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AbstratWe onsider the problem of the splitting of invariant hyperboli manifolds for lose to integrable,Hamiltonian systems and onsequently \ Arnold di�usion".Following Chierhia- Gallavotti:Drift and di�usion in phase spae and Gallavotti: Twistless KAMtori, quasi at homolini intersetions... we work on a Hamiltonian whih is a model for smallanalyti perturbations of stable, integrable Hamiltonian system near a simple resonane. We will allthe small perturbation parameter ".Roughly speaking the model Hamiltonian represents a set of n � 2 rotators and loks, weakly ("Pwith P > 2) oupled to a generalized pendulum with Lyapunov exponent p".Namely if I;  2 Rn � Tn, p; q 2 R �T are pairs of onjugate ation-angle variables, a set of rotatorsand loks is given by a quadrati Hamiltonian of the type: IA(")I+b(")I where A(") is semi-positivede�nite and lim"!0A(") = A.Finally a generalized pendulum is a two dimensional Hamiltonian system H(p; q) = 12p2+"F (q), withF (q) analyti on T, having p = q = 0 as the only unstable �xed point on the energy level E = 0.The initial data and the matries A("); b(") are suitably hosen so that there are are at least threerelevant time sales for the unoupled system: namely there will be m 6= 0 order one (fast) frequenies,n�m slow frequenies of order " 12+a (with a � 12 ) and �nally the Lyapunov exponent of the pendulump".KAM-like results show that the presene of the small ("P with P > 2) oupling term preserves aset of n dimensional unstable tori together with their n + 1 dimensional loal stable and unstablemanifolds. In general suh manifolds interset in a urve; proving suh intersetion and evaluatingthe transversality of the manifolds is the so alled problem of homolini splitting whih is the basisfor proving Arnold instability.The thesis is mostly dediated to the study of upper and lower bounds for the determinant of thesplitting matrix, whih is a measure of the \angles " of the homolini splitting.We use perturbative theory and in partiular, following Gallavotti:Twistless KAM tori, quasi athomolini intersetions..., and Gallavotti, Gentile, Mastropietro: Separatrix splitting for systemswith three time sales we onstrut a suitable tree representation to evidene the anellations in theperturbative expansion of the splitting determinant.The main results are:1) We prove that the splitting determinant is exponentially small in ", for systems interating throughan analyti funtion depending only on the angle variables.We present two alternative methods of proving the assertion, one is diret, using the anellations;while the seond (following the strategy of Berti, Bolle: A funtional analysis approah to Arnolddi�usion) onstruts perturbatively a suitable set of oordinates, where the generating funtion of thesplitting has a simpler form whih implies that the the splitting determinant (whih is the Hessian ofthe generating funtion at the intersetion point) is smaller that any power of ".2) We give lower bounds for systems with one fast variable (m = 1) and satisfying a set of onditionswhih are suÆient to prove that the �rst order of perturbation in the splitting determinant (theMelnikov term) dominates, thus providing a lower bound.3) We �nd lower and upper bounds on the splitting determinant for \D'Alembert like" Hamiltonianssimilar to those proposed in Gallavotti, Gentile, Mastropietro: Hamilton-Jaobi equation and existeneof heterolini hains in three time sales systems. Suh Hamiltonians arry a \large" (i.e. order ")unimodal perturbation.For ompleteness the last hapter is dediated to showing the onstrution of the transition hainsfor systems where the Melnikov term dominates.
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IntrodutionGeneralities and a lass of modelsThe problem of the stability under perturbations of dynamial systems is a \funda-mental" problem of lassial mehanis (as formulated by Poinar�e in [P℄).For integrable Hamiltonian systems with n degrees of freedom, it was long believed(up to the 50'ies) that maximal (i.e. n dimensional) invariant tori were usually de-stroyed by most perturbations1. This was disproved for non-degenerate Hamiltonians2in the theorem by Kolmogorov, proved in full detail by Arnol'd for real-analyti owsand for smooth maps by Moser. The Kolmogorov, Arnold, Moser (KAM for short)theorem states that those invariant tori with suÆiently inommensurate (diofantine3)frequenies !(I), persist for suÆiently small perturbations of a non-degenerate inte-grable system. Suh tori form a set of positive measure in the phase spae, and asthe system approahes to integrable the measure of the omplementary set approaheszero4.One expets that the, dense but zero measure, set of maximal tori of the unperturbedsystem with ommensurate frequenies is not preserved, in general, under perturbationsno matter how small.Suh sets of tori with ommensurate frequenies are alled \resonant". In partiular1Some standard de�nitions: An n degrees of freedom Hamiltonian system is haraterizedby a Hamiltonian funtion h de�ned on a 2n�dimensional manifold M endowed with a sympletistruture i.e. a losed alternate and non-degenerate two-form w. In loal oordinates (p; q) 2 R2nsuh that the two form is dp ^ dq we all the ow �th(q0; p0)) 2 R2n the solution of:_q = �ph(p; q) ; _p = ��qh(p; q):The hange of oordinates whih preserve w are alled sympleti.A Hamiltonian system is alled integrable if there exists a sympleti hange of oordinates: p; q !I;  2 Rn � Tn, Tn being the n dimensional torus, where the Hamiltonian h(p(I;  ); q(I;  ) = H(I).In suh ase the ow is on�ned on n dimensional tori:I(t) = I(0) ;  (t) =  (0) + (rIH)jI(0)t:The vetor !(I) = (rIH)jI is alled the frequeny of the torus with initial datum I .2we say that H(I) is non degenerate in a domain D � Rn if det �2H(I) 6= 0 for all I 2 D.3A vetor ! 2 Rn is diofantine, with onstants C; � , if it satis�es a relation of the form jm � !j �C=jmj� for all integer vetors m 6= 0.4This means that the onstant C an be taken to be small with the perturbation parameter.



vi Introdutionif there there exists a k � n entire matrix N , of rank k, suh thatN!(I) = 0 with N 2 Matk�n(Z) ; Rank (N) = k (0.1)we will all I an order k resonane.5.For iso-energetially non-degenerate6 systems with two degrees of freedom the existeneof a positive measure set of two-dimensional persistent tori fores the behavior of thewhole system to be stable for purely topologial reasons as the two-dimensional toriseparate the three-dimensional energy surfae. The, possibly haoti, behavior nearthe resonanes is thus on�ned in the layers between persistent tori.On the other hand there is no a-priori objetion to the possibility of ation-unstablemotions for higher dimensional systems, as the omplementary set of the preserved toriis onneted.Arnold, for the �rst time in the appendix of [A1℄, formulates the problem and statesthe following onjeture(see [Dy℄):\...A typial ase in many-dimensional problems of perturbation theory is topologialinstability: through an arbitrarily small neighborhood of any point there pass phasetrajetories along whih the ation variables drift away from the original value by aquantity of order one..."Suh topologial instability is known as Arnold Di�usion.In this thesis we shall onsider the n+ 1 degrees of freedom Hamiltonian:H(I; p;  ; q; "; �) = 12p2 + 12I � AI + b � I + "F (q) + �f( ; q); (*)where ((I; p) ; ( ; q)) 2 (U � (�1; 1))� (Tn � T) ; U � Rnare a set of onjugate ation-angle variables (Tn being the standard torus Rn=2�Zn), ",� are small parameters and the matrix A is semi positive de�nite (A and b an dependon " in a fashion we will speify in the following). The funtions F (q) and f( ; q) arereal analyti and even. Moreover we hoose the funtion F (q) so that p2 = �2"F (q)is the graph of a separatrix having p = q = 0 as the only (unstable) �xed point.The basi problem addressed here is the study of homo/heterolini transversal interse-tions and �nding upper and lower bounds on suitable measures for the transversality.It should be lear that suh problems are muh simpler if one onsiders " > 0 and �� "an independent parameter; in suh ase Hamiltonian (*) is alled a-priori unstable .5This means that the unperturbed motion with initial datum I(0) = I is on a n� k dimensionaltorus.6An Hamiltonian H(I) is alled iso-energetially non degenerate ifdet� �2IH �IH�IH 0 � 6= 0on the energy surfae.



viiIn this thesis we will mainly onsider the a-priori stable ase, whih means setting� = "P for some P > 1 (in some speial ase we will onsider also P = 1).To motivate the hoie of Hamiltonian (*) we briey review the properties of aniso-energetially non degenerate Hamiltonian near an order k resonane. We will arguethat the a-priori stable Hamiltonian (*) is a \natural" model for iso-energetially nondegenerate Hamiltonians near a simple, i.e. order one, resonane (k = 1 in relation(0.1)).Resonant HamiltoniansWe onsider a lose to integrable, analyti systemH(I;  ; ") = H0(I) + "F (I;  );in ation-angle variables I 2 U � Rd  2 Td. .Classial averaging theory (see for instane [Dy℄) shows that near an order kresonane desribed by the matrix N as in relation (0.1), H is modeled, in appropriateloal ation-angle oordinates, by a Hamiltonian:�H(I 0; ") + "gN(I 0;  0) + �f(I 0;  0); (0.2)with gN(I 0;  0) = Xk2�N gk(I 0)eik� 0;�N being the lattie generated by the rows of N .The funtions gN(I 0;  0), f(I 0;  0) are analyti in some U 0 � Td (U 0 lose to U) and� = "P with P > 1.As remarked for Hamiltonian (*), it is simpler to study Hamiltonian (0.2) onsid-ering � and " as independent parameters.For simple resonanes, it is easily seen that the Hamiltonian (0.2) is still \analytiallysoluble" for " > 0 and � = 0. Up to a linear sympleti hange of oordinates,I 0;  0 ! J; ', one an assume that gN depends only on one angle, say 'd:�H(J; ") + "gN(J; 'd) + �f(J; '): (0.3)Let us study Hamiltonian (0.3) for � = 0. The ations J1; : : : ; Jd�1 are still onstantsof motion; the time evolution of Jd; 'd does not depend on the 'i with i < d and so issoluble (by integrations and inversions).Notie that Hamiltonian (0.3) with � = 0 is not integrable, in the lassial sense(i.e. in the sense of footnote (1)), as the resonant variable 'd an have unstable �xedpoints and one annot de�ne ation-angle variables near the hyperboli trajetories.A model for Hamiltonian (0.3) with � = 0 is:H(J; '1; ") = �H(J1; : : : ; Jn) + 12p2 + "(os q � 1); (0.4)



viii Introdutionwith n = d� 1 and Jd;  d = p; q. Notie that Hamiltonian (*) with F (q) = os q � 1is of the type (0.4).On the other hand, if we onsider higher order resonanes, the � independent Hamil-tonian �H(I 0; ") + "gN(I 0;  0);is generally not analytially soluble so that, in onnetion to the problem of Arnolddi�usion, most authors onsider only simple resonanes (see [LMS℄ for an approahto general resonanes).The dynamis of Hamiltonian (0.4)The trajetories of Hamiltonian (0.4) are the diret produt of an integrable motionon n = d� 1 dimensional tori and of the motion of the pendulum.In our notation the pendulum has a stable �xed point in q = �, p = 0 and an unstableone in q = p = 0. The stable and unstable manifolds of suh �xed point oinide andare represented in phase spae by a urve, alled the separatrix p2 = 2"(os q � 1):We have n dimensional unstable tori T (J) (diret produt of the motion of the '1; : : : ; 'nand q = p = 0) and their (n + 1 dimensional) stable/unstable manifolds W�(T (J))whih are the diret produt of the motion of the '1; : : : ; 'n with the motion on theseparatrix.If H(J; p; q; ") is iso-energetially non degenerate for " 6= 0 a set of suh unstable ndimensional tori T (J; �), survive (on �xed energy levels) the onset of the � depen-dent perturbation, together with their n + 1 dimensional stable-unstable manifoldsW�(T (J; �)). Suh manifolds however may interset transversally in a urve, this isthe so alled \homolini splitting" and is known to be related to \haoti" behavior.General tehniques for proving Arnol'd di�usionThe existene of Arnold di�usion is usually proved by following the mehanism pro-posed by Arnold in [A2℄, where the author onsiders a model of an a-priori unstablealmost integrable system near a simple resonane. Interest on the subjet was renewedin [CG℄, followed by several papers; see for instane [GGM3℄, [BB1℄ and referenestherein.To illustrate the mehanism used for proving Arnold di�usion, let us state somede�nitions taken from [C℄, where\Arnold di�usion" is named\Arnold instability".De�nition 0.1 (Heterolini hains). A heterolini hain is a set of N � 1 tra-jetories z1(t); : : : ; zN (t) together with N + 1 di�erent minimal sets7 T0; : : : ; TN suhthat for all 1 � i � Nlimt!�1 dist (zi(t); Ti�1) = 0 = limt!1 dist (zi(t); Ti):7A losed subset of the phase spae is alled minimal (with respet to a Hamiltonian ow �th) ifit is non-empty, invariant for �th and ontains a dense orbit. In our ase the minimal sets will beunstable tori T (I) with !(I) diofantine.



ixDe�nition 0.2 (Transition hains). A heterolini hain is alled a transition hainif for any r > 0 there exists a trajetory z(t) and a time T > 0 suh thatdist (z(0); T0) � r ; dist (z(T ); TN ) � r ; sup0�t�T dist (z(t); Z) < rwhere Z is the losure of the union over i of the fzi(t) : t 2 Rg. The sets T0 and TNare said to be onneted by as transition hain.De�nition 0.3 (Arnold instability). Given E 2 R onsider an Hamiltonian h"(with Hamiltonian ow �th") suh that h0 represents an integrable system.The system (�th; h�1" (E)) is alled Arnold unstable if there exist two positive numbers "0and d0 suh that for all " 2 (�"0; "0) there exist (losed) invariant sets T ("), T 0(") �h�1" (E) satisfying the following onditions:(i) T ("), T 0(") are ontinuous, at " = 0, in the Hausdor� metri and if �I denotes thenatural projetion over the ation variables then�IT (0) = fIg ; �IT 0(0) = fI 0g ; with jI 0 � Ij > d0 ;(ii) for eah 0 < j"j < "0 T (("), T 0(") are onneted by a transition hain.Finally the system is said uniformly Arnold unstable in a region V 2 Rn for anyE 2 [E1; E2℄ if the invariant sets T ("), T 0(") have the property:�IT (0);�IT 0(0) 2 Vand the onstants "0; d0 depend only on V and on E1; E2.Thus, to prove Arnold instability for system(*) one typially proeeds in threesteps:1. Homolini intersetion:- Prove that the systems (*) admit a set of unstable n dimensional tori togetherwith their n + 1 dimensional stable-unstable (Lagrangian) manifolds W�; forsystem (*) suh manifolds are graphs on the angles:W� = fI�( ; q); p�( ; q);  2 Tn; q 2 (�a; a) with a 2 (0; �)g:- Prove that suh manifolds interset transversally in a urve (as expeted). Inthe ase of Hamiltonian (*), the assumed parity onditions imply that  = 0q = � is a Homolini point, i.e. lies on the intersetion urve.- Provide estimates on the measure of the transversality in appropriate (orderone) regions in the ation variables.



x Introdution2. Prove the existene of heterolini hains of n-dimensional tori by showing thatthe persistent tori are \lose enough" with respet to the transversality measurein the presribed regions.3. Prove that suh heterolini hains are transition hains for whih the ationvariables undergo an O"(1) variation in a �nite time8.A natural question that arises in this sheme for proving Arnold instability is what isa good measure of transversality.For system (*) (in the oordinates (I;  )) one may onsider (as in [A2℄) the splittingdeterminant, i.e. the determinant of:� = � i(I+j ( ; �)� I�j ( ; �));whose eigenvalues estimate (in loal oordinates) the angles of the intersetion of W +and W � at the Poinar�e setion q = �.Then, if the gaps on the persistent tori are smaller than j det�ja, one an use theImpliit Funtion Theorem to prove heterolini intersetions for persistent n dimen-sional tori at distanes of order j det�jb (for suitable a; b > 0).Remark 0.4. This is a loal point of view. However, sine the sympleti groupats transitively on the ouples of transverse Lagrangian manifolds, estimates on the\Eulidean " angles of the intersetion are expeted to be oordinate dependent9.Analytial proofs of Arnold instability rely strongly on the hoie of an appropriateregion of the initial data in the ation variables (and on the harateristi frequenies);to illustrate this let us return to Hamiltonian (*) whih we desribe in full detail.H(I; p;  ; q; "; �) = 12�p2 + I � A(")I�+ b(") � I + "F (q) + �f( ; q); (*)where, as we said before, A(") is an n� n semi positive de�nite matrix.The integrable part of Hamiltonian (*) (with � = 0) an model both ompletelyanisohronous systems of rotators (i.e. A(") is positive de�nite) and isohronous sys-tems of harmoni osillators (A(") � 0); moreover by varying the "�dependene ofA("), b(") one an model both non-degenerate and degenerate Hamiltonians.To prove Arnol'd instability (following the sheme proposed in page ix) in a region ofthe ation spae, one needs onditions on the order of magnitude of the frequenies!(I) = AI + b in suh region. In partiular we require that the omponents !j(I)are \not too slow" by setting j!j(I)j � C" for some order one10 C. Moreover it is8Having performed these three steps one an rise the question of �nding (good) estimates on theinstability time9 [LMS℄ provides an intrinsi de�nition of the transversality measure (whih oinides with � inloal oordinates at the Poinar�e setion q = �) and its variation laws through sympleti hange ofoordinates and di�erent hoies of Poinar�e setions.10One ould prove Arnold instability under less restritive onditions j!j(I)j � C"b for some b > 1,we set b = 1 only for simpliity.



