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Introduction

Historical outlook. The Thirring model was proposed in [T58]. It describes Dirac fermions

in d = 1+1 spacetime dimensions with local current-current interaction. With summation over

repeated indices, the classical Action for mass µ and coupling λ reads:
∫

d2x ψx (i 6∂ + µ)ψx −
λ

2

∫
d2x ρν(x)ρ

ν(x) , (0.0.1)

where ψ and ψ
def
= ψ†γ0 are 2-spinors; x

def
= (x0, x1); ρ

µ(x)
def
= ψxγ

µψx is the current; and the γ’s

matrices are a realization of the Clifford algebra

γ0
def
=

(
0 1
1 0

)
, γ1

def
=

(
0 −1
1 0

)
, γ5

def
= iγ0γ1 =

(
i 0
0 −i

)
, (0.0.2)

which, for ηµ,ν
def
= δµ,ν(1− 2δµ,1), do satisfy the properties

{γµ, γν} = 2ηµ,ν , (γµ)
†
= −γ0MγµMγ0M ,

{γ5, γµ} = 0 ,
(
γ5
)2

= −1 ,
(
γ5
)†

= −γ0γ5γ0 = −γ5 .
This model is enough simple to be analysed in full details; and yet it contains many of the typical

features of the quantization of relativistic quantum field theories (QFT), such as the anomalous

scaling – as conjectured in QED, [JZ]; and the anomalous phase and chiral symmetries – like

the anomalous chiral symmetry of QED or Standard Model.

As peculiarity of the 1 + 1 spacetime dimension, since there are only two independent com-

ponent of the current, the invariance of the classical massless Lagrangian under phase transfor-

mation ψx → eiαψx and under chiral transformation ψx → eiγ
5αxψx led to the hope to find an

exact solution also for the quantum massless model.
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First, Thirring, [T58], derived many matrix elements of the interacting field; then, Glaser,

[G58], gave an explicit formula for such a field operator, arising the criticism of Pradhan and

Scarf. The breakthrough had place with Johnson, [J61], who first found the expression for the

two point Schwinger functions which, until nowadays, has been accepted as the exact solution.

In the end, Klaiber, [K64], with a slightly different technique, wrote out the general formula for

all the Schwinger functions. All this story is commented upon in [W64]; here it is worthwhile to

stress that all above papers were plagued by the typical infinities of relativistic QFT: the virtue

of Johnson’s development merely was a greater solidity of the final result.

A remarkable feature in [J61] is the presence of anomalies in the Ward-Takahashi identities

(WTi): they occur – some years before the discovery of Adler, [A70] – as a modification of the

field-current commutation relations, simply guessed in order to avoid triviality of the identities.

Remarkable as well is the procedure of joining of the Schwinger-Dyson equation (SDe) to-

gether to the phase and chiral WTi, in order to obtain a Closed Equation (CE) for the two

point Schwinger function which can be solved straightforwardly.

In order to clear the result of all the surreptitious calculations with infinities, Wightman,

[W64], stressed that the set of Schwinger function of Johnson and Klaiber, no matter how they

were derived, only represent good candidates: if they verified the requirements of an axiomatic

program, they would define a QFT to be called “Thirring model” essentially by definition. But

no kind of positive definiteness of inner product of physical Hilbert space has ever been possible

to prove; up to recent years, when in [M93] the reflection positivity was obtained as consequence

of the Hamiltonian formulation of a many particle model, the Luttinger model, exactly soluble

as showed in [ML65] and in a sense close to the massless Thirring model.

The massive theory is much less analysed, [GL72]. In such a case no “exact solution” was

ever found; as well as no physical positive metric.

Now, a different point of view can be considered, the Renormalization Group (RG) approach

à la Wilson. Such a technique has been revealed very profitable for certain QFT, like the

Yukawa2 model, [S75] and [MS76], or the ultraviolet part of Gross-Neveu model, [GK85] and

[FMRS85]; the subtle point being that all such models are superrinormalizable, or were studied

in asymptotically free regimes.

The Thirring model, instead, is renormalizable, but not superrinormalizable; and no regime is

asymptotically free, since the effective coupling remains essentially constant over every regime.

This property, called vanishing of Beta function, was already used in [BoM97] to point out the

critical behavior of the infrared regime of Yukawa2 model; and it is a consequence of the phase

and chiral WTi – in agreement with the general belief that, without the aid of symmetries, RG

can be effective only in constructing trivial theories.

As matter of fact, there is a basic conflict between the regularization of the theory and the

phase and chiral symmetries. The situation is very similar to the scaling transformation: the

classical theory is scale invariant; the theory regularized with a cutoff is no longer; removing

the cutoff, scale invariance is recovered, but with a different exponent, called anomalous. In the

same way, removing the cutoff, the WTi are recovered, but a change in the factor in front of

the currents makes such identities anomalous.

In recent times, Benfatto and Mastropietro, [BM01],[BM02],[BM04],[BM05], have developed

a technique to complete construction of Luttinger liquids without any reference to the exact
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solution of the Luttinger model. As byproduct of their developments, the anomaly of the WTi

arose.

The aim of this thesis is to use such a technique to construct, by a self-consistentRG approach,

uniform in the mass, the Thirring model at imaginary time. And then to make a continuation

to Minkowskian spacetime by verifying the Osterwalder and Schrader axioms, (OSa). The

occurrence of the phenomenon of fermion doubling – peculiar of the discretization on a lattice

– has been solved introducing a momentum dependent mass term, as suggested in [W76], but

also a mass counterterm which avoids the generation of mass in the massless theory.

As main applications, the anomalousWTi stated by Johnson are derived and, as consequence,

the current operator is proved not to need any renormalization. Anyway, the explicit value of the

anomaly obtained by Johnson are wrong by lowest order calculation, and this is in violation of

the Adler-Bardeen’s theorem, [A69]. Also the rigorous implementation of the Johnson’s closure

of the SDe is proved: it will be showed, anyway, the arising of a new anomaly, missed in the

formal developments, which have driven Johnson to a wrong anomalous exponent.





Chapter 1:

Definitions and Main Results

1.1 Euclidean Thirring Model

Many properties of a quantum field theory can be obtained from the Schwinger functions, the

“cumulants”, or the “truncated expectations” of a statistical measure which correspond to the

imaginary-time version of the model. Such a measure can be conveniently formulated in terms

of a “path integral” on a lattice spacetime. Since the fields dealt with are fermions – namely

only the case of anticommuting fields is considered – they are represented in the path integral

formulation by Grassmannian variables.

1.1.1 Weyl formalism. While in Dirac notation of (0.0.1) the independent fields are the

2-spinor ψ and ψ, in Weyl notation they are ψ̂k
def
= (ψ̂−

k,+, ψ̂
−
k,−)

T , ψ̂†
k

def
= (ψ̂+

k,+, ψ̂
+
k,−). The Eu-

clidean Clifford Algebra is defined to be:

{γµ, γν} = 2δµ,ν , (γµ)
†
= γµ ,

{γ5, γµ} = 0 ,
(
γ5
)2

= 1 ,
(
γ5
)†

= γ5.

Such requirements are fulfilled by the same γ′s matrices in (0.0.2), by multiplying γ1 and γ5 by

the imaginary unity; namely, from now on the definitions in (0.0.2) are turned into:

γ0
def
=

(
0 1
1 0

)
, γ1

def
=

(
0 −i
i 0

)
, γ5

def
= − iγ0γ1 =

(
1 0
0 −1

)
.
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Accordingly, the Euclidean Action, for mass µ and coupling λ, is defined to be:

∑

ω,σ=±

∫
d2k

(2π)
ψ̂+
k,ωTω,σ(k)ψ̂

−
k,σ

− λ

2

∑

ω=±

∫
d2p

(2π)2
d2q

(2π)2
d2k

(2π)2
ψ̂+
p,ωψ̂

−
q,ωψ̂

+
k,−ωψ̂

−
p+k−q,−ω ,

(1.1.1)

where the coefficients of the quadratic part are

Tω,σ(k)
def
=

(
D+(k) −µ
−µ D−(k)

)

ω,σ

, with Dω(k)
def
= − ik0 + ωk1 .

1.1.2 Spacetime Lattice. Let a and L be respectively the spacing and the side length of

the lattice to be constructed, such that L/a is an integer. Then, in correspondence of such

parameters, let the quotient set Q be defined as

Q
def
=

{
(n0, n1) ∈ Z2

∣∣∣ n ∼ n′ if n− n′ ∈ L

a
Z2

}
;

the spacetime lattice, Λ, and its reciprocal one, D, are defined as

Λ
def
= {an0, an1 |n ∈ Q} , D

def
=

{
2π

L

(
m0 +

1

2

)
,
2π

L

(
m1 +

1

2

)∣∣∣∣m ∈ Q

}
.

To shorten the notation, the Riemann sums on the lattices are denoted with integrals

∫

Λ

d2x f(x)
def
= a2

∑

x∈Λ

f(x) ,

∫

D

d2k f̂(k)
def
=

(
2π

L

)2 ∑

k∈D
f̂(k) . (1.1.2)

1.1.3 Grassmann Algebra. In correspondence of the fields in (1.1.1), there are four sets of

Grassmann variables that, with abuse of notation, are called {ψ̂σk,ω}k∈Dσ,ω=± as well. The integra-

tion in such a finite algebra is defined so that the integral of a constant is zero, while

∫
dψ̂σ

′
k′,ω′ ψ̂σk,ω = δσ′,σδk′,kδω′,ω ;

then the operation is extended by linearity to any polynomial of fields, considering
{
dψ̂σk,ω

}k∈D
ω,σ

anticommuting with themselves and with all the fields. As consequence, the integration of the

monomial Q(ψ),
∫∏

k∈D
∏
ω=± dψ̂+

k,ωdψ̂
−
k,ωQ(ψ), assigns 1 to Q(ψ) =

∏
k∈D

∏
ω=± ψ̂

−
k,ωψ̂

+
k,ω,

and 0 to all the other Q′(ψ) which cannot be obtained as permutation of fields in Q(ψ).

The derivative in the Grassmann algebra is defined to be equivalent to the integration:

∂Q(ψ)

∂ψ̂+
k,ω

def
=

∫
dψ̂+

k,ω Q(ψ) ,
∂Q(ψ)

∂ψ̂−
k,ω

def
= −

∫
Q(ψ) dψ̂−

k,ω
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– hence the derivative in ψ̂−
k,ω acts from the right.

1.1.4 Schwinger functions. In order to give a meaning to the path integral formulation of the

Schwinger function, it is necessary to introduce a “cutoff function”, χN (k), made as follows. Let a

momentum unity, κ, be fixed. Chosen any γ > 1, let N be any integer such that κγN+1 ≤ 3π/4a.

Then, let χ̂N (t) be a C∞
0 (R) function with compact support {t ∈ R : |t| ≤ κγN+1} and

χ̂N (t) ≡ 1 in {t ∈ R : |t| ≤ κγN}. Besides, because of technical reason, it is convenient to take

χ̂N in the Gevrey class α: for a positive constant C,

sup
t∈R

∣∣∣∣
dnχ̂N
dtn

(t)

∣∣∣∣ ≤ Cn(n!)α ;

in particular, α = 2 will be good enough. The possibility of constructing such a compact support

function is discussed in A1.2. Finally, χN (k)
def
= χ̂N (k0)χ̂N (k1). Calling DN ⊂ D the support of

χN (k), the Generating Functional of the Schwinger functions of the Thirring model is defined

to be W(, ϕ): in correspondence of certain parameters λN , µN , ZN and ζ
(2)
N , it is such that

eW(,ϕ)def=

∫
dP (≤N)(ψ) exp

{
−λNV

(√
ZNψ

)
+ ζ

(2)
N J (,

√
ZNψ) + F (ϕ,ψ)

}
. (1.1.3)

The explanation of the above formula is the following. The integration is done w.r.t. the nor-

malized Gaussian measure given by

dP (≤N)(ψ)
def
= exp



L

2ON − ZN
∑

α,β=±

∫

DN

d2k

(2π)2
Tω,σ(k)

χN (k)
ψ̂+
k,ωψ̂

−
k,σ





∏

k∈DN

∏

ω=±
dψ̂+

k,ωdψ̂
−
k,ω ,

(1.1.4)

where the covariance ĝω,σ(k) is such that:

ĝ−1(k)
def
=

T (k)

χN (k)
, with Tω,σ(k)

def
=

(
D+(k) −µN
−µN D−(k)

)

ω,σ

;

hence ĝ(k) is periodic by the compact support of χN and well defined for any k ∈ D, also

for µN = 0, since the point (0, 0) does not belong to D. As well as ĝ−1(k) is well defined in

DN , since the points in which the cutoff is zero do not belong to DN . The factor eON is the

normalization of the Gaussian measure:

ON
def
=

∫

DN

d2k

(2π)2
ln

(
L4|k|2
χ2
N (k)

)
.

The self-interaction is given by the potential

V(ψ)def= 1

2

∑

ω

∫

D

d2p

(2π)2
d2q

(2π)2
d2k

(2π)2
ψ̂+
p,ωψ̂

−
q,ωψ̂

+
k,−ωψ̂

−
p+k−q,−ω ;
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while the interaction with the external sources are

Jσ(, ψ)def=
∑

ω

∫

D

d2k

(2π)2
d2p

(2π)2
̂p−k,ωψ̂

+
k,σωψ̂

−
p,σω ,

F(ϕ,ψ)
def
=
∑

ω

∫

D

d2k

(2π)2

[
ϕ̂+
k,ωψ̂

−
k,ω + ψ̂+

k,ωϕ̂
−
k,ω

]
;

and {̂k,ω}k,ω are a commuting variable, while {ϕ̂σk,ω}k,ω,σ are anticommuting.

Finally, w.r.t. the classical Action (0.0.1), λ has been replaced with λNZ
2
N , the “bare cou-

pling”; µ with µN , the “bare mass”; the free action was multiplied times ZN , the “field strength”;

and the interaction with the external source  brings a coupling Z
(2)
N

def
= ζ

(2)
N ZN , the “density

strength”: such parameters are essential in order to have a finite interactive quantum theory,

see Theorem 1.1. Besides, in has to be remarked that the introduction of the cutoff has required

a reference momentum, κ, absent in the classical action of the massless theory, which will allow

the arising of the anomalous dimension without violating the scaling symmetry.

The Fourier transform of the fields defines a Grassmann algebra also in the lattice Λ. The

conventions are:

ψσx,ω
def
=

∫

D

d2k

(2π)2
eiσkxψ̂σk,ω ; ϕσx,ω

def
=

∫

D

d2k

(2π)2
eiσkxϕ̂σk,ω ;

x,ω
def
=

∫

D

d2k

(2π)2
eikx̂k,ω .

The definition of derivative extends also to the fields
{
ψσx,ω

}x∈Λ

ω,σ=±,
{
ϕ̂σk,ω

}k∈D
ω,σ=± and

{
ϕσx,ω

}x∈Λ

ω,σ=±;

while the derivative w.r.t. the fields
{
̂k,ω

}k∈D
ω=± and

{
x,ω

}x∈Λ

ω=± is the conventional one.

Well then, setting x
def
= x1, . . . , xn, and z

def
= z1, . . . , zm, collections of points in Λ, for any given

choice of the labels σ
def
= (σ1 . . . , σm), ω

def
= (ω1 . . . , ωn) and ε

def
= (ε1 . . . , εn), the Schwinger func-

tions are defined as

S
(m;n)(ε)
σ;ω (z;x)

def
=

∂n+mW
∂z1,σ1

· · · ∂zm,σm∂ϕε1x1,ω1
· · · ∂ϕεnxn,ωn

(0, 0) . (1.1.5)

In order to shortening the notations of the Schwinger functions which will be most used in the

following, let

S(2)
ω (x− y)

def
= S(0;2)(−,+)

ω,ω (x, y) , S(1;2)
σ;ω (z;x − y)

def
= S(1;2)(−,+)

σ;ω,ω (z;x, y) .

1.1.5 Remarks. The role of the lattice discretization is only to have a finite Grassmann algebra:

the continuous limit, κL, (κa)−1 → ∞ is taken as soon as the Schwinger function are derived;

it is trivial, since, on the other hand, the use of the functional integral suggest, but it is not

strictly necessary to, the developments.
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On the contrary, the function χN is an essential cutoff on the large momenta: the parameters

λN , µN , ZN and ζ
(2)
N will be chosen in a way to compensate the divergences of the limit of

removed cutoff, N → +∞, of the Schwinger functions.

Theorem 1.1. There exists ε > 0 and two positive constant, c and C, such that, for any

λ : |λ| ≤ ε and µ : 0 ≤ µ ≤ κγ−1, and for suitable λN , µN , ZN and Z
(2)
N , analytic function of λ,

the following properties of the Schwinger functions hold.

1. There exist three critical indices, ηλ, η
(2)
λ , and ηλ, independent from the cutoff scale N

and from the mass µ, analytic functions of λ and such that

ηλ = η2λ
2 +O(λ3) , η

(2)
λ = η

(2)
2 λ2 +O(λ3) ,

ηλ = −η1λ+O(λ2) ,

with η2, η
(2)
2 and η1 strictly positive; and, for any N ,

ZN = γ−Nηλ
(
1 + O(λ2)

)
, Z

(2)
N = γ−Nη

(2)

λ

(
1 + O(λ2)

)
,

µN = µγ−Nηλ
(
1 + O(λ)) ,

where O(λ) are finite in N .

2. In the limit of removed cutoff, the Schwinger function are well defined distribution, ful-

filling the OSa.

3. In the limit of removed cutoff, the two point Schwinger function verifies the bound

∣∣∣S(2)
ω (x− y)

∣∣∣ ≤ κC
(
κ|x− y|

)1+ηλ e
−c
√
(µκ)

1+τ
κ|x−y|

,

for τ
def
= − ηλ/(1 + ηλ). The same bound holds also for S

(0;2)(−,+)
ω,−ω (x, y).

4. In the limit of removed cutoff and of vanishing mass, i.e. µ = 0,

S(2)
ω (x− y) = (1 + λBλ)

∫
d2k

(2π)2
e−ik(x−y)

1

Dω(k)

(
κ

|k|

)ηλ
, (1.1.6)

with Bλ analytic and O(1) in λ. While S
(0;2)(−,+)
ω,−ω (x, y) ≡ 0.

The proof of the first three statements is obtained by the analysis in Chapter 3, the study of

the flows of the effective couplings in 3.4, the convergence of the Schwinger functions, A.3.3 and

A3.6, and by the equivalence of the Euclidean and Hamiltonian regularization, 3.5. The fourth

statement is consequence of symmetries: see 4.3.

The OSa are reported in Appendix A2. When they hold, the Osterwalder-Schrader recon-

struction theorem guarantees the possibility of analytically continuing the set of Schwinger

functions to a set of functions obeying the Wightman axioms: this means the construction of a

consistent relativistic and quantum field theory.
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By item 2., the parameters ZN and Z
(2)
N are vanishing in the limit of removed cutoff; whereas

µN is vanishing or diverging according to the sign of λ.

1.1.6 Ward-Takahashi identities: first anomaly. In the massless case, the phase and chiral

symmetry makes current expectations and field expectations strictly related. By neglecting

formally the presence of the cutoffs, and performing a combination of the phase and chiral

transformation of the fields, it holds the following identity for the Fourier transform of such

Schwinger functions:

Dσ(p)

ζ
(2)
N

Ŝ(1;2)
σ;ω (p; k) = δσ,ω

[
Ŝ2
ω(k)− Ŝ2

ω(k + p)
]
. (1.1.7)

D!(p)�p
kk+p =�kk ��k+pk+p

Fig 1: Graphical representation of (1.1.7)

This relation is actually wrong. Indeed, the presence of the cutoff – essential ingredient of

meaningful QFT’s – breaks the symmetries and generates a correction term Ĥ
(1;2)
σ;ω :

Dσ(p)

ζ
(2)
N

Ŝ(1;2)
σ;ω (p; k) = δσ,ω

[
Ŝ(2)
ω (k)− Ŝ(2)

ω (k + p)
]
+ Ĥ(1;2)

σ;ω (p; k) . (1.1.8)

What is at first sight surprising is that in the limit of removed cutoff the corrections are not

vanishing; and yet anomalous WTi, strictly different from (1.1.7), are valid.

Theorem 1.2. There exists ε > 0 and two positive constants, c and C, such that, for any

λ : |λ| ≤ ε and µ : 0 ≤ µ ≤ κγ−1, the following properties hold.

1. For µ = 0, there exists two “bare parameters”, λb and ζ
(2)
b , analytic in λ, such that the

coupling λN and the field strength ζ
(2)
N , as chosen in Theorem 1.1, are independent form

the scale of the cutoff, N ; and are λN = λb, ζ
(2)
N = ζ

(2)
b .

2. For µ = 0, there exist two coefficients, a and a, analytically dependent on λ, such that

1

ζ
(2)
b

Ŝ(1;2)
σ;ω (p, k) =

a+ aσω

2

Ŝ
(2)
ω (k)− Ŝ

(2)
ω (k + p)

Dσ(p)
, (1.1.9)

with (a+ aσω)/2 6= δω,σ whenever λ 6= 0.



Definitions and Main Results 17

3. The current-current correlation satisfies the bound

∣∣∣S(2;0)
σ,ω (x, y)

∣∣∣ ≤ C

(κ|x− y|)2 e
−c
√
κ(µκ )

1+τλ |x−y|
, (1.1.10)

for any allowed value of the mass µ.

The coupling λN and the density strength ζ
(2)
N do not depend on the cutoff scale since, the mass

being zero, the theory is scaling invariant. The second statement is a sub-case of Theorem 4.2;

while the third is proved in A3.7.

By item 3, the short distance behavior is the same as in the free theory: no critical index

occurs and changes the exponent 2 of 1/(κ|x− y|).
It is interesting to see how the anomalous WTi arises. It is possible to find two finite coun-

terterms, ν(+) and ν(−), analytically dependent on λ and independent on N , such that the

correction can be decomposed as

Ĥ(1;2)
σ,ω (p; k) =ν(+)Dσ(p)Ŝ

(1;2)
σ;ω (p; k) + ν(−)D−σ(p)Ŝ

(1;2)
−σ;ω(p; k)

+ ∆Ĥ(1;2)
σ;ω (p; k) ;

(1.1.11)

and, for p and k fixed independently from N , the rest ∆Ĥ
(1;2)
σ;ω (p; k) is now really vanishing. To

adhere to the Johnson’s notation, let

a
def
=

1

1−
(
ν(−) + ν(+)

) , a
def
=

1

1−
(
ν(−) − ν(+)

) ;

then, replacing (1.1.11) in (1.1.8), and taking the limit of removed cutoff, gives (1.1.9). Johnson’s

WTi is precisely given by (1.1.9); and his explicit values for a and a are in agreement with the

Adler-Bardeen theorem on absence of radiative correction to the anomaly. Anyway, these values

are wrong: while Johnson states ν(+) = 0, by lowest order computation, for λ small enough,

ν(+) < 0 (see A9).

Despite the anomaly, and despite the phase and chiral symmetry hold only in the massless

case, it is possible to prove the finiteness of the limit value of ζ
(2)
N , even in the massive model;

and accordingly the finiteness of the current-current Schwinger function, with no arising of an

anomalous exponent.

1.1.7 Closed equation: new anomaly. The fields equation can be turned into an equation

for the Schwinger function, the Dyson-Schwinger equation. In the massless case, the one for the

two point Schwinger function reads

Ŝ
(2)
ω (k)

gω(k)
=

1

ZN
− λb

ζ
(2)
b

∫

D

d2p

(2π)2
Ŝ
(1;2)
−ω;ω(p; k − p) . (1.1.12)
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�k k =�k +�k p k�p k
Fig 2: Graphical representation of (1.1.12)

Inserting the WTi (1.1.8) and the identity (1.1.11) in (1.1.12), since
∫
D
d2p D−1

−ω(p) = 0 by

oddness,

λb

ζ
(2)
b

∫

D

d2p

(2π)2
Ŝ
(1;2)
−ω;ω(p; k − p) =

a− a

2
λb

∫

D

d2p

(2π)2
Ŝ
(2)
ω (k − p)

D−ω(p)

+
∑

µ

a− µωa

2
λb

∫

D

d2p

(2π)2
∆Ĥ(1;2)

µ;ω (p; k − p) .

(1.1.13)

In the limit of removed cutoff, if the integral of ∆Ĥ
(1;2)
µ;ω had been vanishing, (1.1.13) would have

been turned into

λb

ζ
(2)
b

∫

D

d2p

(2π)2
Ŝ
(1;2)
−ω;ω(p; k − p) =

a− a

2
λb

∫

D

d2p

(2π)2
Ŝ
(2)
ω (k − p)

D−ω(p)
. (1.1.14)

Replacing it into (1.1.12), it would have held the equation

Ŝ
(2)
ω (k)

gω(k)
=

1

ZN
− a− a

2
λb

∫

D

d2p

(2π)2
Ŝ
(2)
ω (k − p)

D−ω(p)
, (1.1.15)

where 1/ZN is divergent and should compensate the divergence of the integral. The above

equation, in a sense stated by Johnson – actually his operations were even more formal; but

his final finite solution is exactly the solution of (1.1.15) – is wrong. Indeed, ∆Ĥ
(1;2)
µ;ω was said

to be vanishing only for fixed arguments, while here it is integrated over all the scales allowed

by the cutoff. This seems to waste the possibility of the closure of the SDe; and yet, again, an

anomalous CE still holds.

Theorem 1.3. Under the same assumptions of Theorem 1.1:

1. The following equation holds, asymptotically in the limit of removed cutoff

Ŝ
(2)
ω (k)

gω(k)
=
BN
ZN

−Aλb
a− a

2

∫

D

d2p

(2π)2
Ŝ
(2)
ω (k − p)

D−ω(p)
, (1.1.16)

where A, the “new anomaly”, is analytic and O(1) in λ; while B is 1+O(λ) and analytic

in λ as well.

2. It holds the following relations between the anomalous exponent and the coefficients in

the first and second anomaly:

ηλ = A
λb
2π

a− a

2
. (1.1.17)
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This result is a sub-case of Theorem 4.5, with the explicit expression of ηλ is discussed in 4.3.

The name “new anomaly” is justified since such is an effect of using a symmetry, exact only

at removed cutoff, inside an integral which in the same limit is divergent; it has been overlooked

not only in rigorous works, but even in the physical literature. In particular, A 6= 1 would imply

a striking and net difference w.r.t. the Johnson critical index.

Such a difference could have been checked directly by lowest order computation of ηλ itself;

but, since the fourth is the first non-trivial order, the actual computation is almost prohibitive.

Therefore (1.1.17) is a shortcut, since it gives ηλ in terms of the easier calculations of a− a and

A.

Now, by symmetry reasons, the first order of A is equal to 1, while a − a = O(λ): this is

in agreement with the the fact that ηλ is an even function of λ – as can be easily proved by

transformation ψ̂σk,ω → ψ̂σσk,σω in the functional-integral measure. But there is no general reason

for which this result should survive also at the second order, at least for a generic choice of the

cutoff function: in A9 there is a Montecarlo simulation which does not prove, but enforces the

clue that A 6= 1.

It is appropriate to disclose here the developments leading to (1.1.16), leaving to the next

chapters the proofs and the generalizations to the multi-point Schwinger functions. For a suitable

choice of four counterterms, {α(µ)}µ=± and {σ(µ)}µ=±, analytically dependent on λ,

λb
∑

µ

a− aµω

2

∫

D

d2p

(2π)2
∆Ĥ(1;2)

µ;ω (p; k − p) =

(∑

µ

a− aµω

2
σ(µω)λb

)
Ŝ
(2)
ω (k)

ĝω(k)

+

(∑

µ

a− aµω

2
α(µω)λb

)
λb

ζ
(2)
b

∫

D

d2p

(2π)2
Ŝ
(1;2)
−ω;ω(p; k − p) + ∆K̂ω(k)

,

where, for k fixed independently from N , the rest ∆K̂ω(k) is vanishing. Putting together the

above identity with (1.1.13) and (1.1.12), (1.1.16) holds for

A
def
=

1

1− (λb/2)
∑
µ(a− aµ)

(
α(µ) − σ(µ)

) ,

B
def
=

1− (λb/2)
∑
µ(a− aµ)α(µ)

1− (λb/2)
∑
µ(a− aµ)

(
α(µ) − σ(µ)

) .
(1.1.18)





Chapter 2:

Hamiltonian Regularization

Two different regularizations of the Thirring model can be considered: the Euclidean one,

depicted in the previous Chapter, and the Hamiltonian one, introduced in the present Chapter.

As well as, two are the main requirements of the OSa: the Euclidean invariance and the the

reflection positivity.

Well then, the former property is evident only in the former regularization – and even false

in the latter, if the limit of removed cutoff is not taken; while the latter property is built-in in

the latter, and not so clear in the former.

But it is possible to prove that, for two (in general) different choices of the parameters of the

Lagrangian, the two regularization, in the limit of removed cutoff, are equivalent, in the sense

that the Schwinger function derived in the one or in the other scheme are exactly the same.

And therefore they fulfill both the crucial properties.

This theorem is a first example of the effectiveness of the RG approach, which is introduced

in the next Chapter.

2.1 Hamiltonian Thirring Model

This time only the space is discretized. Then, a finite dimensional Fock space, together to a

many-body Hamiltonian, is built, guaranteeing a priori the validity of the reflection positivity

(see A2.2) also after taking the continuum space limit.
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Other constructions, different from the Hamiltonian formalism and verifying such positivity

property, would have been possible: e.g. a certain lattice discretization of both space and time

(different from the one in Chapter 1) would have turned the quantum field model into a sta-

tistical mechanical lattice model, nearest neighbours interactive, which is reflection positive by

standard proof, [OS77]. Anyway, despite of the popularity of the latter route, here the former

is preferred, since the consequent integration of the hard fermions (see later) was called upon,

but never explicitly proved in [BM01] and in the following papers – where the setting can only

be Hamiltonian, since they deal with many-body quantum models. As consequence, space and

time are not managed on the same ground, and the phenomenon of light velocity modification

occurs (as first noticed in [M93]): it is necessary to introduce a counterterm to fix the light

velocity to 1.

In any case, lattice discretization of fermionic QFT – no matter if it affects only the space

or both space and time – encounters the well known problem of the doubling of fermions. In

order to make the effect of the double fermions to vanish, a possibility is to use a momentum

dependent mass term, [W76]; but it destroys the symmetries of the propagators and generates

a mass term even in the massless theory: a counterterm also for the mass is necessary, so that

the mass on physical scale can be fixed to chosen value µ ≥ 0.

2.1.1 Hamiltonian. A finite dimensional Fock space is constructed in terms of the periodic

spatial lattice, Λ1, as follows. Let κ be fixed. Choosing γ > 1 and integer, let a and L be

respectively the lattice spacing and the lattice side length, s.t. 4κa
def
= γ−N and 4κL

def
= γ−h, for

N,−h large positive integers; then, the periodicity of the lattice is given by the quotient set

Q1
def
=

{
n ∈ Z

∣∣ n ∼ n′ if n− n′ ∈ L

a
Z
}
,

so that the lattice Λ1 and its reciprocal D1 are

Λ1
def
=
{
an1

∣∣ n1 ∈ Q1

}
, D1

def
=

{
2π

L

(
m1 +

1

2

) ∣∣ m1 ∈ Q1

}
.

Now, let two couples of fermionic creation and destruction operators {aσk1,ω}
σ,ω=±
k1∈Λ1

be de-

fined with empty state |0〉; setting c(k1)def= [1 − cos(k1a)]/2a, e(k1)
def
= sin(k1a)/a – the Fourier

transform of the discrete derivative in x1 – and, for any choice of the mass µ ≥ 0, letting

µ(k1)
def
= µ+ c(k1) be the “momentum dependent mass term”, the free Hamiltonian is

H0
def
=

1

L

∑

ω

∑

k1∈∆1

ωe(k1)a
+
k1,ω

a−k1,ω +
1

L

∑

ω

∑

k1∈∆1

µ(k1)a
+
k1,ω

a−k1,−ω .

In the limit a → 0, the energy dispersion e(k1) is asymptotic to two linear dispersion: one

containing k1 = 0, which is the Euclidean Thirring dispersion; another one containing k1 = π/a,

and representing the double fermions: the role of µ(k1) is to assign to the doubles a mass which

is diverging with N .
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The Hamiltonian is made interactive by the term

λ

2

1

L3

∑

ω

∑

k1,p1,q1∈D1

a+k1,ωa
−
p1,ω

a+q1,−ωa
−
k1+q1−p1,−ω . (2.1.1)

As in the Euclidean regularization, the parameter of the Lagrangian have to be tuned so to

have a finite theory. Then, λ and µ are replaced with λN and µN ; and H0 is multiplied times

the field strength ZN .

