d¢p &k ) u(k +p)x(k)
(2m)% (2m)? Doo(p) Doo(p) D—wo(k + p) Dy (K)

2 2-pd) [ 1— f(k k k
— / dp[)dpl (pO pl) / dk[}dkl f( 0+p0)f( 1+p1)(k0+p0)_0
—1 1

(2m)4 p _ (k+p)? k2
4 [ pop1 [ 1— f(ko+po)f (k1 +p1) ko
dpodp; === [ dkodk k =
+(27r)4 /_1 Podp1 7 ) 0dr1 (& +p)? ( 1+p1)k2
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Finally:
def 2 (7 (5 — p) /1 1 — f(ko + po)f (k1 + p1) ko
Sal = dpodp; ———= dkodk ko
oy | oo S5 [ G TR
1
= 2.69
(2m)*”
1
def 4 Pop1 1 — f(ko +po)f(k1+p1) ko
Sa2=—— dpodpy —— dkodk k —
a (27r)4/ Podp1 A /_1 odry &+ p)? ( 1+p1)k2
1
=029——
(2m)*
The second addend of the second graph is:
deef/ d2p A2k /1dT (0—wx) (k +7p)
(2m)? (2m)* De( p) 0 D_,(k+p)
d*p x ! 2k (0-wx) (k) ;
= /(%) / T/ ) P btr)
0 (k+p™ )
/ ’p X p /ldT / (ko + pg).f' (ko) f (k1)
(2m)? 0 (k +p7)2
+2/ d2p X pop1 1d7 / d*k (k1 +p7) f (ko) f (k1)
(2m) 0 2m)? (k+p7)?
2 /1 % ' . po -1
= dpodp1 dr / dkl
(2m)? 0 L (h = D7+ (o] + k)’

4 1 ! k
(27) 0 1 (p7 —1) 2+ (pT + k1)

The third addend of the second graph is
. 2 2 2 1 aux) (k
Scd:f/(dp d?k X(p)()/dT( X)(k +7p)
w 0

2m)? (271') D_,(k+p)
d?p x (k)
/<2w> 2 p +k> 2 Dup” +5)
_ / *p x po+k:o>f (ko) f (k1)
(2m) (p7 + k)

2 / Po -1
— dpodp1 — / dr / dkq ;
(27r) po - 1 + (p1 + k1)2

and its regularization is obtained by subtracting the co term

2 1 1t 1
——— [ dpodp; — [ dk; ——— .
(27T)4 /;1 Podp1 p2 /_1 1 1 + k%

Therefore:

def 2 /1 (py —1) 1
Sc= dpodp1 — / dr / dkl +
2m)! po_l) + (p] +k1) 1+ k3
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. def
Setting Sd = Sb + Sc finally:
1 2 rl 1 -
Sdl1= — dpodp: —/ dr / dkq +
@m* ) Pt -1 (05 — 1%+ (pT + k1)>  L+kT
1
=-049——
(2m)*”
def 4 [ popr [t [ ] +k k
Sd2 :fw/ dpodpy %/ dr / dky - 21 lT 2 1—|—1k:2
-1 p* Jo -1 (g —1)" + (p] + k1) 1
1
= 0.0056—— .
(2m)*

e T. For the third graph it holds:

Tad;f/ ’p P’k (QuX)(p)  u(k+p)x(k)
@r)? @ Dulp) Doulk +p)D—u(k)
ey o e [ o R e
G /idpl e /_11d’“°dk1 1(20f—(k10>2_ : )<£§k£f§3)< o= 18
+ ooy /_lldpl s /_lld’“dkl 1<20f—(k10>2_ . 1&%2@5) (B ps
oo /_lldpf) R /_lld’“odkl T T
Finally
Tl [ g [t SR b
= 1.96@ ,
T2 /_15“’1 " /_11d’“°d’“ Tt i o= 18
_ .1@ ,
Tag s /_lldpl e /_lld’“od’“ ldof—(kf); . )é(lki Zfii” s
= —O.QSﬁ ,
Tt /_11de A /_lld’“’d’“ Tt e U
1

=0.11

(2m)*
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The second addend of the third graph is

def [ d2p A%k (Qux)(p) (', (0-wX)(k+7D)
Th= / 2n)? <2w> Dw<p> / ar D+

[ R [[ar [ L0

_ /(d2p f(po)f(p1 po— (po) f'(p1 pl/ / (ko + pg) f' (ko) f (k1)

2/ (2n)? (k +p )?
1 [ d%  f'(po)f(p1)p1 + f po) ' (p1)po (k1 +p7)f (ko) f(k1)
+§/(27r)2 / / kl+p 7)? 7

_— d2p d2 wX p) (', (9uX)(k+7p)
/ >/d7 _w<k+p>

- [ “2’3 o e i+

25/(61210 f'(po) f(p1)po +f po) f'(p1 pl/ / (p5 + ko) f' (ko) f (k1)

27?2 (p7 +k)
1 [ d?% f’(po)f(pl 1 — f(po) ' (p1)po (pg + ko) f (ko) f' (k1)
+ 5/(%)2 / / (7 +k) '

Setting Td< Tb + Tc, some cancellation occurs:

or)?2 (27r) D_w( _w(k+p)
= [ SR [ar [ o0
/(d2p I (o) f p1 po/ / p0+12> +k))f(krl)
+/(d2p fp0 p1 po/ / p1+l;1 +k))f(k1)

def [ d’p d?k (0.X)(p) [, (Qux)(k+7D)
Td = /( )/dT

Therefore:

Td1’ 2 /ld b /ld /1 dk
= T
(2m)* )4 P 1+p? Jo —1 !

.
72+ (p] + k1)

T—2 2
(r—22+ (pf +k)®  L+K?

def 4 !
Td2 = —— d dk
( /1 bo 2+1/ 7-/ !

1
= —0.62
(2m)*

1

= 0.86-———
(2m)*

1—T+k‘1 . kl
p0+1 (1—T+k1)2 1+k%
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e Q.Regarding the fourth graph, since (9.,x0)(¢) = —(1/2lq|)x6(q)D-u(g), and since
when x((q) # 0, u_n+(q) = 1, the last integral is equal to
1 [ d%q x)(q 11 =
——/ ol 1Ll =2,
2/ (2m)? |q| 2 4 g=1 37

independently on the scale N’ and on the shape of the function y. Such a contribution
has to be multiplied times (a —a)/2 = v(7) + O(\2?) = @2 Obtaining

1
6.18—— .
(2r)?

In the end, the quadratic coefficient of the second anomaly, A, is non zero, and in particular
> 18/(2m)* .
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