xiuseful to distinguish between fast (i.e. order one in ") and slow (going to zero with ")omponents of the frequeny vetor !(I); we will all Vm(E) � Rn a region (of ationspae) having \energy" E (i.e. IAI+bI = E) and m fast omponents for the frequenyvetors (often referred to as m fast frequenies or variables ) and onsequently n�mslow frequenies.The regions where there are at least two di�erent orders of magnitude for the frequeniesare partiularly relevant in proving Arnol'd instability (in this thesis we will mainlyonsider suh regions).Quantitatively we set the following (non minimal but already quite umbersome)onditions on A("), b(") and Vm(E):Condition 0.5. � The funtions F (q) and f( ; q) are real analyti and even. Moreoverwe hoose the funtion F (q) so that p2 = �2"F (q) is the graph of a separatrix havingp = q = 0 as the only (unstable) �xed point.� A(") is diagonal.� The eigenvalues11 of A("), ai (where i = 1; : : : ; n)are either identially zero or:ai = C"�i with 0 � �i � 1 ; and C non zero and "-independent:� Without loss of generality we will suppose that ai 6= 0 for all i � h for some 0 � h �n. The remaining n� h eigenvalues ai are zero.� b(") is an n-dimensional diofantine vetor b = (b1; : : : ; bn) suh that b1 = � � � = bh =0 and the remaining bi have the form:bi = C"�i with 0 � �i � 1 ; and C = O"(1):� We onsider the system near a simple resonane for the variable p: p 2 Bp"(0).� Let !(I) = AI + b,we assume that the I variables are in a domainRn � Vm(E) := fI : O"(1) � jIjj � O"(") ; j = 1; : : : ; n ; AI � I + bI = Ethere exist i1; : : : ; im suh that j!ij(I)j = O"(1)g;with m � n and E = O"(1); we will all Vm a domain with m fast frequenies!i1; : : : ; !im (or fast variables) as the orbits of Hamiltonian (*) with � = 0 are torirun with frequeny !(I) = A(")I + b(").In the domains V0 where there are no fast variables (m = 0), the Hamiltonian (*)an be written (via an appropriate hange of variables) as a-priori unstable and thensolved via lassial perturbation theory (see [CG℄ and [C℄). In fat, for small enough11Now and in the following we will say that C(") = O"(f(")) if lim"!0 C(")=f(") = l 6= 0:



xii Introdution" the matrix � is well approximated by its �rst order perturbation in �, the so-alledMelnikov integral: Mi;j = 1Z�1 (� i� jf)( 0(t); q0(t)): (0.5)Where  0(t); q0(t) is the motion on the separatrix for � = 0.The presene of m 6= 0 fast variables makes matters muh more diÆult as the deter-minant of M is exponentially small in " while (if m 6= n) the higher order trunationsof � have generally only polynomially small entries so that one should onsider �exponentially small w.r.t " in order to have� �M:As we have said the natural value of � is "P for some P > 0. In suh ase M isnot a good approximation of � and it is not a trivial matter to show that det� isexponentially small in " for m 6= 0.The �rst step in estimating det� is �nding exponentially small upper bounds forsystems with fast frequenies.Then one would like to prove that detM is large enough to dominate on the higherorder terms in the � expansion of det� and onsequently prove lower bounds on det�.Upper bounds, with � � "P , are derived in [G1℄ for m = n in [GGM1℄ for systemswith three degrees of freedom and three time sales and in [BB1℄ for isohronousHamiltonians and generi n;m.All the ited artiles set F (q) = os q � 1 and require that the perturbating funtionf( ; q) is a trigonometri polynomial in q while we shall allow more general funtionsF (q) and analyti assumptions on f(q;  ) (see Condition 0.5). The ited artiles pro-vide as well lower bounds on det� (see as well [GGM1℄- [GGM4℄) for systems withone fast time sale.The problem of upper bounds is onsidered as well in [LMS℄ for quite general (n + kdimensional) systems, in the presene of an order k resonane in a region haraterizedby two time sales (m = n). The results of [LMS℄, applied to Hamiltonian (*) (so toa simple resonane) lead to the results of [G1℄, however the proof ontained in [LMS℄is oordinate independent so it would be interesting to see if it applies to three timesale systems.A system with m = n = 2 is onsidered in [DGJS℄ providing upper and lower boundson the distane between stable and unstable manifolds, it is not however lear if thisestimates an be used to prove the existene of heterolini hains (see the disussionin [GGM2℄).In this thesis we generally follow the strategy proposed in [CG℄, [G1℄ and [GGM1℄.These artiles use perturbation theory to onstrut the \homolini trajetories" (i.e.the trajetories whih are bi-asymptoti to an n dimensional torus run with presribedfrequeny). This approah by series expansion in the parameter � (with �xed " > 0) isquite old; it is a generalization to the partially hyperboli setting of Hamiltonian (*),of the Lindstedt series proposed by Poinar�e, Lindstedt et al. in the 19'th entury.



xiiiProving the onvergene of suh series is quite ompliated and was indeed an openproblem, even in the non hyperboli setting, up to the '80-ies when it was solved byEliasson [E℄, see as well [G1℄ and [CF℄ (moreover see [GGM4℄ for a proof of the on-vergene in the hyperboli setting). The main point is to �nd suÆient ompensationsbetween \big" terms of the Lindstedt series in order to ensure the onvergene.While one an use KAM theory to prove the loal existene of the manifolds W �(and then extend them via the Hamiltonian ow), one annot use the KAM algorithmto estimate the splitting determinant as the omputations involved are unmanageable.The problem of onvergene of the perturbation series is avoided, in [CG℄ [G1℄, byombining Lindstedt series and KAM theory. Namely one onsiders suitable truna-tions of the Lindstedt series whose remainder is bounded via a KAM theorem (whihensures, under appropriate onditions, that the homolini trajetories exist and areanalyti in � � �0). To study a large but �nite number of terms in the perturba-tion series it is natural to use a \graph theoretial" (tree) representation (see [GJ℄ forappliations of tree representations to Taylor series). The tree representation, whihontains information on the symmetries of the Taylor series, is well suited to show theanellations whih are neessary to prove the exponential smallness of the splittingmatrix.Roughly speaking the exponentially small terms in the splitting matrix appear via thefollowing \shift of ontour" formula ( 1 and 2 are positive " independent parameters):j 1Z�1 e� 1" tg(t)j � O"(e� 2" ) ;for all the analyti g(t) 2 L1.This formula proves for instane that the Melnikov term (de�ned in (0.5))is exponen-tially small.The main problem is that the terms of order higher than one in the expansion of thehomolini trajetories are in general not analyti in t (for t = 0 as they ome from thetime evolution of W + for t > 0 and W � for t < 0). so that, even if all the frequeniesare fast (m = n), the splitting matrix apparently ontains \big" (i.e. polynomiallysmall in ") terms, arising from integrals of non analyti funtions. In [G1℄ the authorshows that suh \big" terms anel so that a suitable ( say order K(")) trunation ofthe splitting matrix is exponentially small in ". Bounds on the splitting matrix are thenderived by showing that one an hoose k � K(") so that the remainder (estimated viaKAM theory) at order k is small with respet to the bounds on the order k trunation.A di�erent approah is to prove diretly the onvergene of the Lindstedt series by prov-ing via the tree representation both anellations and ompensations (see [GGM4℄).Brief desription of the main results and of the tehniques usedIn this thesis we onsider mainly the items 1) and 2) at page ix and we simply give abrief review of the onstrution of Arnold unstable orbits (taken from [CV℄). We will



xiv Introdutionnot attempt any estimate on the di�usion time. For suh estimates see for instane[BB1℄, [Be℄, [BB2℄, [BCV℄ and referenes therein.� We prove exponentially small upper bounds for det� for Hamiltonians in thelass (*) in regions Vm with m 6= 0 fast variables.Theorem 0.6 (Upper bounds). Assume Conditions 0.5. The Hamiltonian (*) ,onsidered in the domains Vm(E) with E = O"(1) m 6= 0 has an homolini point atq = �;  = 0. The determinant of the splitting matrix in suh point isdet� � O"(e�="b):where  and b depend on the domain Vm and on the analyti properties of the perturbingfuntion f( ; q).This Theorem generalizes [GGM1℄ and [BB1℄ whih onsider respetively a partiallyisohronous and partially degenerate Hamiltonian (*) with three degrees of freedom,and a ompletely isohronous Hamiltonian (*) with n degrees of freedom. Both refer-enes set F (q) = os q � 1 and f( ; q) a trigonometri polynomial (at least in the qvariables).� For systems with m = 1 fast variables (say  �{) we prove lower bounds for thesplitting determinant for the Hamiltonians (*) satisfying the following onditions:Condition 0.7. a) The funtion f( ; q) is a trigonometri polynomial in the  if( ; q) = Xj�j�N f�(q)ei�� ;and all the funtions f�(q(t)), where  (t); q(t) is the solution of Hamiltonian (*) for� = 0, are rational funtion of e�p"t. p"� > 0 is the Lyapunov exponent of thegeneralized pendulum (see next item).b) The Hamiltonian 12p2 + "F (q) has the following trajetories:1. q = _q = 0 is an hyperboli �xed point and the separatrix_q22 + "F (q) = 0ontains only this �xed point.2. On the separatrix, we an hose a sign for _q and the equation of motion on theseparatrix is: _q = �p2pF (q) = �G(q)where G(q) � 0 and G(q) = 0 if and only if q = 0; 2�. Notie that _q(t) is evenand q(t) is odd provided that we set q(0) = �.



xv3. The time evolution on the separatrix q(t) (on a pre�xed branh), satis�eseiq(t) = R(e��p"t) where R(y) is a rational funtion : (**)) The funtion f( (t); q(t)) satis�es appropriate \non-degeneray onditions", whihwe desribe later, here let us state simple suÆient onditions:1. The funtions f�(q(t)) all have the same poles t1; : : : ; tM . The funtion q(t) haspoles �1; : : : ; �N and: D = mini=1;:::;M jIm tij � minj=1;:::;N jIm �jj:2. The Melnikov matrix de�ned in (0.5) is non degenerate and the fei(q) i = 1; : : : ; nare all di�erent from zero.A simple example of funtions F (q) satisfying Condition 0.7 b) are the following:F (q) = �12� sin2 q + a(os q � 1)2�;with a 2 [1;1) (a = 1 is the standard pendulum).Under this onditions we prove the existene of heterolini intersetions provided that� � "P where P depends on the poles of q(t) and of the funtions f�(q(t)).Theorem 0.8 (Lower bounds). Consider Hamiltonian (*) under onditions 0.7.Given 0 � � � 12 onsider the domains W (E;�{; �) =fI 2 V1(E) ; j!�{(I)j = O"(1) ; O"(") � j!j(I)j � O"("�) ; j = 1; : : : ; n j 6= �{g:The determinant of the splitting matrix at the homolini point, q = �;  = 0, isbounded from below by a quantity of the order of the Melnikov integral:j det�j � C"�Qe�D=p";provided that � � "P ;where P = max(p+5; 4�+4) � being the diofantine exponent of the frequeny vetor !.The parameters p;Q depend on the degree of the poles of the f�(q(t)) (p is the degreeof the pole losest to the real axis) and D is de�ned in Condition 0.7 ).After proving this Theorem we provide a Normal Form Theorem for Hamiltonian(*). Suh theorem, restrited to systems with one fast frequeny implies the existeneof heterolini hains.



xvi IntrodutionTheorem 0.9 (Arnold instability). Given E 2 [E1; E2℄ with E1; E2 = O"(1), theHamiltonians (*), satisfying Conditions 0.7 and having at least one degenerate variable(namely one or more of the ai are of order "), are uniformly Arnold unstable in eahof the domains D(E;�{), for all values of � suh that:� � "P ;where P depends on the onstants p and Q of the preeding theorem.The bounds on � proposed it this Theorems are not optimal, in partiular one anobtain better bounds by using the tehniques proposed in [Ge℄. We illustrate this onexamples of three degrees of freedom systems12 where we prove Arnold instability for� � "p+5=2:� Finally we onsider some speial systems with three degrees of freedom and threetime sales whih we all \D'Alembert-like" Hamiltonians as they are quite similar tothe Hamiltonian proposed in [CG℄ (see as well [GGM3℄) as a model for the D'Alembertproblem. Suh problem, of interest in elestial mehanis, is haraterized by thepresene of three relevant time sales and of a big (i.e. order ") uni-modal (i.e. thelattie generated by the frequenies of f( ; q) is one dimensional) perturbation. To beexpliit let us write down the simpli�ed D'Alembert Hamiltonian proposed in [GGM3℄:12("J2 + p2) + I!1 + "[(os q � 1) + �A(�+  )B(q))℄ + �f(�;  ; q); (0.6)where the funtions A(x), B(x) are trigonometri polynomials of degree N and � isa free (order one in ") parameter. The tehnially diÆult question is to prove lowerbounds on the splitting determinant (Melnikov dominane) when � is of order one in", and so learly does not satisfy the onditions of Theorem 0.8.The artile [GGM3℄ proves a semi-hyperboli KAM theorem and onsequently upperbounds on the splitting determinant for Hamiltonian (0.6). The problem of lowerbounds is left open as it requires proving appropriate anellations in the series rep-resentation of the splitting determinant. We prove suh anellations (and so lowerbounds and Arnold instability) provided that f(�;  ; q) is NOT a trigonometri poly-nomial and respets the following:Condition 0.10. the funtion f is a trigonometri polynomial in  ; � and rational ineiq with at least one pole for �nite values of Imq and Req 6= 0.Theorem 0.11. The Hamiltonian (0.6), respeting Condition 0.10, is uniformly Arnoldunstable in the domain:W (E) := fH(I; J;  ; �) = E ; O"(1) = b � jIj; jJ j � a = O"(1)gfor E 2 [E1; E2℄ with E1; E2 = O"(1), provided that � � "p+5=2 and � � 1 but stillO"(1).12This restrition is only to give expliit examples, we show that one an apply the same proedureto systems with n degrees of freedom.



xviiBrief review of the tehniquesFollowing [CG℄, [G1℄ and [C℄ we use perturbation theory to onstrut the \homolinitrajetories" (i.e. the trajetories whih are bi-asymptoti to an n dimensional torusrun with presribed frequeny). This leads to reursive equations for the oeÆientsof the Taylor expansion of the homolini trajetories (in the parameter � with " > 0a �xed parameter).Then, still following [G1℄, we introdue a suitable \graph theoretial" representationof the homolini trajetories useful to identify anellations. We use quite standardnotions on trees: mainly labeled rooted trees and their automorphisms groups. Withrespet to [G1℄, we use a di�erent grouping algorithm for the tree representation; inpartiular we use the isomorphism groups of trees whih, we believe, make omputa-tions on trees more expliit and we hope simpler. We assign quite a few labels to thetrees to represent diretly on the trees the relevant struture of the homolini traje-tory. As mentioned before, the terms of order higher than one in the expansion of thehomolini trajetories are in general not analyti in t. Following [G1℄ we representthis by introduing speially labeled nodes (alled fruits); suh nodes are responsiblefor the appearane of the non analyti terms. An aurate study of the tree repre-sentation (and some notions on asymptoti power series) enable us to prove Theorem0.6. One of the main tools is a formal linear equation for the splitting matrix (whihgeneralizes the one proposed in [GGM1℄). This formal linear equation diretly impliesexponential smallness and, we think, simpli�es signi�antly the proedure of [GGM1℄(as wee as extending the results of [GGM1℄ to Hamiltonian*).We provide as well an alternative proof of Theorem 0.6, following the strategyof [BB1℄ adapted to perturbative series and tree representation (so we generalize theresults of [BB1℄ to anisohronous Hamiltonians although our bounds are less sharpthat those obtained in the ited artile).The proofs of Theorems 0.8 and 0.9 follow the general strategies proposed in[GGM1℄ and [GGM3℄ whih we re�ne and develop so to apply them to our moregeneral Hamiltonian (*)).To prove Theorem 0.8 we provide \aurate enough" bounds on the oeÆients of theseries representation of the homolini trajetories. We expliitly ompute the �rstorder term and use Cauhy estimates to �nd upper bounds on the terms of orderhigher than one. The fat that f( ; q) is not taken to be a trigonometri polynomialreates various tehnial problems. For instane one annot Fourier expand f( ; q)f( ; q) = Xn2Z;m2Zn fn;meiqnei �m;and bound it (and its derivatives) on annular domains Tn+1 � i(�r; r); instead onehas to hoose suitable (in general non annular) domains on whih to perform Cauhyestimates.To prove Theorem 0.9 we provide a Normal Form Theorem (whih generalizes theorresponding Theorem proposed in [GGM3℄).



xviii IntrodutionFinally, in the proof of Theorem 0.11 we use the \improved" tree representationintrodued in [Ge℄. The main idea is to apply the improved bounds oming from thistree representation to the \analyti" terms (related to \fruitless" trees as said above),this is quite deliate and requires, for instane, an attentive use of the formal linearequation used for the proof of Theorem 0.6.The thesis is organized as follows:In Chapter 1 we provide some basi notions.In Setion 1.1 We onsider an anisohronous Hamiltonian of type (*), namely withA(") positive de�nite for " 6= 0 (onsequently b(") = 0). Moreover we set F (q) =os q � 1.For suh system we state a KAM theorem; following [CG℄, we de�ne the homolinitrajetories z('; !; t) := (I('; !; t) ;  ('; !; t) ; q('; !; t));running for positive (resp. negative) times t on the to unstable (resp. stable) manifoldsof the persistent torus of diofantine frequeny ! 2 Rn .The initial data are  ('; !; 0) =' 2 Tn, q('; !; 0) = �. The value of I('; !; 0+) (resp. I('; !; 0�)) is �xed by requiringthat the homolini trajetory is on the unstable manifold for positive times so thatthe homolini trajetory is possibly disontinuous for t = 0 and analyti in R� .We �nally de�ne the splitting vetor:�Ij('; !) = I('; !; 0�)� I('; !; 0+)and the splitting matrix whih is the Jaobian of the splitting vetor at the intersetionpoint ' = 0.The KAM theorem ensures that the S/U manifolds are analyti in � for small enough�. Then we �nd a reursive algorithm for omputing the Taylor expansion of themanifolds in �: z�('; !; t) = 1Xk=0 zk('; !; t):To do so, again following [CG℄, we introdue a suitable generalization of the improperintegration we all it the operator =t. This de�nitions are essentially taken from [G1℄and only slightly modi�ed in order to deal with non trigonometri perturbations.In Setion 1.2 we give some de�nitions of trees, labeled trees and their symmetrygroups. We then de�ne admissible trees, whih are a set of labeled trees whose labelssatisfy suitable onditions. Finally we de�ne the order of an admissible tree k > 0.Suh trees arry quite a few labels (sometimes referred to as \deorations"); they willbe used in Chapters 2 and 4 to prove anellations in the perturbation series of theS/U manifolds. The deorations are neessary to infer the anellations diretly fromthe trees.In partiular, following [G1℄ we onsider speial end-nodes, alled fruits, whih arrya di�erent set of labels from the ordinary nodes, alled free nodes. Suh distintion is



xixuseful to evidene the holomorphi parts of the homolini trajetory. We all the setof admissible trees T trees with fruits and all the subset of T of trees without fruitsA.In Chapter 2 we de�ne linear operators on fruitless trees A, alled the tree values,whih set the homolini trajetories, splitting vetor and splitting matrix, in orre-spondene with partiular linear ombinations of trees.Consequently the tree values are appropriate (generally non analyti) funtions of timeand of the initial data ('; !). We then de�ne suitable linear ombinations of trees oforder k whose values are in orrespondene with the order k term in the expansion ofthe homolini trajetory or of the splitting vetor...We repeat the same sheme on the trees with fruits T , de�ning \holomorphi treevalues"; again suh values set the homolini trajetories, splitting vetor and splittingmatrix, in orrespondene with partiular linear ombinations of trees with fruits.The \holomorphi tree values" are alled so as the value of all fruitless trees A isa real analyti funtion in t.The presene of the fruits generates the possibly non analyti terms whih are respon-sible for the omplexity of the problem of evaluating the splitting determinant.We are mainly interested in anellations for the splitting vetor and for the splittingmatrix. We view suh anellations on the trees by setting two trees to be equivalentif they have the same value.In Chapter 3 we de�ne trees with pre�xed total frequeny � 2 Zn, A(�) whereA 2 A and their values.Setting appropriate (non minimal) hypothesis on the funtion f( ; q), we providebounds for the ontribution to the splitting matrix of a tree A(�) of order k.Given a � 0 and d < �=2, onsider the domain:C(a; d) = ft 2 C : jRetj � a ; jImtj < dg [ ft 2 C : jRetj > a ; jImtj < 2�g;we onsider perturbing funtions f( ; q) suh that:1) f( 0(t); q0(t)) is analyti inside a domain C(a;D) and has poles on the border.2) There exists p � 0 suh that:maxt2C(2a;D�p") jf( 0(t); q0(t))j � Cp"�p: (0.7)For suh systems we prove that, for � � "P , the ontribution to the splitting matrixof a tree A(�) of order k is bounded from above by(k!)1(C �"2 )k[e�Dj!��j=p"℄;with C, 1 and 2 are appropriate onstants not depending on the tree. P depends onthe meromorphi properties of f( 0(t); q0(t)) .