Furthermore, to fix the mass to the chosen value and to have Schwinger functions with light

velocity equal to 1 (as in the Euclidean regularization), it is necessary to introduce two further

counterterms dN and γNnN , such that, setting νN
def
= nN/ZN and δN

def
= dN/ZN , the interactive

Hamiltonian finally reads

H
def
=

1

L

∑

ω

∑

k1∈D1

ωe(k1)ZN (1 + δN )a
+
k1,ω

a−k1,ω

+
1

L

∑

ω

∑

k1∈D1

(
µ(k1) + γNνN

)
ZNa

+
k1,ω

a−k1,−ω

+
λNZ

2
N

2

1

L3

∑

ω

∑

k1,p1,q1∈D1

a+k1,ωa
−
p1,ωa

+
q1,−ωa

−
k1+q1−p1,−ω .

(2.1.2)

2.1.2 Correlations. Let the fields and the density be defined

ψσx,ω
def
= e−x0H

(
1

L

∑

k1∈D1

eiσk1x1aσk1,ω

)
ex0H , ρRx,ω

def
= Z

(2,+)
N ψ+

x,ωψ
−
x,ω + Z

(2,−)
N ψ+

x,−ωψ
−
x,−ω ,

where Z
(2,+)
N and Z

(2,−)
N are the density strengths: they are two, rather than one as in the

Euclidean regularization, since in this setting space and time are on different ground and the

symmetry which make Z
(2,+)
N = Z

(2,−)
N is missing.

For any z
def
= z(1), . . . , z(m) and x

def
= x(1), . . . , x(n), fixed set on spacetime points such that

0 < z
(1)
0 < z

(2)
0 < · · · < x

(1)
0 < · · · < x

(n)
0 , the correlations are defined to be,

G
(m;n)(ε)
σ;ω (z;x)

def
=

Tr
[
e−LHρR

z(1),σ1
· · · ρR

z(m),σm
ψε1
x(1),ω1

· · ·ψεn
x(n),ωn

]

Tr
[
e−LH

] , (2.1.3)

where Tr is the trace over a complete set of states of the quantum lattice model.

2.1.3 Propagator. Also in this case the Schwinger function can be obtained in terms of a path

integral formula, and a Grassmannian integration. The free Hamiltonian can be diagonalized in

terms of a set of new creation and destruction operators, {bσk1,ω}
σ,ω=±
k1∈Λ1

, and energy dispersion

E(k1)
def
=
√
e2(k1) + µ2(k1):

H0 =
1

L

∑

ω

∑

k1∈Λ1

ωE(k1)b
+
k1,ω

b−k1,ω ,



24 Chapter 2.

where bσk1,µ
def
=
∑
ν a

σ
k1,ν

(
C−1(k1)

)
ν,µ

for

C(k1)
def
=

(
µ(k1) E(k1)− e(k1)

e(k1)−E(k1) µ(k1)

)
1√

µ2(k1) +
[
E(k1)− e(k1)

]2 .

Calling T the time ordering, it is useful to define the propagator as

gα,β(x)
def
=

Tr
[
e−LH0T

(
a+k1,αa

−
k1,β

)]

Tr
[
e−LH0

] =
∑

ω

Tr
[
e−LH0T

(
b+k1,ωb

−
k1,ω

)]

Tr
[
e−LH0

] C(k1)ω,αC(k1)ω,β

=
1

L

∑

k1∈D1

e−ix1k1−x0ωE(k1)

·
∑

ω

{
χ(x0 > 0)

1 + e−ωE(k1)L
− χ(x0 ≤ 0)e−ωE(k1)L

1 + e−ωE(k1)L

}
C(k1)ω,αC(k1)ω,β .

By partial-fraction expansion of the meromorphic functions in the curl brackets (see A1.1), the

propagator is turned into:

gα,β(x) = lim
M→∞

1

Lβ

∑

k∈D
e−ik·x

χ̂M (k0)

µ2
N (k1) + k20 + e2(k1)

(
ik0 + e(k1) µN (k1)
µN (k1) ik0 − e(k1)

)

α,β

, (2.1.4)

with D
def
= D0 ×D1 and D0

def
=
{

2π
β (m+ 1

2)
}
m∈Z

(namely D is the product of a periodic lattice

in the space direction times an unbounded one in the time direction); χ̂M (k0) a non-negative,

smooth cutoff, introduced to give a meaning to the above expression – which is a generalized

summation of a series which does not converge in absolute sense. Specifically, with reference to

the function χ̂N (t) defined in 1.1.4, the cutoff is defined to be χ̂M
def
= χ̂N

(
γ−M+N t

)
.

2.1.4 Schwinger functions. As well know consequence of the Trotter formula for the expan-

sion of the evolution operator, ex0H , and the Wick theorem (see for instance [FW]), the cor-

relations in (2.1.3) can be generated from the functional Z(, ϕ)
def
= eW(,ϕ), where, in its turn,

W(, ϕ) is defined to be the generating functional of the Schwinger function in the Hamiltonian

regularization:

eW(,ϕ)def=

∫
dP (≤M)(ψ) exp

{
−λNV

(√
ZNψ

)
+ γNνNN

(√
ZNψ

)
+ δND

(√
ZNψ

)

+
∑

σ

ζ
(2,σ)
N Jσ(,

√
ZNψ) + F (ϕ,ψ)

}
.

(2.1.5)

The settings are the following. The Gaussian free measure is given by

dP (≤M)(ψ)
def
= exp



L

2ON − ZN
∑

α,β=±

∫

DM

d2k

(2π)2
Tα,β(k)

χ̂M (k0)
ψ̂+
k,ωψ̂

−
k,ω





∏

k∈DM

∏

ω=±
dψ̂+

k,ωdψ̂
−
k,ω ,

(2.1.6)
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where OM is the normalization, ζ
(2,σ)
N

def
= Z

(2,σ)
N /ZN and the covariance ĝµ,ν(k) is:

ĝ−1(k)
def
=

T (k)

χ̂M (k0)
, T (k)

def
=

(
−ik0 + e(k1) µN (k1)
µN (k1) −ik0 − e(k1)

)
,

with

e(k1)
def
=

sin(k1a)

a
, µN (k1)

def
=

1− cos(k1a)

a
+ µN ; (2.1.7)

the lattice DM
def
= {k ∈ D : χ̂M (k0) 6= 0}; the self-interaction is given by the potentials

V(ψ)def= 1

2

∑

ω

∫

D

d2p

(2π)2
d2q

(2π)2
d2k

(2π)2
ψ̂+
p,ωψ̂

−
q,ωψ̂

+
k,−ωψ̂

−
p+k−q,−ω ,

and

D(ψ)
def
=
∑

ω

∫

D

d2k

(2π)2
ωε(p1)ψ̂

+
p,ωψ̂

−
p,ω , N (ψ)

def
=
∑

ω

∫

D

d2k

(2π)2
ψ̂+
p,ωψ̂

−
p,−ω .

In order to generate the Schwinger functions, there are also interactions with external sources:

Jσ(, ψ)def=
∑

ω

∫

D

d2k

(2π)2
d2p

(2π)2
̂p−k,ωψ̂

+
k,σωψ̂

−
p,σω .

Theorem 2.1. There exists ε > 0, a suitable choice of the parameters of the Hamiltonian

model, λN , µN , ZN , Z
(2,+)
N , Z

(2,−)
N , νN , δN , and a suitable choice of the parameters of the

Euclidean model, λN , µN ZN , Z
(2)
N – the analogous parameters of the two model being, in

general, different – such that, in the limit of removed cutoff, each Schwinger function in the

former regularization coincides with the analogous Schwinger function in the latter one.

The proof is deferred to the next Chapter: see 3.5.





Chapter 3:

Renormalization Group Analysis

After slicing the momenta in scales, the parameters of the generating functional are turned

into effective parameters for each given momentum scale; in this way obtaining a sequence, the

flow of the running coupling constants, which is controlled by the vanishing of the Beta function.

3.1 Renormalization Group Analysis for Hard Fermions

3.1.1 Momenta slicing. From now on, to be definite, the scaling parameter γ is fixed to be

equal to 3 – but any other value would be fine, suitable changing the following definition of the

cutoff. Then, κγN+1 = 3π/4a, and the cutoff function χ̂0(k0) is defined, for t ∈ R,

χ̂0(t)
def
=





1 for |t| ≤ κ

0 for 3κ ≤ κ|t| ≤ 4κ

∈ (0, 1) otherwise ;

the actual shape in the third domain is here inessential: it will be chosen in 3.3.1. Accordingly,

for h = N, . . . ,M , it is set χ̂h(t)
def
= χ̂0

(
γ−ht

)
. With χ̂0 it is possible to make a partition of the

momenta scales: for any h = N, . . . ,M ,

χ̂M (t) = χ̂h(t) +
M∑

k=h+1

f̂k(t) , with f̂k(t)
def
= χ̂k(t)− χ̂k−1(t). (3.1.1)
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It is worthwhile to remark f̂k has compact support
{
t : κγk−1 ≤ |t| ≤ κγk+1

}
.

3.1.2 Multiscale integration. The decomposition (3.1.1) has the purpose to obtain the fol-

lowing scale integration of W(ϕ, ): for any integer h : N, . . . ,M ,

eW(,ϕ) = eEh
∫
dP̂ (≤h)(ψ) eW

(h)(ϕ,,
√
ZNψ) , (3.1.2)

where the vacuum energy on scale h, Eh, do not depend on the fields; the measure dP̂ (≤h) is

the same as (1.1.4), with χ̂M (k0) replaced by χ̂h(k0); the effective potential on scale h, W(h),

is a functional of the fields:

W(h)
(
ϕ, ,

√
ZNψ

)
def
= − λNV

(√
ZNψ

)
+ γNνNN

(√
ZNψ

)
+ δND

(√
ZNψ

)

+
∑

σ=±
ζ
(2,σ)
N Jσ

(
,
√
ZNψ

)
+ F (ϕ, ) +W(h)

irr

(
ϕ, ,

√
ZNψ

)
;

(3.1.3)

namely it has the same expression of the argument of the exponential in the r.h.s. member of

(1.1.3), apart from the irrelevant contribution W(h)
irr .

Scale integration (3.1.2) can be verified by induction. Indeed, it is true for h = M , with

EM = 0 and W(M)
irr ≡ 0; while the procedure to obtain Eh−1, W(h−1) and W(h−1)

irr is the

following.

The field ψ is decomposed into the sum of fields ψ → ψ + (ZN )
−1/2

ξ, both with Gaussian

distribution. The propagator on scale h of ξ, the hard fermion field on scale h, is given by

g
(h)
α,β(x)

def
=

∫

D

d2k

(2π)2
e−ik·x

f̂h(k0)

µ2
N (k1) + k20 + e2(k1)

(
ik0 + e(k1) −µN (k1)
−µN (k1) ik0 − e(k1)

)

α,β

; (3.1.4)

hence, by decomposition (3.1.1), ψ is left with propagator

g
(≤h−1)
α,β (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

χ̂h−1(k0)

µ2
N (k1) + k20 + e2(k1)

(
ik0 + e(k1) −µN (k1)
−µN (k1) ik0 − e(k1)

)

α,β

. (3.1.5)

Then, calling dP̂ (≤h−1)(ψ) and dP̂ (h)(ξ) the measure (1.1.4), with propagators (3.1.4) and

(3.1.5) respectively, the hard fermion is integrated out:

∫
dP̂ (≤h)(ψ) eW

(h)(ϕ,,
√
ZNψ) =

∫
dP̂ (≤h−1)(ψ)

∫
dP̂ (h)(ξ) eW

(h)(ϕ,,
√
ZNψ+ξ)

def
= e∆Eh−1

∫
dP̂ (≤h−1)(ψ) eW

(h−1)(ϕ,,
√
ZNψ) ,

(3.1.6)

where ∆Eh−1 is the part of the integration constant the fields. Therefore, the vacuum energy

on scale h− 1 is defined to be:

Eh−1
def
= Eh +∆Eh−1 ;
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while,

W(h−1)
irr

(
ϕ, ,

√
ZNψ

)

def
= ln

∫
dP̂ (h)(ξ) eW

(h)(ϕ,,
√
ZNψ+ξ) −∆Eh−1

=

nψ+nϕ+n 6=0∑

nψ,nϕ,n≥1

∑

ω,σ

∫

Λ

d2x d2y d2z



nψ∏

i=1

√
ZNψ

σi
x(i),ωi





nϕ∏

i=1

ϕ
σ′
i

y(i),ω′
i√

ZN






n∏

j=1

z(i),ω′′
i


W

(h−1)

nψ ;nϕ;n,ω,σ
(x, y, z) ,

(3.1.7)

where x, y and z are short notations for x(1), . . . , x(n
ψ), y(1), . . . , y(n

ϕ) and z(1), . . . , z(n
) re-

spectively. By the well known formula for the truncated expectation w.r.t. a Gaussian measure,

the function W
(h−1)

nψ ;nϕ;n,ω,σ
(x, y, z) is a power series in the couplings λN , νN , δN , and coefficient

given by all the Feynman graphs with nψ + nϕ + n external legs of kind nψ, nϕ, n attached

respectively to the points x, y, z, with eventually a constraint that some among the point in x

may coincide: this is explained in more details in Appendix A3. The remarkable fact is that the

number of the Feynman graphs at n-the order expansion is about n!; and yet, by cluster expan-

sion and anticommutativity of the fermion fields, it is possible to prove a Cn-bound, making the

power series defining W
(h−1)

nψ ;nϕ;n,ω,σ
(x, y, z) absolutely convergent for λN , νN , δN small enough

(see A3.2).

Finally, W(h−1)
irr is defined by (3.1.3): in power series expansion, it corresponds to the terms

in (3.1.7) which are at least O(λN ), except the terms for nψ = 4, nϕ = n = 0 and linear in λN .

3.1.3 Dimensional bounds. In order to have a bound for W
(h)

nψ ;nϕ;n,ω,σ
, it is possible to

prove the following decay property of the diagonal and antidiagonal propagators: there exist

two positive constants c and C such that

∣∣∣g(h)ω,ω(x)
∣∣∣ ≤ CγNe−c

√
γNκ|x|e−c

√
γhκ|x0| ,

∣∣∣g(h)ω,−ω(x)
∣∣∣ ≤ γ−(h−N)CγNe−c

√
γNκ|x|e−c

√
γhκ|x0| .

(3.1.8)

Since h > N , the more factor γ−(h−N) in the bound of the antidiagonal propagator represents

a “gain factors” w.r.t. the bound of the diagonal one.

In the end of the integration of all hard fermions scales, (3.1.2) reads

eW(,ϕ) = eEN
∫

dP̂ (≤N)(ψ̂) e
W(N)

(
ϕ,,

√
ZN ψ̂

)
, (3.1.9)

which is the starting point of the analysis of the double and light fermions in the next sections.

Let d(x) be the tree distance of the points x, namely the length of the shortest tree path

connecting every point in x.
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Lemma 3.1. There exist ε > 0 and the positive constants c and C s.t., for any choice of the

couplings |λN |, |δN |, |νN | < 2ε, the following bounds hold.

1. If nϕ + n 6= 0,

∫

Λ

d2x
∣∣∣W (N)

nψ ;nϕ;n,ω,σ
(x, y, z)

∣∣∣ ≤ C
γN
(
2−(1/2)nψ−(3/2)nϕ−n

)

e
c

2(nϕ+n)

√
γNκd(y,z)

.

2. If nϕ + n = 0, ∫

Λ

d2∗x
∣∣∣W (N)

nψ ;0;0,ω,σ
(x)
∣∣∣ ≤ CγN

(
2−(1/2)nψ

)
,

where d2∗x means that the integration is performed w.r.t. all but any one variable among

x(1), . . . , x(n).

The proof is the same of Lemma A.3.1.

3.1.4 Remark: superrinormalizability. The key feature, here, is the scaling (ZN )
−1/2

of

hard fermion in the decomposition ψ̂ → ψ+(ZN )
−1/2

ξ: this factor is the same for all the scales

h > N , so that there is no generation of anomalous dimension in the hard fermion regime.

3.2 Renormalization Group Analysis for Double Fermions

3.2.1 Momenta slicing. At this point it is convenient to choose the image in (0, 1) of the

cutoff function so that the constant function I ≡ 1 on the periodic lattice D1 is equal to the

sum of two χ̂N functions, the former centred in k1 = 0, and the latter centred in k1 = π/a:

χ̂N (t) + χ̂N

(
t− π

a

)
≡ 1 (3.2.1)

(and such that χ̂0 is a Gevrey function: see A1.2). After the integration of the hard fermions, it

was left the measure dP̂ (≤N)(ψ), with propagator given by (3.1.5) for h = N : it is possible now

to decompose the fields ψ into the sum ψ → ψ+ (ZN )
−1/2

ξ, where the double fermion field, ξ,

has propagator

g
(D)
α,β(x)

def
=

∫

D

d2k

(2π)2
e−ik·x

χ̂N (k0)χ̂N (k1 − (π/a))

µ2
N (k1) + k20 + e2(k1)

(
ik0 + e(k1) −µN (k1)
−µN (k1) ik0 − e(k1)

)

α,β

; (3.2.2)

therefore, because of (3.2.1) and setting χN (k)
def
= χ̂N (k0)χ̂N (k1), ψ is left with propagator

g
(≤N,D)
α,β (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

χN (k)

µ2
N (k1) + k20 + e2(k1)

(
ik0 + e(k1) −µN (k1)
−µN (k1) ik0 − e(k1)

)

α,β

. (3.2.3)
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3.2.2 Dimensional bounds. Because of the definition of µN (k1), the propagator gDµ,ν(x) is

massive, and hence, without decomposition of χ̂N (k0)χ̂N (k1 − (π/a)) into scales, it enjoys the

bound, for c and C two positive constants,

∣∣∣g(D)
α,β(x)

∣∣∣ ≤ CγNe−c
√
γNκ|x| . (3.2.4)

Indeed in the support of χ̂N (k0)χ̂N (k1 − (π/a)), it holds π/4a ≤ |k1| ≤ π/4, while |k0| can
be very small: since the mass µN is supposed non-negative, the denominator is not lower than

µ2
N (k1) ≥ c2(k1) ≥

(
κγN (2−

√
2)/2π

)2
. And the bound follows by dimensionality argument. In

this way the effects of the second pole are confined on the scale of the cutoff, N : since it will be

proved that the Schwinger functions do not depend on contribution on such scales, the addition

of c(k1) to the mass has had the effect to suppress the effects of the double fermions.

Integrating out the double field now requires a localization, which will be explained in the

next section.

3.3 Renormalization Group Analysis for Soft Fermions

3.3.1 Momenta slicing. The last, more involved regime to be studied is the set of momentum

scales below N . Let χN (k) be decomposed over the scales

χN (t0, t1) = χh(t0, t1) +
N∑

k=h+1

fk(t0, t1) , (3.3.1)

where the function fk(t0, t1) is defined to be χk(t0, t1) − χk−1(t0, t1) and has squared support{
(t0, t1) : κγ

k−1 ≤ max{|t0|, |t1|} ≤ κγk+1
}
.

3.3.2 Multiscale integration. As for the hard fermions, the functional integration of the soft

fermions is performed scale by scale. By induction, for any integer h : h ≤ N , it holds:

eW(,ϕ) = eEh
∫
dP̃ (≤h)(ψ) eW

(h)(ϕ,,
√
Zhψ) , (3.3.2)

where the effective potential on scale h is

W(h)
(
ϕ, ,

√
Zhψ

)
def
= − λhV

(√
Zhψ

)
+ γhνhN

(√
Zhψ

)
+ δhD

(√
Zhψ

)

+
∑

σ=±
ζ
(2,σ)
h Jσ

(
,
√
Zhψ

)
+ F (ϕ, ) +W(h)

irr

(
ϕ, ,

√
Zhψ

)
;

(3.3.3)

the measure dP̃ (≤h), the couplings λh, νh, δh, ζ
(2,σ)
h and the irrelevant potential W(h)

irr are in-

ductively specified by the procedure to construct W(h−1).
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The field ψ is decomposed into the sum of two fields, ψ → ψ+(Zh)
−1/2

ξ, both with Gaussian

distribution. The propagator of the soft fermion field, ξ is, for h 6= N :

g
(h)
α,β(x) =

∫

D

d2k

(2π)2
e−ik·x

f̃ (h)(k)

µ̃2
h(k) + k20 + e2(k1)

(
ik0 + e(k1) −µ̃h(k)
−µ̃h(k) ik0 − e(k1)

)

α,β

, (3.3.4)

with

f̃ (h)(k)
def
= fh(k)C̃

(1)
h (k) , c̃h(k)

def
=
ZN
Zh

c(k1)C̃
(1)
h (k) ,

µ̃h(k)
def
= µhC̃

(2)
h (k) + c̃h(k1) ,

and the quantities Zh, µh, C̃
(1)
h (k) and C̃

(1)
h (k) will be constructed in the following localization.

For h = N , to the above expression for the propagator it has to be added the propagator

deriving from the the double fermions, g
(D)
α,β(k).

Since in presence of χh−1(k), by simply support compatibility, C̃
(1)
h (k) ≡ C̃

(2)
h (k) ≡ 1, by

(3.3.1), ψ is left with propagator:

g
(≤h−1)
α,β (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

χh−1(k)

µ2
h−1(k1) + k20 + e2(k1)

(
ik0 + e(k1) −µh−1(k1)
−µh−1(k1) ik0 − e(k1)

)

α,β

, (3.3.5)

with

µh(k1)
def
= µh +

ZN
Zh

c(k1) ,

without any residue of C̃
(1)
h (k) or C̃

(2)
h (k).

The soft fermions can be integrated out, scale by scale; this time this operation does not give

directly W(h−1), but rather W̃(h−1). Calling dP (≤h−1)(ψ) and dP (h)(ξ) the measure (1.1.4),

with ZN replaced by Zh and propagators respectively given by (3.3.5) and (3.3.4)
∫

dP̃ (≤h)(ψ) eW
(h)(ϕ,,

√
Zhψ) =

∫
dP (≤h−1)(ψ)

∫
dP (h)(ξ) eW

(h)(ϕ,,
√
Zhψ+ξ)

def
=

∫
dP (≤h−1)(ψ) eW̃

(h−1)(ϕ,,
√
Zhψ)+∆Eh−1 ,

(3.3.6)

where ∆Eh−1 is the part of the integration constant in the fields. Again, by the well known

formulas of the truncated expectations:

W̃(h−1)
(
ϕ, ,

√
Zhψ

)

=

n+nϕ+n 6=0∑

nψ,nϕ,n≥1

∑

ω,σ

∫

Λ

d2xd2yd2z

(
n∏

i=1

√
Zhψ

σi
x(i),ωi

)

nϕ∏

i=1

ϕ
σ′
i

y(i),ω′
i√

Zh






n∏

j=1

z(i),ω′′
i


 W̃

(h−1)

nψ ;nϕ;n,ω,σ
(x, y, z) .

(3.3.7)

For the light fermions a further step is necessary to extract parts of W̃(h−1) that can be absorbed

either into the free measure dP (≤h−1), or in the couplings; this is the Localization. In the end

of this operation they are left a potential W(h−1) and a measure dP̃ (≤h−1), which fulfil (3.3.3).
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3.3.3 Dimensional bounds. It is convenient to decompose the propagator g
(h)
ω,σ into the one of

the Euclidean Model, g
(E,h)
ω,σ , plus the rest, g

(R,h)
ω,σ , plus the eventual contribution of the double

fermion, g
(D)
ω,σ; in their turn, let g

(E1,h)
ω,σ , g

(R1,h)
ω,σ and g

(D1)
ω,σ be respectively the part of g

(E,h)
ω,σ , g

(R,h)
ω,σ

and g
(D)
ω,σ which is constant or linear in the mass. Finally:

g(h)ω,σ(x)
def
= g(E1,h)

ω,σ (x) + g(R1,h)
ω,σ (x) + δh,Ng

(D1)
ω,σ (x) + r(1,h)ω,σ (x) + r(2,h)ω,σ (x) , (3.3.8)

with the following definitions

g(E1,h)
ω,ω (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

f̃ (h)(k)

Dω(k)
, g

(E1,h)
ω,−ω (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

−µ̃h(k)
k20 + k21

f̃ (h)(k) ,

g(R1,h)
ω (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

[
ik0 + ωe(k1)

c̃2h(k) + k20 + e2(k1)
− −D−ω(k)

k20 + k21

]
f̃ (h)(k) ,

g
(R1,h)
ω,−ω (x)

def
=

∫

D

d2k

(2π)2
e−ik·x

[ −µ̃h(k)
c̃2h(k) + k20 + e2(k1)

− −µ̃h(k)
k20 + k21

]
f̃ (h)(k) ,

r(1,h)ω,ω (x)
def
=

∫

D

d2k

(2π)2
e−ik·x

[ −D−ω(k)

µ̃2
h(k) + k20 + k21

− −D−ω(k)

k20 + k21

]
f̃ (h)(k) ,

r
(1,h)
ω,−ω(x)

def
=

∫

D

d2k

(2π)2
e−ik·x

[ −µ̃h(k)
µ̃2
h + k20 + k21

− −µ̃h(k)
k20 + k21

]
f̃ (h)(k) ;

then g
(D1)
ω,σ is given by the sum of g

(E1,N)
ω,σ and g

(R1,N)
ω,σ , with the cutoff f̂N (k) replaced by

χ̂N (k0)χ̂N (k1 − (π/a)); and r
(2,h)
ω,σ (x) is defined in consequence of (3.3.8).

For ε small enough, (so that, by the inductive hypothesis (3.3.14) 1− c0ε ≥ 3/4), there exists

two positive constants, c and C s.t.:

∣∣∣g(E1,h)
ω,ω (x)

∣∣∣ ≤ Cγh

ec
√
γhκ|x|

,
∣∣∣g(R1,h)
ω,ω (x)

∣∣∣ ≤ γ−(3/4)(N−h) Cγh

ec
√
γhκ|x|

,

∣∣∣g(E1,h)
ω,−ω (x)

∣∣∣ ≤
∣∣∣∣
µh
γhκ

∣∣∣∣
Cγh

ec
√
γhκ|x|

,
∣∣∣g(R1,h)
ω,−ω (x)

∣∣∣ ≤
∣∣∣∣
µh
γhκ

∣∣∣∣ γ−(3/4)(N−h) Cγh

ec
√
γhκ|x|

,

∣∣∣g(D1)
ω,ω (x)

∣∣∣ ≤ CγN

ec
√
γNκ|x|

,
∣∣∣g(D1)
ω,−ω(x)

∣∣∣ ≤
∣∣∣∣
µN
γNκ

∣∣∣∣
CγN

ec
√
γNκ|x|

,

∣∣∣r(1,h)ω,σ (x)
∣∣∣ ≤

∣∣∣∣
µh
γhκ

∣∣∣∣
2

Cγh

ec
√
γhκ|x|

,
∣∣∣r(2,h)ω,σ (x)

∣∣∣ ≤
∣∣∣∣
µh
γhκ

∣∣∣∣
3

γ−(3/4)(N−h) Cγh

ec
√
γhκ|x|

.

(3.3.9)

It is remarkable the propagators g
(R1,h)
ω and r

(2,h)
ω,σ have a gain factor γ−(3/4)(N−h) more than the

standard bounds. Clearly, the above bounds are useful whenever µh ≤ κγh: when this condition

is not satisfied, then the mass in the propagator is so large that it is possible to integrate the

remaining scales all at once, as it was done for the double fermion propagator (see later the

definition of the scale h∗).

3.3.4 Localization. The contribution to W̃(h−1) of certain kinds of Feynman graphs is ex-

tracted from the rest by localization: it extracts the 0-th or the 1-th order Taylor expansion in
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the momenta and the 0-th or the 1-th order expansion in the mass parameters {µk}k. Since the
space of the momenta, D, does not contain (0, 0), and is not continuous, the Taylor expansion

should be done taking discrete derivatives in the four nearest neighbour lattice site surrounding

0. This subtlety cannot be very important, since the continuous limit (for the lattice D only),

L → ∞, was not taken since the beginning, not to be involved with an infinite Grassmannian

algebra. (The analogous argument is not valid also for the lattice Λ, since it is essential to make

the limit N → +∞ after the renormalization has taken place.) Therefore, for shake of simplicity,

the following developments, are as if the lattice D were continuous rather than discrete, leaving

the correct technicality to [BM01].

Well then, it is convenient to introduce the directional derivatives

∂kω
def
=

1

2

[
i
∂

∂k0
+ ω

∂

∂k1

]
,

which are orthogonal is the sense that the two relations are true:
(
∂ωDσ

)
(k) = δω,σ and∑

ω=±Dω(k)∂ω ≡ k0∂k0 + k1∂k1 .

1. Let Ŵ
(h−1)
2,α,β (k) be considered. If α = β, Ŵ

(h−1)
2,α,α (0) =0 by (A4.3); if β = −α, independently

on α by (A4.4), it is possible to define

Ŵ
(h−1)
2,α,−α(0) = sh−1 + γh−1∆nh−1 +∆s

(µ)
h−1 ,

where, ∆s
(µ)
h−1 is the sum of the graphs in the expansion of Ŵ

(h−1)
2,α,−α(0) which are at least

quadratic in the masses {µk}k; while sh−1 is the sum of all the graphs linear in the masses,

and therefore made with only antidiagonal propagator g
(E1,k)
ω,−ω , g

(R1,k)
ω,−ω or g

(D1)
ω,−ω; finally,

the sum of the graphs which are independent on the masses is in γh−1∆nh−1. Then, let(
∂σŴ

(h−1)
2,α,β

)
(k) be considered. By (A4.3), for β = −α,

(
∂σŴ

(h−1)
2,α,−α

)
(0) = 0; while, for

α = β, it is possible to define, independently on α by (A4.4),

(
∂σŴ

(h−1)
2,α,α

)
(0)

{
def
= d

(+)
h−1 +∆d

(1,+)
h−1 for σ = α

def
= d

(−)
h−1 +∆d

(1,−)
h−1 for σ = −α ,

where ∆d
(1,σ)
h−1 is the sum of the graphs which are at least linear in the masses; while

d
(σ)
h−1 is the sum of the masses independent graphs. Defining zh−1

def
= d

(+)
h−1 + d

(−)
h−1, and

∆dh−1
def
= − 2d

(−)
h−1 and, accordingly,

∆th−1(k)
def
=

(
zh−1

(
− ik0 + e(k1)

)
sh−1

sh−1 zh−1

(
− ik0 − e(k1)

)
)
,

the localization is:

L


∑

α,β

∫

Dh−1

d2k

(2π)2
ψ̂+
k,αψ̂

−
k,βŴ

(h−1)
2,α,β (k)


 = γh−1∆nh−1

∑

ω

∫

Dh−1

d2k

(2π)2
ψ̂+
k,ωψ̂

−
k,−ω

+∆dh−1

∑

ω

∫

Dh−1

d2k

(2π)2
ψ̂+
k,ωψ̂

−
k,ωωe(k) +

∑

α,β

∫

Dh−1

d2k

(2π)2
ψ̂+
k,αψ̂

−
k,β

(
∆th−1

)
α,β

(k) .
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Setting Rdef
= 1−L:

R


∑

α,β

∫

Dh−1

d2k

(2π)2
ψ̂+
k,αψ̂

−
k,βŴ

(h−1)
2,α,β (k)




= ∆s
(µ)
h−1

∑

ω

∫

Dh−1

d2k

(2π)2
ψ̂+
k,ωψ̂

−
k,−ω +

∑

σ,ω

∆d
(µ,σ)
h−1

∫

Dh−1

d2k

(2π)2
ψ̂+
k,ωψ̂

−
k,ωDσω(k)

+ zh−1

∑

α,σ

∫

Dh−1

d2k

(2π)2
ψ̂+
k,αψ̂

−
k,α

[
Dσ(k)−

(
− ik0 + σe(k1)

)]

+
∑

α,β,ω,σ

∫

Dh−1

d2k

(2π)2
ψ̂+
k,αψ̂

−
k,βDω(k)Dσ(k)

∫ 1

0

dτ (1− τ)
(
∂ω∂σŴ

(h−1)
2,α,β

)
(τk) .