xx IntrodutionIn Chapter 4 we use the bounds of Chapter 3 and the formalism of Chapter2 to prove exponentially small bounds on the splitting determinant. We follow thetehniques proposed in [GGM2℄ whih we have generalized and, we hope, simpli�ed.In Setion 4.1 we onsider the ompletely anisohronous systems treated in the pre-vious Chapters. In Subsetion 4.1.2 we prove that the splitting vetor is a Lagrangianmanifold generated by a funtion S(') alled the generating funtion of the splitting.Subsetion 4.1.3 ontains some tehnial identities on A1. Finally, in Subsetion 4.1.4,we prove that the splitting matrix satis�es two formal linear non homogeneous equa-tions whih ensure the exponential smallness of the splitting determinant.In Setion4.2 we onsider Hamiltonian (*) with F (q) = os q � 1 and show thatwe an repeat the proedure proposed in the preeding setion and prove the sameexponentially small upper bounds.Finally we disuss (non optimal) exponentially small upper bounds for the splittingdeterminant of Hamiltonian (*) and prove Theorem 0.6.In Chapter 5 we give an alternative method for omputing the upper bounds onthe splitting determinant for the ompletely anisohronous ase. Following [BB1℄, weonstrut reursively a transformation # : Tns 3 '! � 2 Tns suh that in the induedsympleti oordinates the generating funtion of the splitting (whih we prove isS Æ #) is the integral = of an analyti funtion F (�; t) plus a remainder of order �Kwith K = O("�b) for an appropriate b depending on the number of fast variables. Thisimplies that the splitting determinant, i.e. the determinant of the Hessian of S, isO"(1). So this Chapter provides a possibly simpler proof of the upper bounds on thesplitting determinant. Moreover the existene of # implies a stronger ondition, whihis useful to prove fast di�usion (see [BB2℄). For eah � 2 Tns the Hessian matrix ofS Æ # has the following blok struture:M(�) = ������ MF NFN tF MS ������where MF is an m �m matrix whose entries are O"("1), NF is a n�m �m matrixwhose entries are O"("1) and MS ontains terms whih are polynomial in "; "�1.In Chapter 6 we �nd lower bounds on the splitting determinant and on the eigen-values of the splitting matrix, for systems with one fast frequeny. This an be doneindependently by using the results of Chapter 4 or of Chapter 5.First we ompute the Melnikov integral for perturbations f( ; q) satisfying theCondition 0.7 with F (q) = os q� 1; then we use the upper bounds proved in Chapter3, restrited to systems with one fast frequeny, to infer that the Melnikov integraldominates on the higher order remainder if � � "P . We obtain Theorem 0.9 for thependulum (i.e. for F (q) = os q � 1).In Setion 6.2 we onsider systems with three degrees of freedom and adapt the



xxitehniques of [Ge℄ and [GGM4℄ to prove better bounds on P (whih depends on thepoles of the funtion f( 0(t); q0(t)).Finally in Setion 6.3 we apply our results to D'Alembert- like Hamiltonians thusobtaining Theorem 0.11.InChapter 7 we generalize the dependene of the q variable of the (�)-unperturbedpendulum. We an onsider the full Hamiltonian (*) with onditions 0.7.We �nd non perturbative onditions on F suh that one an \shadow" the proedureused in the preeding hapters and prove lower and upper bounds on the splittingdeterminant (we show the proedure expliitly on an example). The onditions on Fwill be quite tehnial but the fat that they require no loseness onditions with thependulum is, possibly, interesting.In Chapter 8 we prove the existene of heterolini hains and we sketh theproedure for proving that suh hains are transition hains.The Appendies ontain partiularly tehnial proofs and some notions and de�-nitions whih are useful in the thesis.In Appendix A.1 we give examples of funtions with essential singularities whih sat-isfy the bounds (0.7). Moreover we prove that the only entire funtions f(q) satisfying(0.7) are trigonometri polynomials.InAppendix A.2 we provide some omputations on trees, useful in Chapter 3.In Appendix A.3 we provide some basi notions on latties in Zn.In Appendix A.4 we prove the Normal Form Theorem needed to solve the \gapbridging problem".In Appendix A.5 we report a proof (taken from [GGM3℄) of the onvergene of aKAM theorem for the D'Alambert-like Hamiltonian of Chapter 6.In Appendix A.6 we give the omplete proof of Theorem 0.6 extending the proof ofChapter 4 to general analyti funtions f( ; q).InAppendies A.7- A.8 we review some anellations on trees, whih are not stritlyneeded in the thesis but whih we �nd nonetheless interesting.AknowledgmentsI wish to thank prof. Luigi Chierhia who introdued me to the subjet of Arnolddi�usion and advised me in the writing of the thesis with helpful disussions andsuggestions.I thank as well my fellow PHD students, in partiular Domenio Fino and RiardoAdami; �nally I thank prof. Claudio Proesi who gave me useful insights on ompatRiemann surfaes.





Chapter 1Preliminaries
1.1 Whiskered KAM tori for anisohronous Hamil-tonian systemsWe disuss a ompletely anisohronous version of Hamiltonian (*) and present a briefreview of known results on the problem of homolini splitting.In Subsetion 1.1.1 we will �rst state a lassial KAM Theorem for partially hyper-boli systems (see [CG℄) whih ensures the existene of unstable tori and of their loalS/U manifolds and then prove the existene of funtionsI+� ( ; q; !) ; I�� ( ; q; !) (1.1)that parameterize respetively the unstable and stable manifolds for all  2 Tn andq 2 (�� + Æ; � � Æ). These are well known results whih an be found in most of thereferenes so we will give no proofs of the KAM theorem.In Subsetion 1.1.2 we disuss the perturbative onstrution of the manifolds (1.1),by studying the trajetories that are asymptotially quasi-periodi for t! �1. Theseare known results as well, we will briey report the proofs as they will be useful in thefollowing setions.Consider the model Hamiltonian:(I; A(")I)2 + p22 + "(os(q)� 1) + �f( ; q) (1.2)the pairs I 2 Rn ;  2 Tn and p 2 R; q 2 T are onjugate ation-angle oordinates,", � are small parameters. For the moment we will onsider this parameters as in-dependent and �nally prove that we an take j�j < "P for some appropriate positiveP .As said in the introdution A is a diagonal matrix, whose eigenvalues ai � O"(1). For" 6= 0 the matrix A is positive de�nite, and for " = 0 it an have some zero eigenvalues.We have in mind a matrix with eigenvalues of the type aj(") = "�j with 0 � �j � 1



2 Chapter 1. Preliminariesfor j = 1; : : : ; n. Some of the �j will be zero; in partiular we set �1; : : : ; �m = 0 for0 � m � n.We will onsider the system at energy E of order E = O"(1), " 6= 0 is a �xed parameter,and we will onstrut a perturbation theory in �.The system (1.2) is integrable for " 6= 0, � = 0. It represents a list of n unoupled rota-tors and a pendulum. We will denote the frequeny of the rotators (whih determinesthe initial data I(0)) by ! so that:I(t) = I(0) = A�1! ;  (t) =  (0) + !t:The initial data are hosen in an appropriate domain Dm so that there are at leasttwo harateristi orders of magnitude for the frequenies of the unperturbed system.Given 0 � � � 12 and Æ 2 Rn suh that:� � maxj=1;:::;n(�j� 12) ; Æ1; : : : ; Æm = 0 ; 12 +���j � Æj � 1��j ; for j = m+1; : : : ; nand there exists i 2 fm+1; : : : ; ng suh that Æi = 1+���i, we onsider the domain:Dm(�; Æ) := fI : I � AI = 2E ; r"Æj < jIjj < R"Æj ;for all i = 0; : : : ; n and for some R; r = O"(1)g:This implies that the orresponding frequenies are in a domain
 � f! :Pni=1 !2i =ai = 2E ; ! = (!1; " 12+�!2) with j!ij � " ; !1 2 Rm ;r < j!1;ij < R and r < j!2j < R for some R; r = O"(1)g:Notie that, for n �m � 2 not all the omponents of !2 are neessarily of order onein ".There are at least three harateristi time sales O"(1), O"(" 12+�) and p" whih is theLyapunov exponent of the unperturbed pendulum.We will all  1; � � � ;  m the fast variables and we will sometimes denote them as  F 2Tm. Conversely we will all  m+1; � � � ;  n slow variables  S 2 Tn�m.Notie that we an onsider indi�erently systems that are degenerate or non-degeneratefor " = 0. The only (obvious) restrition is that if the system is degenerate in some of itsation variables, for " = 0, then these are neessarily slow variables with harateristifrequeny !2;j � am+j.The perturbating funtion f( ; q) is a trigonometri polynomial of degree N in therotators  , it is analyti in q in a domain T � i(�R;R), for simpliity we take it evenand with zero mean value; this means that:f( ; q) = Xn;�2Zn+2;j�j�N fn;�ei(nq+�� )where f0;0 = 0, fn;� = f�n;�� and jfn;�j � C�e�Rjnj � Ce�Rjnj .



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 3These onditions are suÆient to ensure the onvergene of the loal KAM theoremand to provide exponentially small upper bounds on m eigenvalues of the splittingmatrix. In the ase of one fast frequeny (m = 1)we will restrit our attention toperturbating funtions f(q;  ) that are rational in eiq (with no singularity on the unitirle). In this ase we will give lower bounds on the eigenvalues of the splitting matrixand �nally onsider the problem of heterolini intersetions.For eah ! 2 Rn the unperturbed system has an unstable �xed torus :p(t) = q(t) = 0 ; I(t) = I(0) = A�1!;  (t) =  (0) + !t:The stable and unstable manifolds of suh tori oinide and an be expressed as graphson the angles: p = �p2"p1� os q ; q(t) = 4artan e�p"t ;I = A�1! ;  (t) =  (0) + !t:It is known that for diofantine values of the frequenies the unstable tori, with theirS/U manifolds, survive the onset of a small perturbation (and so does the property ofbeing graphs over the angles) but generally the two manifolds will no longer oinideand one should expet a transversal intersetion; evaluating the \intersetion angle"will be the purpose of the following setions.1.1.1 The KAM onstrution, de�nitions of splitting vetorand splitting matrix.De�nition 1.1. given any  2 R, 0 <  � O(" 12+�) and a �xed � > n� 1, we de�nethe set 
 � f! 2 
 : j! � nj > jnj� 8n 2 Zn=f0ggof ; � diofantine vetors in 
. Now we onsider
� � 
 � (�12 ; 12)and for all (!; �) 2 
� we set !� = (1 + �)!.For all (!; �) 2 
� an for all n 2 Zn=f0g j!� � nj > 2jnj� .! 2 
 implies that !1 and !2 are diofantine as well; we will all �F and �S theirexponents.Theorem 1.2. There exists1 �0("; ) suh that if j�j � �0 and if (!; �) 2 
�, there1in the Appendix A.4, we will speify �0("; ); generally speaking, if we onsider only those ! 2
"() whih are as well in Bs : f! : j! � nj > CE2 8jnj < sg, one obtains, by ombining lassialperturbation theory and KAM tehniques, that �0("; "m) = "L with L = max(2; 2(m+1)s ) . Thisestimates an be muh re�ned by using the existene of separate time sales, see for instane Theorem1.4 of [GGM4℄. In that artile the authors onsider a system with three degrees of freedom (and threetime sales 1;p"; " 12+�); they obtain �0("; ) = "3 for all  < e� 1" 12 +� .



4 Chapter 1. Preliminariesexists one and only one n-dimensional H�-invariant torus T�(!; �) whose Hamiltonianow is analytially onjugated to the ow Tn 3 #! # + !�t.The torus T (!; �) admits loal stable/unstable manifolds W��;lo(!; �), desribed by afuntion: Tn � B22r � B1�0 � 
 3 (#; (x+; x�); �; !�)! ��(#; x+; x�; !�) (1.3)C3 in all its arguments. For �xed (!; �) the funtion is analyti on Tnk�B̂22r�B̂1�0 ;wherek is some "-independent onstant and r = O"(" 14 ). In terms of the funtion (1.3) onehas: T�(!; �) � f��(#; 0; 0; !�)# 2 TngW+�;lo(!; �) � f��(#; x+; 0; !�)# 2 Tn; jx+j < 2rgW��;lo(!; �) � f��(#; 0; x�; !�)# 2 Tn; jx�j < 2rg (1.4)on the loal stable/unstable manifolds the ow is:��t� ��� (#; x+; x�; !�) = ��(#+ !�t; x+e��t; x�e�t; !�)where the Lyapunov exponent � � ��(#; x+; x�; !�) has the same regularity as �.The proof of this theorem an be found, for example in [CG℄.We have introdued the variable � in order to �x the energy of the perturbed systemequal to2 E (for all ! 2 
).Proposition 1.3. There exists a funtion � = �(�; !), analyti in �, suh that forE 2 [E1; E2℄: H�(��(0; 0; 0; !�(�;!)); "; �) = E:Proof. As H0(��(0; 0; 0; !0); "; 0) = 12! � A�1! = Eand ��H0(��(0; 0; 0; !�); "; 0)j�=0 = ���12! �A�1!(1 + �)2��=0 = 2E > 0we an apply the impliit funtion theorem and obtain !�(�; !).Notie that Theorem 1.1 is loal in the hyperboli variables x+, x� (it holds in adomain jx�j � 2r = O(" 14 )),to �nd extended stable/unstable manifolds we \follow theow" i.e. we apply the Hamiltonian ow ��T� to the stable/unstable loal manifolds,where T is suÆiently large (positive for the unstable manifold and negative for thestable one).2The �nal goal is to �nd heterolini intersetions on the �xed energy surfae, and so \Arnolddi�usion", but in the following setions we will disuss only homolini intersetions and so we willdrop the parameter �



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 5The time T = "� 12 log "�1 is suh that given a point �z 2 T�R inside the loal unstablemanifold of the pendulum, �T�=0(�z) = (2p"; �),Now the extended stable unstable manifolds are:��� (#; x+; x�; !) = ��T� ��� (#; x+; x�; !):And by the hoie of T :�qf��(#; x+; 0; !�) : jx+j < 2rg � [��; 0) 8#; (1.5)�qf��(#; 0; x�; !�) : jx�j < 2rg � (0; �℄ 8#: (1.6)Proposition 1.4. The branhes of the stable/unstable manifolds an be represented asgraphs on the rotator angles, for instane for p < 03:�+� (#; x+; 0; !) =  ; I+� ( ; q; !); q; p+� ( ; q; !); (1.7)��� (#; 0; x�; !) =  ; I�� ( ; q; !); q; p�� ( ; q; !): (1.8)A proof of this Proposition an be found, for example, in [C℄.De�nition 1.5. We will study the di�erene between the stable and unstable manifoldson an hyper-plane transverse to the ow (a Poinar�e setion). In the following Setionswe will use  = ' 2 Tn; q = � and all I�� ('; !) the graphs of the S/U manifolds atthe Poinar�e setion. We will all�I('; !) = I�('; !)� I+('; !)the splitting vetor. We will prove that �I(' = 0; !) = 0. We will allM : �'(I+� ('; !)� I�� ('; !)jthe splitting matrix and detM the splitting determinant.It is onvenient to re-sale the time and ation variables so that the Lyapunovexponent of the unperturbed pendulum is equal to one. Namely we will onsider thefollowing Hamiltonian:(~I; A(")~I)2 + ~p22 + (os(~q)� 1) + �f(~�; ~q); (1.9)whih generates the same Hamilton equations as (1.2), provided that:~I(t) = I( tp")p" ; ~ (t) =  ( tp") ; � = �"~p(t) = p( tp")p" ; ~q(t) = q( tp") : (1.10)We re-sale the domains Dm and 
 onsequently so obtaining a resaled frequeny~! = ( !1p" ; "a!2). In the following setions we will onsider the system after this hangeof variables, but we will omit the tilde (exept in !).To retrieve the true size of I we must only remember to multiply by p", the inversefor the variable t, to have the orret estimates on the di�usion times.3notie that p+� ( ; q; !) is obtained via the energy onservation one we have �xed the sign of p.



6 Chapter 1. Preliminaries1.1.2 Perturbative onstrution of the homolini trajetoriesIn this Subsetion we will use perturbation theory to �nd the (analyti for � � �0)trajetories on the S/U manifolds of Hamiltonian4 (1.9)(z�� (�jtj; '; ~!) � ��jtj� (I�� ('; ~!); '; �) =Xk (�)kzk�(t; '; ~!):The basi ideas, whih go bak to Poinar�e, onsist mainly in determining the traje-tories on the S/U manifolds by requiring boundedness as t! �1.Namely given the Hamilton equations of system (1.9):_Ij = �(�)f j ( ; q) ; _p = sin(q)� (�)fq( ; q) ;_ j = ajIj; _q = p; (1.11)an initial datum '; I�� ('; ~!); �; p�� ('; ~!) is on the stable (unstable) manifold if andonly if its ow approahes the invariant torus of frequeny ~! for 5 t ! �1 . Thisrequirement is suÆient to determine the initial datum as a power series in �.De�nition 1.6. To avoid the � apex we will set6:zj(t) = � z+(t) if t > 0z�(t) if t < 0 :Moreover as we will now onsider ~! as �xed we will omit ~! in the expansion oeÆients.Inserting in the Hamilton equations the onvergent power series representation:I(t; '; �) =P1k=0(�)kIk(t; ') ;  (t; '; �) =P1k=0(�)k k(t; ') ;p(t; '; �) =P1k=0(�)kpk(t; ') ; q(t; '; �) = q0(t) +P1k=1(�)k k0(t; ')we obtain, for k > 0, the hierarhy of linear non-homogeneous equations7:_Ikj =F kj (f hi gi=0;:::;nh<k ) ; _ kj = ajIkj ; for j = 1; : : : ; n ;_pk = os q0 k0 + F k0 (f hi gi=0;:::;nh<k ) ; _ k0 = pk ; (1.12)4Notie that the apex k on the funtions I;  represents the order in the expansion in � NOT anexponent. To avoid onfusio, when we need to exponentiate we always set the argument in parentheses.5and so tends, as t ! �1, to a quasi-periodi funtion with frequeny ~! at an exponential rategiven by the Lyapunov exponent6note that the funtions so de�ned are possibly non ontinuous in t = 0 as eah boundednessondition (t! �1 determines uniquely the value in t = 07when it is not stritly neessary we will omit the pre�xed initial data of the angles ' = 1(0); � � � ;  n(0);  0(0) = �



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 7where the funtions F ki are de�ned as follows. Set:[�℄k = 1k! dkd�k ( � )j�=0;we have for j = 0; : : : ; nF kj (t) = �[fj(k�1Xh=1(�)h h(t))℄k�1 + Æj0[sin(k�1Xh=1(�)h h0 (t))℄k;where Æji denotes the Kroneker delta and  h(t) is the vetor  h0 (t); : : : ;  hn(t). Fork = 0 we obtain the unperturbed homolini trajetory:z0(t) = ('+ !p"t ; A�1 !p" ; q0(t) ; p0(t));(q0(t); p0(t)) is the lower branh of the pendulum separatrix starting at q = �:q0(t) =4 artan e�t ; p0(t) = � 2osh t ;os q0 =1� 2(osh t)2 ; sin q0 = 2 sinh t(osh t)2 : (1.13)For k > 0 we have a linear non-homogeneous ODE that we solve by variation ofonstants.The fundamental solution of the linearized pendulum equation is given by:W (t) =  (1� !0(t)4 sinh t(osh t)2 � sinh t(osh t)2!0(t)4 1osh t !!0(t) = 2t+ sinh 2tosh t ;so that integrating equations (1.12) we have:pk(t) = w11(t)pk(0�) + w11(t) tZ0 w22(�)F k0 (�)d� � w12(t) tZ0 w21(�)F k0 (�)d�; k0 (t) = w21(t)pk(0�) + w21(t) tZ0 w22(�)F k0 (�)d� � w22(t) tZ0 w21(�)F k0 (�)d�Ikj (t) = Ik(0�) + tZ0 F kj (�)d� kj (t) = aj(Ik(0�)t+ tZ0 (t� �)F kj (�)d�);
(1.14)



8 Chapter 1. Preliminariesthe funtions wij are the entries of W (t) and we have used the fat that, for k > 0, ki = 0 for all i = 0; n.Remark 1.7. This proedure an be repeated for any generalized pendulum; see Setion7.2 for the onstrution of the Wronskian matrix. One obtains a matrix W 0(t) havingthe same qualitative properties a W .To give meaning to the t! �1 limit ,following [CG℄, in the following Subsetionwe shall introdue a suitable generalization of the standard improper integration.1.1.3 Whisker alulusLet D be the lass of funtions f smooth for t 6= 0, suh that for any k � 0, there exista > 0 > b for whih, given t 2 R the funtion:u! Fk(u; t) � tZ�(t)1 e�ujtjf (k)(�)d� where �(t) = sign(t) (1.15)is analyti on the omplex domain fu 2 C : <u > ag and admits an analyti ontin-uation whih is meromorphi in fu 2 C : <u > bg and analyti in a neighborhood ofu = 0. If f 2 D we set =t = F0(0; t).Notie that if lim supt!�(t)1 erjtjjf (k)(t)j < 1 for some r > 0, then f 2 D and=t(f) = R t�(t)1 f .It is easy to hek that f � tjet 2 D for any j and any non-zero omplex number .Polynomials are learly not ontained in D. Nevertheless, we extend the operator =on ~D � ring of Polynomials in tby de�ning =t� j = tj+1j+1 .Now set ~H to be the largest subset of ~D whih is losed under produt, derivativeand integration = and ~M � ff 2 ~H : �Pf = 0gwhere �P is the natural projetion onto polynomials.On ~H one an set =tf = I du2i�u tZ�(t)1 e�uj� jf(�)d�; (1.16)where the integration in the u variable is performed on a suitably small juj � Æ irlearound u = 0 It is easily seen that expression (1.22) works as well on polynomials in tthe only di�erene being that tZ�(t)1 e�uj� jf(�)d�;



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 9will no longer be analyti in u = 0.For all f 2 ~H, =tf is a primitive of f as:=tf � =sf = tZs f(�)d�; (1.17)for any f 2 ~H and any s; t suh that �(t) = �(s).Let us onsider some interesting subspaes of ~H.De�nition 1.8. (i) H is the vetor spae (on C ) generated by monomials of the form:m = �(t)a jtjjj! xhei('+!t)�� where h 2 Z ; � 2 Zn ; j 2 N ;x = e�jtj ; a = 0; 1 ; �(t) = sign(t): (1.18)(ii) Given two positive onstants b and d, H(b; d) is the subset of (ouples of) fun-tion(s) f(t) that admit a (unique) representation:f(t) = kXj=0 jtjjj! M�(t)j (x; '+ !t); (1.19)with Mj(x; ') trigonometri polynomials in '.The Fourier oeÆients Mj �(x) are all holomorphi in the x-plane in an annulus 0 <jxj < e�b and satisfy the following properties.1) The Mj �(x) have possible singularitiesoutside the disk jxj < e�b and outside theone j arg xj < d.2) The Mj �(x) have possible polar singu-larities at x = 0.If M�(t)k 6= 0 then k is alled the t degree off . In Figure 1.1 we have represented a pos-sible \andy"shaped domain of analytiityfor the M� j
eb

d

Figure 1.1:Notie that H is ontained in all the spaes H(b; d); moreover if jtj > b, f(t) anbe represented as an absolutely onvergent series of monomials of the type m.One an easily hek that the integration = ats on monomialsm of the form (1.18)as:=t(m) = 8>>>><>>>>:��a+1xhei( +!t)�� jXp=0 jtjj�p(j � p)!(h� i�! � �)p+1 if jhj+ j�j 6= 0��a+1jtjj+1(j + 1)! if jhj+ j�j = 0 (1.20)



10 Chapter 1. PreliminariesThis and equation (1.17) show that =t ats on H(b; d) as (1.20) if jtj > b and ifjtj � b as =2�(t)b + tZ2�(t)b ; (1.21)obviously the hoie of 2b is arbitrary.On H(b; d) we an extend =t to omplex values of t suh that t 2 C(b; d) where:C(b; d) := ft 2 C : j Im tj � d ; j Re tj � bg [ ft 2 C : j Im tj � 2� ; j Re tj > bg;is the domain in Figure 1.1 in the t variables.
i d

−i d

b−b

2 i π

− 2 iπTo extend =t simply onsider the de�nition 1.16, for t 2 C(b; d) so that if t = t1 + is,with t1; s 2 R, the integral is performed on the line Im� = s.=tf = I du2i�u tZ�(t)1+is e��(�)u�f(�)d�; (1.22)where �(t) = sign(Re t).This de�nition does not modify the expressions (1.18) (one simply sets t = t1 + is,x = x1ei�(t1)s). The following property holds:Lemma 1.9. H(b; d) is losed under the appliation of =t.Proof. Let us expand f as in (1.19) and onsider the single termtjei!��tM�(t)� j (x); (1.23)moreover, if jtj � b, we divide =t as in (1.21). For jtj > b we an expand M�(t)� j (x) inonvergent power series of x and apply (1.18). The radius of onvergene is the sameand the degree of the pole in zero is the same. MoreovertZ2�(t)b+is � jei!���M�(t)� j (x0)



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 11is well de�ned and �nite provided that s < d and j Re tj < b.Finally as f is a �nite ombination of terms like (1.23) so =tf is still in H(b; d).De�nition 1.10. We de�ne as ~H0 the subspae of ~H of funtions that an be extendedto an analyti funtion in some strip around the real axis.H0(b; d) is the subspae of H(b; d) of funtions that an be extended to analyti funtionsin C(b; d).Notie that f is in H0(b; d) if it is in H(b; d) and f+(t) and f� join analytially att = 0.Remark 1.11. Notie that if f 2 H0(b; d) then generally =f =2 H0(b; d) and has adisontinuity in t = 0. For instane if f 2 L1 is even, then:=(f) := =0� �=0+f = 1Z�1 f 6= 0:We an onstrut operators whih preserve H0(b; d); let = = =0� �=0+ and=t+ = � =t if t � 0=t � = if t < 0 ;=t� = � =t if t � 0=t + = if t > 0 :The operator 12 X�=�1=t� = =t � 12�(t)= (1.24)preserves the analytiity.Now let us ite two important properties of H0(b; d), whose proofs are taken from[G1℄.Lemma 1.12. In H0(b; d) we have the following shift of ontour formulas:8f 2 H0(b; d) and for all d > s 2 R(i) =f(�) = =f(� + is) ;(ii) X�=�1=t+is� f(�) = I dR2i�R X�=�1 tZ�1 e�R�(�)(�+is)f(� + is)d� :The integrals in the right hand side have to be onsidered to be the analyti ontin-uation on R from R positive and large.



12 Chapter 1. PreliminariesProof. (i) If f is a polynomial one an hek by diret alulation that the relation is0 = 0.For R large and positive 0Z�1 eR�f(�)d� + 0Z1 e�R�f(�)d� (1.25)is well de�ned and an be shifted by is for all s < d. It is equal to0Z�1 eR(�+is)f(� + is)d� + 0Z1 e�R��isf(� + is)d� � i sZ0 (e�iR tau � eiR� )f(i�)d�:This di�ers from 0Z�1 eR�f(� + is)d� + 0Z1 e�R�f(� + is)d� (1.26)preisely by:(eiRs � 1) 0Z�1 eR(�)f(� + is)d� + (eiRs � 1) 0Z1 e�R�f(� + is)d�� (1.27)i sZ0 (e�iR� � eiR� )f(i�)d�:This implies (i) by taking the residues at R = 0.We onsider only f with no polynomial omponent, so the t-integrals are all analytiin R for R = 0. This implies that the residue of (1.27) is zero.(ii) The two sides di�er by the residue at R = 0 of�i sZ0 (e�iR� � eiR� )f(i�)d�whih vanishes.1.1.4 Analyti expansions for the whiskersLet us onsider some (probably non minimal) onditions on the perturbing funtionf(q;  ). Namely we will onsider only those funtions f(q;  ) whih are trigonometripolynomials in  and suh that f(q(t);  (t)) 2 H0(b; d) for some b; d.



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 13Remember that q(t) and  (t) are the mo-tions on the unperturbed separatrix afterthe hange of variables (1.10).The trajetory q(t) an be analytially ex-tended to t 2 R�(��=2; �=2), in Figure 1.2we show some q(t+ id), t; d 2 R for variousvalues of jdj � �=2. -3 -2 -1 1 2 3

-6

-4

-2

2

4

6

Figure 1.2:We have in mind funtions f suh thatf(q;  ) = X�<N ei�� F�(eiq)and there exist � < 1 < � and  suh that the F�(y) are all analyti in the domain� < jyj < �; jy � 1j < :Given f we de�nea = infb2R+ fb : F�(eiq(t)) 2 H0(b; d) for some d and 8�gD = supd2R+ fd : F�(eiq(t)) 2 H(a; d) 8�g: (1.28)In Figure1.3 we have represented in light-blue the region 12 < jyj < 2 and in darkblue the image through eiq(t) of the regionC(3; �=16). if the F�(y) have no poles in-side this region and have a pole on the bor-der both of the irle around y = 1 and onthe \annulus" around S1 then a = 3 andD = �=16.
−1 1−0.5 0.5−2 2

2i

−2iFigure 1.3:We easily see that zk(t) and hene F k belong to ~H for all k > 0 so that:Ik(t)� =tF k = Ik(0�(t))�=0�(t)F k: (1.29)Remark 1.13. (i) The quasi-periodi average,limT!�1 1jT j TZ0 f� = (< f� >;< f+ >) �< f >;of an asymptotially quasi-periodi (ouple of) funtion(s) f �  + g, where g isexponentially dereasing, oinides with the quasi-periodi average of  ;(ii) if f is asymptotially quasi-periodi with < f >= 0 then both f and =tf belong to~H and < =f >= 0 as well.



14 Chapter 1. PreliminariesThus taking the quasi-periodi average in the �rst line of (1.11), one sees that bothF k and Ik , whih are asymptotially quasi-periodi, have vanishing quasi-periodiaverage. Therefore taking the quasi periodi average in (1.29) we obtain Ikj (0) = =0F kjand so: Ikj (t) = =tF kj  kj = aj(=t[=�F kj ℄� =0[=�F kj ℄):With similar arguments (and keeping in mind the asymptotis of W (t), we �nd thatpk(0�) = 0Z�1 w22(�)F k0 (�)d�:Finally we summarize the equations for the stable/unstable manifolds as:Iki (t) = =t(F ki )  kj (t) = ajOtj(F kj ) (1.30)where i = 1; n and j = 0; n and a0 = 1.The operators Otj are de�ned in terms of =t:Otj = Qtj +R0 tj +R1 tjQtj(g) = 12P�=�=t�(wj(t; �)g(�))Ri tj (g) = �12x[i℄j (t)=(xij(�)g(�)) [i℄ = ji� 1jwj(t; �) = �(t)x1j(t)x0j(�)� �(�)x0j(t)x1j(�))x1j = 8<: jtj j 6= 0jtjxx2 + 1 � 14(x� x�1) j = 0 ; x0j = 8<: 1 j 6= 02xx2 + 1 j = 0 : (1.31)Notie that x0j belongs to H0(0; �=2) x1j belongs to H(0; �=2) and that w(t; �) is inH0(0; �=2)�H0(0; �=2). By our assumptions F 1j j = 0; n belongs to H0(a;D). ThusLemma 1.11 guarantees that H(a;D) is losed under the appliation of =t and Otj.Remark 1.14. If f( ; q) is a trigonometri polynomial then F 1j j = 0; n belongs toH(0; �=2) whih is losed under the ation of =t and Otj.In the following Setion we will work symbolially on I;  , so we will not note weatherwe are working in H(b; d) or in ~H. Then in Chapter 3 , where we estimate the integrals,we will need to keep trak of the ation of Qj on H(b; d).Remark 1.15. We have expressed the operators Oj in terms of Qj and Rij to keeptrak of the ourrene of terms not in H0; atually we start with f(' + ~!t; q(t)) andos(q(t)) whih are in H0, but the operators R0 tj produe x1j whih is learly not in H0.