The local part ∆th−1 is absorbed in the free measure. Calling:

C̃
(1)
h−1(k)

def
=

1 + zh−1 +∆zh−1

1 + χh−1(k)zh−1 + χh−1(k)∆zh−1
,

C̃
(2)
h−1(k)

def
=

1 + zh−1 +∆zh−1

1 + χh−1(k)zh−1 + χh−1(k)∆zh−1

1 + χh(k) (sh−1/µh−1)

1 + (sh−1/µh−1)
,

and, since sh−1 is linear in the masses, mh−1
def
= sh−1/µh−1, the effective field strength

and the effective mass on scale h− 1 are:

Zh−1
def
= Zh(1 + zh−1) , µh−1

def
= µh

Zh
Zh−1

(1 +mh−1) . (3.3.10)

Then, in the same way, the local parts ∆nh−1 and ∆dh−1 are absorbed in the effective

counterterms on scale h− 1, νh−1 and δh−1:

δh−1
def
=

(
Zh
Zh−1

)
(δh +∆dh−1) , νh−1

def
=

(
Zh
Zh−1

)
γ(νh +∆nh−1) . (3.3.11)

A remarkable feature is that Zh−1, νh−1 and δh−1 are independent from the mass flow,

{µk}k. Finally, in changing free measure on scale h − 1 from dP (≤h−1) to dP̃ (≤h−1), it

has to be taken into account the change of the normalization:

∆Ẽh−1
def
= − ln





(
Zh−1

Zh

)2 ∫

Dh−1

d2k

(2π)2

[
k20 + e2(k1) + µ̃2

h−1(k1)

k20 + e2(k1) + µ̃2
h(k)

](
1

C̃
(1)
h−1(k)

)2


 .

so that the effective vacuum energy on scale h− 1 is

Eh−1
def
= Eh +∆Eh−1 +∆Ẽh−1 .

2. Let Ŵ
(h−1)
4,ω,−ω(k, p, q) be considered; and let

Ŵ
(h−1)
4,ω,−ω(0, 0, 0)

def
=∆lh−1 +∆l

(1)
h−1 ,
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where ∆l
(1)
h−1 is the sum of all the graphs in the expansion of Ŵ

(h−1)
4,ω,−ω(0, 0, 0) which are

at least linear in the masses. Then

L
[∑

ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
ψ+
k,ωψ

−
k+p−q,ωψ

+
p,−ωψ

−
q,−ωŴ

(h−1)
4,ω,−ω(k, p, q)

]

= ∆lh−1

∑

ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
ψ+
k,ωψ

−
k+p−q,ωψ

+
p,−ωψ

−
q,−ω ,

R
[∑

ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
ψ+
k,ωψ

−
k+p−q,ωψ

+
p,−ωψ

−
q,−ωŴ

(h−1)
4,ω,−ω(k, p, q)

]

= ∆l
(1)
h−1

∑

ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
ψ+
k,ωψ

−
k+p−q,ωψ

+
p,−ωψ

−
q,−ω

+
∑

ω,σ

∑

p′=k,p,q

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
ψ+
k,ωψ

−
k+p−q,ωψ

+
p,−ωψ

−
q,−ωDσ(p

′)

·
∫ 1

0

dτ
(
∂p

′
σ Ŵ

(h−1)
4,ω,−ω

)
(τk, τp, τq) .

The local part ∆lh−1 is absorbed in the effective coupling on scale h− 1:

λh−1
def
=

(
Zh
Zh−1

)2

(λh +∆lh−1) , (3.3.12)

and also λh−1 is independent from the flow {µk}k.

3. Let Ŵ
(h−1)
1;2,µ;ν(0, 0) be considered; since by (A4.5), it does not depend on σ, it is possible

to define

Ŵ
(h−1)
1;2,σ;ω(0; 0)

def
=

{
z
(2)
h−1 +∆z

(2,+)
h−1 +∆d

(2,+)
h−1 for σ = ω

∆z
(2,−)
h−1 +∆d

(2,−)
h−1 for σ = −ω ;

where ∆d
(2,σ)
h−1 is the sum of the graphs at least linear in the masses; then z

(2)
h−1 and

∆z
(2,+)
h−1 are mass independent: the former is the sum of all the graphs made only with

(diagonal) propagators {g(E1,k)
ω,ω }k, and interaction V (namely all the mass-independent

graphs obtained in the case of the Euclidean model for such a kernel); while ∆z
(2,σ)
h−1 is

the sum of the graphs made with least one propagator {g(R,k)ω,σ }k or an interaction N or
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D. Then

L
[∑

σ,ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
p−k,σψ

+
k,ωψ

−
p,ωŴ

(h−1)
1;2,σ;ω(k, p)

]

=
(
z(2) +∆z

(2,+)
h−1

)∑

σ

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
p−k,σψ

+
k,σψ

−
p,σ

+∆z
(2,−)
h−1

∑

σ

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
p−k,µψ

+
k,−σψ

−
p,−σ ,

R
[∑

σ,ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
p−k,σψ

+
k,ωψ

−
p,ωŴ

(h−1)
1;2,σ;ω(k, p)

]

=
∑

σ,ω

∆z
(2,ω)
h−1

∑

ω

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
p−k,ωψ

+
k,ωσψ

−
p,ωσ

+
∑

µ,ν,σ

∑

q=k,p

∫

Dh−1

d2k

(2π)2
d2p

(2π)2
p−k,µψ

+
k,νψ

−
p,νDσ(q)

∫ 1

0

dτ
(
∂qσŴ

(h−1)
1;2,µ;ν

)
(τk, τp) .

The local parts are absorbed into the effective density strength on scale h− 1, ζ
(2,σ)
h−1 :

(
ζ
(2,+)
h−1

ζ
(2,−)
h−1

)
def
=

(
Zh
Zh−1

)(
1 + z

(2)
h−1 +∆z

(2,+)
h−1 ∆z

(2,−)
h−1

∆z
(2,−)
h−1 1 + z

(2)
h−1 +∆z

(2,+)
h−1

)(
ζ
(2,+)
h

ζ
(2,−)
h

)
.

(3.3.13)

Multiscale integration goes on over all the scales k s.t. µk ≤ κγk, the first scale for which this

is not true being k = h∗. It is simply to verify that , for h = h∗ + 1 the propagator (3.3.5) has

the same dimensional bound of (3.3.4)

∣∣∣g(≤h∗)
ω,σ (x)

∣∣∣ ≤ Cγh
∗
e−c

√
γh∗−1κ|x| .

Finally, it holds the following theorem.

Theorem 3.1. Let it be supposed there exists ε > 0 and the constants c0 > 0 such that at any

RG step h : h∗ ≤ h ≤ N , the effective parameters satisfy:

γ−c0ε
2 ≤ Zh

Zh+1
≤ γc0ε

2

, γ−2c0ε ≤ µh
µh+1

≤ γ2c0ε , γ−2c0ε ≤ ζ
(2,σ)
h

ζ
(2,σ)
h+1

≤ γ2c0ε , (3.3.14)

|νh|, |δh|, |λh| ≤ 2ε . (3.3.15)

Then, for suitable positive constants C, c:

1. If nϕ + n 6= 0,

∫

Λ

d2x
∣∣∣W (h)

nψ ;nϕ;n,ω,σ
(x, y, z)

∣∣∣ ≤ C
γh
(
2−(1/2)nψ−(3/2)nϕ−n

)

e
c

2(nϕ+n)

√
γhκd(y,z)

;



38 Chapter 3.

2. if nϕ + n = 0, ∫

Λ

d2∗x
∣∣∣W (h)

nψ ;0;0,ω,σ
(x)
∣∣∣ ≤ Cγh

(
2−(1/2)nψ

)
;

The proof is follows by simple dimensional analysis, and is consequence of the Appendices A3

and A5. Since, by the first item, µh/γ
h is strictly decreasing in h, for any choice of the mass

0 ≤ µ ≤ γ−1κ, the scale h∗ is negative; and:

logγ(µ/κ)

1− 2c0ε
− 1 ≤ h∗ ≤ logγ(µ/κ)

1 + 2c0ε
;

hence, in the massless case, h∗ = −∞.

3.4 Flows of the Running Coupling Constants

A remarkable feature of the Localization is that among the flows of the effective parameters,

only the one for the mass is constructed with massive propagator; the others are constructed

with propagators {g(E1,k)
ω,ω }k, {g(R1,k)

ω,ω }k or {g(D1,k)
ω,ω }k, and therefore are independent on the mass

flow. Since the scale h∗ was introduced only to avoid bad bound on the massive propagators,

all the flow, except {µk}k, can be extended from the range of scales h∗ ≤ k ≤ N , to the range

k ≤ N .

Other features of the flows of the effective parameters are depicted in the following Theorem.

Theorem 3.2. Fixed any ϑ : 0 < ϑ < 1/16, there exists ε > 0 and two positive constants c and

c2, such that in correspondence of any parameters µ and λ satisfying 0 ≤ µ ≤ κγ−1 and |λ| ≤ ε,

there exist the parameters λN , µN , ZN , Z
(2,+)
N , Z

(2,−)
N and δN , νN , such that the following

properties hold.

1. The flow of λN is such that

lim
h→−∞

λh = λ ; |λh−1 − λh| ≤ cε2γ−(ϑ/2)(N−h) . (3.4.1)

2. The flows of ZN and µN are such that µ0 = µ and Z0 = 1; furthermore there exist ηλ
and ηλ, independent from the regularization used (Euclidean or Hamiltonian) from the

cutoff N , and from the mass µ, such that

Zh = γ−hηλ+∆Gh , µh = µγ−hηλ+∆Gh , (3.4.2)

with the rests, ∆Gh and ∆Gh, summable in h: |∆Gh| ,
∣∣∆Gh

∣∣ ≤ c2ε
2γ−(ϑ/2)

(
N−h

)
.

3. The flows of Z
(2,+)
N and Z

(2,−)
N are such that Z

(2,+)
0 = Z

(2,−)
0 = 1; furthermore there exist

η
(2)
λ independent from the regularization, as well as from the mass µ and the cutoff N ,

such that

Z
(2,+)
h = γ−hη

(2)

λ
+∆G

(2,+)

h , Z
(2,−)
h = γ−hη

(2)

λ
+∆G

(2,−)

h , (3.4.3)
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with the rests {∆G(2,σ)
h }σ=± summable in h:

∣∣∣∆G(2,σ)
h

∣∣∣ ≤ c2ε
2γ−(ϑ/2)(N−h).

4. The flows of δN and νN are such that |δh|, |νh| ≤ 2εγ−ϑ(N−h).

The proof is given in Appendix A5. It is based on the vanishing of the Beta function of

massless Thirring model.

3.5 Equivalence of the Euclidean and Hamiltonian Regularization

Proof of Theorem 2.1. It is a corollary of the Theorem 3.2. It can be obtained in the same

way as the proof of Lemma A.3.4. Anyway, using theshort memory property (see A3.5), and

the compact support of the propagators, a slightly easier proof is available for the Fourier

transform of the Schwinger functions with at least one field insertion. Indeed, the (m;n + 1)-

Schwinger functions calculated at fixed momenta p1, . . . , pm, q1, . . . , qn, no matter if they are

obtained from the Hamiltonian or the Euclidean regularization, asymptotically in the limit of

removed cutoff are equal to the sum of the following Feynman graphs: all the graphs found in

the expansion of the Schwinger functions, excluding those ones having an interaction on scale

m ≥ N , or an interaction D or N , or a propagator {g(R,k)}k, and replacing the parameters

λk, Zk, Z
(2,σ)
k and µk, respectively with λ, γkηλ , γkη

(2)

λ and µγkηλ . Indeed, these graphs do

not depend on the regularization; then, the difference between the sum of such graphs and

the corresponding Schwinger function is bounded by the modulus of the sum of the graphs

with one external fermionic propagator on the scale of the momentum q1, called h1 – fixed q1,

by compact support function, h1 can be chosen between two adjoining momenta scales – an

effective parameter or propagator on scale m, and falling in one of the following cases.

i. It is m ≥ N . Then, by the short memory property, the sum of such graphs is bounded,

up to a constant, by γ−ϑ(N−h1).

ii. It is m < N and the parameter is δm or νm. By the property of the flows of δN and νN ,

and by the short memory property, the sum of such graphs is bounded, up to a constant,

by γ−ϑ|m−h1|γ−(ϑ/2)(N−m) ≤ γ−(ϑ/2)(N−h1)γ−(ϑ/2)|m−h1|.
iii. There is a propagator g

(R,m)
ω on scale m < N . By the bound of such a propagator and the

short memory property, the sum of such graphs is bounded by γ−ϑ|m−h1|γ−(3/4)(N−m) ≤
γ−(ϑ/2)(N−h1)γ−(ϑ/2)|m−h1|, for ϑ < 3/4.

iv. It ism < N and effective parameter λm−λ, or Zm−γmηλ , or µm−γmηλ , or Z(2,σ)
m −γmη(2)λ .

By the property of the flows, and by the short memory property, the sum of such graphs

is bounded, up to a constant, by γ−ϑ|m−h1|γ−(ϑ/2)(N−m) ≤ γ−(ϑ/2)(N−h1) γ−(ϑ/2)|m−h1|.

Furthermore the scale h∗, in the limit of removed cutoff, only depends on λ, µ. Therefore, it is

possible to perform the sum overm and to get for the difference of the Schwinger function derived

in the two different settings a bound γ−(ϑ/2)(N−h1), for 0 < ϑ < 1/16, up to a constant. Anyway,

in order to have, for different regularizations, identical values of λ and µ (and consequently also

of ηλ, ηλ and η
(2)
λ ), the initial parameters will be generally different.





Chapter 4:

Phase and Chiral Symmetries

4.1 Ward-Takahashi Identities

The classical Lagrangian is invariant under the global transformations of the fields:

ψσx,ω → eiσαωψσx,ω ; (4.1.1)

as the phase, {αω}ω=± does depend on the component of the fermion fields, ω, this transfor-

mation is a combination of the phase and chiral transformations in the Dirac notation.

This symmetry can be implemented in the generating functional of the Euclidean Thirring

model; and in particular, in order to obtaining the identity ηλ = η
(2)
λ and the vanishing of the

Beta function it will be useful to consider the generating functional with infrared cutoff on scale

h. It has to be performed a real exponential transformation and to allow a dependence of the

parameter {αω}ω=± on the space points: a new real field, {αx,ω}x∈Λ
ω=± arises – this prescription

looks like, but has not to be confused with, the implementation of a gauge symmetry.

4.1.1 WTi for the Schwinger functions. An essential condition to get the consequences of

the WTi in the functional integration framework is to transform the field in every site of Λ. This

seems to be forbidden by the choice of a compact support cutoff function, ad the consequent

restriction to the momenta in DN . Therefore, let χ
δ
N (k) be the cutoff function obtained adding

to χN (k) an exponential decaying tail δ∆χN (k), alway strictly positive.



42 Chapter 4.

Hence, let the following transformation of the integration variables in Fourier space be con-

sidered

ψ̂σk,ω −→ ψ̂σk,ω − σ

∫

D

d2p

(2π)2
α̂p,ωψ̂

σ
k−σp,ω . (4.1.2)

Calling χδh,N (k)
def
= χδN (k)−χδh(k), the (4.1.2) implies the following transformation of the kernel

of the free measure

∫

D

d2k

(2π)2
ψ̂+
k,ω

Dω(k)

χδh,N (k)
ψ̂−
k,ω −→

∫

D

d2k

(2π)2
ψ̂+
k,ω

Dω(k)

χδh,N (k)
ψ̂−
k,ω

+

∫

D

d2p

(2π)2
d2k

(2π)2
α̂p,ωψ̂

+
k,ωψ̂

−
k+p,ω

[
Dω(k)

χδh,N(k)
− Dω(k + p)

χδh,N (k + p)

]
,

and

Dω(k)

χδh,N (k)
− Dω(k + p)

χδh,N (k + p)

def
= −Dω(p)− Cδω(k, k + p)

= −Dω(p)−
[
Dω(k)

(
1−

(
χδh,N

)−1
(k)
)
−Dω(k + p)

(
1−

(
χδh,N

)−1
(k + p)

)]
.

It is suitable to introduce the interactions with the external source α̂ω:

A0(α,ψ)
def
=
∑

ω=±

∫

D

d2q

(2π)2
d2p

(2π)2
Cδω(q, p)α̂p−q,ωψ̂

+
q,ωψ̂

−
p,ω ,

Aσ(α,ψ)
def
=
∑

ω=±

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,σωψ̂

−
p,σω , for σ = ± ,

� � �
Fig 3: Graphical representation of A0, A− and A+

so that, the transformation of W(h) reads

eW
(h)(,ϕ) = lim

δ→0

∫
dP [h,N ](ψ) exp

{
−lNV(ψ) + Z

(2)
N J (, ψ) + F(ϕ,ψ)

}

· exp {ZNA+ (α,ψ) + ZNA0 (α,ψ)}

· exp
{∑

ω=±

∫
d2p

(2π)2
d2k

(2π)2
α̂p,ω

[
ϕ̂+
k,ωψ̂

−
k+p,ω − ψ̂+

k,ωϕ̂
−
k+p,ω

]}
.

(4.1.3)
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Being that W(h) is independent of α, summing and subtracting in the argument of the expo-

nential ZN
∑
µ=± ν

(µ)
N Aµ (α,ψ), and then taking a derivative in α̂p,µ for α̂ = 0, it yields:

(
1− ν

(+)
N

ζ
(2)
N

)
Dµ(p)

∂W(h)

∂̂p,µ
(, ϕ)− ν

(−)
N

ζ
(2)
N

D−µ(p)
∂W(h)

∂̂p,−µ
(, ϕ)

=

∫

D

d2k

(2π)2

[
∂W(h)

∂ϕ̂−
k,µ

ϕ̂−
k+p,µ − ϕ̂+

k,µ

∂W(h)

∂ϕ̂+
k+p,µ

]
− ∂W(h)

A
∂α̂p,µ

(0, , ϕ) ,

(4.1.4)

where the last term is given is the derivative of the functional

eW
(h)
A (α,,ϕ)def=

∫
dP [h,N ] (ψ) exp

{
−lNV(ψ) + Z

(2)
N J (, ψ) + F(ϕ,ψ)

}

exp

{
ZN

[
A0 +

∑

µ=±
ν
(µ)
N Aµ

]
(α,ψ)

}
.

(4.1.5)

Its derivatives are remainders which will be proved to vanish in the limit of removed cutoff.

Anyway, this holds for {ν(σ)N }σ=± having non-vanishing limit: w.r.t. the formal WTi, they

represent an anomaly. Adhering to the Johnson’s notations, let the following definitions be

considered:

aN
def
=

1

1−
(
ν
(−)
N + ν

(+)
N

) , aN
def
=

1

1 +
(
ν
(−)
N − ν

(+)
N

) ;

now, the WTi due to the phase symmetry (to be compared with formula (16) of [J61]) is

obtained summing (4.1.4) over µ:

∑

µ

Dµ(p)
1

ζ
(2)
N

∂W(h)

∂̂p,µ
(, ϕ) = aN

∑

µ

∫

D

d2k

(2π)2

[
∂W(h)

∂ϕ̂k,µ
ϕ̂−
k+p,µ − ϕ̂+

k,µ

∂W(h)

∂ϕ̂k+p,µ

]

− aN
∑

µ

∂W(h)
A

∂α̂p,µ
(0, , ϕ) ;

whereas the one due to the chiral symmetry (to be compared with formula (17) of [J61]) is

obtained multiplying both members of (4.1.4) times µ and summing over µ:

∑

µ

µDµ(p)
1

ζ
(2)
N

∂W(h)

∂̂p,µ
(, ϕ) = aN

∑

µ

µ

∫

D

d2k

(2π)2

[
∂W(h)

∂ϕ̂−
k,µ

ϕ̂−
k+p,µ − ϕ̂+

k,µ

∂W(h)

∂ϕ̂+
k+p,µ

]

− aN
∑

µ

µ
∂W(h)

A
∂α̂p,µ

(0, , ϕ) .

Finally, being that (1 + σµ)/2 = δσ,µ, summing the two above equations, the final expression

for the WTi reads:

Dσ(p)
1

ζ
(2)
N

∂W(h)

∂̂p,σ
(, ϕ) =

∑

µ

aN + aNσµ

2

∫

D

d2k

(2π)2

[
∂W(h)

∂ϕ̂−
k,µ

ϕ̂−
k+p,µ − ϕ̂+

k,µ

∂W(h)

∂ϕ̂+
k+p,µ

]

−
∑

µ

aN + aNσµ

2

∂W(h)
A

∂α̂p,µ
(0, , ϕ) .

(4.1.6)
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By taking suitable derivatives w.r.t. the field ϕ̂ for  = ϕ = 0, (4.1.6) generates all the WTi

involving one density insertion: for instance, by taking derivatives w.r.t. ϕ̂+
k,ω and ϕ̂−

k+p,ω, (4.1.6)

gives (1.1.8) and (1.1.11), for

∆Ĥ(1;2)
σ,ω (p; k)

def
=

∂W(h)
A

∂α̂p,µ∂ϕ̂
+
k,ω∂ϕ̂

−
k+p,ω

(0, 0, 0) .

4.1.2 Flows of ν
(+)
N and ν

(−)
N . The remainder of the above WTi are the Schwinger functions

generated from the functional W(h)
A with one – and only one – derivation in the field α̂, and

various number of derivation in the fields ϕ’s. Therefore it is necessary to study the renormal-

ization of the contraction of the vertices {Aa}a=0,±, up to linear order in α̂, which lead to the

flows of ν
(+)
N and ν

(−)
N .

By induction, having integrated the scale from the N -th below to the j-th, it is possible to

prove that, up to the renormalization of the coupling constants already present in functional

W(h), the functional W(h)
A reads:

eW
(h)
A (α,,ϕ)def=

∫
dP [h,j] (ψ) exp

{
W(j)

(
ϕ, ,

√
Zjψ

)
+W(j)

A,irr

(
α,ϕ, ,

√
Zjψ

)}

exp

{[(ZN
Zj

)
A0 +

∑

µ=±
ν
(µ)
j Aµ

] (
α,
√
Zjψ

)}
,

where W(j) and W(j)
A,irr are defined as in formula (3.3.7), but with propagators and couplings

obtained for the Euclidean massless Thirring model; besides in the monomials of the fields of

W(j)
A,irr there is also one α-field and either nψ + nϕ ≥ 2 or n ≥ 1.

From this section to the end, since all the developments will be about the Euclidean Massless

Thirring model, let ĝ
(E1,h)
ω,σ be called, with abuse of notation, ĝ

(h)
ω .

Lemma 4.2. Let the kernel U
(i,j)
ε;ω (k, p)

def
= Cδω(k, p)ĝ

(j)
ω (k)ĝ

(i)
ω (p) be considered. It can be decom-

posed into

U (i,j)
ε;ω (k, p)

def
=
∑

σ

Dσ(p− k)S(i,j)
ε;ω,σ(k, p) ,

and S
(i,j)
ω,s , the limit ε→ 0 of S

(i,j)
ε;ω,s, satisfies the bound

|∂sik ∂sjp S(i,j)
ω,σ (k, p)| ≤

{
Cγ−i(1+si)−j(1+sj) if i or j = h,N
0 otherwise .

The proof of the bound is given in appendix A6. It means that formally Cδω can be thought as

a 1-dimensional kernel: since the monomial αψψ has dimension 1, the power counting for the

graphs with insertion of the vertex A0 will be found to be always satisfied.

4.1.3 Improved localization I. As for the effective potential, also the multiscale integration of

WA is companied by a localization and absorption in the effective parameters the graphs which
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are divergent according to the dimensional analysis. At the j − 1-th scale, with the inductive

hypothesis the previous scales were integrated and the local terms were extracted, they holds

the following cases.

1. One field ψ̂ of the interaction A0, contracted with a kernel Ŵ
(j)
2,ω(k), has vanishing local

part since Ŵ
(j)
2,ω(0) = 0 by symmetries; furthermore, for compact support arguments, such

a contraction can only occur at scale j:

L
[∫

D

d2k

(2π)2
d2q

(2π)2
α̂k−q,ωψ̂

+
q,ωψ̂

−
k,ω C

δ
ω(q, k)ĝ

(j)
ω (k)Ŵ

(j)
2,ω(k)

]
= 0 ,

R
[∫

D

d2k

(2π)2
d2q

(2π)2
α̂k−q,ωψ̂

+
q,ωψ̂

−
k,ω C

δ
ω(q, k)ĝ

(j)
ω (k)Ŵ

(j)
2,ω(k)

]

=
∑

µ=±

∫

D

d2k

(2π)2
d2q

(2π)2
α̂k−q,ωψ̂

+
q,ωψ̂

−
k,ω

Dµ(k)

[
Cδω(q, k)ĝ

(j)
ω (k)

∫ 1

0

dτ
(
∂σŴ

(j)
2,ω

)
(τk)

]
;

the derivative clearly improves the bound on the kernel Ŵ
(j)
2,ω of one negative dimension,

at a loss of the bound on the kernel that will be obtained contracting the field ψ̂−
k,ω in a

scale lower than j − 1.

This automatic dimensional gain is due to the fact that this situation cannot occur in more

than one node v in the tree expansion, and in its first preceding v′; hence an alternative

way to cure it is to multiply by γ−2γ2: the former factor makes negative the dimension

of such a graph, the latter worsen the bound of a constant.

2. As in the previous point, one ψ̂-field of the vertex
∑
σ ν

(σ)
j Aσ, contracted with a kernel

Ŵ
(j)
2,σω(k) has vanishing local part; since ψ̂+

k,ω has to be contracted on scale j:

L
[∫

D

d2k

(2π)2
d2q

(2π)2
α̂k−q,ωψ̂

+
q,σω ψ̂

−
k,σω Dω(k − q)ĝ(j)σω(k)Ŵ

(j)
2,σω(k)

]
= 0 ,

R
[∫

D

d2k

(2π)2
d2q

(2π)2
α̂k−q,ωψ̂

+
q,σωψ̂

−
k,σω Dω(k − q)ĝ(j)σω(k)Ŵ

(j)
2,σω(k)

]

=
∑

µ=±

∫

D

d2k

(2π)2
d2q

(2π)2
α̂k−q,ωψ̂

+
q,σω ψ̂

−
k,σω Dµ(k)

·
[
Dω(k − q)ĝ(j)σω(k)

∫ 1

0

dτ
(
∂σŴ

(j)
2,σω

)
(τk)

]
.

� � �
Fig 4: Graphical representation of items 1. and 2.
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3. Both ψ̂-field of the interactionA0, contracted with a graph Ŵ
(j)
4,ω,µ, is identically vanishing,

except if at least one of the two propagators is on scale N , or h. It is convenient to define:

M̂ (r,s),(4)
ω,σω,µ (p, q)

def
=

∫

D

d2k

(2π)2
S(r,s)
ω,σω(q + k, p+ k)Ŵ

(j)
4,ω,µ(q, p, k) .

By symmetry under rotation and under space reflection (A4.2 and A4.3), it holds:

M̂ (r,s),(4)
ω,σω,µ (0, 0)

{
= 0 for µ = −σω
def
=∆n

(0,σ)
j for µ = σω .

Hence the localization of such graphs gives:

L
[∑

σ

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,µψ̂

−
p,µM̂

(r,s),(4)
ω,σω,µ (p, q)

]

=
∑

σ

∆n
(0,σ)
j

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,σω ψ̂

−
p,σω ,

R
[∑

σ

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,µψ̂

−
p,µM̂

(r,s),(4)
ω,σω,µ (p, q)

]

=
∑

k=p,q

∑

σ,ν=±

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,µψ̂

−
p,µDν(k)

·
∫ 1

0

dτ
(
∂kν M̂

(r,s),(4)
ω,σω,µ

)
(τp, τq) .

4. For the contraction of both ψ̂-field of the vertex
∑

σ ν
(σ)
i Aσ with a graph Ŵ

(j)
4,ωσ,µ it is

convenient to define:

M̂ (i,r,s),(4)
σω,µ (p, q)

def
= ν

(σ)
i

∫

D

d2k

(2π)2
ĝ(r)σω(q + k)ĝ(s)σω(p+ k)Ŵ

(j)
4,σω,µ(q, p, k) .

As in the previous item, by symmetries it holds:

M̂ (i,r,s),(4)
σω,µ (0, 0)

{
= 0 for µ = −σω
def
= ∆n

(σ)
j for µ = σω .

hence, the localization of such graphs gives:

L
[∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,µψ̂

−
p,µM̂

(i,r,s),(4)
σω,µ (p, q)

]

= ∆n
(σ)
j

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,σωψ̂

−
p,σω ,

R
[∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,µψ̂

−
p,µM̂

(i,r,s),(4)
ω,σω,µ (p, q)

]

=
∑

k=p,q

∑

ν=±

∫

D

d2q

(2π)2
d2p

(2π)2
Dσω(p− q)α̂p−q,ωψ̂

+
q,µψ̂

−
p,µDν(k)

·
∫ 1

0

dτ
(
∂kν M̂

(i,r,s),(4)
σω,µ

)
(τp, τq),
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� � �
Fig 13: Graphical representation of items 3. and 4.

5. The self-contraction of the interactionsA0 would give divergences because of Cεω. Anyway,

such a self-contraction, either for A0, and for {Aσ}σ, cannot occur in the expansion of

the Schwinger function: in such expansions they cannot occur subgraphs with no external

fields of type ψ or ϕ.

The local parts are absorbed into the effective parameter on scale h− 1:

ν
(σ)
j−1

def
=

Zj
Zj−1

(
ν
(σ)
j +∆n

(σ)
j +∆n

(0,σ)
j

)
.

Theorem 4.1. Fixed any ϑ : 0 < ϑ < 1/16, there exists ε > 0, a positive constant c4 and two

counterterms ν(+) and ν(−), analytically dependent on λ, such that, for any fixed cutoff scale,

N , and choosing ν
(σ)
N = ν(σ), it holds

∣∣∣ν(σ)j

∣∣∣ ≤ c4εγ
−(ϑ/2)(N−j) . (4.1.7)

The proof is in appendix A7. It is a simple application of the fixed point theorem; once two

counterterms {ν(σ)N }σ=± with the required property are found, it is easy to verify they are sum

of scaling invariant graphs, and therefore they are independent on the scale of the cutoff, N .

Accordingly, it is natural to define:

a
def
=

1

1−
(
ν(−) + ν(+)

) , a
def
=

1

1 +
(
ν(−) − ν(+)

) .

Now it is possible to prove that, even removing the cutoff, the WTi are not equal to the formal

one because of the non-vanishing anomaly a− a.

Theorem 4.2. In the same hypothesis of theorem 4.1, all the anomalous WTi for Schwinger

functions, with only one density insertion and calculated at fixed momenta w.r.t. the cutoff

scales, h and N , in the limit −h,N → ∞ are generated by suitable derivatives of the following

identity:

Dσ(p)
∂W
∂̂p,σ

(, ϕ) = ζ
(2)
b

∑

µ

a+ aσµ

2

∫

D

d2k

(2π)2

[
∂W
∂ϕ̂−

k,µ

ϕ̂−
k+p,µ − ϕ̂+

k,µ

∂W
∂ϕ̂+

k+p,µ

]
. (4.1.8)
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In particular, (a+ aσµ)/2 = δσ,µ + δσ,−µλ/4π +O(λ2).

The essence of the anomaly is that (a + aσµ)/2 6= δσ,µ, which implies, in spite of the formal

result, the non-vanishing of Ŝ
(1;2)
−ω;ω. A celebrated consequence of the WTi, not wasted by the

anomaly, is the following.

Theorem 4.3. The anomalous exponent of the field strength and the anomalous exponent of

the density strength coincide: η
(2)
λ = ηλ.

This is what in formal language is stated as Z(2) = Z.

Proof of Theorem 4.2. With reference to (4.1.6), it is only required to prove that the deriva-

tives of W(h)
A , made w.r.t. one field α and various fermionic fields at fixed momenta, fulfil the

same bound of the derivatives of W(h), with α replaced by , with a more factor which is van-

ishing in the limit of removed cutoff. Hence, let any integer n ∈ N, any set of labels ε1, . . . , εn
and ω1, . . . , ωn, and any momenta p, k1, . . . , kn, chosen independently from h,N , be considered.

It holds the bound

1

|p|

∣∣∣∣∣
∂1+nW(h)

A
∂α̂p,µ∂ϕ̂

ε1
k1,ω1

. . . ∂ϕ̂εnkn,ωn

∣∣∣∣∣
≡ϕ≡0

≤ Cn;p,h1,...,hn∏n
j=1

√
Zhj

(
γ−(ϑ/2)(N−h1) + γ−(ϑ/2)(h1−h)

)
, (4.1.9)

where {hj}nj=1 are the scales of {kj}j : κγhj−1 ≤ |kj | ≤ κγhj and Cn;p,h1,...,hn/
∏n
j=1

√
Zhj is

the bound for the same derivatives of the functional W(h). Such a bound can be obtained by

the following argument. The graphs in the expansion of the l.h.s. member of (4.1.9) has to have

an external propagator on scale h1 – besides external propagators on scales h2, . . . , hn; and they

fall in one of the following cases.