1.1. Whiskered KAM tori for anisohronous Hamiltonian systems 15The following proposition ontains some important properties of the operators Qjall proved in [G1℄.Proposition 1.16 (Chierhia). (i)The operators Qj and Oj are \symmetri" on ~H:=(f Qjg) = =(g Qjf) ; =(f Ojg) = =(g Oj)f):(ii) H0(a;D) is losed under the appliation of Qtj.(iii) The operators Qj preserve parities and if f 2 ~H is odd then =f = 0(iv)If F;G 2 H are suh that �PF �G has no onstant omponent, then:=0�G(�)d�F (�) = F (0�)G(0�)� =0�F (�)d�G(�)Proof. (i) Consider the bilinear forms:(Fe�R1jtj; QjGe�R2jtj) � 1Z�1 e�R1jtjdtX�=� tZ�1 wj(t; �)e�R2j� jG(�)d�:For suÆiently large values of R1, R2 the integrals are proper and the bilinear formis symmetri (as wj(t; �) is odd). So taking the residues at R1; R2 = 0 we obtain thesymmetry of the operators Qj on ~H.(ii) We are simply restating Lemma1.11 and remarking that the operators Qj preservethe analytiity in t = 0.(iii) The operator = hanges the time parity (it is the inverse of a derivative); moreoverwe remember that wj(t; �) = x0j(t)�(�)x1j(�)� �(t)x1j(t)x0j(�); ;where both the xij are even.(iv) We want to ompute:I du2�iu tZ�(t)1 e�ujt0jF (t0)dt0G(t0) = F (t)G(t)�I du2�iu tZ�(t)1 e�ujt0jG(t0)dt0F (t0) + I du2�i tZ�(t)1 e�ujt0jF (t0)G(t0)the third summand is learly zero if �PFG = 0 as in that asetZ�(t)1 e�ujt0jF (t0)G(t0)



16 Chapter 1. Preliminariesis analyti in u = 0. If FG is a polynomial a diret omputation on tk shows thatI du2�i tZ�(t)1 e�ujt0jtk = Æ(k; 0):
Corollary 1.17. For any even f; g 2 ~H:=f=twj(t; �)g = =x0jf=x1jg � =x1jf=x0jg + =g=twj(t; �)f:Proof. We simply substitute (1.24) in Proposition 1.16(i) and then use 1.16(iii) to sethe integrals of odd funtions to zero.1.2 TreesWe supply the neessary de�nitions of trees, labeled trees, rooted trees and introdue setsof trees (whih we will all admissible) having labels and grammatial rules adapted toour dynamis. We onstrut a vetor spae V on Q generated by the sets of admissibletrees and de�ne on V linear and multi-linear funtions. The de�nitions are adaptedto the problem of desribing the homolini trajetories with the aid of trees; thereforemany de�nitions ould be given in more general terms and maybe appear then morenatural (for a general presentation see for instane [GR℄).We hope however that the notation will beome more lear when we de�ne theonnetion with the dynamis in Chapter 2.All the de�nitions of trees are standard, notie however that we are using a di�erentnotation from that of [G1℄ and the subsequent papers, whih use numbered trees. Thisminor modi�ation enables us to follow the ombinatoris more expliitly.1.2.1 Trees, symmetry groups and admissible treesThe de�nitions ontained in this Subsetions are all adapted from [GR℄.De�nition 1.18. A graph G onsists of two sets V (G) (verties), E(G) (edges) suhthat E(G) is a subset of the unordered pairs of distint elements of G. We will alwaysonsider �nite graphs, i.e. graphs suh that N(G) = jV (G)j is �nite. Two vertiesi; j 2 V (G) are said to be adjaent if (i; j) 2 E(G). It is ustomary to write n 2 G inplae of n 2 V (G) and (i; j) 2 G in plae of (i; j) 2 E(G).Two graphs G1, G2 are equal if and only if they have the same vertex set and the sameedge set.De�nition 1.19. A path joining the verties i; j 2 G is a subset Pij of E(G) of theform Pij := f(i; v1); (v1; v2); � � � ; (vk; j)g:



1.2. Trees 17A graph G is onneted and without loops if for all i; j 2 G there exists one andonly one path that onnets them. Suh graphs are alled trees. Their verties arealled nodes and their edges are alled branhes.A tree T suh that the set V (T ) = f1; 2; : : : ; N(T )g is alled a numbered tree.
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12Figure 1.4: A numbered treeDe�nition 1.20. A labeled tree is a tree A plus a label LA(v) � 0 whih is generallya set of funtions f iA(v) de�ned on the nodes.When possible we will omit the subsript A in the funtions f i.De�nition 1.21. Two labeled trees X; Y are isomorphi if there is a bijetion, hsay, from V (X) to V (Y ) suh that for all a 2 V (X) , LX(a) � LY (h(a)), moreover(a; b) 2 E(X) if and only if (h(a); h(b)) 2 E(Y ).We say that h is an isomorphism from X to Y . Notie that sine h is a bijetionh�1 is well de�ned and is an isomorphism from Y to X.We will all symmetries or automorphisms of X, the isomorphisms from X to X.It is often onvenient and more ompat to represent a tree by a diagram, withpoints for the nodes and lines for the branhes, as in Figure 1.5. In this diagrams thepositions of the points and lines do not matter - the only information it onveys iswhih pairs of nodes are joined by a branh. This means that the two diagrams inFigure 1.5are equal by de�nition.Stritly speaking these diagrams do not de-�ne graphs, sine the set V is not spei-�ed. However, if the diagram has N points,we may assign distint natural numbers1; 2; : : : ; N to the points (whih we still allnodes), so obtaining a labeled numberedtree.Then it is easily seen that the two trees inFigure 1.5 are isomorphi. Figure 1.5:



18 Chapter 1. PreliminariesDe�nition 1.22. Formally we an de�ne suh diagrams as the equivalene lasses oflabeled trees via the relation A �= B if and only if A and B are isomorphi.An obvious onsequene of this de�nition is that, LA(v) and N(A) are well de�ned onthe equivalene lasses.We an hoose a representative A0 of the equivalene lass A by giving a numbering1; 2; � � � ; N(A) to the nodes of A.Remark 1.23. Given an equivalene lass of labeled trees A let A0 be a numbering,and let S(A0) be the group of automorphisms of A0.This means that S(A0) is the subgroup of the permutations � 2 SN(A) whih �x bothE(A) and the labels jA ; ÆA. Namely � 2 S(A)! �L = L and jA(v) = jA(�(v)); ÆA(v) =ÆA(�(v)).Given two isomorphi trees A0; A00 of A, let h be the bijetion suh that E(A0) = �E(A00).The groups S(A0) and S(A00) = h�1S(A0)h are isomorphi. We will improperly all theequivalene lasses via this relation the symmetry group S(A) of the diagram A.Using standard notation (see for instane [L℄) we denote by a := (i1; i2; : : : ; im)with N 3 ij � N(A) the permutation suh that a(ih) = ih+1, a(im) = i1, and a(n) = nfor all N 3 n � N(A) suh that n =2 fi1; i2; : : : ; img. Moreover (i; j; k)(l; m) is theomposition of a = (i; j; k) and b = (l; m).As an example in Figure 1.6 onsider thenumbered tree A (N(A) = 6), its symme-tries are the identity and: a := (1; 4);b := (2; 3);  � a Æ b; d � (5; 6)(1; 2)(4; 3),e := (5; 6)(1; 3)(2; 4); f := (5; 6)(1; 2; 4; 3);g := f Æ a. Clearly any other numberingon A, would give an isomorphi symmetrygroup.
1

5 6

4 3

2

Figure 1.6:Given a node v 2 A ,we de�ne its orbit:[v℄ := fw 2 A : w = g(v) for some g 2 S(A);i.e. the list of nodes obtained by applyingthe whole group S(A) to v, notie that thisis an equivalene relation (a proof of thisstatement is in [GR℄). In the example ofFigure1.6 there are two orbits, whih in thehosen numbering are:[1℄ � f1; 2; 3; 4g and [5℄ � f5; 6g:
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Figure 1.7:



1.2. Trees 19Remark 1.24. The orbits are well de�ned on the equivalene lasses of labeled trees,it should be lear , for instane, that the nodes signed in blak in the diagram of Figure1.7 are an orbitDe�nition 1.25. A rooted labeled tree is a labeled tree A plus one of its nodes alledthe �rst node (vA or v0); this gives a partial ordering to the tree, namely we say thati > j if Pv0j � Pv0i (see Figure1.8). Moreover hoosing a �rst node indues a naturalordering on the ouples of nodes representing the branhes namely (a; b) 2 E(A) impliesthat a < b.We reall some de�nitions on rooted trees:a) the level of v l(v) is the ardinality of Pv0v;b) the nodes subsequent to v, s(v), are the nodes adjaent to v and of higher level; thenode preeding v is the only node adjaent to v and of lower level;) given v node of A, we all A�v the rooted tree (with �rst node v) of the nodes w � v;we all Anv the remaining part of the tree A.An isomorphism between rooted trees (A; vA), (B; vB) is an isomorphism betweenA and B whih sends vA in vB.The symmetries of a rooted labeled tree (A; vA) ,whih we denote again by S(A; vA)are the subgroup of the symmetries of the orresponding unrooted tree, that �x the�rst node vA. As done for trees, we an represent the equivalene lasses of rootedtrees with diagrams, representing by onvention the �rst node on the left and all thenodes of the same level aligned vertially (it should be obvious that the de�nitionsv > w, Anv and A�v are well posed on the equivalene lasses).
0

v

v

1

v

wFigure 1.8: A rooted tree, l(v) = 1, l(v1) = 2, in this example the nodes subsequent tov, s(v) are the orbit of v1.jSv0(A)j = 6, the tree Anv is (v0; w)Remark 1.26. By the Lagrange theorem (see [L℄ or [GR℄) we have that:jS(A; vA)j = jS(A)jj[vA℄j ;where [vA℄ is the orbit of vA onsidered as a node in the unrooted tree A.



20 Chapter 1. PreliminariesS(A; vA) is a group, so we an de�ne its orbits on the nodes v whih we all again [v℄(see Figure1.8). Notie that now [vA℄ � fvAg. Moreover if v1 2 [v℄:l(v) = l(v1) and A�v1 = A�v � A�[v℄;We all [v℄l the osets of level l and m[v℄ = j[v℄j.Lemma 1.27. The order of the symmetry group jS(A; vA)j is:jS(A; vA)j =Y[v℄1 m[v℄!jS(A�[v℄; v)jm[v℄Proof. We apply the Lagrange theorem repeatedly: �rst we hoose a node v of levelone, and prove that the order of its stabilizer (in S(A; vA)) is the produt of jS(A�v; v)jand jS(Anv; vA)j;then in Anv hoose a node w 2 [v℄ and so on until all the nodes in [v℄are aneled; one gets m[v℄!jSv(A�[v℄)jm[v℄jjS(An[v℄; vA)j;where (An[v℄; vA) is the rooted tree A deprived of all the subtrees A�w with w 2 [v℄. Soin An[v℄ we onsider another oset [v0℄ 6= [v℄ and repeat the proedure. A more detailedproof is in [GR℄.Now we will �x the label funtions and restrit our attention to trees respetingsome rules (a grammar) whih reet the properties of our perturbative expansion ofthe homolini trajetory.De�nition 1.28. We onsider rooted labeled trees suh that some nodes are distin-guished by having a di�erent set of labels 8. An admissible tree is a symbol:A; fvAg; fv1; : : : ; vmg; fw1; : : : ; whgsuh that A is a tree, all the vi; wj and vA are nodes of A, the vi are all end-nodes,fvigmi=1 \ fwjghj=1 = ?and the vi are all di�erent.We all fvigmi=1 � F(A) the fruits of A, fwjghj=1 �M(A) the marked9 nodes of A andthe set 0A : fv =2 F(A)gthe free nodes of A.The labels are distributed in the following way:a) For eah node v 6= vA one angle label jv 2 f0; : : : ; ng (remember that we are onsid-ering a system with n + 1 degrees of freedom).8The dynamial meaning of the labels will be lear when we will de�ne the \value" of a tree9a node v an appear many times in M(A) we will say it arries more than one marking.



1.2. Trees 21b) For eah node v one order label Æv = 0; 1 if v 2 0A and Æv 2 N otherwise.) For eah node v 2 M(A) one angle-marking J = 0; : : : ; n and one funtion-markingh(t) 2 H.d) For eah node v 2 F(A) one type label i = 0; 1.We set a grammar on the so de�ned labeled rooted trees, namely:Æv = 0! fjv = Jv = 0; js(v)j � 2 ; jv0 = 0 8v0 2 s(v)g:To draw the diagrams without writing down the labels we give a olor to eah j = 1; n(whih fores Æ = 1) and two di�erent olors for the ouples of labels j = 0; Æ = 1 andj = 0; Æ = 0.In all the pitures we will set n = 2 and hoose the olors blue, green, blak and white,see Figure1.9. The fruits F(A) will be represented as \bigger" end-nodes olored withthe olor orresponding to their omponent label and with their order and type writtenon a side. The marked nodes will be distinguished by a box of the olor orrespondingto their angle-marking and with their funtion-marking written on a side.If the funtionmarking is h(t) = 1 we will omit the funtion marking.
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���Figure 1.9: Examples of trees in A5 and in 0T 5De�nition 1.29. 1) We will all fruitless trees the (labeled rooted trees) A suh thatF(A) is empty. We will say that a fruit v stems from w if v 2 s(w).2)We will all T the set of equivalene lasses (as in de�nition 1.22) of admissibletrees, 0T the subset of T of trees with at least a free node and A the subset of 0T of\fruitless" trees.Finally we will all mA the subset of A of fruitless trees with no marking.3) We will all F ikj the \tree" omposed of one fruit of order k angle j and type i;learly T � 0T [i=0;1j=0;:::;nk>0 F ikj :



22 Chapter 1. PreliminariesNotational Convention 1. Using standard notation we represent the equivalenelasses by [A℄ where A is an admissible tree.Moreover givea a tree A we will write A 2 T if it is a representative of an equivalenelass in T .De�nition 1.30. The order of an element [A℄ 2 T is:o(A) =Xv2A Æv:The order of a node v of A is o(v) = o(A�v).Given a tree A 2 0T and one of its nodes v we all A�v the tree omposed of thenodes greater or equal to v; if A�v is not a fruit then it is not admissible as it arriesa label j in the �rst node. In suh ase, we onventionally set A�v 2 T by setting amark J(v) = jv, h(v; t) = 1 on v and subsequently \forgetting" the label jv.It is easily seen that o(A) > 0 for all A 2 T and thatT k � fA 2 T t.. o(A) = kgis a �nite set (see also Proposition 1.37); learly the same is true in 0T and in ANotational Convention 2. in all our sets an apex k means we onsider the subsetof trees of order k.We list here all the subsets of T , 0T and A that we will need in the followingsetions.De�nition 1.31. a) T� (resp 0T� and A�) is the subset of T (resp 0T , A) suh that vAappears exatly one in M(A) and h(vA; t) = 1 or vA � F(A).b) 0Tj (Aj) is the subset of 0T� (A�) suh that J(vA) = j and M(A) � fvAg;Tj = 0Tj [k2N;i=0;1 F ikj :) A(j;f(t))is the subset of A suh that M(A) � fvAg and J(vA) = j, h(vA; t) = f(t).d) A(i;h(t));(j;f(t)) is the subset of A suh that M(A) � fvA; vg for some v 2 A moreoverJ(vA) = i, h(vA; t) = h(t), J(v) = j, h(v; t) = f(t).For eah of these sets we will onsider a vetor spae on Q generated by the set; ifS is the set we represent it by V(S).De�nition 1.32. V(S) is the vetor spae of linear ombinations of elements of S withrational oeÆients.[A℄ 2 S ! [A℄ 2 V(S) ; [A℄; [B℄ 2 V(S) ! q1[A℄ + q2[B℄ 2 V(S) ; 8q1; q2 2 Q :



1.2. Trees 23V(S) is an in�nite dimensional vetor spaeand an be expressed as diret sum of �-nite dimensional spaes generated by thesets Sk (we all these spaes Vk (S)). Forexample (remember that . n = 2) A31 isthe set in Figure1.10. The values of the la-bels ji of the nodes 1; : : : ; 4 are free: theyan be 0; 1; 2 while Æi is �xed to one be-ause s(1) = 1 and the nodes 2; 3; 4 areend-nodes ; the dimension of V31 = V3(A1)is jA31j = 19.
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Figure 1.10:1.2.2 Funtions on admissible treesWe de�ne some funtions on the subspaes of T whih will be useful in the followingsetions. The de�nitions are very muh \ad ho" so they will neessarily seem quiteunnatural.Suh funtions will then be extended to linear funtions on the orresponding V.De�nition 1.33. Consider a rooted labeled marked tree A, with �rst node vA angle-marked J(vA) and funtion-marked h(t) = 1 (A is not neessarily in 0T�). We de�ne~A as the tree obtained from A by setting j(v ~A) = J(vA) and subsequently forgetting themarking J; h = 1 of vA so that the �rst node does not have a di�erent labeling from theother free nodes.Given a tree B 2 0T plus one of its nodes v 6= vB let w be the node preeding v, wede�ne: �gA(B; v) = E( ~A) [ fE(B) n (w; v)g [ (w; vA) [ (vA; v);and gA(B; v) = ( �gA(B; v) if �gA(B; v) 2 0T0 otherwise:Finally we an de�ne gA(B) = Pv2B gA(B; v), this is a funtion gA : 0T ! V( 0T ) sowe an extend it linearly on V( 0T ).De�nition 1.34. For all k 2 N we de�ne funtions on unordered k-ples of trees in T�.Let A be a labeled rooted marked tree with at least one free node, and fBigki=1 be anunordered set of trees Bi 2 T�.We all as usual vA the �rst node of A and vBi the �rst nodes of the Bi.If B 2 fBig is not a fruit and J(vB) is the marking of vB we all ~B the tree obtainedfrom B by setting jv ~B = J(vB) and forgetting the marking. Then we de�nefA(B1; : : : ; Bk) = ( [i(v ~A; v ~Bi) [ E( ~A) [i E( ~Bi) if it is in 0T0 otherwise:



24 Chapter 1. PreliminariesThis funtions as well an be extended to V(T�) by linearity.It should be lear that the de�nition is in-variant by permutations of the Bi. No-tie moreover that it is not neessary thatA 2 T� to obtain a (linear or multi-linear)funtion fA: T� ! T� (or gA). Considerfor instane the trees in Figure 1.11 respe-tively for linear funtions gA(B) and formulti-linear funtions (k � 2). Figure 1.11:De�nition 1.35. We will use funtions whose arguments are in some spei�ed sub-spaes10 Vk (Tj) (this means that the image is in some �xed Vh(Ti) as well):fAfphi gk : 
n ; ki=0h=1 T hi � � � � � T hi| {z }phi ! T k+o(A)j ;namely there is an ordering of the set fBig suh that B1; : : : ; Bp10 2 T 10 then Bp10+1; : : : ;Bp10+p11 2 T 11 and so on, see Figure1.13.All this this funtions are well de�ned on the equivalene lasses, namely ifA �= A0 ; B �= B0 ! gA(B) �= gA0(B0) : : : ;this implies that the funtions an be represented graphially on the diagrams. Fun-tions gA(B) use the marking of the �rst node of A as angle label and substitute thebranh w; v with A by joining the �rst node of A to v and w (we set the result to zeroif we obtain a tree not in T ).Funtions fA(fBig) use the marking of the �rst node of the Bi as an angle labeland join with a branh the �rst nodes of A and of the Bi. They have vA as �rst node.As an example if A1 and A2 are the two trees in Figure6.3.1,then fA1(A2) is the tree inFigure1.12(a) while fA2(A1) = 0 as all nodes with Æ(v) = 0 must be followed by nodeswith j = 0.Let us de�ne the multi-linear funtions:�Æfphi gk = f�(Æ)fphi gk where the tree �(Æ) 2 0T is δ;these funtions are used to onstrut reursively the sets mAk.10remember that fphi gk is a weighted partition of k: a list of numbers in N0 suh thatXi;h hphi = k:
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2Figure 1.12: Linear funtions on V; the diagrams A1 and A2 are those of Figure 1.9.
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1p  = 1     , p  =  2Figure 1.13: A multi-linear funtion f : A11 �A20 �A20 ! A71



26 Chapter 1. PreliminariesFor eah A 2 mAk, let vA be its �rst node and v1; : : : ; vm the nodes of level one. Nowfor eah l = 0; : : : n and h = 1; : : : ; k� 1 let phl (A) be the number of elements w of thelist s(v) suh that A�w 2 Ahl ; notie thatn ; kXl=0h=1 h phl (A) = k � ÆvA.Remark 1.36. Given A 2 mAk:A = �ÆvAfphi (A)g(A�v1 ; : : : ; A�vm):Conversely the set Æ 2 (0; 1), fAlgKl=1 2 [nj=0Aj with K � 1, represents one and onlyone (non zero) tree: namely for any 0 � i � n, h � 1, set fphi gfAlg to be the numberof trees in the list fAlg belonging to Ahi , and onsider the treeA = �Æfphi gfAlg(fAlg): (1.32)Clearly there are many lists Æ 2 (0; 1), fAlgKl=1 suh that expression (1.32) gives zero .This simple Remark leads to a onstrutive algorithm for onstruting the sets mAkfrom the sets Ahj with h < k.Proposition 1.37 (Reursive onstrution of mAk). For all k 2 N:mAk = [Æ=0;1 ; ftihgk�ÆAhi (�)2Ahi �Æfthi g�A10(1); � � � ; A10(t10); A11(1); � � � ; Ak�1n (tk�1n )� (1.33)Proof. This follows diretly from Remark1.36 as expression (1.33) generates all thelists Æ 2 (0; 1); j 2 (0; : : : ; n), fAlgkl=1.Now to generate A (and in partiular the sets Ahj ) we onsider linear funtionswhih add extra markings to a tree; given A 2 0T the symbol:h(v; t)�vl Arepresents the appliation of an angle-marking J(v) = l and a funtion-marking h(v; t)in the node v; formallyA; fvAg; fvigmi=1; fwjghj=1 ! A; fvAg; fvigmi=1; ffwjghj=1 [ fvgg:We an de�ne the linear funtion:Dj(h(t))[A℄ :=Xv2 0A h(v; t)�vjA: (1.34)Lemma 1.38. The set A is obtained from mA by suessive appliations of the mark-adding funtions. In partiular Aj is generated by�v0j �fphi g:



1.2. Trees 27To generate 0T we an onsider funtions whih add fruits to a tree: given A 2 0T Thefuntion di;kj (v) adds a fruit F ikj to the node v by adding a node y labeled (i; k; j) tothe list F(A) and setting y 2 s(v). Then naturally we an de�ne the linear funtion:D(i;k)j [A℄ :=Xv2 0A di;kj (v)[A℄:This is not the only possible way of addingfruits namely if �i;k is the tree in Figure1.14 then we onsider the linear funtion:B(i;k)[A℄ := Xv2Ajv=0 g�i;k(A; v):
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Figure 1.14:Finally to generate all the possible trees with one fruit we onsider the funtion:F i;k[A℄ = f�i;k(A);de�ned on trees A 2 A0
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,Figure 1.15: The adding fruits funtions

Lemma 1.39. The set 0T is obtained from mA by suessive appliations of the fruit-adding and mark-adding funtions; in partiular:[i=0;1j=0;:::;nk2N D(i;k)j [ mA℄[L(i;k)[ mA℄[F (i;k)[ mA℄ � mA(1F );where mA(1F ) are the trees without markings and with only one fruit.



28 Chapter 1. PreliminariesAnother way of manipulating trees is to hange the �rst node (whih is distinguish-able only as it does not have the label j). Generally one an obtain various trees in0T by simply hanging the unolored node (for example one an shift the angle labelsdown along a path joining any node v to the unolored one vA). However not all thetrees obtained in suh a way are in TDe�nition 1.40. Given a tree A 2 0T let vA be the �rst node and v a free node; thehange of �rst node P (A; v) : 0T ! 0T is so de�ned:let vA = v0; v1; : : : ; vm = v be the nodes of the path PvA;v. P (A; v) is obtained fromA; fvAg; fvigmi=1; fwjghj=1 by shifting only the j labels of the nodes of PvA;v in the dire-tion of vA. This automatially implies that v is left j�unolored and is the �rst nodeof P (A; v). If we obtain a tree not in T we set P (A; v) = 0.P : V(T )! V(T ) is the linear funtion suh that 8A 2 T , P (A) = Pv2 0A P (A; v).
v

A P(A,v)= =Lemma 1.41. P (A; v) = 0 if and only if ÆvA = 0 , js(vA)j = 2 . This means that thepossibility of applying the hange of �rst node does not depend on the hosen v 6= vA.Proof. Consider the trees A and P (A; v) and the nodes vA = v0; v1; : : : ; vm = v of thepath PvA;v. For eah i = 0; m�1 vi preedes vi+1 in A and follows it in P (A; v). So foreah node w 6= vA; v the number of following nodes s(w) is the same in A and P (A; v);s(vA) dereases by one and s(v) onsequently inreases by one. This implies that alltrees A with ÆvA = 0 and js(vA)j = 2 have P (A; v) = 0 for all v. Moreover if vi hasÆ = 0 then it has j = 0 as well as all the nodes (inluding vi+1) following it. Thismeans that in P (A; v) it will still have Æ = j = 0, the same s(vi) � 2; moreover vi�1that follows vi in P (A; v) has j = 0.Notational Convention 3. We will all rT the subspae of 0T of trees whose �rst nodean be hanged. In general an apex r on a tree set S means that we onsider only treesin S whose �rst node an be hanged.De�nition 1.42 (hange of nodes in T(i;h);(j;f)). Given a tree A 2 T(i;h);(j;f) letvA and v be respetively the �rst node and the other marked node. We de�ne P1 �P (A; v) : T(i;h);(j;f) ! T(j;f);(i;h); see Figure1.16.Remark 1.43. Notie that given a tree A 2 rT and one of its nodes v there exists aunique B suh that P (A; v) = B. This means that for all i; j and for all the funtionsh; f 2 H: rT(i;h);(j;f) $ rT(j;f);(i;h):If i; j 6= 0 then rT(i;h);(j;f) � T(i;h);(j;f) and so T(i;h);(j;f) $ T(j;f);(i;h):
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Figure 1.16: Example of P1(A); we have evidened the path joining the two markednodes.In T(0;f);(i;h) (i 6= 0) we have trees not in rT ; i.e. trees with Æv0 = 0 and js(v0)j = 2. CallT (0)(0;f);(i;h) suh subset.Lemma 1.44. T (0)(0;f);(i;h) is the image of T(i;h) by a suitable linear funtion, (similar togA(B)).Proof. We hoose �f = f(y, t )where f 2 H(this is a marked rooted tree with one node y) and onsider the appliation �g�f (A; v). Then we apply the hange of �rst node in y. We have a \linear funtion":Lf(A) = Xv2Ajv=0P (�g�f (A; v); y)Consider a tree A 2 T(i;h), as �f has degree zero in k the degree of �g�f (A; v) is the sameas that of A. However the trees �g�f (A; v) are never in T . We then apply the hangeof �rst node and obtain the linear funtion T ! T Lf(A) whose �rst node is y markedzero and s(y) = 2; the node v (that follows y) is labeled j = 0 by the de�nition of g,while the node that preedes v in A (that now follows y) gets the label j = 0 from yby the shift of labels; the trees we obtain are in T . Notie that Lf is an injetive linearfuntion T k(i;h) ! V(T k 0(0;f);(i;h)) and that eah tree B 2 T (0)k(0;f);(i;h) uniquely identi�es theouple A; v where A 2 T k(i;h) and v is one of its nodes.Corollary 1.45. Consider the set Â = mA \ rA;Â generates mA (and onsequently A and 0T ).



30 Chapter 1. PreliminariesProof. We simply onsider the linear funtion L(A) := P (�g�(A; v); v) where �= δ=0,and proeed as in Lemma 1.44.



Chapter 2Tree expansion for the homolinitrajetoryIn the preeding Chapter we have de�ned all the neessary spaes of trees; now we�nally set the trees in orrespondene with the dynamis. In partiular we will de�netwo appliations V and W de�ned on A and two appliations V1 and W1 de�ned onT . Correspondingly we will de�ne two vetors0kj 2 V(Akj ) ; and �kj 2 V( 0T kj )this vetors will have the property:V(0kj ) = V1(�kj ) =  kj ; =W(0kj ) = =W1(�kj ) = �Ikj :Moreover V1(A);W1(A) 2 H0 for all A 2 A , while the presene of fruits introduesnon analyti terms.2.1 Holomorphi properties of tree representations2.1.1 Linear operators on trees,To establish a orrespondene between eah funtion  kj (t) and a vetor of V(Aj ), letus �rst write the funtions F kj expliitly (using well known formulas on the derivativesof omposite funtions):F kj = � X~m2Nn0 (r~m+ejf(t)) Xfphj g~m;k�1 n;k�1Yj=0h=1 1phj ! ( hj )phj�Æj0Xn�2(dn sin q(t)) Xfphgn;k k�1Yh=1 1th! ( h0 )ph



32 Chapter 2. Tree expansion for the homolini trajetorywhere fphj g~m;k is a list of numbers in N0 � N [ f0g and respet the relationXh phj = mj ; Xj;h hphj = k;similarly fphgn;k is a list of numbers in N0 suh that Ph ph = n, Ph hph = k, �nallyr~mf(t) = [ nYj=0 �mj j f( )℄ i='+!it 0=q0(t) ; dng(q(t)) = dnd 0g( 0)j 0=q0(t):We have that: kj (t) = ajOtj(F kj ) = aj�Qj(F kj ) + 12 Xi=0;1(=(xijF kj )� ; �Ikj (t = 0) = =(F kj ):Given a list fphjg we set:Pfphj g =Y phj ! ; mi =Xh phi ; f 1 = f ; f 0 = os(q) ; M =Xi;h phi ;and de�ne the multi-linear funtions on xi 2 H:F Æ;jfphi g(x1; xM) = (�1)Ær~m+ejf ÆY xi:Notie that F Æ;jfphi g = 0 if Æ = 0 and j 6= 0 as in that ase �jf Æ = 0. We an write: kj = ajOj[XÆ=0;1 Xfphi gk�Æ 1P (fphi g)F Æ;jfphi g(�x1; � � � ; �xM)℄where �x1 = � � � = �xt10 =  10(t) ; �xt10+1 = � � � = �xt10+t11 =  11(t) � � � and the ordering isarbitrary.We now onstrut the linear funtionsV' : V([nj=0Aj)! H ; W' : V(A) ! Hsuh that for eah j 2 f0; 1; : : : ; ng and for eah k there is a unique 0kj 2 Vkj suh that kj (t; ') = V'(0kj ) and �IkJ = =W'(0kj ).The funtion W is de�ned reursively on the the �nite sets mAh and then extended toA via the mark adding funtions and to V(A) by linearity. V is diretly de�ned on thesets Aj.First we de�ne the funtions on trees of order one W( mA1) and V(A1j).Remember that mA1 is the tree: 01 = δ=1 and A1j the tree 01j = �v0j 01W'(01) = �(�)(f 1(q(t); '+ ~!t)) ; V'(01j) = �(�)ajQj(rejf 1(q(t); '+ ~!t)) (2.1)



2.1. Holomorphi properties of tree representations 33Then, using Remark1.36, we see that by setting:V'��v0j �Æfphi g(fAlg)) = ajOj(��)Æ(r~m+ejf ÆYl V(Al)�;for eah list Æ = 0; 1 j = 0; n and fAlg 2 [jAj, we an de�ne V reursively on all theAkj . In the following we will omit the initial data ' whenever it is possible.Namely the value V of a tree A 2 Aj is found reursively from the value of its levelone subtrees1 A�v.We have seen in the preeding setion that we an obtain A from mA by suessivelyadding marks, so given a tree with no marks on the �rst node we add the marksj1; : : : ; jl h1(v0; t); : : : ; hl(v0; t) and set:W( lYi=1 hi(v0; t)�v0ji 01) = (��)Yi hi(vA; t)rPi ejif 1;W( lYi=1 �v0ji hi(v0; t)A) � (��)Æv0 Yi hi(v0; t)(r~m(v0)+Pi ejif Æ) Yv2s(v0) ajvOjv [W(A�v)℄;where ~mi(v) is the number of nodes v0 2 s(v) having jv0 = i. This extends W to A.De�nition 2.1. We de�ne reursively the vetors 0kj that we will prove to be in or-respondene with  kj :0k = XÆ=0;1 Xfphi gk�Æ 1Pfphi g�Æfphi g(010; : : : ;010| {z }p10 ;020; : : : ;0k�1n ); 0kj = �v0j 0k:notie that eah 0hj appears phj times.The de�nition immediately impliesV(0kj ) = (�)k kj :Proposition 2.2 (Determination of 0kj ). For eah j; k0kj = XA2Akj 1jS(A)jA � XA2Akj (A)A; (2.2)where the sum A 2 Akj means hoosing one representative from eah equivalene lass ofAkj (learly this is well de�ned as jS(A)j does not depend on the hosen representative).1remember that, if v is a node of level one, we onsider A�v 2 A� and the angle label jv beomesan angle-marking with funtion-marking h(v; t) = 1.



34 Chapter 2. Tree expansion for the homolini trajetoryProof. We proeed by indution. The assertion is trivially true for 01j so we suppose ittrue for all i and 8h < k. By De�nition 2.1 and Proposition 1.37 0kj is the sum of allthe trees in Akj and we only have to prove that the oeÆients are those of expression(2.2).Given a tree A 2 Akj let v1 vm be its level one nodes and A1; � � �Am its level onesubtrees; by the de�nition of 0 we have to prove that:1jS(A)j = N(A1; � � � ; Am)Pfphi (A)g mYi=1 1jS(Ai)jwhere fphi (A)g is the number of trees fAjg in Ahi and N(A1; � � � ; Am) is the numberof ways in whih one an hoose one summand form eah 010; : : : ;0k�1n and obtain theunordered list (A1; � � � ; Am).Now if m[vi℄ is the ardinality of the orbit of vi (so there are m[v1℄ subtrees equal toA1 ...), N(A1; � � � ; Am) = Pfphi (A)gQ[v℄1 m[v℄! and mYi=1 1jS(Ai)j =Y[v℄1 1jS(A�[v℄)m[v℄j :
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2.1. Holomorphi properties of tree representations 35Notie that V'(A) = V'(B) if and only if A �= B;so we will always onsider isomorphi trees as equal and make no di�erene betweenthe tree and its diagram.To ompute the expansion of the ation variables we use Expression (1.30). It iseasily seen that the splitting vetor of order k (�)k�Ikj an be expressed as the value=W' of 0kj .2.1.2 Holomorphi and non holomorphi ontributions (treeswith and without fruits)We have mentioned in Remark 1.15 that it an be useful to divide the series expansionof  (�; t; ') in an analyti part, due to suessive appliations of Qj and a part not inH0 due to the appearane of the operators Rij. To represent this hoie we use the fullspae T . In partiular the fruits will represent the hoie of one of the Rij.We set: kj = ajOj(F kj ) = ajQjF kj + Xi=0;1 x[i℄j Gikj ; where Gikj = 12aj=xijF kj : (2.3)Then as in the preeding subsetion we de�ne a vetor in V(T k) whih we want to setin orrespondene with the angles  kj .De�nition 2.3. We de�ne reursively 0�1j = 01j ,0�jk = XÆ=1;0 Xfphj g~m;k�Æ 1Pfphj g�v0j �Æfphj g(�10; : : : ;�k�1n )and �nally �kj = Xi=0;1F ikj + 0�kj :Proposition 2.4. As in Proposition 2.2:0�kj = XA2 0T kj 1jS(A)jAProof. We proeed by indution: �j1 = 01j + Xi=0;1F i;1j



36 Chapter 2. Tree expansion for the homolini trajetoryveri�es the Proposition, so we suppose it to be true 8 j = 0; n and 8 h < k. By theindutive hypothesis:0�jk = XÆ=1;0 Xfphj g~m;k�Æ 1Pfphj g�v0j �Æfphj g(�10; : : : ;�k�1n )where the �hi h � k � 1 are in V(T hi ), and we proeed as in Proposition2.2 .We now give a valueW1 to trees in T and the de�ne a funtion V1 so that V1(�kj ) = kj . As usual we proeed reursively on trees of inreasing order and deorations:given a tree in 0T with no marks on the �rst node we add the marks j1; : : : ; jl, h1(t);: : : ; hl(t) and set:W1( lYi=1 hi(vA; t)�vAji 01) =(��)Yi hi(vA; t)rPi ejif 1;W1( lYi=1 �vAji hi(vA; t)A) =(��)ÆvA Yi hi(vA; t)(r~m+Pi ejif Æ) Yv2s0(vA)ajvQjv [W1(A�v)℄Yv2F(vA)x[iv ℄jv (t)Giv;kvjv ;Gi;kj =12aj=xijW1( 0�kj );where ~mi is the number of nodes in s(v0) having jv = i and s0(v) is the number of freenodes following v. As seen in the previous Setion this de�nes W1 on 0T .Then we de�ne the values V1, reursively on [j 0Tj by setting:V1(A) � ajQj[W1(A)℄:for all A 2 0Tj. Finally we extend the de�nition to fruits by setting:V1(F i;kj ) = x[i℄j Gi;kj :By De�nition 2.3 the \value" of a fruit of order h label j and type i is as well :�12ajx[i℄j =fxijW[0hj ℄g:Notie that the fruits bring non analyti terms namelyV1(F0;kj ) =2 H0 ; and G1;kj = =x1jW1( 0�kj );with x1jW1( 0�kj ) =2 H0. In general, for trees in 0T , it is useful to onsider the followingfuntion	'(A) =Yv2 0A(�12�)ÆvrPnj=0mv(j)ejf Æv Y�2F(v) x[i�℄j� Y�2M(v) h�(v; �v)w(�w; �v)Y�2F(A)Go(�);i(�)j(�) ;



2.2. Equivalent trees and anellations 37F(v) are the fruits stemming from v, M(v) is the list of markings of the node v and�nally mv(j) is the number of elements in fv; s0(v);F(v);M(v)g having angle label(or angle marking) equal to j. We write s0(v);F(v) instead of s(v) to remark that thefruits are not onsidered proper nodes. Notie that 	1'(A) ontains the kernels of theintegral operators Qj so that W is obtained by \integrating" on the times �v v > v0.W1'(A) = 2Yv>v0 =�w+ + =�w� 	'(A) � O Æ	'(A):Remark 2.5. For the splitting vetor we have j = 1; n and:�Ikj � 2a�1j G0kj = =W1[�kj ℄: (2.4)The angles  kj for j = 0; n are: kj � V1(�kj )) = aj(=t+ + =t�)wj(t; �v0)W1(�kj ) (2.5)2.2 Equivalent trees and anellationsIn this setion we use the tree expansion to prove properties of the homolini trajetoryand of the homolini splitting matrix.First let us de�ne some partiular vetors in V( 0T ).De�nition 2.6. For i; j = 0; n, and given f(t); h(t) 2 H, we de�ne for any k 2 N:V(T k(i;f)) 3 �k(i;f) = XA2 0T k (A)f(v0; t)�vAi A = XA2T k(i;f) (A)A;V(Ak(i;f)) 3 0k(i;f) = XA2A (A)f(v0; t)�vAi A = XA2A(i;f) (A)A;V(T k(i;f);(j;h)) 3 �k(i;f);(j;h) = XA2 0T k X[v℄2A (A; v)f(vA; t)�vAi h(v; t)�vjA = XA2T k(i;f);(j;h) (A)A;V(Ak(i;f);(j;h)) 3 0k(i;f);(j;h) = XA2Ak X[v℄2A (A; v)f(vA; t)�vAi h(v; t)�vjA = XA2Ak(i;f);(j;h) (A)A;where (A) = 1S(A) ; (A; v) = m[v℄S(A)for all labeled trees A. By onvention we will omit the marking funtion if it is equalto one.