1. An interaction A0 is contracted: this can happen only on scale m = N,h. By the short

memory property (see A3.5), the sum of all such graphs is bounded, up to a constant,

with γ−(ϑ/2)(N−h1) or γ−(ϑ/2)(h1−h).

2. An interaction Aσ is first contracted on scale m, and hence brings a coupling ν
(σ)
m . By

the short memory property and the bound in theorem 4.1, the sum of such graphs is

bounded, up to a constant, with γ−ϑ|m−h1| γ−(ϑ/2)(N−m) ≤ γ−(ϑ/2)(N−h1)γ−(ϑ/2)|m−h1|.

Hence it is possible to take the sum over m, obtaining (4.1.9).

Proof of Theorem 4.3. It simply follows from lowest order expansion of (1.1.8), and from the

proof of Theorem 3.2 – in particular from the features of the anomalous exponents depicted in

A5.3. Indeed, since

|ηλ − Γh| ≤ cεγ−ϑ(N−h) ,
∣∣∣η(2)λ − Γ

(2)
h

∣∣∣ ≤ cεγ−ϑ(N−h) ,
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then

logγ

(
ζ
(2)
h

ζ
(2)
N

)
= (N − h)

(
ηλ − η

(2)
λ

)
+O(λ2) , (4.1.10)

where O(λ2) is a term of the order of λ2 and bounded for every h. Calling k any momentum

κγh ≤ |k| ≤ γh+1, by the lowest order graph expansion in Appendix A3, it holds,

Ŝ(1;2)
ω,ω (2k; k) =

ζ
(2)
h

Zh

1 + O(λ2)

D2
ω(k)

, Ŝ(2)
ω (k) =

1

Zh

1 + O(λ2)

Dω(k)
,

∆Ĥ(1;2)
ω,ω (2k; k) =

1

Zh

O(λ2)

Dω(k)
,

aN + aN
2

= 1 + O(λ2) .

Replacing the above identities into (1.1.8) and (1.1.11), the bound logγ(ζ
(2)
h /ζ

(2)
N ) = O(λ2) holds

for any h ≤ N : to be consistent with (4.1.10), it cannot be but ηλ − η
(2)
λ = 0.

4.1.4 Remark: anomaly and anomalous exponents. Formally, by the phase and chiral

symmetry, it is possible to prove the identity of the field and density strength, ZN = Z
(2)
N , so

that the renormalization ζ
(2)
N ≡ 1. But in a rigorous setting, WTi are seen to break this identity.

Anyway, since the anomaly only changes a factor in front of the current, the identity between

the exponents with which ZN and Z
(2)
N diverge remains true; therefore ζ

(2)
N , although no longer

constant, is anyway bounded.

4.2 Closed Equations

4.2.1 Schwinger-Dyson equation. The fermionic fields satisfy an evolution equation which

can be turned into a set of equations for the Schwinger functions: see Appendix A8. Such

equations relate the n-points Schwinger functions to the m-points Schwinger function with

m ≤ n and one density insertion. Using the WTi to write the latter in terms of m-point

Schwinger functions, the CE’s arise.

4.2.2 Closed equations. In Appendix A8, the following equation, generator of all the SDe,

is proved for any k : γhκ ≤ |k| ≤ γNκ – where the cutoff χh,N (k) ≡ 1:

Dω(k)
∂eW

(h)

∂ϕ̂+
k,ω

=
ϕ̂−
k,ωe

W(h)

ZN
− λN

ζ
(2)
N

∫

D

d2p

(2π)2
∂2eW

(h)

∂̂p,−ω∂ϕ̂
+
k−p,ω

, (4.2.1)

for  ≡ 0 – since here only the CE for Schwinger function without density insertion are studied.

Since it is possible to prove the convergence of the last integral for small p; and since |p| ≤ 2γNκ,

it is convenient make in the argument of the integral the following replacement:

1 ≡ χN+2(p) ≡ χh+2,N+2(p) + χh+2(p)
def
= χh,N (p) + χh(p) .
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where χh+2,N+2(p)
def
= χN+2(p)−χh+2(p). Then, from the generator of the WTi, (4.1.6), it holds

the following integral identity:

1

ζ
(2)
N

∫

D

d2p

(2π)2
χh,N(p)

∂2eW
(h)

∂̂p,−ω∂ϕ̂
+
k−p,ω

=
∑

µ

aN + aNσµ

2

∫

D

d2p

(2π)2
d2q

(2π)2
χh,N (p)

D−ω(p)

[
∂2eW

(h)

∂ϕ̂+
k−p,ω∂ϕ̂

−
q,µ
ϕ̂−
q+p,µ − ϕ̂+

q,µ

∂2eW
(h)

∂ϕ̂+
q+p,µ∂ϕ̂

+
p−k,ω

]

−
∑

µ

aN + aNσµ

2

∫

D

d2p

(2π)2
χh,N (p)

D−ω(p)

∂2eW
(h)
A

∂α̂p,µ∂ϕ̂
+
k−p,ω

(0, , ϕ) .

(4.2.2)

Taking a derivative in ϕ̂−
k,ω, and putting ϕ = 0, gives (1.1.13) – apart from the function χh,N (p)

that had been skipped for reproducing the Johnson’s argument. By the general analysis of the

previous section, the term proportional to the derivatives of the functional WA would have been

vanishing in the limit of removed cutoff if the external momenta had been fixed. But in this case

the external momenta are integrated over, and there is no reason that this term is vanishing –

differently from what implicitly stated in [J61].

4.2.3 Flows of z̃
(µ)
N and λ̃

(µ)
N . To overcome the problem of not having, neither in the limit, a

real closed equation, it is possible to write such a rest as addends that are already present in

the SDe. To this purpose, let the functionals W(h)
T ,µ, for µ = ± be defined as

eW
(h)
T ,µ(β,,ϕ)

def
=

∫
dP [h,N ](ψ) exp

{
− λNV

(√
ZNψ

)
+ ζ

(2)
N J

(
,
√
ZNψ

)
+ F(ϕ,ψ)

}

exp

{[
T (µ)
0 +

∑

σ=±
ν
(σ)
N T (µ)

σ − α(µω)λNB(3) − σ(µω)B(1)

](√
ZNψ,

√
ZNβ

)}
,

with {αµ}µ=± and {σµ}µ=± four real parameters later fixed; and

T (µ)
0 (ψ, β)

def
=
∑

ω=±

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
χh,N (p)

Cµ(q, p+ q)

D−ω(p)
β̂k,ωψ̂

−
k−p,ωψ̂

+
q,µψ̂

−
p+q,µ ,

T (µ)
σ (ψ, β)

def
=
∑

ω=±

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
χh,N (p)

Dσµ(p)

D−ω(p)
β̂k,ωψ̂

−
k−p,ωψ̂

+
q,σµψ̂

−
p+q,σµ ;

� � �
Fig 6: Graphical representation of the interactions T (µ)

0 , T
(µ)
− and T

(µ)
+
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B(3)(ψ, β)
def
=
∑

ω=±

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂p+k−q,ωψ̂

−
p,ωψ̂

+
q,−ωψ̂

−
k,−ω ,

B(1)(β,ψ)
def
=
∑

ω=±

∫
d2k

(2π)2
β̂k,ωDω(k)ψ̂

−
k,ω .

Because of the identity

∫
d2p

(2π)2
χh,N (p)

D−ω(p)

∂2eWA

∂α̂p,µ∂ϕ̂
+
k−p,ω

=
1

ZN

∂eW
(h)

T ,µ

∂β̂k,ω
+ α(µω) λN

ζ
(2)
N

∫
d2p

(2π)2
∂2eW

∂̂p,−ω∂ϕ̂
+
k−p,ω

+ σ(µω)Dω(k)
∂eW

∂ϕ̂+
k,ω

,

(4.2.3)

it is possible to turn equation (4.2.2) into:

(
1−

∑

µ

aN − aNµ

2
α(µ)λN

)
1

ζ
(2)
N

∫

D

d2p

(2π)2
χh,N (p)

∂eW
(h)

∂̂p,−ω∂ϕ̂
+
k−p,ω

=

(∑

µ

aN − aNµ

2
σ(µ)

)
Dω(k)

∂eW
(h)

∂ϕ̂+
k,ω

+
∑

µ

aN − aNωµ

2

∫

D

d2p

(2π)2
d2q

(2π)2
χh,N (p)

D−ω(p)

[
∂eW

(h)

∂ϕ̂+
k−p,ω∂ϕ̂

−
q,µ
ϕ̂−
q+p,µ − ϕ̂+

q,µ

∂eW
(h)

∂ϕ̂+
q+p,µ∂ϕ̂

+
p−k,ω

]

− 1

ZN

∑

µ

aN − aNωµ

2

∂eW
(h)

T ,µ

∂β̂k,ω

−
(∑

µ

aN − aNµ

2
α(µ)λN

)
1

ζ
(2)
N

∫

D

d2p

(2π)2
χh(p)

∂eW
(h)

∂̂p,−ω∂ϕ̂
+
k−p,ω

.

(4.2.4)

The term proportional to the derivatives of W(h)
T,µ does vanish for a suitable choice of the coun-

terterms; as well as the second term in the last line vanishes, at least in some important cases –

theCE for S(2) and for S(4). As consequence, it is suitable to replace (4.2.4) in (4.2.1), obtaining:

Dω(k)
∂eW

(h)

∂ϕ̂+
k,ω

=
BN
ZN

ϕ̂−
k,ωe

W(h)

− λNAN
∑

µ

aN − aNωµ

2

∫

D

d2p

(2π)2
d2q

(2π)2
χh,N(p)

D−ω(p)

[
∂eW

(h)

∂ϕ̂+
k−p,ω∂ϕ̂

−
q,µ
ϕ̂−
q+p,µ

−ϕ̂+
q,µ

∂eW
(h)

∂ϕ̂+
q+p,µ∂ϕ̂

+
p−k,ω

]

− λNAN
ZN

∑

µ

aN − aNωµ

2

∂eW
(h)

T ,µ

∂β̂k,ω
− λNAN

ζ
(2)
N

∫

D

d2p

(2π)2
χh(p)

∂eW
(h)

∂̂p,−ω∂ϕ̂
+
k−p,ω

,

(4.2.5)
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where it was set

AN
def
=

1

1− (λN/2)
∑
µ(aN − aNµ)

(
α(µ) − σ(µ)

) ,

BN
def
=

1− (λN/2)
∑
µ(aN − aNµ)α

(µ)

1− (1/2)
∑
µ(aN − aNµ)

(
α(µ) − σ(µ)

) .
(4.2.6)

Deriving (4.2.5) w.r.t. ϕ̂−
k,ω, for ϕ ≡ 0; since by the tree expansion, see A3,

∣∣∣∣
∫

D

d2p

(2π)2
χh(p)Ŝ

(1;2)
−ω;ω(p; k)

∣∣∣∣ ≤ Cγ(1−ϑ)(h1−h) , (4.2.7)

for any ϑ : 0 < ϑ < 1 and for h1 the scale of the momentum k; and supposing the derivatives of

WT ,µ are vanishing, in the limit of removed cutoff, it holds the asymptotic formula (1.1.16).

More in general, in order to prove the derivatives ofWT ,µ are vanishing in the limit of removed

cutoff, it is necessary a multiscale expansion.

4.2.4 Improved localization II. After the multiscale integration, down to the j-th scale, it

holds:

eW
(h)

T ,µ(β,,ϕ)
def
=

∫
dP [h,j](ψ) exp

{
W(j)

(
ϕ, ,

√
Zjψ

)
+W(j)

T ,irr

(
β,ϕ, ,

√
Zjψ

)}

· exp
{[(ZN

Zj

)2

T (µ)
0 +

ZN
Zj

∑

σ=±
ν
(σ)
j T (µ)

σ

] (√
Zjψ,

√
Zjβ

)}

· exp





[
ζ̃
(3,µω)
j B(3) +

N∑

k=j

Zk
Zj
ζ̃
(1,µω)
k B(1)

](√
Zjψ,

√
Zjβ

)


 ,

(4.2.8)

where ζ̃
(3,µ)
N

def
= −α(µ)λN , while, for j ≤ N−1, ζ̃

(3,µ)
j

def
=
(
λ̃
(µ)
j − α(µ)λj

)
; and, ζ̃

(1,µ)
N

def
= σ(µ), while,

for j ≤ N − 1, ζ̃
(1,µ)
j

def
=
(
z̃
(µ)
j − α(µ)zj

)
. Indeed, these are the following possible contractions of

the interactions in W(h)
T ,µ.

1. The contraction of the interactions T (µ)
0 , T (µ)

σ , B(3) and B(1) through only one external

field ψ̂−
k,ω with a kernel Ŵ

(j)
2,ω are apparently marginal; instead the localization is propor-

tional to Ŵ
(j)
2,ω(0), vanishing by symmetries; for instance, in the case of the occurring of

the interaction T (µ)
0 , it holds:

L
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
χh,N (p− q)β̂k+p−qψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µ

Cω(q, p)

D−ω(p− q)
ĝ(s)ω (k)Ŵ

(j)
2,ω(k)

]
= 0 ,

R
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
χh,N (p− q)β̂k+p−qψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µ

Cω(q, p)

D−ω(p− q)
ĝ(s)ω (k)Ŵ

(j)
2,ω(k)

]

=
∑

σ

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
χh,N(p− q)β̂k+p−qψ̂

−
k,ωDσ(k)ψ̂

+
q,µψ̂

−
p,µ

Cω(q, p)

D−ω(p− q)
ĝ(s)ω (k)

·
∫ 1

0

dτ
(
∂σŴ

(j)
2,ω

)
(τk) .
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The above case is given by one-particle reducible graphs, therefore an alternative argu-

ment is the one similar to item 1. and 2. of the previous section.

� � �
Fig 7: Graphical representation of items 1.

2. The fields ψ̂−
k,ω and ψ̂−

p,µ of the vertex T (µ)
0 with the kernel Ŵ

(j)
4,µ,ω , is non-irrelevant; by

the explicit expression of Cδω, it holds:

∫
d2k′

(2π)2
χh,N (p+ k′ − q)ĝ(r)ω (k − k′)

Cδµ(q, p+ k′)

D−ω(p+ k′ − q)
ĝ(s)µ (p+ k′)Ŵ (j)

4,µ,ω(k
′, p, k)

=

∫
d2k′

(2π)2
χh,N (p+ k′ − q)


ĝ(r)ω (k − k′)

Dµ(q)
(
1− (χδh,N )

−1(q)
)

D−ω(p+ k′ − q)

fs(p+ k′)
Dµ(p+ k′)

+ ĝ(r)ω (k − k′)

(
δr,N + δs,h

)
us(p+ k′)

D−ω(p− q + k′)

]
Ŵ

(j)
4,µ,ω(k

′, p, k) ;

only the second term has a non-irrelevant part; indeed, for j ≥ h+2, because of fs(p+k
′),

with s ≥ j, and because of
(
1− (χδh,N )

−1(q)
)
, which, for q → 0 compels q to be contracted

on scale h,

|Dµ(p+ k′ − q)| ≥ |Dµ(p+ k′)| − |Dµ(q)| ≥ γj−1 − γh+1

≥ (1− γ−1)γj−1 ;

this means that the bound of such a kernel, w.r.t. the standard bound, has a more factor

γ−(j−h) which gives a gain of one unity in the dimension of the kernel, making it strictly

negative down to scale h, where the third field of the interaction, ψ̂q,µ, is compelled to

be contracted by
(
1− (χδh,N)

−1(q)
)
. On the contrary, the other term

M̂ (r,s),(4)
µ,ω (p, k, q)

def
=

∫
d2k′

(2π)2
χh,N (p− q + k′)ĝ(r)ω (k − k′)

(
δr,N + δs,h

)
us(p+ k′)

D−ω(p− q + k′)
Ŵ (4)
µ,ω(k

′, p, k) ,

can occur only if r in on scale N , or s is on scale h; and requires the extraction of the

coefficient:

M̂ (r,s),(4)
µ,ω (0, 0, 0)

{
= 0 if ωµ = 1
def
= ∆l̃

(−,0)
j if ωµ = −1 ,
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so that the above contraction is equal to

L
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µ

·
∫

d2k′

(2π)2
χh,N (p+ k′ − q)ĝ(r)ω (k − k′)

Cδµ(q, p+ k′)

D−ω(p+ k′ − q)
ĝ(s)µ (p+ k′)Ŵ (j)

4,µ,ω(k
′, p, k)

]

=∆l̃
(−,0)
j

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,−ωψ̂

−
p,−ω ,

R
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µ

·
∫

d2k′

(2π)2
χh,N (p+ k′ − q)ĝ(r)ω (k − k′)

Cδµ(q, p+ k′)

D−ω(p+ k′ − q)
ĝ(s)µ (p+ k′)Ŵ (j)

4,µ,ω(k
′, p, k)

]

=

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µ

·
∫

d2k′

(2π)2


χh,N (p+ k′ − q)ĝ(r)ω (k − k′)

Dµ(q)
(
1− (χδh,N)

−1(q)
)

D−ω(p+ k′ − q)

fs(p+ k′)

Dµ(p+ k′)




+
∑

p′=k,p

∑

ν

β̂k+p−q,ωψ̂
−
k,ωψ̂

+
q,µψ̂

−
p,µDν(p

′)
∫ 1

0

dτ
(
∂p

′
ν M̂

(r,s),(4)
µ,ω

)
(τp, τk) .

With similar developments it is extracted ∆λ̃
(+,0)
j , the local part of the graphs with the

fields ψ̂−
k,ω and ψ̂+

q,µ of the interaction T (µ)
0 contracted with the kernel Ŵ

(j)
4,µ,ω .

3. The contraction of the fields ψ̂−
k,ω and ψ̂−

p,σµ of the interaction T (µ)
σ with the kernel Ŵ

(j)
4,µ,ω

is non-irrelevant. Setting:

N̂ (r,s),(4)
µ,σ,ω (p, k, q)

def
=

∫
d2k′

(2π)2
ĝ(r)ω (k − k′)χh,N(p+ k′ − q)

Dσµ(p+ k′ − q)

D−ω(p+ k′ − q)
ĝ(s)σµ(p+ k′)Ŵ (j)

4,µ,ω(k
′, p, k)

,

such a contraction requires the extraction of the coefficient:

N̂ (r,s),(4)
µ,σ,ω (0, 0, 0)

{
= 0 if ωµ = 0
def
=∆l̃

(−,σ)
j if ωµ = −1 ,

so that the above contraction is equal to

L
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µN̂

(r,s),(4)
µ,σ,ω (p, k, q)

]

= ∆l̃
(−,σ)
j

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,−ωψ̂

−
p,−ω ,

R
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂k+p−q,ωψ̂

−
k,ωψ̂

+
q,µψ̂

−
p,µN̂

(r,s),(4)
µ,σ,ω (p, k, q)

]

=

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2

∑

p′=k,p,q

∑

ν

β̂k+p−q,ωψ̂
−
k,ωψ̂

+
q,µψ̂

−
p,µDν(p

′)

·
∫ 1

0

dτ
(
∂p

′
ν N̂

(r,s),(4)
µ,σ,ω

)
(τp, τk, τq) .
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With similar developments it is extracted ∆λ̃
(+,σ)
j , the local part of the graphs with the

fields ψ̂−
k,ω and ψ̂+

q,µ of the interaction T (µ)
σ contracted with the kernel Ŵ

(j)
4,µ,ω .

� � �
Fig 8: Graphical representation of items 2. and 3.

4. The contraction of all and three ψ-field of T (µ)
0 with the kernel Ŵ

(j)
6,µ,ω,ν is non-vanishing

if at least one between the two propagators gµ, has scale N or h, otherwise the product

Cµ(p, k)ĝµ(k)ĝµ(p+ k) vanish; it generates non-irrelevant operators. Let the contraction

be:

M̂ (r,s,t),(6)
ω,σ,µ,ρ (k, q, p)

def
=

∫
d2k′

(2π)2
d2q′

(2π)2
ĝ(r)ω (k − k′)χh,N (p+ k′ − q)

Dσµ(p+ k′ − q)

D−ω(p+ k′ − q)

· S(s,t)
µ,σµ(q + q′, p+ k′ + q′)Ŵ (6)

µ,ω,ρ(q, p, k, k
′, q′) ,

and let the following coefficient be considered:

∑

σ

M̂ (r,s,t),(6)
ω,σ,µ,ρ (0, 0, 0)

{
= 0 if ρ = ω
def
=∆λ̃

(0,0,µω)
j if ρ = −ω .

Then, the decomposition into marginal operator plus irrelevant one is:

L
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂p+k−q,ωψ̂

−
k,ωψ̂

+
q,ρψ̂

−
p,ρ

∑

σ

M̂ (r,s,t),(6)
ω,σ,µ,ρ (k, q, p)

]

= ∆λ̃
(0,0,µω)
j

∫
d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂p+k−q,ωψ̂

−
k,ωψ̂

+
q,−ωψ̂

−
p,−ω ,

R
[∫

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂p+k−q,ωψ̂

−
k,ωψ̂

+
q,ρψ̂

−
p,ρ

∑

σ

M̂ (r,s,t),(6)
ω,σ,µ,ρ (k, q, p)

]

=
∑

p′=q,p,k

∑

σ,σ′

β̂p+q−k,ωψ̂
−
q,ωψ̂

+
k,νψ̂

−
p,νDσ′(p′)

·
∫

d2k′

(2π)2
d2q′

(2π)2

∫ 1

0

dτ
(
∂p

′

σ′M̂
(r,s,t),(6)
ω,σ,µ,ρ

)
(τk, τq, τp) .

Besides, similar decomposition is done when T (µ)
0 is replaced by T (µ)

σ , with the replace-

ments of S
(s,t)
µ,σµ with 1, and of ∆λ̃

(0,0,µω)
j with ∆λ̃

(0,σ,µω)
j .
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� � �
Fig 9: Graphical representation of item 4

5. The contraction of all and three ψ-fields of T (µ)
0 with the kernel Ŵ

(j)
4,µ,ν is non-vanishing if

at least one between the two above propagators gµ, has scale N or h. Let the contraction

M̂ (r,s,t),(4)
ω,ρ,µ (p)

def
=

∫
d2k

(2π)2
d2q

(2π)2
ĝ(r)ω (k)χh,N(p+ k′ − q)

Dρµ(p− k)

D−ω(p− k)
S(s,t)
µ,ρµ(q, p− k + q)Ŵ

(j)
4,µ,ω(q, p, k) ;

then M̂
(r,s,t),(4)
ω,ρ,µ (0) = 0 by transformation under rotation; while

∑

ρ

(
∂σM̂

(r,s,t),(4)
ω,ρ,µ

)
(0)

{
= 0 if σ = −ω
def
=∆z̃

(0,µω)
j if σ = ω .

Finally:

L
[∑

ρ

∫
d2p

(2π)2
β̂p,ωψ̂

−
p,ρM̂

(r,s,t),(4)
ω,ρ,µ (p)

]
= ∆z̃

(0,µω)
j

∫
d2p

(2π)2
β̂p,ωDω(p)ψ̂

−
p,ω ,

R
[∑

ρ

∫
d2p

(2π)2
β̂p,ωψ̂

−
p,ρM̂

(r,s,t),(4)
ω,µ,ρ (p)

]

=
∑

σ,σ′

β̂p,ωψ̂
−
p,ρDσ(p)Dσ′(p)

∫ 1

0

dτ (1− τ)
(
∂pσ′∂

p
σ′M̂

(r,s,t),(4
ω,ρ,µ

)
(τp) .

Besides, similar decomposition is done when T (µ)
0 is replaced by T (µ)

σ , with the replace-

ments of S
(s,t)
µ,ρµ with 1, and of ∆z̃

(0,µω)
j with ∆z̃

(σ,µω)
j .

� � �Fig 10: Graphical representation of item 5
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6. The self-contraction of the fields ψ̂+
q,µ and ψ̂−

k−p,ω of the interactions T (µ)
0 , is non-vanishing

for ω = µ and q = k − p. The kernel is

∫
d2p

(2π)2
ĝ(s)ω (k − p)χh,N(p)

Cδω(k − p, k)

D−ω(p)

=

∫
d2p

(2π)2

[
χh,N(p)

(δs,N + δs,h)us(k − p)

D−ω(p)Dω(k − p)

− fs(k − p)

Dω(k − p)
χh,N(p)

Dω(k)
(
1− (χδh,N)

−1(k)
)

D−ω(p)


 ;

only the former addend has non-irrelevant part. Indeed, in the latter one, for j ≥ h + 2,

because of fs(k − p), with s ≥ j, and because of
(
1 − (χδh,N)

−1(k)
)
, which compels the

momentum k to stay on scale h,

|D−ω(p)| ≥ |D−ω(k − p)| − |D−ω(k)|
≥ γj−1 − γh+1 ≥

(
1− γ−1

)
γj−1 ;

hence, as in item 2, there is a more factor γ−(j−h) in the bound of such a kernel, which

gives it negative dimension down to scale h, where the field ψ̂−
k,µ is compelled to be

contracted by
(
1− (χδh,N)

−1(k)
)
in the limit δ → 0. Then, let the former addend be

T̂ (s),(0)
ω (k)

def
=

∫
d2p

(2π)2
χh,N (p)

(δs,N + δs,h)us(k − p)

D−ω(p)Dω(k − p)
.

It is T̂
(s),(0)
ω (0) = 0 by transformation under rotation; while

(
∂σT̂

(s),(0)
ω

)
(0)

{
= 0 if σ = −ω
def
=∆z̃

(T,0)
j if σ = ω .

Finally:

L
[∫

d2p

(2π)2
β̂p,ωψ̂

−
p,ωT̂

(s),(0)
ω (p)

]
= ∆z̃

(T,0)
j

∫
d2p

(2π)2
β̂p,ωDω(p)ψ̂

−
p,ω ,

R
[∫

d2p

(2π)2
β̂p,ωψ̂

−
p,ωT̂

(s),(0)
ω (p)

]

=
∑

σ,σ′
β̂p,ωψ̂

−
p,ρDσ(p)Dσ′(p)

∫ 1

0

dτ (1− τ)
(
∂pσ′∂

p
σ′ T̂

(s),(0)
ω

)
(τp) .

7. The self-contraction of the fields ψ̂−
k−p,ω and ψ̂+

q,σµ of the interaction T (µ)
σ is non-irrelevant.

Setting:

T̂ (s)
ω (k)

def
=

∫
d2p

(2π)2
ĝ(s)ω (k − p)χh,N(p)

Dω(p)

D−ω(p)
,
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since T̂
(s),(σ)
ω (0), such a contraction requires the extraction of the coefficient:

(
∂pν T̂

(s)
ω

)
(0)

{
= 0 if ων = −1
def
=∆z̃

(T )
j if ων = 1 ,

so that the above contraction is equal to

L
[∫

d2k

(2π)2
β̂k,ωψ̂

−
k,ωT̂

(s)
ω (k)

]
= ∆z̃

(T )
j

∫
d2k

(2π)2
β̂k,ωψ̂

−
k,ωDω(k) ,

R
[∫

d2k

(2π)2
β̂k,ωψ̂

−
k,ωT̂

(s)
ω (k)

]

=

∫
d2k

(2π)2

∑

ν,ν′
β̂k,ωψ̂

−
k,ωDν(k)Dν′(k)

∫ 1

0

dτ
(
∂kν∂

k
ν′ T̂ (s)

ω

)
(τk) .

� � �Fig 11: Graphical representation of items 6. and 7.

8. The self-contraction of the fields ψ̂+
q,µ and ψ̂−

p+q,µ of the interaction T (µ)
0 , or the fields

ψ̂+
q,σµ and ψ̂−

p+q,σµ of the interactions {T (µ)
σ }σ=±, would give problems; but it arises only

for p = 0 and it is forbidden by the cutoff function χh,N (p).

9. The contraction of one of or both the fields ψ̂+
q,µ and ψ̂−

p,µ was already discussed in the

previous section, and give rise to the flow of {ν(σ)j }σ=±
j=h,... N .

Finally, the same above developments can be done for the contractions of the interactions B(3):

the localization containing the couplings λ̃
(µω)
j and z̃

(µω)
j are ∆λ̃

(µω)
j−1 and ∆z̃

(µω)
j−1 ; while the

localization containing α(µω) are exactly the same of the flows of λN and ZN . Then:

λ̃
(µω)
j−1

def
=

(
Zj
Zj−1

)2
(
λ̃
(µω)
j +∆λ̃

(µω)
j−1 + δωµ,−1

∑

a=±
∆l̃

(a,0)
j−1

+ δωµ,−1

∑

σ,a=±

ZN
Zj

ν
(σ)
j ∆l̃

(a,σ)
j−1 +∆l̃

(0,0,µω)
j−1 +

∑

σ=±

ZN
Zj

ν
(σ)
j ∆l̃

(0,σ,µω)
j−1

)
,

z̃
(µω)
j−1

def
=

(
∆z̃

(µω)
j−1 +∆z̃

(0,µω)
j−1 + δωµ,1∆z̃

(T,0)
j−1 +

∑

σ=±

ZN
Zj

ν
(σ)
j

(
∆z̃

(σ,µω)
j−1 + δωµ,1∆z̃

(T )
j−1

))
.

The remarkable point is that the following theorem holds.

Theorem 4.4. For any fixed ϑ : 0 < ϑ < 1, there exist ε > 0, a constant c and two counterterms

{α(µ)} , analytically dependent on λ, such that, for any fixed cutoff scale, N , and choosing
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α
(µ)
N = α(µ), it holds:

∣∣∣ζ̃(3,µ)j

∣∣∣ ≤ cεγ−(ϑ/2)(N−j)
∣∣∣ζ̃(1,µ)j

∣∣∣ ≤ cε2γ−(ϑ/2)(N−j) . (4.2.9)

The proof is given in appendix A7. It is a simple application of the fixed point theorem in

Banach spaces. Once two {α(µ)
N }µ are found with the required properties, it is simply to verify

that they are actually independent from N .

Theorem 4.5. In the same hypothesis of theorem 4.4 and choosing

σ(µ) = −
∑

k≤N−1

Zk
ZN

ζ̃
(1,µ)
k ;

in the limit of removed cutoff, the following asymptotic identity

Dω(k)
∂eW

∂ϕ̂+
k,ω

=
BN
ZN

ϕ̂−
k,ωe

W

− λNAN
∑

µ

aN − aNωµ

2

∫

D

d2p

(2π)2
d2q

(2π)2
1

D−ω(p)

[
∂eW

∂ϕ̂+
k−p,ω∂ϕ̂

−
q,µ
ϕ̂−
q+p,µ

−ϕ̂+
q,µ

∂eW

∂ϕ̂+
q+p,µ∂ϕ̂

+
p−k,ω

]
,

(4.2.10)

generates the anomalous CE of those Schwinger functions which have no density insertion and

the addend relative to which generated by
∫
D

d2p
(2π)2

χh(p)
∂eW

(h)

∂̂p,−ω∂ϕ̂
+
k−p,ω

is vanishing.

The last requirement is fulfilled, as already stated, for the S(2) Schwinger function, see (4.2.7).

A similar bound is valid also for S(4).

Theorem 4.6. For ε small enough, for ϑ : 0 < ϑ < 1/16, and for any scale h ≤ N , the effective

coupling is almost constant:

λh − λN = O(λ2) . (4.2.11)

where O(λ2) is bounded uniformly in h.

Proof of Theorem 4.5. The choice of σ(µ) makes sense: by (4.2.9) and (3.3.14), for c0ε
2 ≤ ϑ/4

it is finite: ∣∣∣∣∣∣
∑

k≤N−1

Zk
ZN

ζ̃
(1,µ)
k

∣∣∣∣∣∣
≤ cε2

(
1− γ−(ϑ/4)

)−1

.

With reference to (4.2.5), the theorem is proved once it is shown the bound for the derivatives

of W(h)
T ,µ has a vanishing factor more than the bound of the derivatives of W(h). Hence, let any
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integer n ∈ N, any choice of the label ε
def
= (ε1, . . . , εn) and ω

def
= (ω,ω1, . . . , ωn), and any momenta

k
def
= (k, k1, . . . , kn) be considered. The CE equation for the Schwinger function Ŝ

(0;n+1)(ε)
ω (q; k)

is obtained by suitable derivatives of the above functional, plus the limit −h,N → ∞ of the

following rest:

1

ZN

∣∣∣∣∣
∂1+nW(h)

T ,µ

∂β̂k,ω∂ϕ̂
ε1
k1,ω1

. . . ∂ϕ̂εnkn,ωn

∣∣∣∣∣
≡ϕ≡0

≤ Cn;h0,h1...,hn√
Zh0

∏n
j=1

√
Zhj

(
γ−(ϑ/4)(N−h0) + γ(ϑ/4)(h0−h)

)
,

(4.2.12)

where {hj}nj=0 are the scales of the momenta (k, k): κγhj−1 ≤ |kj | ≤ κγhj , with k
def
= k0; and

Cn;h0,h1...,hn/
∏n
j=0

√
Zhj is the bound for the derivatives of W(h). The bound derives from the

following arguments. By the explicit choice of σ(µ), and by (4.2.9), (3.3.14), for c0ε
2 smaller

than ϑ/4, it holds:

∣∣∣∣∣
N∑

k=m

Zk
Zm

ζ̃
(1,µ)
k

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k≤m−1

Zk
Zm

ζ̃
(1,µ)
k

∣∣∣∣∣∣

≤ cε2
∑

k≤m−1

γc0ε
2(m−k)γ−(ϑ/2)(N−k) ≤ c̃ε2γ−(ϑ/2)(N−m) .