38 Chapter 2. Tree expansion for the homolini trajetoryNotie that=W'(0kj ) = =W1'(�kj ) = �Ikj (') ; =W'(0kj;i) = =W1'(�kj;i) = �'i�Ikj ('):Moreover as we said before �Ikj = 2G0kj .Now we have set up all the neessary formalism to study the anellations in the seriesfor the vetor �Ikj (') and its Jaobian matrix �'i�Ikj ('). The anellations ourbeause the appliations =W1 or equivalently =W (de�ned on V(A)) are learly notinjetive so that apparently di�erent trees an give the same ontribution.We have introdued all this formalism on the trees to be able to identify anellationsdiretly in the formal spae of trees V. We have onsidered trees modulo isomorphism,now we add identities due to the dynamis.De�nition 2.7. Given two trees A,B in 0T we setA = B $ A�B 2 ker=W1;notie that isomorphi trees are equal.This equality an hold for all initial data ' or only for some speial values in the latterase we will set A = B(' = �'). The same reasoning an be done with the operator=W in A.Remark 2.8. Notie that by our de�nition of equivalent trees adding a fruit of orderk type i and angle j in the free node v of a tree A 2 0T is equivalent to adding a markx[i℄j (t)�vj to the node v and multiplying by the � and ' dependent funtion Gikj .The anellations between trees are due to the symmetries of the Qj and Oj oper-ators that we evidened in Proposition1.16, we will write them again shematially:a) The operators Qj and Oj are symmetri; given F and G 2 H=F (t)Qj(G(�)) = =G(t)Qj(F (�))=F (t)Oj(G(�)) = =G(t)Oj(F (�))b) The operator Qj preserves the parity; moreover =f = 0 if f 2 H is odd.)Given two ontinuous funtions F;G 2 H if �PFG 6=  holds then:=TG(t)dtF (t) = F (T )G(T ))�=TF (t)dtG(t):d) By energy onservation the stable and unstable manifolds are on the same energylevel.Eah of these properties brings some anellations, we will �rst hek those omingfrom property (b), as they are the simplest ones:Lemma 2.9. for eah j; k and for any even funtion f(t):V(Ak(j;f)) 2 ker=W'=0:In the same way V(T k(j;f)) 2 ker=W1'=0:



2.2. Equivalent trees and anellations 39Proof. By Proposition1.16 (b) we only need to prove that W'=0(A) is odd for allA 2 Ak(j;f).We proeed by indutionW(01(j;f)) = f(t)rejf 1(~!t; q0(t))whih is odd as f and f 1 are even. If k > 1 then all l(A) > 0 the number of subtreesof level one. W(A) is the produt of l(A) odd funtions times f 1 derived l(A)+1 timesso it is odd.Then, for eah j; k, the funtionGh�j�;k�( = 0) = =W(xij0kj ) = 0as it is the integral of an odd funtion. So in 0T all the trees with fruits have zero value.Finally if A 2 0T is fruitless then W1(A) is odd.Theorem 2.10. [homolini intersetion℄ The stable and unstable manifold intersetat q = �;  = 0.Proof. the distane between stable and unstable manifold at q = �;  = ' is:nXj=1 1Xk=1(�)kj�Ikj (')j = nXj=1 1Xk=1(�)kjaj=W1'(�kj )j:
Another important feature for identifying anellations is the symmetry with re-spet to hanges of the �rst node.Lemma 2.11. By Proposition1.16(a) we have:8A 2 rT ; 8v 2 A : P (A; v)� A 2 ker =W1'8A 2 rT(j;f)(i;h) : P1(A)� A 2 ker =W1' (2.6)for the same reasons:8A 2 rA ; 8v 2 A : P (A; v)� A 2 ker =W'8A 2 rA(j;f)(i;h) : P1(A)� A 2 ker =W': (2.7)Proof. Notie that given a tree A and one of its nodes v if w 2 P(vA; v) then:P (A; v) = P (P (A;w); v);



40 Chapter 2. Tree expansion for the homolini trajetoryso that we only need to prove the assertion for v 2 s(vA). Given A 2 rT and v 2 s(vA)suh that jv = j we ompare: =W1(A) and =W1(B) with B = P (A; v), so B has �rstnode v (no label jv) and a node vA in s(v) with jvA = j.=W1(A) = (��)ÆvA=rPj mvA(j)ejf ÆvA Yw2s(vA)w 6=v Qjw [W1(A�w)℄Qj[(��)ÆvrPj mv(j)ejf Æv Yw12s(v)W1(A�w1)℄;whih by the symmetry of Qj is equal to=rPj mv(j)ej (��)Ævf Æv Yw12s(v)W1(A�w1)Qj[(��)ÆvArPj mvA (j)ejf ÆvA Yw2s(vA)w 6=v Qjw [W1(A�w)℄℄:This is the value of B, namely, both in A and in B, mv(i) with i 6= j is the number ofelements in (s(v);M(v); F(v)) having label i and mv(j)� 1 is the number of elementsin (s(v);M(v);F(v)) having label j.
v

A P(A,v)= =

Figure 2.2: An example of trees that are equivalent by hanging the �rst nodeExample 2.12. let A be the tree in Figure2.2:W1'(A) = re1+e2+e0f 1(�0)Q1(�0; �1)[re1f 1(�1)℄Q0(�0; �2)[re0f 1(�2)℄Q2(�0; �3)�re2+e0f 1(�3)Q0(�3; �4)[re0f 1(�4)℄�whileW1'(P (A; v)) = re0f 1(�0)Q0(�0; �1)hre2+e0f 1(�1)Q2(�1; �2)�re1+e2+e0f 1(�2)Q1(�2; �3)[re1f 1(�3)℄Q0(�2; �4)[re0f 1(�4)℄�iso we apply repeatedly the Proposition 1.16(b).



2.2. Equivalent trees and anellations 41We have seen that many trees in 0T are equivalent; we will onentrate on relationsfor the vetors 0i;j and �i;j. Let us summarize some properties of the oeÆients(A; v).Consider A 2 0T and let A be the rootless tree assoiated to A. By the Lagrangetheorem if vA is the �rst node of A and S(A; vA) is the stabilizer of vA in A thenjS(A)j = jS(A; vA)j = jS(A)jas vA is the only unolored node of A.Lemma 2.13. � (i) let [v℄ be the osets of v by the ation of S(A) and m(v) = j[v℄j:Xv �vi 1S(A)A =X[v℄ m[v℄jS(A)j�vi Athe sum [v℄ means hoosing a term from eah oset to obtain summands that areall di�erent.The oeÆient (A; v) � m[v℄jS(A)j is the ardinality of the subgroup S(vA; v) of S(A)that �xes vA and v;� (ii) This subgroup �xes all the nodes of the path P(vA; v) and so does not dependon the labels of the nodes on the path. So given a tree A and a node v(A; v) = (P (A; v); vA)Proof. � (i) we group the idential terms in Pv (A)�vi A orresponding to nodesin the same oset [v℄ of A so we have m[v℄ terms for eah oset [v℄.� (ii) �rst we note that S(A) sends adjoint nodes in adjoint nodes so for eahpermutation � 2 x(vA; v) and for eah vi in the path PvA;v (that have length m)�(vi) = wi is adjoint to wi+1 = �(vi+1). Now as by de�nition � �xes w0 = v0 = vAand wm = vm = v the list of nodes fwigmi=0 is a path joining vA to v. In a treethe paths are unique so wi = vi for eah i � m.This Lemma and Remarks 1.43 imply the following identities on the vetors �i;jand 0i;j. we write them expliitly only for �.Proposition 2.14. For i; j 6= 0, f; h 2 H and for eah k the following equality holds:�k(i;f) (j;h) = �k(j;h) (i;f).Proof. We have seen that Ak(i;f) (j;h) $ Ak(j;h) (i;f) and that the trees in orrespondenehave the same value. We only need to prove that the orresponding summands in�k(i;f) (j;h) and �k(j;h) (i;f), have the same oeÆient; this follows from Lemma2.13(ii).Namely given A in Ak(i;f) (j;h) then S(A) is the stabilizer of the two marked nodes of A,then (A) = (P1(A)).



42 Chapter 2. Tree expansion for the homolini trajetoryProposition 2.15. Given any two funtions in H: h(t) and f(t), for eah k and foreah i = 1; n we have: �k(0;h) (i;f) = �k(i;f) (0;h) + Lh(�k(i;f))Proof. As in the preeding Proposition r�k(0;h) (i;f) = r�k(i;f) (0;h).To prove that �k0(0;h) (i;f) = Lh(�k(i;f)) we show that the oeÆient of orresponding sum-mands are the same (we have seen that to eah element of Ak0(0;h);(i;f) there orrespondsan unique summand of Lh(�k(i;f))). Given a summand (tree A) of �k0(0;h) (i;f) markedin the node v, its oeÆient (A) is the inverse of the ardinality of the stabilizer ofvA, v. If v1 is the only2 node following vA and not in P(vA; v) then jS(A)j is as wellthe ardinality of stabilizer of the the path joining v1 to v (whih passes by vA byde�nition). So it has the same oeÆient as P1�g�h(B; v1) where B is the tree , having�rst node v, suh that P1�g�h(B; v1) = A.

2it is unique as A 2 Ak00h (i;f)



Chapter 3Basi estimates on tree expansionsWe prove upper bounds on the value of trees of order k. In partiular our bounds onW1(A) are exponentially small for all A 2 A (we will all these the \analyti bounds").Upper bounds onW1(T ) for T 2 T are derived more or less in the same way as in [G1℄;notie however that we do not request that f( ; q is a trigonometri polynomial. Wealso onsider bounds on the values V1 of fruitless trees, whih will be useful in Chapter5. Moreover in Setion 3.2 we will prove some tehnial lemmas on asymptoti powerseries whih will be useful in Chapters 4 and 5.In Chapter 2 we have introdued a tree representation for the series expansion of j('; �) and Ij('; �). The KAM theorem 1.2 guarantees the onvergene of this twoseries and of the splitting matrix. So we an onsider the series:�j =Xk�1 �kj ; and the funtions V1'(�j) and =W1'(�j);are well de�ned smooth funtions of � by the KAM theorem. We would like to onsiderseries of the type: X�2I (A�)A�;where I is a numerable set and the A� 2 T . For suh series we have no guarantee of theonvergene of the orresponding values. We will onsider them as formal series andwrite identities between the formal series whih are true term by term. Suh identitieswill be written as A � B.In this hapter we prove that suh formal series are polynomial asymptoti seriesin �; ".De�nition 3.1. A formal power seriesx =Xk (�)kxk(")



44 Chapter 3. Basi estimates on tree expansionsis polynomially asymptoti in �; " if there exists a neighborhood of " = 0 where for anyq 2 N there exists p(q) suh that:xk(") � "�p(q)k ; 8k � "�q ; 8" 6= 0:3.1 Upper bounds on the values of treesGiven a fruitless tree A 2 mA of order k (so with at most 2k � 1 nodes), its valuethrough =W1' is of the form:2=Yv>v0(=�w+ + =�w� )(�12)N(A)(�)Æv0rPj mv0 (j)ejf Æv0Yv>v0(�)ÆvrPj mv(j)ejf Ævw(�w; �v) (a)Its value V1 is:Yv�v0(=�w+ + =�w� )(�)Æv(�12)N(A)rPj mv(j)ejf Ævw(�w; �v); (b)where w is the node preeding v and by onvention: �w0 = t.Remember that, setting x = e�jtjwj(t; �) = �(t)x1j(t)x0j(�)� �(�)x0j(t)x1j(�))x1j = � jtj j 6= 0jtjxx2+1 � 14(x� x�1) j = 0 x0j = � 1 j 6= 02xx2+1 j = 0: (3.1)And that the operators = and =t� are: = = =0� �=0+ and=t+ = � =t if t � 0=0+ �=0� + =t if t � 0 ;same for =t�.We expand f 1 in Fourier series in the rotator angles,f 1( ; q) = Xj�j�N ei�� f�(q);so that eah node has one more label �v 2 Zn. Be will represent as A(�) a tree A withlabels �v suh that suh that Xv2A �v = �:As A is fruitless V1(A) depends on the initial data via the funtion ei'��.



3.1. Upper bounds on the values of trees 45In eah node v with Æ = 1 we have as fator the funtion dnvf�v(q(t)) where nv =mv(0). Moreover as q(t) = 4 artan(et) then f�(q(t)) = F�(et) with F (y) analyti insome strip around y � 0.To �nd upper bounds on the trees one needs very few assumptions on the pertur-bating funtion f 1, we will onsider some ( not minimal) hypothesis that guaranteethat the value of an integral of type a) on fruitless trees of total frequeny � and orderk, with initial data ' 2 Tns0 are bounded byes0j�j(k!)1[P ("; "�1)℄ke� Dp" j!��j:Where D is de�ned in De�nition 1.28, P ("; "�1) is a polynomial and we will �x s0 oforder one.We prove t dependent bounds for the analyti integrals (b); this bounds will be useful inChapter 5. We onsider them here only beause the proof is parallel to that of integrals(a). Notie however that in this ontext there is no guarantee that the values V1 offruitless trees are bounded for t!1 as suh trees have no dynamial meaning. Thebounds on integral (a) assure that the formal tree series we will onsider in Chapter 4are all asymptoti series.The funtions f�(q) are suh that F�(et) 2 H0(a;D) (remember that a;D are thoseof de�nition 1.28). Naturally by our analytiity assumptions f�(q(t)) is limited forjtj ! 1 in jIm tj < 2�.Notie that if D < �=2 the image of C(a;D) via q(t) is a ompat region and thatthere exists � suh that F�(et) has singularities on the linesjIm tj = D and jRe tj = a:Moreover as the image of R � [��=2; �=2℄ through eiq(t) is the Riemann sphere theremust be a singularity j Re tj � �=2.De�nition 3.2. We onsider the subset of H0(a;D):B(a;D) := ff( (t); q(t)) 2 H0(a;D) : maxt2C(2a;D�p") jF�(et)j �Mp"�pg (3.2)for some p 2 N0 .In Appendix A.1 we will give various examples of funtions f(q;  ), with essentialsingularities in q and satisfying this ondition (even with p = 0).Proposition 3.3. (i)The funtions dkqf�(q(t)) = F k� (et) are all in H0(a;D) if f is somoreover if f is in B(a;D) then so are the F k� and:maxt2C(3a;D�2p") jF k� (et)j � k!Mp"�(p+k)1In Appendix A.6 we will prove non-optimal upper bounds for the tree expansion of the homolinitrajetory for Hamiltonian (*)



46 Chapter 3. Basi estimates on tree expansionsProof. The assertion is equivalent to proving that for any �nite b and d 6= 0; �=2:mint;�2C(b;d)jtj;j� j<bIm (t��)=k�1 jq(t)� q(�)j � A(b; d)k:A diret omputation of the minimum givesA(b; d) � He�b (3.3)for any " independent d and big enough b. Then the image of C(3a;D� 2p") throughq(t) is ompat, ontained in the image of C(2a;D�p") and the distane between thefrontiers of the two sets is greater or equal to e�2ap". We an use Cauhy estimateson the derivatives �k0f�(q(t)) = F k� (et).We an prove 3.3 geometrially by notiing that, provided that b is big enough, theminimum distane jq(t)� q(�)j is attained on the border jtj = j� j = b (whose image inthe variable q is a irle around q = 0, for large enough b).This is learly seen in Piture3.1; to proveit one noties that q(t) is onvex, more-over if t(�q); �(�q) are suh that Re q(t) =Re q(�) = �q 2 (0; �℄ then the funtionIm(q(t(�q)) � q(�(�q)) is stritly inreasingin (0; �℄. By triangulation this implies thatthe minimum distane is on the border i.e.on the image inq spae of jtj = b whih forlarge enough b is a irle around q = 0.
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Figure 3.1:Analogous reasonings an be applied to a generalized pendulum.A more diret proof, valid only for funtions having D 6= �=2, is the following. Thefuntions dkqf�(q(t)) are all limited, so we an bound them by k!Ck, with C = O"(1),in the "-independent domains j Im tj < 2�, j Re tj > 3a.In the retangles j Im tj < d� 2p" (d < �=2), j Re tj < 3a the appliation t! q(t) isonformal, let us all the inverse T (q) = log tan(q=4). Then if2 g(t) = f(q(t)):dkqf�(q) = dkqg Æ T = Xfphgk 1Qh ph!dP pht g(t)jt=T (q)(dhqT (q)h! )ph;as T (q) is (in a limited " independent domain) not " lose to its singularities we setdhqT (q)h! � Ch for some order one C, then we bound dPh pht g(t) with "�(p+Ph ph)=2(Ph ph)!.Finally we bound the sum:"�p=2 Xfphgk (Ph ph)!"�(Ph ph)=2Qh ph! � "�(p+k)=2 Xfphgk (Ph ph)!Qh ph! � Ck"�(p+k)=22kk!2As in Chapter 1 the symbol fphgk is a list of non-negative numbers ph, h 2 N suh thatPh�1 hph = k.