(4.2.13)

for c̃ ≥ c
(
1− γ−(ϑ/4)

)−1
. Then, the graphs in the expansion of the r.h.s. member of (4.2.12)

has one external propagator on scale h, and fall in one of the following classes.

1. An interaction T (µ)
0 is contracted: there has to be one propagator on scale m = h,N . The

factor 1/ZN in the r.h.s. member of (4.2.12), times factors coming form the multiscale

integration (see (4.2.8)) gives (ZN/Zm)
2(
√
Zm/ZN ) ≤ (ZN/Zm)(1/

√
Zh0

)γε
2c0|m−h0|.

And ZN/Zm < 1 since ηλ < 0; while γε
2c0|m−h0| is transformed into γ−(ϑ/2)|m−h0| by a

short memory factor.

2. An interaction T (µ)
σ is first contracted on scale m. The factor to be studied is now

(ZN/Zm)(
√
Zm/ZN )

∣∣∣ν(σ)m

∣∣∣ ≤ (1/
√
Zh0

)γε
2c0|h0−m|γ−(ϑ/2)(N−h0); and, as in the previ-

ous item, extracting a short memory factor, γε
2c0|h0−m| is turned into γ−(ϑ/2)|h0−m|.

3. An interaction B(3) first contracted on scale m. In this case the factor to be studied

is (
√
Zm/ZN )

∣∣∣ζ(3,ωµ)m

∣∣∣ ≤ (1/
√
Zh0

)γε
2c0(N−m)γε

2c0|m−h0|γ−(ϑ/2)(N−h0); then γε
2c0|m−h0|

is changed by the short memory factor intoγ−(ϑ/2)|m−h0|; while, for ε small, it holds

γε
2c0(N−m)γ−(ϑ/2)(N−h0) ≤ γε

2c0(N−h0).

4. The contraction of the interaction B(1) can only occur in a scale compatible with the

momentum k (hence two possible contiguous scales): let it be h0. Then there is a factor√
Zh0

/ZN

∣∣∣
∑N

m=h1
(Zm/Zh0

)ζ̃
(1)
m

∣∣∣ ≤ (1/Zh0
)γ−(ϑ/4)(N−h0).

Besides the decay factor, in the first three items there is also γ−(ϑ/2)|m−h0|, controlling the

summation over m. This proves (4.2.12). Hence, keeping k fixed and non-zero, in the limit of

removed cutoff, such derivatives are vanishing.
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Proof of Theorem 4.6. Taking in (4.2.5) the derivatives ∂ϕ−
k+q−s,ω∂ϕ

+
q,−ω∂ϕ

−
s,−ω , for ϕ ≡ 0,

it holds the following CE for S(4)

Ŝ
(4)
ω,−ω(k, q, s)

ĝω(k)

= −λNAN
aN + aN

2

Ŝ
(2)
−ω(s)− Ŝ

(2)
−ω(q)

D−ω(s− q)
Ŝ(2)
ω (k + q − s)

+ λNAN
aN − aN

2

∫

D

d2p

(2π)2
χh,N(p)

D−ω(p)
Ŝ
(4)
ω,−ω(k − p, q, s)

+ λNAN
aN + aN

2

∫

D

d2p

(2π)2
χh,N(p)

D−ω(p)

[
Ŝ
(4)
ω,−ω(k − p, q, s− p)− Ŝ

(4)
ω,−ω(k − p, q + p, s)

]

− λNAN
∑

µ

aN − aNωµ

2

1

ZN

∂4W(µ)
T

∂β̂k,ω∂ϕ̂
−
k+q−s,ω∂ϕ̂

+
q,−ω∂ϕ̂

−
s,−ω

− λNAN

ζ
(2)
N

∫

D

d2p

(2π)2
χh(p)

[
Ŝ
(1;4)
−ω;ω,−ω(p; k − p, q, s) − δ(q − s)Ŝ

(2)
−ω(q)Ŝ

(1;2)
−ω;ω(p; k − p)

]
,

(4.2.14)

where AN was defined in (4.2.6). Now, fixing −q = s = k = k, for any k : κγh ≤ |k| ≤ κγh+1,

by lowest order computation it holds:

Ŝ
(4)
ω,−ω(k,−k, k)

ĝω(k)
=

1

Z2
h

λh +O(λ2)

k
2
D−ω(k)

,

λNAN
aN + aN

2

Ŝ
(2)
−ω(k)

D−ω(k)
Ŝ(2)
ω (k) =

1

Z2
h

−λN +O(λ2)

k
2
D−ω(k)

;

while (see also [BM04] for more details)

∣∣∣∣λNAN
aN − aN

2

∫

D

d2p

(2π)2
χh,N (p)

D−ω(p)
Ŝ
(4)
ω,−ω(k − p,−k, k)

∣∣∣∣ ≤
γ−3h

Z2
h

O(λ2) ,

and identical bound for

∣∣∣∣λNAN
aN − aN

2

∫
d2p

(2π)2
χh,N (p)

D−ω(p)

[
Ŝ
(4)
ω,−ω(k − p,−k, k − p)− Ŝ

(4)
ω,−ω(k − p, p− k, k)

]∣∣∣∣ ,

and ∣∣∣∣∣
λNAN

ζ
(2)
N

∫

D

d2p

(2π)2
χh(p)Ŝ

(1;4)
−ω;ω,−ω(p; k − p,−k, k)

∣∣∣∣∣ .

Finally, by the study of the flow of WT , it also hold

∣∣∣∣∣∣
λNAN

∑

µ

aN − aNωµ

2

1

ZN

∂4W(µ)
T

∂β̂k,ω∂ϕ̂
−
−k,ω∂ϕ̂

+

−k,−ω∂ϕ̂
−
k,−ω

∣∣∣∣∣∣
≤ γ−3h

Z2
h

O(λ2)
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(namely, in this case, since k is on the infrared cutoff scale, the rest is not vanishing; but it

diverges in h→ −∞ with the same exponent, 3−2ηλ, of the other terms in (4.2.14)). Considering

together the above bound with (4.2.14), it holds the theorem.

4.2.5 Vanishing of the Beta function. In the end, it is remarkable how (4.2.11) is read

in terms of the Beta function for the effective couplings. In agreement with (A5.2), the Beta

function for the massless Thirring model, in Euclidean regularization is such that

λh−1 − λh
def
= β

(T)
h (λh) +

N∑

m=h

β
(T,λ)
h,m (λm − λh) (4.2.15)

(see A5.2 for the explanation of the addends). As done for the anomalous exponent, by scaling

invariance of the graphs in the expansion of {β(T)
h }h, it is possible to prove that there exist a

real function B such that

|β(T)
h (λh)−B(λh)| ≤ cε2γ−ϑ(N−h) . (4.2.16)

Well then, as consequence of (4.2.11), B ≡ 0. Otherwise, if the coefficient of the m-th order

expansion of B(λ), B(m), where non-zero, then replacing the expansion λh
def
=
∑
n>0 c

(n)
h λn in

(4.2.16), it would be possible to prove – by an iterative procedure similar to the one in A5.2 –

that for any h, and for any n < m:

∣∣∣∣∣
N∑

m=h

β
(T,λ)(n)
h,m (λm − λh)

∣∣∣∣∣ ≤ Cnγ−(ϑ/2)(N−h) ,
∣∣∣c(n)h−1 − c

(n)
h

∣∣∣ ≤ Cnγ−(ϑ/2)(N−h) ;

while, for n = m,

c
(m)
h−1 = c

(m)
h +B(m) +O(γ−(ϑ/2)(N−h)) .

Therefore {c(m)
h }h≤N would be a diverging sequence, in contradiction with (4.2.11).

4.3 Solution of the closed equation

With simple symmetry considerations and multiscale integration, it possible to prove the

following general expression for the two point Schwinger function:

Ŝ(2)
ω (k) =

1

Dω(k)

( |k|
κ

)ηλ
Fh,N

( |k|
κ

)
, (4.3.1)

where Fh,N is finite, uniformly in h,N , and such that, for a suitable real constant F ,

sup
γ(h/2)κ≤|p|≤γ(N/2)κ

∣∣∣∣Fh,N
( |p|
κ

)
− F

∣∣∣∣ = C
(
γ−(ϑ/4)N + γ(ϑ/4)h

)
. (4.3.2)
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Indeed, once the factor 1/(Dω(k)Zh0
) is extracted (with h0 the scale of k), the expansion of

Ŝ
(2)
h,N ;ω (k) is given by scaling invariant graphs. Calling F the limit of Fh,N , with all the couplings

{λj}j replaced by λ, all the ratios {Zj−1/Zj}j replaced by γηλ and the factor (|k|/κ)ηλ(1/Zh0
)

with 1, the difference between Fh,N and F is the sum of all the graphs with an external propa-

gator on scale h0 and falling in one of the following cases.

1. There is an interaction on scale m > N or m < h. By the short memory property, given

any ϑ : 0 < ϑ < 1/16, the sum of all such graphs is bounded with γ−ϑ(N−h0)+γ−ϑ(h0−h),

up to a constant.

2. There is a coupling [(|k|/κ)ηλ(1/Zh0
)− 1]. By the feature of the flow of the field strength

– namely the analogous for the Euclidean regularization of (3.4.2) – the sum of all such

graphs is bounded with γ−(ϑ/2)(N−h0), up to a constant.

3. There is an interaction λm − λ, or (Zm−1/Zm) − γηλ on scale m : h ≤ m ≤ N . By the

short memory factor an features of the flows – analogous for the Euclidean regularization

of (3.4.1) and (3.4.2) – the sum of such graphs is bounded by γ−ϑ|m−h0| γ−(ϑ/2)(N−m) ≤
γ−(ϑ/2)(N−h0) γ−(ϑ/2)|m−h0|, up to a constant.

Hence, after summing over m, (4.3.2) holds.

Now, replacing (4.3.1) in the CE for the two point Schwinger function, and taking the limit

h→ −∞, it holds:

∣∣∣∣
k

κ

∣∣∣∣
ηλ

FN (k) =
BN
ZN

− λNAN
aN − aN

2

∫

D

d2p

(2π)2

∣∣∣p
κ

∣∣∣
ηλ FN (p)

D−ω(k − p)Dω(p)

+ ∆K̂N,ω(k) ,

where, by (4.2.12),

sup
|k|≤γ(N/2)κ

∣∣∣∆K̂N,ω(k)
∣∣∣ ≤ C

Zh0

γ−(ϑ/8)N .

The equation for k = 0 – then Zh0
= +∞ – gives

BN
ZN

= λNAN
aN − aN

2

∫

D

d2p

(2π)2

∣∣∣ p
κ

∣∣∣
ηλ FN (p)

p2
;

therefore:
∣∣∣∣
k

κ

∣∣∣∣
ηλ

Fh,N(k) = λNAN
aN − aN

2

∫

D

d2p

(2π)2

∣∣∣ p
κ

∣∣∣
ηλ
FN (p)

k2 +D−ω(p)Dω(k)

(k − p)2p2

+∆K̂N ;ω(k) .

Now it is possible to take the limit N → +∞, for k fixed: since the rest is vanishing, by finiteness

of FN uniformly in N and by (4.3.2), the limit can be exchanged with the integral in d2p, it

holds:

|k|ηλ = λbA
a− a

2

∫
d2p

(2π)2
|p|ηλ k

2 +D−ω(p)Dω(k)

(k − p)2p2
.
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The integral can be elementarily computed: the pure imaginary part is zero by symmetries, while

for the real one it holds, for ϑ the angle between the vector p and the vector k, for t
def
= tan(ϑ/2),

and calling, with abuse of notation, k and p the moduli of the vectors k and p themselves,

1

(2π)2

∫ ∞

0

dp pηλ−1

∫ π

−π
dϑ

k2 − pk cos(ϑ)

k2 + p2 − 2pk cos(ϑ)

=
1

(2π)2

∫ ∞

0

dp pηλ−1

∫ ∞

−∞
dt

2k

1 + t2

(
k + p

)
t2 +

(
k − p

)
(
k + p

)2
t2 +

(
k − p

)2

=
1

(2π)2

∫ ∞

0

dp pηλ−1

∫ ∞

−∞
dt

2k

k + p

[
1

1 + t2
− k − p

2k

(
1

1 + t2
− (k + p)2

(k + p)2t2 + (k − p)2

)]

=
2

(2π)2

∫ k

0

dp pηλ−1

∫ ∞

−∞
dt

1

1 + t2
=

1

2πηλ
kηλ .

This gives the following expression for the critical index ηλ:

ηλ = A
λb
2π

a− a

2
,

to be compared with the formula for the half value of ηλ given in [J61] just after (36) – with the

following identification: Johnson’s α is here ηλ/2; Johnson’s λ is λb/2; while a− a is, according

to Johnson, equal to 2 λ/2π
1−(λ/2π)2 .



Appendix 1:

Simple Analytical Properties

A1.1 Partial-fraction expansion. The functions

f−
L (z)

def
=
e−(x0+L)z

1 + e−Lz
for − L < x0 < 0 , f+

L (z)
def
=

e−x0z

1 + e−Lz
for 0 < x0 < L ,

are both meromorphic, since in any circles, CR, of radius R and centre the origin, their only

singularities are a finite number of poles. In particular, setting D0
def
=
{

2π
L
(m+ 1

2
)
}
m∈Z, they are

on the imaginary axis, in {ik0 : k0 ∈ D0}. Therefore, by the Cauchy theorem, for any e ∈ R,

R > |e| and σ = ±,

fσL(e) =

∮

CR

dz

2πi

fσL(z)

z − e
+ σ

1

L

|k0|≤R∑

k0∈D0

e−ix0k0

−ik0 + e
. (A1.1)

Since, for 0 ≤ ϑ ≤ π/2, cosϑ ≥ 1− 2ϑ/π, then it holds the following bound:
∣∣∣∣
∮

CR

dz

2πi

f+
L (z)

z − e

∣∣∣∣ ≤
2R

R − |e|

∫ π

0

dϑ
e−x0R cosϑ

1 + e−LR cosϑ
≤ 2

R − |e|

[
π

2x0
+

π

2(L− x0)

]
,

and similarly for f−
L . Hence the first addend in the r.h.s. member of (A1.1) vanish for R→ ∞,

and than, for any x0 6= 0 : |x0| < L,

f+
L (e)χ(x0 > 0)− f−

L (e)χ(x0 < 0) = lim
R→+∞

1

L

|k0|≤R∑

k0∈D0

e−ix0k0

−ik0 + e
.

Such a series, not absolutely convergent, can be written as sin−1(πx0/L), times an absolutely

convergent series – and border terms vanishing for large R – so that it is clear the possibility of

replacing the sharp constraint |k0| ≤ R with a smooth cutoff function.
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A1.2 Gevrey compact-support functions It is easy to construct a compact support-function

which also fulfil the Gevrey constraint on the derivatives.

Indeed, let the following C∞ function be considered for any number p > 0:

ϑ(t)
def
=





0 for t < 0
e1−(1/tp) for 0 ≤ t ≤ 1
1 for t > 1 .

For t ≤ 0 and t ≥ 1 all the derivatives are identically zero. For t : 0 < t < 1, it is possible to find a

bound for the derivatives using the analyticity of ϑ(t) in the half-planeC+
def
= {z ∈ C : Re(z) > 0}.

For any t : 0 < t < 1, let the disc Dt
def
= {z ∈ C : |z − t| ≤ t sin(π/4p)} be considered. By the

Cauchy theorem:

|ϑ(n)(t)| ≤ n!

2π
(
t sin(π/4p)

)n max
z∈Dt

|ϑ(z)| .

For any z
def
= reiϕ ∈ Dt, since the lines passing through z = 0 and tangent to Dt have angular

parameter ±π/4p, then Re (z−p) ≥ r−p cos(ϕp) ≥ (2t)−p cos(π/4). Hence, since for any x ≥ 0,

and any constant c > 0, it holds xne−cx
p ≤ Cn(n!)(1/p), then for a certain constant C > 1,

|ϑ(n)(t)| ≤ Cn(n!)1+(1/p) ;

namely ϑ(t) is a Gevrey function of order α = 1 + (1/p). Finally, if χ̂0(t)
def
= 1 − ϑ

(
t−1
γ−1

)
, then

f̂j(t)
def
= χ̂0(tγ

−j)− χ̂0(tγ
−j+1) is a compact-support Gevrey function for any integer j.

A1.3 Bounds for the propagators. IfK is the compact support of f0(k), the n-th derivatives

of 1/Dω(k) are bounded in K by CKc
n
Kn!, for suitable K-dependent constants CK and cK .

Therefore, by Leibniz formula it follows that it f(k) is a Gevrey, compact-support function of

class α ≥ 1, also f(k)/Dω(k) is. Therefore, for any n0, n1 ∈ N, by partial derivation and Stirling

formula,

|g(0)ω (x)| ≤ 1

|x0|n0 |x1|n1
sup
k∈K

∣∣∣∣∂
n0
0 ∂n1

1

f0(k)

Dω(k)

∣∣∣∣

≤ C

(∣∣∣∣
c

x0

∣∣∣∣
1/α

n0

e

)αn0
(∣∣∣∣

c

x1

∣∣∣∣
1/α

n1

e

)αn1

.

Therefore, choosing for nj such that (|xj |/c)1/α − 1 ≤ nj ≤ (|xj |/c)1/α, it holds:

|g(0)ω (x)| ≤ Ce−α(|x0|/c)1/αe−α(|x1|/c)1/α .

Finally, with similar argument, it is possible to obtain the same bounds for lattice-spacetime

propagators.
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OS axioms

A2.1 Test functions. For any n ∈ N, setting x
def
= (x(1), . . . , x(n)), let S

(
R2n)

be the space

of the complex functions on R2n, with labels, ω
def
= (ω1, . . . , ωn), ε

def
= (ε1, . . . , εn), s.t., for any

integer m, and any f
(ε)
n,ω(x) ∈ S

(
R2n), the Schwartz norm

||f (ε)
n,ω||mdef= max

r:
∑

j
rj≤m

sup
x(j)∈R4

∣∣∣∣∣

(
1 +

n∑

i=1

|x(i)|m
)
∂r11 · · · ∂rnn f

(ε)
n,ω(x)

∣∣∣∣∣

is finite. Let S6=
(
R2n)

be the space of the functions in S
(
R2n)

which vanish, together with all

their partial derivatives, if x(i) = x(j) for some 1 ≤ i < j ≤ n; and let S<
(
R2n)

be the space of

the functions in S6=
(
R2n) which vanish, together with all their partial derivatives, if the ordering

of the times x
(1)
0 , . . . , x

(n)
0 is different from 0 < x

(1)
0 < x

(2)
0 < . . . < x

(n)
0 .

Let the “space translation”, τy, for y = (0, y1), be defined as

(
τyf
)(ε)
n,ω

(x)
def
= f

(ε)
n,ω(τyx) ,

with τyx
def
= (x(1) + y, . . . , x(n) + y).

Let the “time reflection” be defined as

(Θf)
(ε)
n,ω (x)

def
=
(
f
(ε∗)
n,ω∗

)∗
(ϑ0x) ,

with ϑ0x
def
= (ϑ0x

(1), . . . , ϑ0x
(n)), where ϑ0(x0, x1)

def
= (−x0, x1); f∗(x(1), . . . , x(n)) is the complex

conjugate of f(x(n), . . . , x(1)); and the labels ω∗ and ε∗ are defined respectively to be ωn, . . . , ω1

and −εn, . . . ,−ε1 (see [OS72], formula (6.2)).
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In the end, it has to be noticed the following fact: for W being the generating functional

of the Schwinger functions, then eW is the generating functional of the correlations. Hence,

each Schwinger function – also called “truncated correlation” – can be written as finite linear

combination of correlations, in term of which the OSa are now listed – with the simplification

in the notation that G
(0,n)(ε)
σ;ω (z, x)

def
= G

(n)(ε)
ω (x).

Lemma A.2.1. Given ε small enough, for any λ : |λ| < ε and µ : 0 ≤ µ ≤ κγ−1, the correlations

satisfy the Osterwalder-Schrader axioms:

E1. G
(n)(ε)
ω (x) is a distribution on S<(R(2n)

); indeed, for any integer m, there exist two

constants cm, Cm > 0 s.t.

∣∣∣
∣∣∣G(n)(ε)

ω

∣∣∣
∣∣∣
m

def
= sup

f∈S<(R(2n))

(
G

(n)(ε)
ω , f

)

||f ||m
≤ Cm(n!)

cm .

E2. G
(n)(ε)
ω is invariant under the Euclidean group of translation and rotation of all the

coordinates.

E3. G
(n)(ε)
ω is antisymmetric under the exchange of the x(i), ωi, εi respectively with x(j), ωj , εj ,

for any 1 ≤ i < j ≤ n.

E4. For any finite sequence of “time ordered” test functions,
{
f
(ε)
n,ω(x) ∈ S<(R(2n)

)
}
n≥0,ω,ε

,

the correlations are “reflection invariant”:

G
(n)(ε)
ω

(
(Θf)

(ε)
n,ω

)
= G

(n)(ε)
ω (f

(ε)
n,ω)

and “reflection positive”:

∑

m,ω′,ε′

∑

n,ω,ε

G
(m+n)(ε′,ε)
ω′,ω

(
(Θf)

(ε′)
m,ω′ ⊗ f (ε)

n,ω

)
≥ 0 . (A2.1)

E5. For any f
(ε)
n,ω ∈ S<(R(2n)

) and g
(ε′)
m,ω′ ∈ S<(R(2m)

), decorrelation holds:

lim
|y|→∞

G
(m+n)(ε′,ε)
ω′,ω

(
(Θg)

(ε′)
m,ω′ ⊗ (τyf)

(ε)
n,ω

)

= G
(m)(ε′)
ω′

(
(Θg)

(ε′)
m,ω′

)
G

(n)(ε)
ω

(
f
(ε′)
n,ω

)
.

The last property, called cluster decomposition, in terms of the Schwinger function reads:

lim
|y|→∞

S
(m+n)(ε′,ε)
ω′,ω

(
(Θg)

(ε′)
m,ω′ ⊗ (τyf)

(ε)
n,ω

)
= 0 . (A2.2)

From the OSa, it is possible to derive the theory in Minkowskian spacetime, from the Eu-

clidean one. The main difficulty, here, is to prove the validity of E2 and E4: a regularization

that makes clear the one, usually makes obscure the other.
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A2.2 Reflection Positivity for the Hamiltonian Regularization

The Euclidean fields operator in Heisemberg picture are:

ψσx,ω
def
= e−x0H

(
1

L

∑

k∈D
eσikx1aσk,ω

)
ex0H , x

def
= (x0, x1) ∈ R× T ;

therefore ψσx,ω is not the Hermitian conjugate of ψ−σ
x,ω – as it were in the Minkowskian picture:

it is therefore suitable to define the operator ϑ “time reflection” s.t. ϑx = (−x0, x1), so that

ψσx,ω is the Hermitian of ψ−σ
ϑx,ω .

Let now the space F of the linear functionals of the operator-valued fields: namely the oper-

ators on the Fock space of the form:

F (ψ) =
∑

n≥0

∑

ω,σ

∫
d2x(1) · · · d2x(n) fn,ω,σ

(
x(1), . . . , x(n)

)
ψσ1

x(1),ω1
· · ·ψσn

x(n),ωn

for any choice of the test functions fω,σ ∈ S<
(
(R × T)n

)
. Then, it is simply to verify that Θ

on the space F is the Hermitian conjugation. Hence, for any real L, the following quantity is

non-negative:

Tr
[
e−LH(ΘF )F

]
≥ 0 .

Such an inequality, by the definition of the correlations, reads as in (A2.1).





Appendix 3:

Tree Expansion and Convergence
of the Schwinger functions

The renormalization procedure used here is slightly different from the classical one, the BPHZ

scheme.

As noticed in the early works on the renormalization, the localization is necessary and effective

in extracting the divergent contribution of the subgraphs whenever the momenta flowing in the

internal propagators of the subgraphs are in some sense higher than the momenta flowing on

the external ones (Hepp’s sectors). Anyway, the localization has a further complication in the

massless case: while it improves the convergence at large momenta, it worsen consequently the

convergence at small ones.

Accordingly, in the BPHZ scheme, the propagators of the graphs are decomposed a posteriori

in scales, and the subgraphs, selected by the Hepp procedure, are localized: this is done by

extracting the first orders of the Taylor expansion around zero external momenta, if the theory

is massive; around any fixed non-zero value, if the theory is massless: in the latter case some

discrete symmetries are broken, and more “relevant” and “marginal” terms, even a mass term,

are generated.

In the scheme here depicted, instead, the multiscale integration not only produces directly

only subgraphs satisfying the Hepp’s property; but it makes clear the possibility of localizing at

zero external momenta even the subgraphs with massless propagators, since such a localization

is naturally stopped below the scales of the momenta of the Schwinger function at hand.

A3.1 Tree structure. By expanding iteratively the truncated expectations (3.1.6) and (3.3.6),



72 Appendix 3.

starting from W(M), it is possible to write the effective potential on scale W(h), for h ≤ M , in

terms of a tree expansion, quite similar to that described, for example, in [BGPS].

1. Let a tree, τ , be a tree graph with the following features: if there are n + 1 points with

incidence number equal to 1, one of such points is the root; the other n points are the

endpoints; the integer n is the order of the tree. All the points of the tree graphs, except

the root and the endpoint, are called nodes. The only node paired to the root by the tree

graph is the first node: it is required not to be an endpoint.

2. The nodes, the root and the endpoints are partially ordered in the natural way by the

tree structure, so that the root is lower than the endpoints: v < v′ means v is lower that

v′. In correspondence of any node v, the integer sv is the number of minimal nodes or

endpoints greater than v: such nodes or endpoints are also said to be first followers of v,

and are denoted v1, . . . , vsv . If sv > 1, then v is a branching node. In correspondence of

a node or an end point v, the unique maximal node lower than it is the first preceding of

v, and is denoted v′.

3. Let the topological trees be the quotient set of the above depicted trees, in which any

two of them are identified if, by a suitable continuous deformation of the length of the

links and of the angled between them, – included permutation of the links coming out of

the same branching node – they can be superposed. It is then easy to verify that, since

the number of the branching nodes of a tree with n endpoints is not larger than n − 1,

then the number of all the topological tree with n endpoints is bounded by 42n−1 < 16n.

4. With each node v of the tree, a scale hv : h ≤ hv ≤ M is assigned, with the compat-

ibility condition that v′ < v imply hv′ < hv: therefore it is possible to draw the trees

as lying vertically along a family of horizontal parallel lines, each one marking a scale

j : h− 1 ≤ j ≤M + 1, so that the each node v is contained in the horizontal line with

index hv. The scale hu of the endpoint u ranges from h + 1 to M + 1; if v is the first

preceding of such an endpoint, hu = hv+1. The scale of the first node is h: because of the

distinction that will be done between the nodes in correspondence of the hard fermion

regime and the soft fermion regime, h is allowed to be ≤ N + 1; the scale of the root is

hr = h− 1.

5. There are two kinds of endpoints, normal and special. With each normal endpoint u,

it is associated one of the three self-interactions λhu−1V , γhu−1νhu−1N or δhv−1D, if

hu − 1 ≤ N ; otherwise the interactions λNV , γNνNN or δND. They are called the

endpoints of type λ, ν, δ, with an obvious correspondence. With each special endpoint u

it is associated one of the three interactions with the external sources, ζ
(2,+)
hu−1J+, ζ

(2,−)
hu−1J−

or F , if hu − 1 ≤ N ; otherwise the interactions ζ
(2,+)
N J+, ζ

(2,−)
N J− or F . They are called

the endpoints of type ϕ, + and −. The endpoints of type  are the union of the ones of

type + and −.

6. Given a node v, nϕv and nv are respectively the number of endpoints of type ϕ, and of

type  greater than v; n
(4)
v , n

(2)
v are respectively the number of normal endpoint of type

λ and of type ν or δ greater than v; nv
def
= n

(4)
v + n

(2)
v . Analogously, given a tree τ , the

integers nϕτ , n

τ , n

(4)
τ , n

(2)
τ and nτ are respectively the number of endpoints of type ϕ, of

type , of type λ, of type ν or δ and the total number of normal endpoints of the tree.
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7. For any node v, the cluster Lv with frequency hv is the set of endpoints greater than the

node v; if v is an endpoint, it is itself a (trivial) cluster. The tree provides an organization

of endpoints into a hierarchy of clusters: Lw < Lv if Lw ⊂ Lv
8. A field label f distinguishes a field involved in the interactions. If v is an endpoint, Iv is

the the set of all the fields ψ, ϕ and  involved in the interaction in v. If v is a node, Iv
is defined as the union of the sets Iu, for any endpoint u : u > v; x(f), σ(f) and ω(f)

denote the spacetime point, the (eventual) σ index and the ω index, respectively, of the

field f . If hv < N , one of the field variables belonging to Iv may also carry a derivative.

It is associated with each field label f an integer m(f) ∈ {0, 1, 2}, denoting the order of

the derivative.

9. In correspondence of any node or endpoint v, let Pv ⊂ Iv, the external fields of v, be

constructed as follows. In each endpoint u all the fields are external: Pu
def
= Iv. If v is a

node, and v1, . . . , vsv are its first followers, then Pv can be any set s.t. Pv ⊂ (∪iPvi). Let
Qvi

def
= Pv∩Pvi: the union of the complementary ones, ∪iPvi\Qvi , is the set of the internal

fields of v – or the fields contracted in correspondence of the node v – and have not to

be an empty at least

• in the first node, except if its scale is h = N + 1.

• in the branching points;

• in the first preceding nodes of the endpoints.

Hence, the endpoints are attached to nodes where some of their external fields are actually

contracted; while the first point is the lowest node in correspondence of which some

contraction actually occur, except in the case of trees lying only on the scales ≥ N + 1,

for which the first point has been set to be on scale N +1. Among the fields in Pv, the set

of all the fields of type ϕ and  will be called Sv, the set of the “special fields”. Finally,

|Pv| = nψv + nϕv + nv, where n
ψ
v is the number of external fields of type ψ, while nϕv , n


v,

as already defined, are the the number of external fields ϕ and  – indeed there is only

one source field in the special endpoint.

10. Let T nψ,nϕ,n

w;h;n be the set of all topological trees, with all the above depicted constraints,

with root on scale h, first node w on scale h+1, and with n normal endpoints, nψ external

fields of type ψ, nϕ endpoints of type ϕ and n endpoints of type . To each such tree it

corresponds a sequence of instructions to built a class of Feynman graphs.

11. Let G one of the Feynman graphs corresponding to the tree τ ∈ T nψ,nϕ,n

w;h;n . The endpoints

of τ represents the vertices of G, with the specified couplings. Any node v is in correspon-

dence with a subgraph Gv ⊂ G ≡ Gw, in which the external legs are the external fields of

v. Specifically, if v1, . . . , vsv (sv ≥ 1) are the first followers of v, the Feynman graph Gv
is constructed by pairing the internal fields of v with propagators g(h), in a way that the

subgraphs G(v1), . . . ,G(vsv ) remains connected. There are many possible way to chose

{Pv}v, or equivalently many possible ways of selecting the internal fields to be involved

in the contractions; and there are many possible connecting contractions: that is why to

each τ is associated a family of many different Feynman graphs.

12. Let the set of the nodes of τ – hence considering neither the root, nor the endpoints – be

denoted, with abuse of notation, τ as well. For each node v, the integer lv is the number
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of lines of the Feynman graph Gv; while lo,v is the number of lines in Gv, which are not in

∪svi=1Gvi . Similarly, lantiv and lantio,v count the number of lines of the graph which correspond

to antidiagonal propagators. Two fundamental relations are

u≥v∑

u∈τ
(su − 1) = nv + nϕv + nv − 1 ,

u≥v∑

u∈τ
lo,v = lv = 2n(4)

v + n(2)
v + (1/2)nϕv + nv − (1/2)nψv .

(A3.1)

For instance, from them, by telescopic decomposition of the differences of the scales,

hu − hv =
∑v<w≤u

w∈τ hw − hw′ , other two identities descend:

u≥v∑

u∈τ
(hu − hv)(su − 1) =

u≥v∑

u∈τ
(hu − hu′)(nv + nϕv + nv − 1) ,

u≥v∑

u∈τ
(hu − hv)lo,v =

u≥v∑

u∈τ
(hu − hu′)lu .

(A3.2)

The above formulas are stated as they are for shake of clarity; but sometimes it will be

used that, by definition, hw − hw′ = 1.

13. It is natural to consider the following decomposition. Given any τ ∈ T nψ,nϕ,n

w;h;n , let the

“auxiliary tree”, τa ⊂ τ , be the union of the paths in τ which connects the special

endpoint with the root r; for any w ∈ τa, let s∗w, the number of the nodes first followers

of v and in τa. Besides, if w is one of the maximal nodes in τa, let the integers n∗,w,

nϕ∗,w, be the number of the external fields of type  or of type ϕ which are in the cluster

Lw; otherwise, for w ∈ τa but not maximal, let them be the number of the external

fields of type  or of type ϕ which are in the cluster Lw, but not in the following clusters

Lw1
, . . . , Lwsw . Finally, the “main tree”, τ∗ ⊂ τa, is given by the auxiliary tree, deprived

of the nodes above the maximal nodes with s∗w ≥ 2; for w ∈ τ∗, let the integer b∗w be the

number of nodes of τ∗ first followers of w: hence s∗w = b∗w + nϕ∗,w + n∗,w.

14. Given any set of fields M , let x(M)
def
= ∪f∈M x(f). Let Dv be the tree distance among

x (Iv1) , . . . , x
(
Ivsv

)
the sets of the spacetime points of the clusters Lv1 . . . Lvsv : namely

Dv
def
= ming∈C

∑
l∈g |l|, where C the set of all the possible tree graphs g connecting the

spacetime points in x (Iv1) , . . . , x
(
Ivsv

)
, and l are the links. Similarly, D0,w and D1,w

are respectively the “time” and “space” tree distance and are defined as the tree dis-

tance among the time component and the space component of the spacetime points in

x (Iv1) , . . . , x
(
Ivsv

)
.

A3.2 Cluster expansion. A standard tool in the fermionic Renormalization Group – first

introduced in [Le87] – is the cluster expansion of the truncated expectations (see [B84]). It

explains why in the bounds it is better to consider altogether all Feynman graphs corresponding

to one tree, rather than one Feynman graph singly.
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Let P1, . . . , Ps be disjoint sets of ψ fields s.t. |∪iPi| = 2n; and let P σj
def
= {f ∈ Pj : σ(f) = σ}.

A pairing l is the couple of a field f+
l in ∪jP+

j and a field f−
l in ∪jP−

j : let x(f+
l )− x(f−

l )
def
= xl;

and
(
ω(f+

l ), ω(f−
l )
)def
= ωl. Then, the truncated expectation w.r.t. the Gaussian measure of prop-

agator g(h) is given, up to a global sign, by:

ETh
[
ψ(P1), . . . , ψ(Ps)

]
=
∑

T

(∏

l∈T
g(h)ω

l
(xl)

)∫
dPT (t) detGh,T (t) , (A3.3)

where T is a set of pairings of elements of ∪iPi, which would be a connected tree graph if all

the points in the same set Pi where identified; the parameters t =
{
ti,j ∈ [0, 1] : i, j = 1, . . . , s

}

have a certain normalized distribution dPT (t); finally Gh,T (t) is a (n − s + 1) × (n − s + 1)

matrix, the entries of which are given by Gh,T
f−
l
,f+
l

= g
(h)
ω
l
(xl)til , where i

def
= (i+l , i

−
l ) s.t. f

−
l ∈ P−

i−
l

and f+
l ∈ P+

i+
l

, for any possible pair l of elements of ∪iPi, s.t. l /∈ T .

The importance of this formula is that, if all the entriesMi,j of an n×n matrixM are give by

scalar products,Mi,j = (v(i), w(j)), where v(1), . . . , v(n) and w(1), . . . , w(n) are vectors, bounded

in norm by a constant C0, the sum of n! monomials that gives the determinant of M can be

bounded with Cn0 , by a simple application of the volume inequality. In this way factorial bounds

are avoided.

A3.3 Bounds for the kernels. Setting (h ∧N)
def
= min{h,N}, the effective potential on scale

h is a polynomial of the fields with coefficients given by the kernels:

W(h) (ϕ, , ψ)

=
∑

n>0

∑

nψ,nϕ,n≥0

∑

τv∈T nψ,nϕ,n
v;(h∧N);n

|Pv |=nψ+nϕ+n∑

Pv⊂Iv

∫
d2x(Pv) f(Pv)W

(h)
(
x(Pv); τv;Pv

)
,

where, f(Pv) denotes the product of every external field in Pv. In its turn, the kernel is a

sum over the Feynman graphs of the product of a propagator for each line of the graphs,

K(h)
(
x(Iv); τv;Pv

)
integrated w.r.t. all the internal points of the cluster Lv:

W (h)
(
x(Pv); τv;Pv

)
=

∫
d2x(Iv\Pv) K(h)

(
x(Iv); τv;Pv

)
.

A useful norm to bound the kernels is obtained by integrating the product of the propagators

w.r.t. all the spacetime points x (Iv), except the “fixed points”, x(Fv): they are, if Sv is not

empty, the points in Fv
def
= Sv; otherwise the point in Fv

def
= {xv}, for any choice of xv ∈ Pv. It

holds the following lemma.

Lemma A.3.1. If h > N , there exists a constant C2 ≥ C such that, for any choice of the tree
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τv ∈ T nψ,nϕ,n

v;N ;n , with root r,

∫
d2x
(
Iv\Fv

) ∣∣∣K(h)
(
x(Iv); τv;Pv

)∣∣∣

≤(C2ε)
nCn

ϕ+n

2 γNdr


 ∑

{Pw}w>r

∏

w∈τv
γdw+rw




·



s∗v≥2∏

w∈τ∗
v

γ(N+hw)(s∗w−1)

e
c

2(nϕ+n)

(√
γNDw+

√
γhwD0,w

)



(
nϕ∏

i=1

1√
ZN

)(
n∏

i=1

Z
(2)
N

ZN

)
,

(A3.4)

with

dw
def
=

{
1− nw − nw − nϕw for hw ≥ N + 1
2− (1/2)nψ − (3/2)nϕ − n for w = r ,

and rw such that dw + rw ≤ −1/2− (1/8)nψw.

Proof . Let τv1 , . . . , τvsv be the subtrees of τv branching from v – namely with root in v, and

first nodes v1, . . . , vsv ; the product of propagators K(hv)
(
x(Iv); τv;Pv

)
is obtained as

K(hv)
(
x(Iv); τv;Pv

)
=

1

sv!

∑

Pv1 ,...,Pvsv

(
sv∏

i=1

K(hv+1)
(
x(Ivi); τvi ;Pvi

))
·

· ETh
[
ψ(Pv1\Qv1), . . . , ψ(Pvsv \Qvsv )

]
.

(A3.5)

Applying (A3.3), and iterating till the endpoints, it holds:

K(hv)
(
x(Iv); τv;Pv

)
=

(
e.p.∏

u

ρu

)
·

·
∏

w∈τv

∑

Pw

∑

Tw

1

sw!

(∏

l∈Tw
g(hw)
ω
l

(xl)

)∫
dPTw(t) detGhw,Tw(t) ,

(A3.6)

where ρu denotes the coupling in the endpoints: λN , γNνN or δN , if u is a normal endpoint;

ζ
(2,σ)
N if u is an endpoint of type (σ); 1 if u is an endpoint of type ϕ. Then, a bound for the

integral of (A3.6) can be obtained as follows.

1. Calling bh(x− y)
def
= e

−(c/2)
(√

γN |xl|+
√
γh|x0,l|

)
, by (3.1.8) each of the sw − 1 propagators

in a tree Tw is bounded with CγN b2hw(x − y); while
∣∣detGhw,Tw(t)

∣∣ is bounded with a

factor C0Cγ
N for each of the lo,w − (sw − 1) rows of the matrix Ghw,Tw(t): globally, the

product of the propagators can be bounded with

(
C0Cγ

N
)lo,w ∏

l∈Tw
b2hw (xl) .
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2. Collecting the products over bhw (xl) for any node of the tree τv, since the branching nodes

of the main tree are not more than the special endpoints nϕ + n,

∏

w∈τv

∏

l∈Tw
b2hw (xl) ≤

∏

w∈τv

∏

l∈Tw
bhw (xl)

∏

w∈τ∗
v

e
− c

2(nϕ+n)

(√
γNDw+

√
γhwD0,w

)
.

(A3.7)

3. The integrations in d2x(Iv/Fv) are performed, the left integrand being the product of

the bhw ’s, increased by replacing in them γN |xl| with γN |x1,l|, times constant factors. It

holds ∫
d2x(Iv/Fv)

∏

w∈τv

∏

l∈Tw
bhw(xl) ≤

∏

w∈τ

(
C1γ

−(N+hw)
)(sw−s∗w)

. (A3.8)

Indeed, the above formula is obtained iteratively starting from the first node, v. Let the

labels w1, . . . , wsw be assigned to the nodes following w so that: for j = 1, . . . , s∗w the

cluster Lwj contains at least a special endpoint, Swi 6= ∅, and is called “special cluster”;

for j = s∗w+1, . . . , sw, the cluster Lwj contains no special endpoints, Swi = ∅ – eventually

it may be s∗w = 0, sw. Now, the graph Tw can be thought as a tree graph: the cluster

Lw1
is its root, Lw2

, . . . , Lwsw are its nodes, while the factors bhw ’s are its links. Then,

considering the first node v, and starting from the endpoints of Tv, let Lvj be the first

followers of Lvj′ , and let bhv be the link connecting them. If Lvj is a special cluster, than

bhv is simply bounded with its maximum, ||bhv ||∞; whereas, if Lvj is a normal cluster,

the link bhv is bounded with ||bhv ||1, the integral being taken w.r.t. the point in Fvj .

Since ||bhv ||∞ ≤ 1, while ||bhv ||1 ≤ C1γ
−(N+hv), this gives the factor in (A3.8) for w = v.

Iterating to all the nodes following the first, the complete bound is found.

4. The sum over Tw is bounded by the number of the topological graphs with sw nodes,

4sw , times the number of the possible permutations of such nodes, sw! .

5. Each factor ρu are bounded, by (3.3.15), with 2ε if u is a normal endpoint; otherwise

ρu = 1/
√
ZN or Z

(2)
N /ZN if respectively u is of type ϕ or .

In the end, the factorial in item 4. is compensated by the one in the denominator of (A3.6);

while the powers of 2ε, C, C0, C1 and 4sw is all together bounded with

∏

w∈τv
(4C1)

sw (C0C)lo,w(2ε)no,w ≤ (C2ε)
nCn

ϕ+n

2 ,

for C2 ≥ (4CC0C1)
2. And the rest of the bound is reduced to simple dimensional analysis.

For each of the lo,w propagators there is a factor γN ; for each of the sw − s∗w integrals there

is a factor γ−(N+hw) more. Furthermore, not yet counted in the above items, by (3.1.8) there

is a factor γ−(hw−N) more for any antidiagonal propagator. Finally, in correspondence of each
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endpoint of type δ and ν there is a factor γN . Therefore the collection of all such factors gives

 ∏

w∈τ∗
w

γ(N+hw)(s∗w−1)


 ∏

w∈τv
γhw

(
1−sw−lantio,w

)
γN
(
lo,w−(sw−1)+lantio,w+n(2)

o,w

)

≤


 ∏

w∈τ∗
w

γ(N+hw)(s∗w−1)


 γNdr

∏

w∈τv
γdw+rw ,

(A3.9)

where rw
def
= − lantiw for nw = 1, nψw = nw = 0, and rw

def
= 0 otherwise. Now it is possible to prove

that dw + rw ≤ −(1/2)− (1/16)nψw . Indeed, there are the following possibilities.

1. The number of normal endpoints is zero. Then, since in the nodes of the tree there has

to be at least a contraction, and since the self-contraction of the fields in the endpoint

of type  is zero by oddness of the diagonal propagator, nϕw + nw ≥ 2. Then, since in

such graphs the external fields of type ψ cannot be more than 2(nϕw + nw), it holds

dw ≤ −(1/2)(nϕw + nw) ≤ −(1/2)− (1/8)nψw.

2. The number of the normal endpoints is 1, while nϕw+n

w = 0. Then dw+rw ≤ −lantiw . By ex-

plicit inspection, such graphs, made of self-contractions, either are zero by oddness of the

diagonal propagator, or have at least one antidiagonal propagator; furthermore the num-

ber of external ψ fields cannot be more than two. Therefore dw + rw ≤ −(1/2)− (1/4)nψw.

3. The number of the total endpoints, nw + nϕw + nw, is greater or equal to 2. Since in such

graphs the external fields ψ cannot be more than 4(nw + nϕw + nw), and rw = 0, then

dw + rw ≤ −(1/2)(nw + nϕw + nw) ≤ −(1/2)− (1/16)nψw.

The proof is complete.

Lemma A.3.2. If h ≤ N − 1, and for ε small enough, there exists a constant C2 ≥ C such that
∫
d2x

(
Iv\Fv

) ∣∣∣K(h)
(
x(Iv); τv;Pv

)∣∣∣

≤(C3ε)
nCn

ϕ+n

3 γhdr


 ∑

{Pw}w>r

∏

w∈τv
γdw+rw


 ·



s∗v≥2∏

w∈τ∗
v

γ

(
(hw∧N)+hw

)
(s∗w−1)

e
c

2(nϕ+n)

(√
γ(hw∧N)Dw+

√
γhwD0,w

)



(
nϕ∏

i=1

1√
Z(hi∧N)

)


n∏

i=1

Z
(2)
(ki∧N)

Z(ki∧N)


 ,

(A3.10)

where

dw
def
=

{
1− nw − nϕw − nw for hw ≥ N + 1
2− (1/2)nψw − (3/2)nϕw − nw for hw ≤ N

,

and rw is such that dw + rw ≤ −1/4− (1/12)nψw.

Proof . Neglecting the effects of the localization, with argument similar to the proof of the

previous lemma, the bound is reduced to simple dimensional analysis: for each of the lo,w
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propagators there is a factor γhw ; for each of the the sw − s∗ integrals there is a factor γ−2hw .

Finally, regarding the endpoints, there is a factor 2ε for each endpoint of type λ; 2εγhw for

each endpoint of type δ or ν. Therefore, collecting only the factors coming from the dimensional

analysis, 
 ∏

w∈τ∗
w

γ2hw(s∗w−1)


 ∏

w∈τv
γhw

(
lo,w−2(sw−1)+n(2)

o,w

)

=


 ∏

w∈τ∗
w

γ2hw(s∗w−1)


 γhdv

∏

w∈τv
γdw ,

(A3.11)

with dw
def
= 2− (1/2)nψw − (3/2)nϕw − nw. Now the point is that they can occur nodes with non-

negative dimension: here comes the role of the localization, which improves their dimension by

absorbing the localized part of the graphs into the coupling constants. Indeed, for the kernel

bringing an R-operator, with reference to the items at point 3.3.4, the following facts have to

be considered.

1. The local part zhwDσ, occurring in a certain node w, is bounded, up to a constant, by

γhwγ−(hw−hw0
), if w0 is the node, lower than w, in correspondence of which one of the field

of momenta k is contracted. While the local part zhw
∣∣− ik0 +ωe(k1)−Dω(k)

∣∣ is instead
bounded, up to a constant, with γhwγ−(hw−hw0

)γ−(N−hw0
) ≤ γhwγ−(N−hw0

)γ−2(hw−hw0
):

the standard power counting, as it were using only the factor γhw , because of γ−2(hw−hw0
),

is improved in all the nodes u along the path connecting w with w0 by ru = 2. Further-

more, with reference to the proof of the equivalence of the Euclidean and the Hamiltonian

regularization, the factor γ−(N−hw) makes such a kernel – generated only in the latter

regularization – vanishing in the limit of removed cutoff.

2. One or two increments Dω, and respectively one or two derivatives in the companying

kernels – the kernel occurring at node w, the increment having the same momenta of a

ψ-field contracted on a lower node, w0 – gives a gain w.r.t. the standard power counting:

each derivative gives a factor γ−hw more, while each increment gives a factor γhw0 more.

Since

γ−(hw−hw0
)r =

w0≤u≤w∏

u

γ−r , for r = 1, 2 ,

all the nodes u in the path connecting the node w with the node w0 have a gain ru = 1

or 2.

3. The local terms which are linear or quadratic in the factors {µk/γk}k gives a gain in the

bounds since, if they occur in the node w on scale h, k has to be greater or equal to h,

and, by (3.3.14) and the definition of h∗:

(
µk
κγk

)r
≤
(
µh∗

κγh∗

)r
γ−r(1−2c0ε)(k−h∗) ≤

∏

u≤w
γ−r(1−2c0ε) ,

and therefore, for ε small enough, the dimension of every node u occurring along the path

connecting the node w with the root is improved by ru = r3/4.
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4. In the kernels corresponding to nodes w with nw = 0, and nψw = nϕw = 1, the dimension is

zero. It is possible to obtain a gain rw = 1 at the price of worsening the final constant C3

of a factor γ2. Indeed, because of the compact support of the propagators, it is clear that

such nodes can be both among the preceding ones of the nϕ special endpoints of type ϕ,

let them be w1, . . . , wq , and among the ones preceding w1, . . . , wq themselves: namely no

more than 2nϕ nodes.

Therefore, with developments similar to the ones in the previous proof, it is possible to prove

that dw + rw ≤ −(1/4) − (1/12)nψw. But since the localization produces the flows of the field

and densities strengths, (A3.11) has to be replaced with

γhdv

(
nϕ∏

i=1

1√
Zhi

)(
n∏

i=1

Z
(2)
ki

Zki

)
 ∏

w∈τ∗
w

γ2hw(s∗w−1)



( ∏

w∈τv

(
Zhw
Zh′

w

)(nψw/2)

γdw+rw

)
.

This completes the proof.

A3.4 Remark. The argument in the last item does not apply in the case n = 1 and nψ = 2.

This is the main difference of the external sources  and ϕ: while the former requires a coupling

constant for absorbing divergences due to interaction with the source, the latter need not, since

it in interacts only by one particle reducible graphs.

Lemma A.3.3. For ε small enough, the perturbative expansion for the (n;nϕ)-Schwinger

functions is absolutely convergent to a distribution fulfilling property E1 and E5. of the OSa.

Proof . The expansion for the Schwinger function is given by the expansion for the effective

potential in the case Pv = Sv and for any scale of the first node h : h∗ − 1 ≤ h ≤ N + 1.

Since the case h∗ finite is much more easier of the case h∗ = −∞, the following development

will concern only the latter.

Calling T 0,nϕ,n

v,h;k;h;n the set of trees τ ∈ T 0,nϕ,n

v,h,n having the nϕ external fields of type ϕ on scales

h1, . . . , hnϕ , and the n external fields of type  on scales k1, . . . , kn , it holds

S
(n;nϕ)(ε)
σ;ω (z;x)

def
=
∑

n≤0

∑

h≤M

h<kj≤M∑

k

h<hj≤M∑

h

∑

τv∈T 0,nϕ,n

v,(h∧N);h;k;n

W (h)
(
x(Sv); τv;Sv

)
(A3.12)
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and, by the just proved bound on the kernels,

∣∣∣W (h)
(
x(Sv); τv;Sv

)∣∣∣ ≤ (C2ε)
nCn

ϕ+n

2 γhdr
hw≥N+1∏

w∈τ∗
v

e−
c

2(nϕ+n)

√
γhwD0,w

·



s∗v≥2∏

w∈τ∗
v

γ

(
(hw∧N)+hw

)
(s∗w−1)

e
c

2(nϕ+n)

√
γ(hw∧N)Dw




(
nϕ∏

i=1

1√
Z(hi∧N)

)


n∏

i=1

Z
(2)
(ki∧N)

Z(ki∧N)


 ·

·




∑

{Pw}w>r

∏

w∈τv

(
Z(hw∧N)

Z(hw′ )∧N

)n
ψ
w
2

γdw+rw


 .

(A3.13)

Let the following facts be considered.

1. For the main tree it holds an identity similar to (A3.2), with sv replaced by s∗v, and with

nv removed from the r.h.s. member; so that:

∑

w∈τ∗
v

(
(hw ∧N) + hw

)
(s∗w − 1) = 2h(nϕ + n − 1)

+

hw≤N∑

w∈τ∗
v

(hw − hw′)2(nϕw + nw − 1) +

hw≥N+1∑

w∈τ∗
v

(hw − hw′)(nϕw + nw − 1)

def
= h∆dv +

∑

w∈τ∗
v

(hw − hw′)∆dw .

These factors can be absorbed into the dimension of any node w of the main tree, changing

it from dw to

dw +∆dw =

{
nw + (1/2)nϕw − (1/2)nψw for hw ≤ N
−nw otherwise.

2. Since nfw =
∑
v≥w n

f
∗,v for f = ϕ, , then

hw<N∑

w≥v
(hw − h)

(
n∗,w + (1/2)nϕ∗,w

)
+

hw=N+1∑

w≥v
(N − h)

(
nw + (1/2)nϕw

)

=

hw≤N∑

w≥v
(hw − hw′)

(
nw + (1/2)nϕw

)
,
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which formula gives:

γh
(
n+(1/2)nϕ

) hw≤N∏

w∈τ∗
v

γ(hw−hw′ )
(
nw+(1/2)nϕw−(1/2)nψw

)

·
hw≥N+1∏

w∈τ∗
v

γ−(hw−hw′ )nw

=

hw≤N∏

w∈τ∗
v

γhw
(
n∗,w+(1/2)nϕ∗,w

) hw≤N∏

w∈τ∗
v

γ−(hw−hw′ )(1/2)nψw

·
hw=N+1∏

w∈τ∗
v

γN
(
nw+(1/2)nϕw

) hw≥N+1∏

w∈τ∗
v

γ−(hw−hw′ )nw .

(A3.14)

3. In view of the proof of cluster decomposition, since it can be, for w = v∗0 , the lowest

branching point of τ∗, n∗,w + (1/2)nϕ∗,w = 0, a further modification of the above decom-

position is performed. Setting m
def
= n+(1/2)nϕ, mw

def
= nw+(1/2)nϕw and m∗,w

def
= n∗,w+

(1/2)nϕ∗,w; and letting h0 be the scale of v∗0 , the following identity

1 = γ−
(
hw−h0

)
1
8

m∗,w
m γ

(
hw−h0

)
1
8

m∗,w
m ,

for each node w ∈ τ∗ : hw ≤ N turns (A3.14) into

γh0(1/8)

hw≤N∏

w∈τ∗
v

γhwm∗,w
(
1−(1/8m)

) hw≤N∏

w∈τv
γ(hw−hw′ )

(
(mw/8m)−(1/2)nψw

)

·
hw=N+1∏

w∈τ∗
v

γNmw
(
1−(1/8m)

) hw≥N+1∏

w∈τv
γ−(hw−hw′ )nw .

(A3.15)

4. Let each factor 1/
√
Zhi∧N be considered for hi ≤ N : if the w ∈ t∗v, is the highest

branching point in τ lower than the i-th endpoint of type ϕ, ui, by (3.3.14), such a

factor can be moved to the node w, 1/
√
Zhi ≤ 1/

√
Zhwγ

(c0/2)ε
2(hi−hw), at the price of

the factor γ(c0/2)ε
2(hi−hw) =

∏w≤w′≤ui
w′ γ(c0/2)ε

2

: it is absorbed in the dimension of the

nodes along the path connecting ui with the node w – by definition such nodes are not in

the main tree – changing it, for ε small enough, from dw + rw ≤ −1/4− (1/12)nψw to the

new dimension d̂w ≤ −1/8− (1/12)nψv . Similar decomposition is done in case hi ≥ N +1:

the lost in the dimension is only in the nodes on scales hw ≤ N .

5. Similar procedure is executed for each factor Z
(2)
ki∧N/Zki∧N , for hw ≤ N : if w ∈ τ∗,

is the highest branching point in τ lower than the i−th endpoint of type , ui by

(3.3.14), Z
(2)
ki
/Zki ≤ Z

(2)
hw
/Zhwγ

2c0ε(ki−hw); the factor γ2c0ε(ki−hw) is absorbed in the di-

mension of the nodes along the path connecting ui with w, again changing it from

dw + rw = −1/4− (1/12)nψw to the new dimension d̂w ≤ −1/8 − (1/12)nψv , for ε small

enough. Similar decomposition is done in case ki ≥ N + 1.
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6. The exponent (mw/8m)−(1/2)nψw of the factors in the second product in formula (A3.15)

can be bounded with −1/8− (1/12)nψw.

7. Since in every node w : hw ≤ N , both in the main tree and in the rest of the tree,

the dimension has been left to be d̂w = −1/8− (1/12)nψw, and since for ε small enough,

(Zhw/Zh′
w
) ≤ γc0ε

2 ≤ γ(1/12), it is possible to absorb all the factors (Zhw/Zh′
w
)(1/2)n

ψ
w

into the dimension d̂w, turning it into d′w ≤ −1/8− (1/24)nψw.

8. Regarding the nodes w : hw ≥ N , if nw > 0, by inspection of the graphs – eventually

involving the interaction of type  and ϕ – it can be nw 6= 0, and than−nw ≤ −(1/4)nψw ≤
−1/8 − (1/24)nψw; otherwise nw = 0: this can happen only on the highest node, in the

sense that a node with nw = 0 cannot be lower than any node v with nv 6= 0 – since nw is

a cumulative counter – then the graphs corresponding to this latter case are contractions

of special vertices only, and nψw ≤ 2. Hence in the region of the tree where nw = 0 there

can be no more than nψ + n branching points: it is in any case possible, multiplying C2

by a factor γ2/24, to extract a factor γ−(1/24)nψw for every node w : hw ≥ N such that

Pw 6= Pw′ , namely where some contraction really occur.

9. The product over the nodes where at least a contraction of internal fields does occur,∏b.p.
w∈τv γ

−(ϑ/24)nψw , allows to control the summation in Pw – which, fixed the tree τv, is

actually only a summation in Pw\Sw:

b.p.∏

w∈τv

∑

Pw

γ−(1/24)nψw ≤
b.p.∏

w∈τv

∑

nψw

γ−(1/24)nψw

(
nψw1

+ · · · + nψwsw
nψw

)

≤
e.p.∏

u∈τv

(
1− γ−(1/24)

)−nψu ≤
(
1− γ−(1/24)

)−4(n+nϕ+n)

,

where the last-but-one inequality can be easily proved by induction by thinking the

endpoints u as the node at which are attached one or more further branches; while the

last simply follows from the fact that nψu ≤ 4.

Finally, once C3 is taken greater or equal to C2γ
2/24(1−γ−(1/24))−4, the bound for the Schwinger

function has become

∣∣∣W(h)
(
x(Sv); τv;Sv

)∣∣∣

≤(C3ε)
nCn

ϕ+n

3

γh0(m+1/8)

e
c

2(nϕ+n)

√
γh0Dv∗

0



hw=N∏

w∈τ∗
v

γhwmw(1−(1/8m))

e
c

2(nϕ+n)

√
γNDw




·



hw≤N∏

w∈τ∗
v

γhwm∗,w(1−(1/8m))

e
c

2(nϕ+n)

√
γhwDw

(
Z

(2)
hw

Zhw

)n∗,w (
1

Zhw

)(1/2)nϕ∗,w




·
( ∗∗∏

w∈τv
γ−1/8

)( ∗∗∗∏

w∈τv
γ

hw
2(nϕ+n) e−

c
2(nϕ+n)

√
γhwD0,w

)
.

(A3.16)
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The product
∏∗∗
w∈τv is over all the nodes in the tree, except the ones higher than the branching

points w with hw ≥ N + 1 and nw = 0. The product
∏∗∗∗
w∈τv is over all the branching points w

with hw ≥ N + 1 and nw = 0; and the factors γ
hw

2(nϕ+n) – strictly greater than 1 – are added

for later purposes.

This bound is enough to prove the convergence of the Schwinger function. Indeed, for any

m > (1/4) and d, β, z > 0, the two inequalities hold:

zme−(β/m)
√
z ≤ C2m

β (4m)! , (A3.17)

+∞∑

h=−∞

(
γhd

)m
e−(β/m)

√
γhd ≤

∑

h≤0

γhm +
∑

h>0

γhme−(β/m)
√
γh

≤ C4m
β (8m)!(1− γ−(1/8))−1 .

(A3.18)

Then (A3.17) allows to bound each factor of the product
∏hw≤N
w∈τ∗

v
, as:

γhwm∗,w
(
1−(1/8m)

)

e
c

2(nϕ+n)

√
γhwDw

(
Z

(2)
hw

Zhw

)n∗,w (
1√
Zhw

)nϕ∗,w

≤ Cw

(
1

Dw

)m∗,w(1−(1/8m)−ηλ)+n∗,wη
(2)

λ

,

for Cw ∼ (m!)p, for some positive integer p; and
∏hw≤N
w∈τ∗

v
D

−m∗,w(1−(1/8m)−ηλ)−n∗,wη
(2)
λ

w is in-

tegrable against test functions which vanish with all their derivatives for each Dw = 0. Fur-

thermore, (A3.18) allows in a similar manner to control the summation over the scales of the

branching points with nw = 0 of the factors in the product
∏∗∗∗
w∈τv : apart a constant, it gives

a factor
∏∗∗∗
w∈τv D

−[1/2(nϕ+n)]
0,w , which is integrable against a test function, even if it does not

vanish for D0,w, since the number of the factor is not larger than nϕ + n.

The summation over the scales h, k, taking fixed the lowest, h, and also over the scales of all

the remaining branching point in the tree τv is clearly controlled by the factors
∏
w∈τv γ

−1/8 and,

since the number of the branches in a tree is no more than twice the number of the endpoints,

it is bounded by (1− γ−1/8)−2(n+nϕ+n).

Then it is possible to take the summation also over −∞ < h0 ≤ N , which is convergent

by (A3.18), and gives a further factor D
−(m+1/8)
v , which, besides not to waste the integrability

against the test function, guarantees the cluster decomposition, namely that the Schwinger

function vanish if the distance of any two points is sent to infinity.

The summation over the topology of the trees, is bounded by 16(n+n
ϕ+n). Finally the sum-

mation over n is convergent for any ε ≤
(
16C3(1− γ−1/8)−2)

)−1

.

The lemma is proved.

A3.5 Short memory property. Before performing the summation over the scales in the

product
∏
w∈τv γ

−1/8, it is possible to extract a factor γ−(1/16)
(
(hmax∧N)−ηmin

)
, for hmax and
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hmin respectively the scale of the one of the maximal nodes and of the minimal node of the tree,

leaving
∏
w∈τv γ

−1/16 to control such a summation.

Many consequences derives from such a factor. An example is the following lemma.

Lemma A.3.4. In the limit of removed cutoff, the trees with unbounded maximal scale gives

vanishing contribution to the integration of the Schwinger function against the test functions.

Proof . Before removing the cutoff, let MN
def
= hmax ∧ N ; then MN → +∞. With reference to

the summation over −∞ < h ≤ N of the factor γh(m+1/8)e
− c

2(nϕ+n)

√
γh0Dv∗

0 , the following

facts hold.

1. Since the integration against test functions over all the space time is finite, the integration

in the region κ|Dv∗0 | ≤ γ−(MN/4) is vanishing.

2. In the domain κ|Dv∗0 | ≤ γ−(MN/4), the summation for h ≥ (MN/2) is vanishing faster

than e−
c

4(nϕ+n)
γMn/8 .

3. Trees with first node on scale h ≤ (MN/2) have a short memory factor ≤ γ−(1/16)(MN/2),

which is vanishing too.

A3.6 Completion of the proof of Theorem 1.1 The bound for the two point Schwinger

function is, accordingly to (A3.16), for ε small enough,

∣∣∣S(2)
ω (x− y)

∣∣∣ ≤ C
N∑

h=h∗

γh

e(c/4)
√
γhκ|x−y|

1

Zh
. (4.3.19)

Setting ho s.t. γ−ho ≤ k|x− y| < γ−ho+1, if ho < h∗, then

N∑

h=h∗

γh

e(c/4)
√
γhκ|x−y|

1

Zh
≤ K

γh
∗

e(c/8)
√
γh∗κ|x−y|

1

Zh∗
;

while, if ho > h∗, then
N∑

h=h∗

γh

e(c/4)
√
γhκ|x−y|

1

Zh
≤ Kγho

1

Zho
.

Since µh∗ is proportional to κγh
∗
, then: µh∗ is proportional to κ(µ/κ)(1/1+ηλ); Zh∗ is pro-

portional to (µ/κ)−(ηλ/1+ηλ); for ho ≤ N/2, in the limit N → +∞, Zho is proportional to

(κ|x− y|)ηλ . Hence the item is proved for 1 + τλ
def
= (1/1 + ηλ).

A3.7 Completion of the proof of Theorem 1.2 The bound for the current-current Schwinger

function is the same of (4.3.19), with the replacement of γh/Zh with γ2h(Z
(2)
h /Zh)

2. Therefore,

with the same developments of Proof A3.6, using also the identity ηλ = η
(2)
λ , also this item is

verified.
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Exact symmetries

The following symmetries will be useful to prove some kernels are less divergent than what

seems from dimensional bounds:

A4.1 Reflection. Let the “reflection” be ϑ(k0, k1)
def
= (−k0,−k1). It is easy to verify the inter-

actions V , N and D, as well as the free action, are all invariant under the transformation of the

fields

ψσk,ω → iωψσϑk,ω . (A4.1)

In terms of graphs, under reflection the propagator ĝ
(j)
µ,ω(k) transforms as follows

ĝ(j)µ,ω(ϑk) = −µωĝ(j)µ,ω(k) ; (A4.2)

while the interactions are all invariant, except the ones corresponding to the interactions D,

which is odd. Specifically, let any graph contributing to the kernel Ŵ
(j)
2,ω,ω(k) be considered:

calling m2(ω) and m2(−ω) respectively the number of vertices with interaction linear in ψωψω
and ψ−ωψ−ω, after the contraction of only the off-diagonal propagators, they are left 2(l +

m2(ω)− 1) half lines of kind ω and 2(l+m2(−ω)) half lines of kind −ω to be contracted with

diagonal (odd) propagators. As the number of odd vertices is m2(ω)+m2(−ω), and the number

of odd propagators is 2l+m2(ω)+m2(−ω)−1, then Ŵ
(j)
2,ω,ω(k) is odd. With a similar argument

it is possible to prove Ŵ
(j)
2,ω,−ω(k) is even. Therefore

Ŵ
(j)
2,α,β(ϑk) = −αβŴ (j)

2,α,β(k) ,
(
∂σŴ

(j)
2,α,β

)
(ϑk) = αβ

(
∂σŴ

(j)
2,α,β

)
(k) . (A4.3)
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A4.2 Space reflection. Let the “space reflection” be ϑ1(k0, k1)
def
= (k0,−k1). It is easy to verify

the interactions V , N and D, as well as the free action, are all invariant under the transformation

of the fields

ψσk,ω → ψσϑ1k,−ω .

In terms of graphs, under space reflection the propagator ĝ
(j)
α,β(k) transforms as follows

ĝ
(j)
α,β(ϑ1k) = ĝ

(j)
−α,−β(k) ;

while the vertices are invariant; therefore,

Ŵ
(j)
2,α,β(ϑ1k) = Ŵ

(j)
2,−α,−β(k) ,

(
∂σŴ

(j)
2,α,β

)
(ϑ1k) =

(
∂−σŴ

(j)
2,−α,−β

)
(k) . (A4.4)

Furthermore, with similar arguments, it is easy to prove

Ŵ
(j)
1;2,α;β(ϑ1p;ϑ1k) = Ŵ

(j)
1;2,−α;−β(p; k) . (A4.5)

A4.3 Rotation. Let the “rotation” of π/2 be (k0, k1)
∗def= (−k1, k0). It is easy to verify the

interactions V and N , as well as the free action of the massive Thirring model, are invariant

under the transformation of the fields:

ψσk,ω → eiω
π
4 ψσk∗,ω .

In terms of graphs, under rotation the propagator ĝ
(E,k)
α,β (k) transforms as follows

ĝ
(E,k)
α,β (k∗) = −iωĝ(E,j)ω,ω (k) ,

ĝ
(E,j)
ω,−ω(k

∗) = ĝ
(E,j)
ω,−ω(k) .

Let Ŵ
(E,j)
2,µ,ν (k) be defined as the sum of the graphs of Ŵ

(j)
2,µ,ν(k) which are made only with

propagators ĝ
(E,j)
µ,µ (k) and only with vertices V .

Then, each graph of Ŵ
(E,j)
2,ω,ω(k) is made of l diagonal propagators ĝ

(E,j)
ω,ω and l + 1 diagonal

propagators ĝ
(E,j)
−ω,−ω; whereas each graph of Ŵ

(E,j)
2,ω,−ω(k) is made of l diagonal propagators ĝ

(E,j)
ω,ω

and l diagonal propagators ĝ
(E,j)
−ω,−ω (and also at least one off-diagonal propagator). Therefore it

holds

Ŵ
(E,j)
2,ω,ω(k

∗) = iωŴ
(E,j)
2,ω,ω(k) ,

(
∂σŴ

(E,j)
2,ω,ω

)
(k∗) = σω

(
∂σŴ

(E,j)
2,ω,ω

)
(k) ,

Ŵ
(E,j)
2,ω,−ω(k

∗) = Ŵ
(E,j)
2,ω,−ω(k) ,

(
∂σŴ

(E,j)
2,ω,−ω

)
(k∗) = −iσ

(
∂σŴ

(E,j)
2,ω,−ω

)
(k) ,

(A4.6)

and, with similar definitions and arguments:

Ŵ
(E,j)
1;2,µ;ν(p

∗; k∗) = µνŴ
(E,j)
1;2,µ;ν(p; k) . (A4.7)
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Proof of Theorem 3.2

A5.1 Beta and Gamma functions. Let xN
def
= (νN , δN ), µh

def
= µZh and ∆λh

def
= λh − λ; a

conventional way of writing the relation (3.3.10), (3.3.13) and (3.3.11), (3.3.12) is in terms of

the Gamma functions:

logγ
Zh−1

Zh
= Γh(λh, xh; . . . ;λN , xN ) ,

logγ
Zh−1

Zh
= Γh(λh, µh, xh; . . . ;λN , µN , xN ) ,

logγ
Z

(2,σ)
h−1

Z
(2,σ)
h

= Γ
(2,σ)
h (λh, xh; . . . ;λN , xN ) ;

(A5.1)

and Beta functions:
νh−1 − γνh = β

(ν)
h (λh, xh; . . . ;λN , xN ) ,

δh−1 − δh = β
(δ)
h (λh, xh; . . . ;λN , xN ) ,

∆λh−1 −∆λh = β
(λ)
h (λh, xh; . . . ;λN , xN ) .

(A5.2)

Furthermore, such Gamma and Beta function are given by convergent graph expansion.

Lemma A.5.1. In the domain of the effective parameters given by (3.3.15), if (3.3.14) are

satisfied, the Gamma and Beta function in (A5.1) and (A5.2) are well defined and analytic in

{λk, δk, νk}k≤N .

Proof . Like the proof of the convergence of the Schwinger function, it is a consequence of the

Lemmas A.3.1 and A.3.2, for the set of fixed points, Fv, given by only one point.
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The evolution of the effective parameters is determined by the equations (A5.1) and (A5.2),

and by fixing the “initial data”; they are chosen to be:

∆λ−∞ = 0 , δ−∞ = 0 , ν−∞ = 0 ,

logγ(Z0) = 0 , logγ(Z0) = 0 ,

logγ(Z
(2,+)
0 ) = 0 , logγ(Z

(2,−)
0 ) = 0 .

(A5.3)

Well then, the strategy to find the solution of the evolution problem is first to skip the flow

of the mass, and to find the solution of the other flows by a fixed point theorem in a suitable

linear space; then to solve also the flow of the mass with the other flow already fixed.

A5.2 Flows of the couplings. Let M be the linear space of sequences y,

y
def
=
{(

∆λk, δk, νk, logγ(Zk), logγ

(
Z

(2,+)
k

)
, logγ

(
Z

(2,−)
k

))
∈ R6

: k ≤ N
}
,

such that, for any ϑ < 1/16, the following properties hold.

i. The initial data are as in (A5.3).

ii. The increments of the effective coupling satisfy (3.4.1), for any h : h ≤ N .

Then, let such a space be endowed with the norm ||y||ϑ, which is the smallest real number such

that all the following inequalities hold.

iii. There exist two positive constants, c0 and c1, such that, for every k ≤ N ,

|∆λk| ≤ c1ε
2γ−(ϑ/2)(N−k)||y||ϑ ,

|δk| ≤ 2εγ−(ϑ/2)(N−k)||y||ϑ , |νk| ≤ 2εγ−(ϑ/2)(N−k)||y||ϑ ,∣∣logγ(Zk−1/Zk)
∣∣ ≤ c0ε

2||y||ϑ ,∣∣∣logγ(Z(2,+)
k−1 /Z

(2,+)
k )

∣∣∣ ≤ 2c0ε
2||y||ϑ ,

∣∣∣logγ(Z(2,−)
k−1 /Z

(2,−)
k )

∣∣∣ ≤ 2c0ε
2||y||ϑ .

(A5.4)

The space Mϑ is defined as {y ∈ M : ||y||ϑ ≤ 1} and is clearly complete. Let the equation

y = Ty read in Mϑ:

∆λh = −
∑

k≤h
β
(λ)
k , δh = −

∑

k≤h
β
(δ)
k , νh = −

∑

k≤h
γ−(h−k+1)β

(ν)
k ,

logγ(Zh) =
h∑

k=0

Γk , logγ(Z
(2,σ)
h ) =

h∑

k=0

Γ
(2,σ)
k ,

(A5.5)

where, for h < 0, let
∑h
k=0

def
= −∑0

k=h.

Lemma A.5.2. There exist ε > 0, and c, c0, c1 > 0 such that there exists a (unique) solution

to (A5.5) in the space Mϑ, for c0 and c1 the constants in (A5.4), and c the constant in (3.4.1).

Furthermore, such a solution is analytic in λ.
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Proof . The equation makes sense since ||y||ϑ ≤ 1 and |λ| ≤ ε, together to the first of (A5.4),

for ε small enough, imply (3.3.14) and (3.3.15), and hence Lemma A.5.1.

The existence of a solution is consequence of the fact that T is a contraction from Mϑ into

itself. Indeed, because of the following arguments, if y ∈Mϑ, then Ty ∈Mϑ.

1. By inductive hypothesis and convergence of the graph expansion, there exists a constant

c2 ≥ 0, such that |zh−1| ≤ c2ε
2; hence, for ε small enough and c0 ≥ 2c2, it holds the

statement in (A5.4) regarding the field strength flow.

2. For the density strengths, by definitions (3.3.13), it is more convenient to define two new

strengths, ζ
(u)
k

def
= (ζ

(2,+)
k + ζ

(2,−)
k )/2 and ζ

(d)
k

def
= (ζ

(2,+)
k − ζ

(2,−)
k )/2, so that the their flows

are given by

ζ
(u)
h−1

ζ
(u)
h

=
Zh
Zh−1

(
1 + z

(2)
h−1 +∆z

(2,+)
h−1 +∆z

(2,−)
h−1

)
,

ζ
(d)
h−1

Z
(d)
h

=
Zh
Zh−1

(
1 + z

(2)
h−1 +∆z

(2,+)
h−1 −∆z

(2,−)
h−1

)
.

Then, an argument similar to the one of the previous item proves statement in (3.3.14)

regarding the density strengths.

3. For the flow of the effective coupling, the argument is more involved: it is based on a

cancellation, the vanishing of the Beta function, which exactly holds only in the limit

of removed cutoff. Let β
(T)
k (λk, . . . , λN ) be the sum of the graphs of β

(λ)
k which are

made only with diagonal propagators {g(E1),k
ω,ω }k and interactions V ; then, setting all

the arguments equal, let β
(T)
k (λk)

def
= β

(T)
k (λk, . . . , λk). As proved in 4.2.5, there exists a

constant c2 ≥ 0 such that |β(T)
k (λk)| ≤ c2ε

2γ−ϑ(N−k). Accordingly, it is convenient to

expand each coupling λm in the function β
(T)
k (λk, . . . , λN ) as λm = λk + (λm − λk), so

that the following decomposition of the whole Beta function holds:

β
(λ)
k =β

(T)
k (λk) +

N∑

m=k

β
(T,λ)
k,m (λm − λk) +

N∑

m=k

β
(R,λ)
k,m +

∑

a=δ,ν

N∑

m=k

β
(λ,a)
k,m am ,

where β
(T,λ)
k,m is the sum of the graphs in β

(T)
k (λk, . . . , λN ), with the replacement of the

all the couplings λn : k ≤ n < m with λk, and a coupling λm − λk on scale m put apart

from it; β
(R,λ,)
k,m is the sum of the graphs made with interactions V and with at least one

propagator g
(R1,m)
ω,ω on scale m; β

(λ,a)
k,m is the sum of the graphs with at least one coupling

am on scale m and only diagonal propagators g
(E1,m)
ω,ω – if a graph falls in more than

one category the assignment is arbitrary. By the convergence of power expansion in λ, as

stated in A.5.1, and the short memory property of the tree ordering, the following bounds

holds for the same constant c2 – if it is chosen large enough:

|β(T,λ)
k,m | ≤ c2εγ

−ϑ(m−k) , |β(R,λ)
k,m | ≤ γ−(3/4)(N−m)c2ε

2γ−ϑ(m−k) ,

|β(λ,a)
k,m | ≤ c2ε

2γ−ϑ(m−k) .



92 Appendix 5.

It is straightforward to conclude that, to obtain (A5.4) and (3.4.1), as far as the flow {λh}h
is regarded, c1 and c have to be chosen c ≥ 4c2(1−γ−(ϑ/2))−1 and c1 ≥ c(1−γ−(ϑ/2))−1.

4. Similarly, it is possible to decompose the Beta function for the couplings a = δ, ν:

β
(a)
k

def
=

N∑

m=k

β
(a,R)
k,m +

∑

b=ν,δ

N∑

m=k

β
(a,b)
k,m bm ,

where β
(a,R)
k,m contains all the graphs made only with interactions V and with at least one

diagonal propagator g
(R1,m)
ω,ω on scale m; whereas β

(a,b)
k,m is made with all the graphs with

an interaction b on scale m and only diagonal propagators g
(E1,m)
ω,ω – in ambiguous cases

the assignment is arbitrary. Again, by convergence of the power expansion in λ, and by

the short memory property of the tree ordering,

|β(a,2)
k,m | ≤ γ−ϑ(N−m)c2ε

2γ−ϑ(m−k) , |β(a,b)
k,m | ≤ c2ε

2γ−ϑ(m−k) ;

and since for ε small enough 5c2ε
2
(
1− γ−(ϑ/2)

)−1 ≤ 2ε, then (A5.4) holds also for what

concerns {δk}k and {νk}k.

Therefore Ty is in Mϑ for ε small enough; and, by Lemma A.5.1, if y is analytic in λ : |λ| ≤ ε,

then also Ty does. The next step is to prove that, taken any two y, y′ ∈ Mϑ, it holds

||Ty − Ty′||ϑ ≤ ρ||y − y′||ϑ, for a constant ρ < 1.

1. The variation of the Beta function β(λ) due to the variation of the y is given by:

β
(λ)
k − β′(λ)

k =

N∑

m=k

∆β
(λ)
k,m(λm − λ′m) +

N∑

m=k

β
(T,λ)
k,m

[
(λm − λk)− (λ′m − λ′k)

]

+
N∑

m=k

∆β
(λ,Z)
k,m

(
Zm−1

Zm
− Z ′

m−1

Z ′
m

)
+
∑

a=δ,ν

N∑

m=k

∆β
(λ,a)
k,m (am − a′m) ,

where ∆β
(λ)
k,m corresponds to a variation of the coupling λm in one of the two previously

defined β
(T)
k,m and β

(T,λ)
k,m ; the term ∆β

(λ,Z)
k,m is due to a variation one factor Zm−1/Zm;

and ∆β
(λ,a)
k,m to a variation of am. Since the power series of the variation has the same

domain of convergence of the Beta function itself, and since the vanishing of the Beta

function holds for each order of the power series, using also the short memory property,

the following bounds holds for a suitable constant c3 ≥ 0:

|∆β(λ)
k,m| ≤ γ−(ϑ/2)(N−k)c3εγ

−ϑ(m−k) , |∆β(λ,a)
k,m | ≤ c3ε

2γ−ϑ(m−k) ,

|∆β(λ,Z)
k,m | ≤ γ−(ϑ/2)(N−k)c3ε

2γ−ϑ(m−k) ,

where the factors γ−(ϑ/2)(N−k) in the first and third bound come from the bound on the

Beta function on its own, which has been made previously.
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2. The variation of the Beta functions {β(a)}a=ν,δ is given by:

β
(a)
k − β′(a)

k

def
=

N∑

m=k

∆β
(a,λ)
k,m (λm − λ′m) +

N∑

m=k

∆β
(a,Z)
k,m

(
Zm−1

Zm
− Z ′

m−1

Z ′
m

)

+
∑

b=ν,δ

N∑

m=k

∆β
(a,b)
h,m (bm − b′m) ,

where ∆β
(a,λ)
k,m is due to the variation of the coupling λm; ∆β

(a,Z)
k,m to the variation of the

ratio Zm−1/Zm; ∆β
(a,λ)
k,m to the variation of the coupling βm. And they holds the bounds:

|∆β(a,λ)
k,m | ≤ c3εγ

−ϑ(m−k)γ−(ϑ/2)(N−k) , |∆β(a,b)
h,k | ≤ c3ε

2γ−ϑ(m−k) ,

|∆β(a,Z)
k,m | ≤ γ−(ϑ/2)(N−k)c3ε

2γ−ϑ(m−k) .

3. The variation of the Gamma function of the field strength is

Γk − Γ′
k
def
=

N∑

m=k

∆Γ
(λ)
k,m(λm − λ′m) +

N∑

m=k

∆Γ
(Z)
k,m

(
Zm−1

Zm
− Z ′

m−1

Z ′
m

)

+
∑

b=ν,δ

N∑

m=k

∆Γ
(b)
h,m (bm − b′m) .

with clear justification of the various addends. Now, by the short memory property,

|∆Γ
(λ)
k,m| ≤ c3εγ

−ϑ(m−k) , |∆Γ
(Z)
k,m| ≤ c3ε

2γ−ϑ(m−k) ,

|∆Γ
(b)
k,m| ≤ c3εγ

−ϑ(m−k) .

4. Similar arguments hold for the field strengths.

By such bounds, the operator T is a contraction with rate ρ
def
= e2(c3c1 +2c2c1 + c3c0 +2c3): for

ε small enough, ρ < 1. The proof of the Lemma is obtained by the fixed point theorem with

analytic parameterization.

Once the flows y has been found, it is possible to consider the flow for the mass:

logγ(Zh) =
h∑

k=0

Γk , (A5.6)

restricted to the range 0 ≤ k ≤ N . In the remaining scales, h∗ ≤ k < 0, in fact, the flow is

determined directly, and not by an equation; and since h∗, in its turn, depends on the flow, it

is more convenient to exclude it from the fixed point theorem.

As for the other flow, it is defined the linear space M of the sequences

x
def
=
{
logγ(Zk) ∈ R : 0 ≤ k ≤ N

}
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such that

i. the initial datum is as in (A5.3).

Furthermore, such a space is endowed with the norm ||x||, the lowest real number such that

ii. for the same constant c0 in (A5.4), and for 0 ≤ k ≤ N ,

∣∣logγ(Zk−1/Zk)
∣∣ ≤ 2c0ε

2||x|| . (A5.7)

The equation x = Tx, which is defined to be (A5.6), can be solved in Mϑ, the subspace of

M of the sequences x with ||x|| ≤ 1, with the fixed point theorem.

Lemma A.5.3. There exists ε > 0 and the positive constant c0 such that there exists a (unique)

solution of (A5.6) in the space Mϑ, for c0 the constant in (A5.7).

1. If x ∈ Mϑ, then also Tx ∈ Mϑ by the following argument. The local part sh−1 is the

sum of the graphs with one antidiagonal propagator g
(E1,k)
ω,−ω or g

(R1,k)
ω,−ω . As consequence of

the convergence of the graphs expansion and of the dimensional bounds of sh−1, calling

sh−1,k the sum of all the graphs of sh−1 with g
(E1,k)
ω,−ω or g

(R1,k)
ω,−ω on scale k and divided by

µk/κγ
k,

sh−1
def
=

N∑

k=h

sh−1,k
µk
κγk

, with |sh−1,k| ≤ γh−1c2ε .

By (A5.7), for ε small enough, it holds (µk/µh) ≤ γ2c0ε(k−h) < γ(1/2)(k−h), and hence

mh−1 = (sh−1/µh) ≤ c1(1 − γ−(1/2))−1ε: since by (A5.4) γ−c0ε
2

(Zh−1/Zh) ≤ γc0ε
2

and

logγ(1 +mh−1) ≤
∣∣∣mh−1 ln(γ)

∫ 1

0
dt(1 + tmh−1)

−1
∣∣∣, it is straightforward to obtain that

γ−2c0ε ≤ (µh−1/µh) ≤ γ2c0ε for ε small enough and c0 ≥ 2c2(1− γ−(1/2))−1.

2. If x, x′ ∈ Mϑ, then ||Tx− Tx′|| ≤ ρ||x− x′||, for ρ < 1. Indeed, under variation of the

mass flow, – having fixed all the other flows –

Γk − Γ
′
k
def
=

N∑

m=k

∆Γ
(µ)

k,m

(
µm
µk

− µ′
m

µ′
k

)
.

Now, by the short memory property, and by (A5.7),

|∆Γ
(µ)

k,m| ≤ c3εγ
−ϑ(m−k) ,

∣∣∣∣
µm
µk

− µ′
m

µ′
k

∣∣∣∣ ≤ c4γ
(ϑ/2)(m−k) sup

n≥0

∣∣∣Γn − Γ
′
n

∣∣∣ ;

– indeed, |(µm/µk)− (µ′
m/µ

′
k)| ≤ max

{
(µm/µk), (µ

′
m/µ

′
k)
}
ln(γ)

∑m
n=k

∣∣∣Γn − Γ
′
n

∣∣∣, which,

by (A5.7), is less or equal to (4/ϑ) ln(γ)γ

(
2c0ε+(ϑ/4)

)
(m−k) supn

∣∣∣Γn − Γ
′
n

∣∣∣. Then the as-

sertion follows enlarging c0 chosen for the field strength to c0 ≥ c3c4(1− γ−(ϑ/2))−1.
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This proves the Lemma.

A5.3 Further properties of the Gamma functions. In order to complete the proof of

the Theorem 3.2, it is left to prove the existence of the critical indexes ηλ, η
(2)
λ and ηλ, which

only depends on the choice of λ and on the graphs that can be obtained using the diagonal

propagator {g(E1,h)
ω,ω } and the interaction V , and not from the mass, or from the regularization

of the model. Indeed, let it be inductively supposed that there exists a positive constant c2 such

that, for any k : h ≤ k ≤ N ,

Zk−1

Zk
= γΓ

(0)

k
+Γ

(1)

k , with |Γ(1)
k | ≤ c4ε

2γ−(ϑ/2)(N−k) , (A5.8)

while Γ
(0)
k is given in terms of graphs made only with the diagonal propagator {g(E1,h)

ω,ω } and the

interaction λV , and bounded, |Γ(0)
h | ≤ c2ε

2. Then, let the following decomposition be considered:

zh−1 =z
(0)
h−1 +

N∑

k=h

∆z
(λ)
h−1,k∆λk +

N∑

k=h

∆z
(Z)
h−1,k

(
Zk−1

Zk
− γΓ

(0)

k

)

+
N∑

k=h

∆z
(2)
h−1,k +

∑

a=δ,ν

N∑

k=h

∆z
(a)
h−1,kak ,

where z
(0)
h−1 is the sum of the graphs contributing to zh−1 which are made only with propa-

gators {g(E1,k)} and interactions V , with all the coupling {λk}k replaced by coupling λ and

all the ratios (Zk−1/Zk) replaced by γΓ
(0)

k ; ∆z
(λ)
h−1,k is due to the replacement of λk with

∆λk; ∆z
(Z)
h−1,k

[
(Zk−1/Zk)− γΓ

(0)

k

]
is the sum of the same graphs, but with at least a factor

(Zk−1/Zk)−γΓ
(0)

k in place of the ratio (Zk−1/Zk); ∆z
(2)
h−1 is the sum of the graphs which do not

contain interactions N or D, and have a propagator g(R1,k) on scale k; ∆z
(a)
h−1,k is the sum of

the graphs with an interaction a = δ, ν on scale k – whenever a graph falls in more than one of

the above categories, the assignment is made in arbitrary way. Because of the following bound

|z(0)h−1| ≤ c3ε
2 , |∆z(λ)h−1,k| ≤ c3ε

2γ−ϑ(k−h+1) , |∆z(Z)
h−1,k| ≤ c3ε

2γ−ϑ(k−h+1) ,

|∆z(2)h−1,k| ≤ γ−ϑ(N−k)c3ε
2γ−ϑ(k−h+1) , |∆z(a)h−1,k| ≤ c3ε

2γ−ϑ(k−h+1) ,

|∆λk| ≤ c1ε
2γ−(ϑ/2)(N−k) , |(Zk−1/Zk)− γΓ

(0)
k | ≤ 2c4ε

2γ−(ϑ/2)(N−k) ,

|ak| ≤ 2εγ−(ϑ/2)(N−k) ,

the property (A5.8) follows straightforwardly for c4 ≥ 5c3(1 + c1)(1− γ−(ϑ/2))−1 and

Γ
(0)
h

def
= logγ

(
1 + z

(0)
h−1

)
.

By construction, Γ
(0)
h is the sum of scaling invariant graphs: again using the fixed point theorem

theorem with analytic parameterization, it is possible to prove the existence of ηλ, limit for
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N → ∞ of Γ
(0)
h , analytic in λ and such that there exists a constant c5 for which

∣∣∣Γ(0)
h − ηλ

∣∣∣ ≤
c5ε

2γ−(ϑ/2)(N−h), and then the statements in (3.4.2) referring to the field strength flow holds

for c2 ≥ (c4 + c5)(1− γ−(ϑ/2))−1.

For the Gamma function of the mass a similar argument can be applied. Let it be inductively

supposed for any k : h ≤ k ≤ N that

µk
µk+1

= γΓ
(0)
k+1+Γ

(1)
k+1 , with |Γ(0)

k | ≤ c2ε , |Γ(1)

k | ≤ c4εγ
−(ϑ/2)(N−k) , (A5.9)

and Γ
(0)

k only made with the propagator {g(E1,k)}k and interactions λV . It follows that (µk/µh) =
γ−
∑

k−1

m=h
Γ
(0)
m +∆k,h with |∆k,h| ≤ c6εγ

−(ϑ/2)(N−k), for c6 ≥ 2c42(1−γ−ϑ)−1 and ε small enough.

Then, with a decomposition similar to the case of the field strength:

mh−1 =m
(0)
h−1 +

N∑

k=h

∆m
(λ)
h−1,k(λk − λ) +

N∑

k=h

∆m
(Z)
h−1,k

(
Zk−1

Zk
− γΓ

(0)

k

)

+
N∑

k=h

∆m
(1)
h−1,k∆k,h +

N∑

k=h

m
(2)
h−1,k +

∑

a=δ,ν

N∑

k=h

m
(a)
h−1,kak ;

where m
(0)
h−1 is the sum of the graphs made only with interactions λV , all the ratios {Zm−1/Zm}

replaced with γΓ
(0)
k , all the ratios {µm/µh} replaced with γ−

∑m−1

n=h
Γ(0)
n and all diagonal propaga-

tors g
(E1,k)
ω,ω on scale k ≥ h, except one, which is antidiagonal, g

(E1,k)
ω,−ω ; ∆m

(λ)
h−1,k is the sum of the

graphs of mh−1 with all the couplings {λm}m replaced, for m < k, by λ, and at a coupling λk
neglected; ∆m

(1)
h−1,k is the sum of the graphs in which one ratio µk/µh neglected. Then equation

(A5.9) holds true also in the case k = h− 1 for c4 large enough and

Γ
(0)

h
def
= Γ

(0)
h + logγ

(
1 +m

(0)
h−1

)
.

Finally, since Γ
(0)

k is given by scale invariant graphs, using the fixed point theorem with analytic

parameterization, it would be possible to prove the existence of an ηλ analytic in λ and such

that
∣∣∣Γ(0)

k − ηλ

∣∣∣ ≤ c5εγ
−ϑ(N−k) and the statements about the mass flow in (3.4.2) holds for

c2 ≥ (c5 + c4)(1− γ−ϑ)−1.

Finally, with similar arguments, it is straightforward to prove (3.4.3).



Appendix 6:

Proof of Lemma 4.2

By definition

U (i,j)
ω (k, p)

def
= Cω(k, p)ĝ

(i)
ω (k)ĝ(j)ω (p)

=fi(k)
(
1− χ−1

h,N(k)
) fj(p)

Dω(p)
− fj(p)

(
1− χ−1

h,N (k)
) fi(k)

Dω(k)
.

Setting:

uN (k)
def
=

{
0 for |k| < κγN

1− fN (k) for |k| ≥ κγN ,

uh(k)
def
=

{
0 for |k| ≥ κγh

1− fh(k) for |k| < κγh ,

the expansion of U
(i,j)
ω (k, p) in terms of

{
S
(i,j)
ω,σ (k, p)

}
σ=±

can be explicitly given in each of the

possible case.

1. For i = j = N ,

U (N,N)
ω (k, p) =

uN (p)fN(k)

Dω(k)
− uN (k)fN(p)

Dω(p)

=
∑

σ=±
Dσ(p− k)

[
δω,σ

uN (k)fN(p)

Dω(p)Dω(k)
+
fN (p)

Dω(k)

∫ 1

0

dτ
(
∂σuN

)(
p+ τ(k − p)

)

− uN (p)

Dω(k)

∫ 1

0

dτ
(
∂σfN

)(
k + τ(p− k)

)]

def
=
∑

σ=±
Dσ(p− k)S(N,N)

ω,σ (k, p) .
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2. For i = N and h < j < N :

U (N,j)
ω (k, p) = −uN (k)fj(p)

Dω(p)
.

Being that uN (p)fj(p) ≡ 0, it holds

U (N,j)
ω (k, p) =

∑

σ

Dσ(p− k)
fj(p)

Dω(p)

∫ 1

0

dτ
(
∂suN

)(
p+ τ(k − p)

)

def
=
∑

σ

Dσ(p− k)S(N,j)
ω,σ (k, p) .

3. For i = N and j = h

U (N,h)
ω (k, p) = −uN (k)fh(p)

Dω(p)
+
uh(p)fN(k)

Dω(k)
.

The first addend was already studied in point 2. For the second, the expansion is similar

to the first since uh(k)fn(k) ≡ 0; finally:

U (N,j)
ω (k, p) =

∑

σ

Dσ(p− k)

[
fj(p)

Dω(p)

∫ 1

0

dτ
(
∂suN

)(
p+ τ(k − p)

)

− fN (k)

Dω(k)

∫ 1

0

dτ
(
∂suN

)(
k + τ(p− k)

)]

def
=
∑

σ

Dσ(p− k)S(N,h)
ω,σ (k, p) .

4. For h < i < N and j = h:

U (i,h)
ω (k, p) =

uh(p)fi(k)

Dω(k)
.

Being that uh(k)fi(k) ≡ 0 it holds

U (N,j)
ω (k, p) =

∑

σ

Dσ(p− k)
fi(p)

Dω(p)

∫ 1

0

dτ
(
∂suh

)(
k + τ(p− k)

)

def
=
∑

σ

Dσ(p− k)S(N,j)
ω,σ (k, p) .

For i = j = h, expanding like in point 1

U (h,h)
ω (k, p) =

∑

σ=±
Dσ(p− k)

[
δω,σ

uh(k)fh(p)

Dω(p)Dω(k)

+
fh(p)

Dω(k)

∫ 1

0

dτ
(
∂σuh

)(
p+ τ(k − p)

)

− uh(p)

Dω(k)

∫ 1

0

dτ
(
∂σfh

)(
k + τ(p− k)

)]

def
=
∑

σ=±
Dσ(p− k)S(h,h)

ω,σ (k, p) .
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By inspection in each case, since for n = N,h it holds
∣∣∣
(
∂σfn

)
(k)
∣∣∣,
∣∣∣
(
∂σun

)
(k)
∣∣∣ ≤ cγ−n, it is

simply to get the following bound

∣∣∣
(
∂sik ∂

sj
p S

(i,j)
ω,σ

)
(k, p)

∣∣∣ ≤ cγ−i(1+si)−j(1+sj) .
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Proof of Theorems 4.1 and 4.4

It is natural to introduce the Beta functions also for the flow of the counterterms {ν(σ)N }σ=±,

and the coupling λ̃µN−1, generated in the multiscale integration of the generating functional

W(h)
T ,µ:

ν
(σ)
j−1 − ν

(σ)
j = β

(σ)
j (λj , νj ; . . . , λN , νN ) ,

λ̃
(µ)
j−1 − λ̃

(µ)
j = β̃

(µ)
j

(
λj , νj , λ̃

(µ)
j , z̃

(µ)
j ; . . . , λN , νN

)
.

It has to be remarked that the above Beta function are defined for the generating functionals

W(h)
A and W(h)

T ,µ with infrared cutoff h = −∞: this is not restrictive, since, by inspection of the

properties of the kernel U
(i,j)
ω , the flows obtained have the property that λ̃

(µ)
k and ν

(σ)
k , are,

in the range k : h + 1 ≤ k ≤ N , exactly equal to the effective coupling of such generating

functionals with infrared cutoff on scale h finite.

Proof of Theorem 4.1. Let Bϑ be the Banach space of all the finite sequences of vectors

x
def
=
{
(ν

(+)
j , ν

(−)
j ) : j ≤ N

}
s.t.

||x||ϑ
def
= max

σ=±,j≤N
|ν(σ)j |γ(ϑ/2)(N−j) ≤ c1ε .

In this space, it is possible to find a solution for the fixed point equation x = Tx, which explicitly

reads

ν
(σ)
j = −

j∑

m=−∞
β(σ)
m (x) (A7.1)
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(where the argument of the Beta function has been abridged); such a solution gives a choice of

{ν(σ)N }σ±, such that their flows {ν(σ)N }σ±h+1≤j≤N have the required decay property. Indeed, given

x, x′ ∈ Bϑ:

β(σ)
m (x)

def
= β

(σ,0)
m,N +

N∑

n=m

β(σ)
m,nν

(σ)
n , β(σ)

m (x)− β(σ)
m (x′)

def
=

N∑

n=m

β(σ)
m,n

(
ν(σ)n − ν′

(σ)
n

)
,

where β
(σ,0)
m,N is the localization of the sum of the graphs made with no interaction {ν(σ)k Aσ}k

and one propagator connecting the interaction A0 contracted on scale N ; whereas β
(σ)
m,n is the

localization of the sum of the graphs made with an interaction ν
(σ)
n Aσ , and deprived of ν

(σ)
n .

The following bounds hold:

∣∣∣β(σ,0)
m,N (x)

∣∣∣ ≤ c2εγ
−ϑ(N−m),

∣∣∣β(σ)
m,n

∣∣∣ ≤ c2εγ
−ϑ(n−m), (4.3.2)

Therefore, if x ∈ Bϑ, then also Tx ∈ Bϑ for ε small enough and if c1 ≥ 2c2(1 − γ−(ϑ/2))−1;

and ||x− x′|| ≤ Cε||Tx− Tx′|| for C > c2(1 − γ−(ϑ/2))−2, so that, for ε small enough, T is a

contraction in a Banach space; therefore there exists x ∈ Bϑ, solution of the fixed point equation,

with analytic parameterization in λ : |λ| ≤ ε.

Finally, since all the graphs contributing to β
(σ)
m , are scale invariant, by (A7.1) for j = N it

is easy to realize that {ν(σ)N }σ=± are constant in the scale of the cutoff, N : hence

ν
(σ)
N = ν

(σ)
N+1 = ν(σ) .

The proof of the theorem is completed.

Proof of Theorem 4.4. The strategy is based on the fixed point theorem as the previous proof.

Let x
def
=
{(
λ̃
(+)
j − α

(+)
N λj , λ̃

(−)
j − α

(−)
N λj

)
: j ≤ N

}
(with λ

(µ)
N = 0): the fixed point equation to

be solved in Bϑ/2 is x = Tx, which explicitly reads:

λ̃
(µ)
j − α

(µ)
N λj = −

j∑

m=−∞

(
β̃(µ)
m − α

(µ)
N βm

)
.

Given α
(µ)
N and α′(µ)

N such that both λ̃
(µ)
j − α

(µ)
N λj and λ̃

(µ)
j − α′(µ)

N λj are in Bϑ/2, it holds:

β̃(µ)
m − α

(µ)
N βm

def
= β̃

(µ,o)
m,N − α

(µ)
N λNβ

(λ)
m,N +

∑

σ=±

N∑

n=m

β̃(µ,σ)
m,n ν(σ)n

ZN
Zn

+
N−1∑

n=m

βm,n

(
λ̃(µ)n − α

(µ)
N λn

)
;

while

(
α′(µ)
N − α

(µ)
N

)
βm

def
=
(
α′(µ)
N − α

(µ)
N

)
λNβ

(λ)
m,N +

N−1∑

n=m

βm,n

(
α′(µ)
N − α

(µ)
N

)
λn ;
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where β̃
(µ,o)
m,N is the sum of the graphs made with an interaction Ao, contracted on scale N ;

β̃
(µ,σ)
m,n is the sum of the graphs with an interaction T (µ)

σ on scale n, deprived of the coupling

ν
(σ)
n (ZN/Zn); b

(λ)
m,N is the sum of the graphs contributing to he flow of α

(µ)
N λm which have an

interaction B(3) on scale N , deprived of the coupling α
(µ)
N λN ; βm,n is the sum of the graphs

contributing to the flow of α
(µ)
N λm with an interaction B(3) on scale n, deprived of the coupling

α
(µ)
N λn. Since the following bounds hold,

|β̃(µ,o)
m,N |, |β(λ)

m,N | ≤ c2εγ
−ϑ(N−m) , |β̃(µ,σ)

m,n | ≤ c2ε
2γ−ϑ(n−m) , |βm,n| ≤ c2εγ

−ϑ(n−m) ,

if x ∈ Bϑ/2, also Tx ∈ Bϑ/2, for ε small enough and c1 ≥ 2c2(1 − γ−(ϑ/4))−1; moreover,m for

C > 2c2(1 − γ−(ϑ/4))−2, ||x− x′||ϑ/2 ≤ Cε||Tx− Tx′||ϑ/2 so that, for ε small enough, T is a

contraction: by the fixed point theorem, the solution of such an equation exists and is in Bϑ/2.
As consequence, since

z̃
(µ)
j − α

(µ)
N zj = z̃

(µ,o)
j,N − α

(µ)
N λNz

(λ)
j,N +

∑

σ=±

N∑

n=j

z̃
(µ,σ)
j,n ν(σ)n

ZN
Zn

+
N−1∑

n=j

zj,n

(
λ̃(µ)n − α

(µ)
N λn

)
,

where z̃
(µ,o)
j,N is the sum of the graphs made with an interaction Ao, contracted on scale N ;

z̃
(µσ)
j,n is the sum of the graphs with an interaction T (µ)

σ on scale n, deprived of the coupling

ν
(σ)
n (ZN/Zn); z

(λ)
j,N is the sum of the graphs contributing to the flow of α

(µ)
N zj which have an

interaction B(3) on scale N , deprived of the coupling α
(µ)
N λN ; zm,n is the sum of the graphs

contributing to the flow of α
(µ)
N zj with an interaction B(3) on scale n, deprived of the coupling

α
(µ)
N λn. Since the following bounds hold,

|z̃(µ,o)j,N |, |z(λ)j,N | ≤ c2εγ
−ϑ(N−j) , |z̃(µ,σ)j,n | ≤ c2ε

2γ−ϑ(n−j) , |zj,n| ≤ c2εγ
−ϑ(n−j) ,

also
{
(z̃

(+)
j − α

(+)
N zj , z̃

(−)
j − α

(−)
N zj)

}
j
∈ Bϑ/2. Finally, since all the graphs contributing to

{λ̃(µ)m }m and to {λm}m are scale invariant,

α
(µ)
N = α

(µ)
N+1 = α(µ) .

The proof of the theorem is completed.





Appendix 8:

Schwinger-Dyson equation

A8.1 Functional derivation. By decomposing the fermionic fields ψ+
k,ω −→ ψ+

k,ω + β̂k,ω, it

holds:

W(h)(, ϕ) =W(h)
B (β, , ϕ) +

∑

ω=±

∫

D

d2k

(2π)2
β̂k,ωϕ̂

−
k,ω

−
∑

ω=±

∫

D

d2k

(2π)2
β̂k,ωDω(k)

[
1 + ZN

(
χ−1
h,N (k)− 1

)] ∂W
∂ϕ̂+

k,ω

(, ϕ) + O(β2) ,

(A8.1)

where W(h)
B is the following functional with the further source field β:

eW
(h)
B (β,,ϕ)def=

∫
dP [h,N ](ψ) exp

{
−lNV(ψ) + Z

(2)
N J (, ψ) + F(ϕ,ψ)

}

exp
{
−lNB(3)(β,ψ) + Z

(2)
N B(2)(β, , ψ) − zNB(1)(β,ψ)

}
,

with:

B(3)(β,ψ)
def
=
∑

ω=±

∫

D

d2k

(2π)2
d2p

(2π)2
d2q

(2π)2
β̂p+k−q,ωψ̂

−
p,ωψ̂

+
q,−ωψ̂

−
k,−ω ,

B(2)(β, , ψ)
def
=
∑

ω=±

∫

D

d2k

(2π)2
d2p

(2π)2
β̂k,ω̂p−k,ωψ̂

−
p,ω ,

B(1)(β,ψ)
def
=
∑

ω=±

∫
d2k

(2π)2
β̂k,ωDω(k)ψ̂

−
k,ω .
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Therefore, extracting the linear part of (A8.1), for k : γhκ ≤ |k| ≤ γNκ (so that χ−1
h,N (k)−1 = 0),

it yield the SDe:

ĝ−1
ω (k)

∂WB
∂ϕ̂+

k,ω

(0, , ϕ) = ϕ̂−
k,ω +

∂WB

∂β̂k,ω
(0, , ϕ) . (A8.2)

Now, writing the last derivative in terms of the derivative of W – but loosing in this way the

evidence of the renormalization of composite operators – and multiplying both members by

eW
(h)

in order to shorten the equations, it simply holds (4.3.3) . By derivatives in the sources ̂

and ϕ̂, for ̂ = ϕ̂ = 0, such an equation generates all the SDe: for instance, taking a derivative

in ϕ̂−
k,ω gives (1.1.12).



Appendix 9:

Lowest Order Computations

It is interesting to calculate the lowest order expansion of the anomalies. The computation

of the anomaly of the WTi shows a violation of the Adler-Bardeen theorem: the correction to

the classical identity is not linear in the coupling, but has at least also a non-vanishing second

order term. Then, the computation of the anomaly of the CE – made in a quite approximate

way – would imply the incorrectness of the Johnson solution.

A9.1 WTi anomaly Simplifying the notations, let χ(k)
def
= χ0(k) and u(k)

def
= u0(k). A useful

identity is

Uω(k, k + p) =

{
u(k + p)

χ(k)

Dω(k)
− u(k)

χ(k + p)

Dω(k + p)

}

= Dω(p)

{
u(k + p)χ(k)

Dω(k + p)Dω(k)
−
∫ 1

0

dτ

(
∂ωχ

)
(k + τp)

Dω(k + p)

}

−D−ω(p)
∫ 1

0

dτ

(
∂−ωχ

)
(k + τp)

Dω(k + p)
.

To simplify the computations, it is performed the following modification to the shape of the

cutoff which, as can be easily checked, it completely harmless to the development done in the

previous Chapters. Let χ(k)
def
= χ̂(|k|), and χ̂(t) is a Gevrey function with compact support

{t : |t| ≤ κγNγ0}, for γ0 : 1 < γ0 < γ, and equal to 1 in {t : |t| ≤ κγN}.

1. Computation of ν(−). The lowest order expansion of ν(−) is given by only one Feynman
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graph, which can be computed exactly:

ν(−) =

∫
d2k

(2π)2
(∂−ωχ)(k)

Dω(k)
= − 1

4π

∫ ∞

0

dt χ̂′(t) =
1

4π
.

where it was used that (∂−ωχ)(k)/Dω(k) = −(1/2|k|)χ̂′(k).

�! �!!! �!
Fig 12: Graphical representation of the lowest order contribution to ν(−)

2. Computation of ν(+). Also the lowest order contribution to ν(+) is given by only one

Feynman graph:

∫
d2p

(2π)2

{
u(p)χ(p)

Dω(p)Dω(p)
−
(
∂ωχ

)
(p)

Dω(p)

}∫
d2k

(2π)2
ĝ−ω(k)ĝ−ω(p+ k)

=

∫
d2p

(2π)2

{
u(p)χ(p)−Dω(p)

(
∂ωχ

)
(p)

p4

}∫
d2k

(2π)2
χ(k)χ(p+ k)

k2(k + p)2
D2

−ω(p)Dω(k)Dω(k + p) .

(A9.1)

The explicit computation is not so simple as the previous; anyway it is possible to prove it

is strictly non-zero. Since −Dω(p)
(
∂ωχ

)
(p) = −(|p|/2)χ̂′(|p|) ≥ 0, as well as u(p)χ(p) ≥ 0,

while, calling ϑ the angle between p and k and ξ
def
= (|k|/|p|),

D2
−ω(p)Dω(k)Dω(k + p) = |k||p|3

[
cos(ϑ) + ξ cos(2ϑ)

]
def
= |k||p|3Jξ(ϑ) ,

up to a pure imaginary contribution which integrated gives zero by symmetries. Now,

since by support of the cutoff functions |k| ≤ γ0 and 1 ≤ |p| ≤ γ0, then cos(ϑ) < 1/2

if γ0 is chosen ≤ 3/2. Hence, J1(ϑ) =
[
cos(ϑ) − (1/2)

][
cos(ϑ) + 1

]
< 0, except for

ϑ = ±(π/3), π, where it vanishes. Then, the integral over ϑ of Jξ(ϑ) is continuous in ξ,

and strictly negative for ξ = 1; therefore it remains strictly negative also for ξ = |k|/|p|,
if γ0 − 1 ≥ |k|/|p| − 1 is small enough. Therefore, for such values of γ0, the lowest order

contribution to ν(+) is strictly negative.
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�! !! �!!!�!
Fig 13: Graphical representation of the lowest order contribution to ν(+)

A9.2 CE anomaly. From (1.1.18), and since a − a = O(λ), while a + a = 1 + O(λ2), the

contribution O(λ) to A is proportional to the terms O(1) of α(−) − σ(−).

1. The 0-th order of α(−) is given by two graphs with values cancelling each other.

2. There is no possible graph for σ(−) at the 0-th order, since there are no possible tadpoles.

��!! �!�! ! �
�!!�! �! !

Fig 14: Graphical of item 1

Well then, A = 1 + O(λ2). Then, the quadratic order in λ comes from the linear order of

α(−) − σ(−), and the O(1) order of α(+) − σ(+).

1. There are more than one Feynman graphs contributing to the linear order of α(−).

• First graph. A first contribution are the two graphs with all and three external leg

of T involved: they are two, with the same value. Furthermore, the factor 1/2! of the

expansion of the interaction is compensated by multiplicity obtained by exchanging the

labels to the two vertices V of each graph. Therefore the sum of them gives the first

graph:

2

∫
d2k

(2π)2
d2p

(2π)2
U−ω(k, k + p)

D−ω(p)
gω(p+ k)gω(k)

=− 2

∫
d2p

(2π)2
χ(p)

p2

∫
d2k

(2π)2
u(k)χ2(k + p)

(p+ k)2

− 2

∫
d2p

(2π)2
χ(p)

p2

∫
d2k

(2π)2
u(k + p)χ(k + p)χ(k)

D−ω(k)Dω(p+ k)
.



110 Appendix 9.

The latter addend is vanishing in the limit γ0 → 1. The former is convergent. Indeed:

∫

|p|≤1/2

d2p

(2π)2
χ(p)

p2

∫
d2k

(2π)2
u(k)χ2(k + p)

(p+ k)2

=

∫

|p|≤1/2

d2p

(2π)2
χ(p)

p2

∫
d2k

(2π)2
u(k)(χ2(k + p)− χ2(k))

(p+ k)2
,

and |p+ k| ≥ |k| − |p| ≥ 1/2; while

∫

|p|>1/2

d2p

(2π)2
χ(p)

p2

∫
d2k

(2π)2
u(k)χ2(k + p)

(p+ k)2

=

∫

|p|>1/2

d2p

(2π)2
(χ(p)− χ(k))

p2

∫
d2k

(2π)2
u(k)χ2(k + p)

(p+ k)2
.

�! �!!�! �!!�! !
Fig 15: First graph

• Second graphs. The second contribution is given by the graph

−
∫

d2p

(2π)2
d2k

(2π)2
gω(p)gω(p)

U−ω(k, k + p)

D−ω(p)

=

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

{
− u(k + p)χ(k)

D−ω(k + p)D−ω(k)
+

∫ 1

0

dτ

(
∂−ωχ

)
(k + τp)

D−ω(k + p)

}

+

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)D−ω(p)

∫ 1

0

dτ

(
∂ωχ

)
(k + τp)

D−ω(k + p)
;

and, subtracting the graph containing the counterterm ν
(−)
N ,

∫
d2p

(2π)2
χ2(p)

Dω(p)D−ω(p)

∫
d2k

(2π)2

(
∂ωχ

)
(k)

D−ω(k)

the last addend is convergent; while the first two terms are convergent automatically:

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

u(k + p)χ(k)

D−ω(k + p)D−ω(k)

=

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

{
u(k + p)χ(k)

D−ω(k + p)D−ω(k)
− u(k)χ(k)

D−ω(k)D−ω(k)

}
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∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

∫ 1

0

dτ

(
∂−ωχ

)
(k + τp)

D−ω(k + p)

=

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

∫ 1

0

dτ

{(
∂−ωχ

)
(k + τp)

D−ω(k + p)
−
(
∂−ωχ

)
(k)

D−ω(k)

}

since the subtracted terms are zero by transformation under rotation.

�! �!!�! �!!
�! !
��!! !! �!

Fig 16: Second graphs

• Vanishing graphs. There are four graphs subleading in the limit γ0 → 1: their total

value is the double of the two vanishing graphs

�
�!!�! !�! ! �! ��!! �!�! !�! !
�

�!! �! !�!�! ! ��!! �!!�!�! !
Fig 17: Vanishing graphs

2. The linear order of σ(−) is given by only one graph.

• Third graph. Such graph is very similar to the previous: it is given by the the second
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graph, with the replacement of g2ω(p) with (∂ωgω)(p):

−
∫

d2p

(2π)2
d2k

(2π)2
(∂ωgω)(p)

U−ω(k, k + p)

D−ω(p)

=

∫
d2p

(2π)2
d2k

(2π)2

[
(∂ωχ)(p)

Dω(p)
− χ(p)

Dω(p)Dω(p)

]{
− u(k + p)χ(k)

D−ω(k + p)D−ω(k)

+

∫ 1

0

dτ

(
∂−ωχ

)
(k + τp)

D−ω(k + p)

}

+

∫
d2p

(2π)2
d2k

(2π)2

[
(∂ωχ)(p)

D−ω(p)
− χ(p)

Dω(p)D−ω(p)

]∫ 1

0

dτ

(
∂ωχ

)
(k + τp)

D−ω(k + p)
;

and, subtracting the graph containing the counterterm ν(−),

∫
d2p

(2π)2

[
(∂ωχ)(p)

D−ω(p)
− χ(p)

Dω(p)D−ω(p)

] ∫
d2k

(2π)2

(
∂ωχ

)
(k)

D−ω(k)

�! !�! �! ! �! ! !
Fig 19: Third graph

the last addend is convergent.

3. The 0-th order of α(+) is given by only one graph, which is subleading: it vanishes in the

limit γ0 → 1.

��!! !! �!
Fig 20: Graph in item 3.

4. The 0-th order of σ(+) is only given by a tadpole.

• Fourth graph. It derives from the tadpole of T
(+)
0 : for any N ′ ≥ 2

∫
d2q

(2π)2
uN (q)χN+N ′(k − q)

D−ω(k − q)
;
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the localization of this term is the extraction of the zeroth and first order Taylor expansion

in the external momentum k: the former is clearly summable and zero by symmetries;

the latter is: ∫
d2q

(2π)2
u(q)

(
∂ωχN ′

)
(q)

D−ω(q)
=

∫
d2q

(2π)2
u−N ′(q)(∂ωχ)(q)

D−ω(q)
.

�! ! !
Fig 21: Fourth graph

A9.3 Explicit computation. To make the computation easier, the cutoff is chosen to be a

distribution

χ(k)
def
= f(k0)f(k1) , for f(x)

def
= ϑ(x+ 1)− ϑ(x− 1) .

Then f ′(x) = δ(x + 1) − δ(x − 1). Since, by definition of Dω(k), it holds k0 = (i/2)
[
Dω(k) +

D−ω(k)
]
while k1 = (ω/2)

[
Dω(k)−D−ω(k)

]
, then:

(
∂ωχ

)
(k) =

i

2
f ′(k0)f(k1) +

ω

2
f(k0)f

′(k1) .

It is suitable to remark that the above choice of the cutoff function, in contrast with what

done for the anomaly of the WTi, is not allowed in the developments of the previous Chapter.

Furthermore the computation of the following integrals is not exact, but rather is performed

with a simple Montecarlo simulation. That is way the incorrectness is not proved, but it has to

be considered as a conjecture, enforced by such a calculation.

• F. For the first graph it holds:

F
def
= − 2

∫
d2p

(2π)2
χ(p)

p2

∫
d2k

(2π)2
u(k)χ2(k + p)

(p+ k)2

=− 2

(2π)4

∫ 1

−1

dp0dp1
1

p2

∫ 1

−1

dk0dk1
1− f(k0 − p0)f(k1 − p1)

k2
= 52.64

1

(2π)4
.

• S. Calling pτ = (1− τ)p, for the second graph it holds:

Sa
def
=

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

u(k + p)χ(k)

D−ω(k + p)D−ω(k)

=
2

(2π)4

∫ 1

−1

dp0dp1
(p20 − p21)

p4

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 + p1)

(k + p)2
(k0 + p0)

k0
k2

+
4

(2π)4

∫ 1

−1

dp0dp1
p0p1
p4

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 + p1)

(k + p)2
(k1 + p1)

k0
k2

.
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Finally:

Sa1
def
=

2

(2π)4

∫ 1

−1

dp0dp1
(p20 − p21)

p4

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 + p1)

(k + p)2
(k0 + p0)

k0
k2

= 2.69
1

(2π)4
,

Sa2
def
=

4

(2π)4

∫ 1

−1

dp0dp1
p0p1
p4

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 + p1)

(k + p)2
(k1 + p1)

k0
k2

= 0.29
1

(2π)4
.

The second addend of the second graph is:

Sb
def
=

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)Dω(p)

∫ 1

0

dτ

(
∂−ωχ

)
(k + τp)

D−ω(k + p)

=−
∫

d2p

(2π)2
χ2(p)

p4
D2

−ω(p)
∫ 1

0

dτ

∫
d2k

(2π)2

(
∂−ωχ

)
(k)

(k + pτ )
2 Dω (k + pτ )

=

∫
d2p

(2π)2
χ2(p)

p4
(p20 − p21)

∫ 1

0

dτ

∫
d2k

(2π)2
(k0 + pτ0)f

′(k0)f(k1)

(k + pτ )
2

+ 2

∫
d2p

(2π)2
χ2(p)

p4
p0p1

∫ 1

0

dτ

∫
d2k

(2π)2
(k1 + pτ1)f

′(k0)f(k1)

(k + pτ )
2

=
2

(2π)4

∫ 1

−1

dp0dp1
p20 − p21
p4

∫ 1

0

dτ

∫ 1

−1

dk1
pτ0 − 1

(pτ0 − 1)
2
+ (pτ1 + k1)

2

+
4

(2π)4

∫ 1

−1

dp0dp1
p0p1
p4

∫ 1

0

dτ

∫ 1

−1

dk1
pτ1 + k1

(pτ0 − 1)
2
+ (pτ1 + k1)

2 .

The third addend of the second graph is

Sc
def
=

∫
d2p

(2π)2
d2k

(2π)2
χ2(p)

Dω(p)D−ω(p)

∫ 1

0

dτ

(
∂ωχ

)
(k + τp)

D−ω(k + p)

=

∫
d2p

(2π)2
χ2(p)

p2

∫ 1

0

dτ

∫
d2k

(2π)2

(
∂ωχ

)
(k)

(pτ + k)2
Dω(p

τ + k)

=

∫
d2p

(2π)2
χ2(p)

p2

∫ 1

0

dτ

∫
d2k

(2π)2
(pτ0 + k0)f

′(k0)f(k1)
(pτ + k)2

=
2

(2π)4

∫ 1

−1

dp0dp1
1

p2

∫ 1

0

dτ

∫ 1

−1

dk1
(pτ0 − 1)

(pτ0 − 1)
2
+ (pτ1 + k1)

2 ;

and its regularization is obtained by subtracting the ∞ term

− 2

(2π)4

∫ 1

−1

dp0dp1
1

p2

∫ 1

−1

dk1
1

1 + k21
.

Therefore:

Sc
def
=

2

(2π)4

∫ 1

−1

dp0dp1
1

p2

∫ 1

0

dτ

∫ 1

−1

dk1

[
(pτ0 − 1)

(pτ0 − 1)
2
+ (pτ1 + k1)

2 +
1

1 + k21

]
.
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Setting Sd
def
= Sb+ Sc finally:

Sd1
def
= − 4

(2π)4

∫ 1

−1

dp0dp1
p21
p4

∫ 1

0

dτ

∫ 1

−1

dk1

[
pτ0 − 1

(pτ0 − 1)
2
+ (pτ1 + k1)

2 +
1

1 + k21

]

= −0.49
1

(2π)4
,

Sd2
def
=

4

(2π)4

∫ 1

−1

dp0dp1
p0p1
p4

∫ 1

0

dτ

∫ 1

−1

dk1

[
pτ1 + k1

(pτ0 − 1)
2
+ (pτ1 + k1)

2 − k1
1 + k21

]

= 0.0056
1

(2π)4
.

• T. For the third graph it holds:

Ta
def
=

∫
d2p

(2π)2
d2k

(2π)2
(∂ωχ)(p)

Dω(p)

u(k + p)χ(k)

D−ω(k + p)D−ω(k)

=
2

(2π)4

∫ 1

−1

dp0
1

p20 + 1

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 − 1)

(k0 + p0)2 + (k1 − 1)2
(k0 + p0)

k0
k2

− 2

(2π)4

∫ 1

−1

dp1
1

1 + p21

∫ 1

−1

dk0dk1
1− f(k0 − 1)f(k1 + p1)

(k0 − 1)2 + (k1 + p1)2
(k0 − 1)

k0
k2

+
2

(2π)4

∫ 1

−1

dp1
p1

1 + p21

∫ 1

−1

dk0dk1
1− f(k0 − 1)f(k1 + p1)

(k0 − 1)2 + (k1 + p1)2
(k1 + p1)

k0
k2

+
2

(2π)4

∫ 1

−1

dp0
p0

p20 + 1

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 − 1)

(k0 + p0)2 + (k1 − 1)2
(k1 − 1)

k0
k2

.

Finally

Ta1
def
=

2

(2π)4

∫ 1

−1

dp0
1

p20 + 1

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 − 1)

(k0 + p0)2 + (k1 − 1)2
(k0 + p0)

k0
k2

= 1.96
1

(2π)4
,

Ta2
def
= − 2

(2π)4

∫ 1

−1

dp1
1

1 + p21

∫ 1

−1

dk0dk1
1− f(k0 − 1)f(k1 + p1)

(k0 − 1)2 + (k1 + p1)2
(k0 − 1)

k0
k2

= −4.1
1

(2π)4
,

Ta3
def
= +

2

(2π)4

∫ 1

−1

dp1
p1

1 + p21

∫ 1

−1

dk0dk1
1− f(k0 − 1)f(k1 + p1)

(k0 − 1)2 + (k1 + p1)2
(k1 + p1)

k0
k2

= −0.28
1

(2π)4
,

Ta4
def
= +

2

(2π)4

∫ 1

−1

dp0
p0

p20 + 1

∫ 1

−1

dk0dk1
1− f(k0 + p0)f(k1 − 1)

(k0 + p0)2 + (k1 − 1)2
(k1 − 1)

k0
k2

= 0.11
1

(2π)4
.
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The second addend of the third graph is

Tb
def
=

∫
d2p

(2π)2
d2k

(2π)2
(∂ωχ)(p)

Dω(p)

∫ 1

0

dτ

(
∂−ωχ

)
(k + τp)

D−ω(k + p)

=

∫
d2p

(2π)2
(∂ωχ)(p)

p2
D−ω(p)

∫ 1

0

dτ

∫
d2k

(2π)2

(
∂−ωχ

)
(k)

(k + pτ )
2 Dω (k + pτ )

=
1

2

∫
d2p

(2π)2
f ′(p0)f(p1)p0 − f(p0)f

′(p1)p1
p2

∫ 1

0

dτ

∫
d2k

(2π)2
(k0 + pτ0)f

′(k0)f(k1)

(k + pτ )
2

+
1

2

∫
d2p

(2π)2
f ′(p0)f(p1)p1 + f(p0)f

′(p1)p0
p2

∫ 1

0

dτ

∫
d2k

(2π)2
(k1 + pτ1)f

′(k0)f(k1)

(k + pτ )2
;

Tc
def
=

∫
d2p

(2π)2
d2k

(2π)2
(∂ωχ)(p)

D−ω(p)

∫ 1

0

dτ

(
∂ωχ

)
(k + τp)

D−ω(k + p)

=

∫
d2p

(2π)2
(∂ωχ)(p)Dω(p)

p2

∫ 1

0

dτ

∫
d2k

(2π)2

(
∂ωχ

)
(k)

(pτ + k)2
Dω(p

τ + k)

=
1

2

∫
d2p

(2π)2
f ′(p0)f(p1)p0 + f(p0)f

′(p1)p1
p2

∫ 1

0

dτ

∫
d2k

(2π)2
(pτ0 + k0)f

′(k0)f(k1)

(pτ + k)2

+
1

2

∫
d2p

(2π)2
f ′(p0)f(p1)p1 − f(p0)f

′(p1)p0
p2

∫ 1

0

dτ

∫
d2k

(2π)2
(pτ0 + k0)f(k0)f

′(k1)
(pτ + k)2

.

Setting Td
def
= Tb + Tc, some cancellation occurs:

Td
def
=

∫
d2p

(2π)2
d2k

(2π)2
(∂ωχ)(p)

D−ω(p)

∫ 1

0

dτ

(
∂ωχ

)
(k + τp)

D−ω(k + p)

=

∫
d2p

(2π)2
(∂ωχ)(p)Dω(p)

p2

∫ 1

0

dτ

∫
d2k

(2π)2

(
∂ωχ

)
(k)

(pτ + k)2
Dω(p

τ + k)

=

∫
d2p

(2π)2
f ′(p0)f(p1)p0

p2

∫ 1

0

dτ

∫
d2k

(2π)2
(pτ0 + k0)f

′(k0)f(k1)
(pτ + k)2

+

∫
d2p

(2π)2
f(p0)f

′(p1)p0
p2

∫ 1

0

dτ

∫
d2k

(2π)2
(pτ1 + k1)f

′(k0)f(k1)

(pτ + k)2

Therefore:

Td1
def
=

2

(2π)4

∫ 1

−1

dp1
1

1 + p21

∫ 1

0

dτ

∫ 1

−1

dk1

[
τ

τ2 + (pτ1 + k1)
2

− τ − 2

(τ − 2)2 + (pτ1 + k1)
2
− 2

1 + k21

]
= 0.86

1

(2π)4
,

Td2
def
=

4

(2π)4

∫ 1

−1

dp0
p0

p20 + 1

∫ 1

0

dτ

∫ 1

−1

dk1

[
1− τ + k1

(pτ0 + 1)
2
+ (1− τ + k1)

2 − k1
1 + k21

]

= −0.62
1

(2π)4
.
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• Q.Regarding the fourth graph, since (∂ωχ0)(q) = −
(
1/2|q|

)
χ′
0(q)D−ω(q), and since

when χ′
0(q) 6= 0, u−N ′(q) ≡ 1, the last integral is equal to

−1

2

∫
d2q

(2π)2
χ′
0(q)

|q| = −1

2

1

4π
χ0(q)

∣∣∣∣
q=γ

q=1

=
1

8π
,

independently on the scale N ′ and on the shape of the function χ. Such a contribution

has to be multiplied times (a− a)/2 = ν(−) +O(λ2) = π
(2π)2

, obtaining

6.18
1

(2π)2
.

In the end, the quadratic coefficient of the second anomaly, A, is non zero, and in particular

≥ 18/(2π)4 .
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