3.1. Upper bounds on the values of trees 47as the sum in the middle term is the order k derivative, omputed in zero, of f Æ fwhere f(x) = x1�x for x 2 R. Notie that this proof holds true allso for a generalizedpendulum3.If we restrit our attention to rational funtions F�(et) and all ti� their poles injImtj � � (all with Imt 6= 0) then:D = Min �;i2[1;N(�)℄j Im (ti�)j; a = max�;i2[1;N(�)℄ j Re (ti�)j: (3.4)Moreover the following proposition holds.Corollary 3.4. (i) The funtions �k0f�(q(t)) = F k� (et) are all limited rational funtionsof et, whose poles are the same as those of F 0� (et). (ii) If the order of the pole yi� is pi�for F 0� then it is pi� + k for F k� (exept for �i�2 where it is always pi�).Proof. (i) First we reall that limited rational funtions an be deomposed in \partialfrations"(see [RU℄) as: F�(y) = C + Xi=1;�;N� Pi( 1y � yi� );where the polynomials Pi have no onstant oeÆient. Then as f�(q(t)) = F�(et), wehave dqf�(q(t)) � _q(t) = dtf�(q(t)) = dtF�(et);and so F 1� (y) = 1+y2y ydyF�(y). Now dyF (y) =Pi=1;�;N� P 0i ( 1y�yi� ) is a sum of polynomi-als of degree greater or equal to two, so (1 + y2)P 0i ( 1y�yi� ) is limited and F 1� (y) admitsthe same kind of representation as F (y) (it has obviously the same poles). For k > 1we proeed reursively. (ii) The order of the pole yi� is the degree of the orrespondingpolynomial.Having �xed � = Pv �v, in integral (a) we shift the integration to R + i�(!�)dwhere d < D, !� = !p" � � and �(x) is the sign of x . As the funtions are all analytiin jIm(t) � d the integral (a) is unhanged.In integral (b) we onsider omplex values of the time t + id with t; d 2 R. Then weuse Lemma 1.12 (ii) to shift the integration on the nodes.Notie that in integral (a) we annot hoose the sign of the shift in the single nodeintegrals and so we need to work in the (symmetri) domains H(a;D) to guarantee theindi�erene of extending in the lower or upper half-plane. To simplify the notation weset �(!�) = + and de�ne E(d; �) = e�j!� jd:3In the Appendix A.1 we will show that the only funtions f(q(t);  (t))satisfying the bounds 3.2and having only isolated singularities onj Imtj = �=2 are rational funtions, whih obviously satisfyProposition 3.3.



48 Chapter 3. Basi estimates on tree expansionsIf A has k nodes with Æ = 1 let f�vgk� be the lists of k vetors �v 2 Zn suh thatP �v = � . The value of A(�) (tree A 2 mA with total frequeny �) in integral (a) is:(�12)N(A)ei��'E(d; �) Xf�vgk�[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)℄I dRv02i�Rv0 1Z�1 d�v0e��(�v0 )Rv0 [dnv0f Æv�v0 (q(�v0 + id))℄ei!v�v0Yv>v0 I dRv2i�Rv ( �wZ�1 d�v + �wZ1 d�v)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0[dnvf Æ�v(q(�v + id))℄ei!v�v ; (a)naturally f 0� = 0 for all non zero �.The same tree in integral (b), has value:e!�d(�12)N(A)ei��'ed!� Xf�vgk�[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)℄Yv�v0 I dRv2i�Rv( �wZ�1 d�v + �wZ1 d�v)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0[dnvf Æv�v (q(�v + id))℄ei!v�v : (b)As usual w is the node preeding v, mv(s) is the number of nodes in the list v; s(v)with label j = s, n(v) the number of those with label j = 0 and !v = !�v , �nally�w0 = t.The residues in R are introdued following the de�nitions of =t for omplex values oft given in Subsetion 1.1.3. The fators (i�v s)msv ome only from nodes with Æv = 1so their produt is bounded by4 N2k. Now we want estimates on the integrals thatdepend only on the order k; we start by splitting the sums in monomials.1) Split wj(�w + id; �v + id) into 6 terms if j = 0 or 2 terms if j 6= 0: we obtain 63k�1terms. Eah of this terms is of the form�hv x�lv y(xv)�h0w x�l0w y0(xw);where xv = e�j�v j , 0 � h; h0; l0; l � 1 and both y(x), y0(x) are analyti in jxj � 1(we will all this the limited x dependent part of the Wronskian).4In Appendix A.6, we will deal with funtions f( ; q) whih are not trigonometri polynomials in , the same reasoning ould be applied in this Chapter, so removing the extra hypothesis on f , weonsider only trigonometri polynomials only for simpliity.



3.1. Upper bounds on the values of trees 492) Separate R �w�1 d�v + R �w1 d�v, and =d�v0 in integral (a). We get other 2k terms like:Yv�v0 I dRv2i�Rv ( �wZ�v1 d�ve��(�v)Rv(�v+id)ei!v�v(�v)hvxlv js(v)j+2Yj=1 yjv(xv)):where 0 � lv; hv � js(v)j + 1. Notie that �v is not the sign of �v but an extra label.The funtions yjv are hosen in the following way:(i) one of the yjv is either os(q(�v + id)) , sin(q(�v + id)) or one of the F k�v .(ii) one is the limited xv dependent part of a term from the Wronskian at the node v.(iii) for eah node v0 following v there is one funtion yjv whih is the xv dependentpart of a term oming from the Wronskian w(�v; �v0).Notie that the funtions y are by de�nition all in H(a;D) and respet ondition 3.2.3) Given a node v 2 s(v0) split the integral R �v0�v1 d�v as R 0�v1 d�v� R 0�v01 d�v+ R �v0�v01 d�vand proeed reursively for all nodes (other 32k+1 terms). We onsider �rst the on-tributions from the term with R �w�v01 d�v for all nodes (the others will be expressed asproduts of the same kind of integrals) .Set �v0 = �1, we want to estimate:I�(A) = Yv�v0 I dRv2i�Rv ( �wZ�1 d�veRv(�v+id)ei!v�v(�v)hvx�lvv js(v)j+2Yj=1 yvj (�v): (3.5)Finally for integral (a) we split the �rst integral R 0�1 = R �a0�1 + R 0�a0 . a0 > 0 is suitablylarge (a0 = 2a).In integral (b) we split R t�1 = R �a0�1 + R t�a0 for jtj � a0 and maintain R t�1 otherwise.We onsider the �rst term and expand the funtions yvj as Taylor series in xv = e�v(the sign plus omes from the fat that we are onsidering only t � �a0 < 0).Remark 3.5. The mapping t! et maps the regionfRe(t) < 0, 0 �Im(t) � 2�igin the unitary ball jxj � 1 and the half-lines t+ iy with t � 0 and 0 � y � 2� going to�1 in the radiuses , of angle y, going to zero. Conversely the mapping t! e�t mapsthe region f Re(t) > 0, 0 �Im(t) � 2�igin the unitary ball jxj � 1 and the half-lines t+ iy with t � 0 0 � y � 2� (going to 1)in the radiuses of angle �y(going to zero). Notie that by our symmetry assumptionsthe image of H(a;D) is the same in both mappings; moreover the yvj oming from thefk� are all analyti in x = 0, in the ball jxj < e�a and in all the setion Arg(x) < D.The yvj oming from f 0 have a double pole in �i and those oming from the Wronskianhave simple poles in �i.



50 Chapter 3. Basi estimates on tree expansionsWe set yvj (�v) =Pr=0 yv rj xr and Cfrvg =Qv yv rvj . The integral isIa0m = Res XfrvgCfrvgYv �nv�Ehvv Yv ( �wZ�1 d�veRv(�v+id)+Ev�vei!v�vxrvv d�v (3.6)with w0 = �a0. Starting from the end-nodes we now perform the integrals in d�v thenthe derivatives in Ev and �nally the residues in Rv, we do this �rst for all the end-nodesand then proeed to the inner nodes, hierarhially .Proposition 3.6. Integral (3.6) produes the boundsIa0m � "��m(m!)2�+2Ck1 Yv [js(v)j+2Yj=1 (Xh jyv hj jxh0)( tsy0 )2k;m is the number of nodes (� 2k� 1) ,js(v)j the number of nodes following v and C1 issome order one onstant.In integral a) y0 = e�a0 and s = 0 ; while in integral b) s = 0, y0 = e�a0 if jtj � a0and s = 1, y0 = e�jtj�d otherwise.Finally � � 12 is de�ned in Chapter 1 and � is the diofantine exponent of !p" up toorder K: "� 12 j! � nj > "�jnj�� for some  = O"(1) and for all jnj < KN:If we hoose a0 > a the series are all onvergent (by the analytiity of the yj's in x0).We hoose x0 = e�a4 and estimate the oeÆients of the Taylor series in the balljxj � e�a2 : 1Xk=0 jyv ;kj jxk0 � 2 maxjxj�2x0(yvj ):Proposition 3.6. The integral tZ�1 xKeiA�eB� = xKe(iA+B)tK +B + iAso the Ev derivatives in the end-node v give 2hv terms of the form:hv1!xrvw eidRve(i!v+Rv)�wrv +Rv + i!v (�w)hv2 hv1 + hv2 = hv: (3.7)The residue of R�1v times (3.7) is (3.7) if jrvj+ j!vj 6= 0 andhv2!(hv2 + 1)!(�w)hv1(�w + id)hv2+1 if jrvj+ j!vj = 0:



3.1. Upper bounds on the values of trees 51Developing the binomial we obtain other 2hv+1 terms all of the type:Ghv+1 �m!xrvw ei!v�w(�w)~hv :The onstant G is the maximum between one (rv 6= 0) , (minj�j�N j! � �j)�1 or (�2 )(we use that d < �2 ). After integrating all the end-nodes following a node w we anintegrate in d�w a sum of 22Pv2s(w) hv+1 terms of the type:G�h�h!x~rww ei
v�w(�w)ĥwhere ~rv =Pv2s(w) rv, 
v =Pv2s(w) !v and �h + ĥ �Pv2s(w) hv + 1. We have provedthat the integrals derivatives and residues orrespond to alulating the integrands in(3.6) at the limiting point (a0 or t), ignoring the osillating fators ei
a0 , substitutingthe Taylor oeÆients with their moduli and multiplying by a fator bounded by:26k�3(k!)4 max0<j�j<mN(j! � �j)�2�(2k�1) � Ck(k!)4�+4:x0 is equal to e�a0 in integral a) and is x0 = e�jtj in integral b). If jtj � a0 thenx0 � e�a0 . The fator 1y2k0 omes from the divergent terms x�Pv lv0 evaluated at thelimiting point. The term jtj2k in integral b) an be bounded by a02k if jtj � a0.We now onsider the \left out part" R t�a0 d�v0 (we will set t = 0 in integral (a)).Let v1 be a node of level one.We break the integral =�v0d�v1 as =�a0d�v1 + R �v0�a0 d�v1 . If we hoose the �rst term andm1 is the number of nodes of A�v1 , the integral on A�v1 an be bounded by Ia0m1 andwe are left with the problem of bounding the \left out part" R t�a0 d�v0 on the remainingsubtree A=v1 . We repeat the proedure hierarhially and we end up with 2m terms ofthe form: Ia0m1 � � � Ia0mpYv2# �wZ�a0 d�vW1(#)where the subtree # has ~m nodes and ~m +Pmj = m. We bound the last integral bythe maximum of the integrand for integral (a) and for jtj < a0 in integral (b) we obtain(Ca0) ~m Yv2#;i max�v2[0;�a0℄ jyvj (�v)j:In integral (b) for jtj > a0 we obtain(Cejtjjtj) ~m Yv2#;i max�v2[0;�a0℄ jyvj (�v)j:Let us now examine the 3m�1 integrals left aside in the analysis of item 3). Startingfrom the end-nodes we ut o� all the subtrees # that ontribute a de�nite integral =0�.



52 Chapter 3. Basi estimates on tree expansionsSuh integrals are of the type I�(#i) that we have already onsidered . We are left withan integral again of the type I�0(#0) where #0 is the tree deprived of the #i. The totalnumber of nodes of the #i i = 0; � � � ; h is m.Now we only have to ompute the maxima of the jyvj (�v)j that means the maxima ofthe moduli of G1 = 1osh(t) , G2 = e�tsinh(t), G3 = 1 � 2osh2(t) , G4 = sinh(t)osh2(t) and of allthe F k� in the regions Re(t) > a+ 1, 0 �Im(t) � 2� and on Im(t) = d.To bound the funtions F k� we go bak to the variable q =artg(et) so F k� ! dkqf�(q).The maxima are then taken in a ompat region � T � iR where the f� have nosingularities, and whih is ontained in the image of H(a; d) whih is ompat asd < D � �=2. Let us onsider the integral (a) and set d = D � p", this meansthat in some of the onsidered funtions we are going p" lose to the singularity withIm(ti�) = D 5. As we are not interested in optimality, we will estimate the maximumof G1 with 1p" that of G2 with a onstant , and G3; G4 by 1" .Lemma 3.7. The funtions Gi ontribute at most a fator "�k�2k0+1 where k0 is thenumber of nodes with Æv = 0.Proof. There are k0 � k� 1 nodes with Æv = 0 ontributing either G3 or G4, then eahof the k + k0 � 1 nodes v 6= v0, arries a summand ofmaxt2C(D�2p";2a)(jx0j j) maxt2H(2a;D�2p")(jx1j j)from the Wronskian so either G21 or G1G2.The funtions F n� appear exatly k times. Moreover Pki=1 nvi ounts eah nodewith Æv = 1 plus all its suessive nodes. as eah node with Æv = 0 has s(v) � 2kXi=1 nvi �Xv nv � 3k0 = 2k � k0 � 1We an bound the maxima of the F n� in H(2a;D� 2p") via Proposition 3.3 so wehave a fator p"�(p+2)k+k0Finally we notie that E(D � 2p"; �) � E(D; �) and we sum on all the trees oforder k. This implies the following proposition:Proposition 3.8. We obtain the following bound on the order k of fruitless trees withinitial data ' suh that jIm 'j � s0:[ XA2A(0F ) (A)Yv nv!℄ Xj�j�kN es0j�jCk1 (k!)1N2kE(D; �)p"�(p+5)k+5; (3.8)where C is an " independent onstant and 1 = 2� + 2.5We approah all the singularities simultaneously only if D = i�2 . This fat an be used to givebetter bounds on integral (a); we will give some examples in Setion 6.2.



3.1. Upper bounds on the values of trees 53Integral (b) is bounded by:e!�de(2k+1)(jtj+d) Xj�j�kN es0j�jCk1 (k!)1N2kp"�(p+5)k+3: (3.9)The extra fator ejtj+d"�1 omes from w(t; �v0).The bound (3.9) is muh overestimated (as explained in [GGM4℄). In partiularif jtj; d are of order �, as D is � independent, the maxima of F h� and of the Gi are nottaken in a region near their singularities and so are "- independent, for small enough". Moreover as !� � "�3=2 for all k � "�1 then if � < "3=2 the fator e!�d is small. Inthis ase an use the following bound on analyti ontributions to  kj (t) with t 2 Cand jtj = O(�): (kN)nes0kNCk1 (k!)1N2k: (3.10)Remark 3.9. Consider for eah k a �nite sum of integrals of type (b) whih is knowna priori to be bounded in t. This is possible only if all the integrals arrying divergentterms th or ejtj anel. Then we an bound suh �nite sums bye!�d Xj�j�kN es0j�jCk1 (k!)1N2k p"3p"(p+5)k :We will generally onsider formal power series on trees whose oeÆients are the(A) of the preeding setion. The following bound an be useful:Lemma 3.10. Given a tree A 2 A1 let S(A) be its symmetry group and n(v) be thenumber of nodes w in the list v; s(v) suh that jw = 0. The following bounds hold:Ti(k) = XA2Aki 1jS(A)j � (4n)k:Ni(k) = XA2Aki 1jS(A)jYv2A n(v)! � (4n)k:A proof of this assertions is in Appendix A.2. Now let us see how one an applythe bounds (3.8) to trees with markings and with fruits.If we want to onsider formal power series on marked trees we only need to rememberthat for any h(t) 2 B(a;D) applying the linear funtionD(j;h)(A) �Xv2A h(�v)�vjA;is equivalent to multiplying by Nk maxt2C(2a;D�p") jh(t)j



54 Chapter 3. Basi estimates on tree expansionsif j 6= 0 and by kp" maxt2C(2a;D�p") jh(t)jif j = 0. If h(t) is not in H0 then we set d = D = 0 (we will all this non-analytibounds).As we have seen the value of a fruit isV1(F i;kj = 12x[i℄j (t)=W1(xij�v0j �k):Moreover by Remark 2.8 adding a fruit of order k type i and angle j in the free nodev of a tree A 2 0T is equivalent to adding a mark x[i℄j (t)�vj to the node v of A andmultiplying by the � and ' dependent funtion 12=W1'(xij�v0j �k). This is the sum of2nk values of trees with fruits (and with a marking xij�j in the �rst node), so we repeatthe proedure and ut away the fruits.So we have (2n)k lists of l (at most 2k � 1) marked trees without fruits. t The value=W1 of a list is the produt of the values =W1 of the trees and the value of a treewith fruits is the sum of the values of lists of trees obtained. As the tree values dependonly on the order the sum is (2n)k times the value of a list.We an apply the analyti bounds only to those trees whose markings are all analyti( �jvlx0jvl ). All the trees with arry a mark �jvlx1jvl are bounded via the non-analytiintegrals (d = 0) Notie that ,in our bounds, eah marking with j = 0 gives a fatorbounded by Np" and that there are exatly 2l markings.Lemma 3.11. The bound (3.8)implies the following bound for trees with fruits:[XA2Akj (A)Yv nv!℄ Xj�j�kN e Im 'j�j(2nC1)k(k!)1N4kp"�(p+5)k+3: (3.11)Proof. We have deomposed a tree with fruitsA in (2n)k lists of marked trees A1; : : : ;Aleah of order ki suh that Pli=1 ki = k and bearing a total of 2l markings. The valueof a list is: Yv2fAignv! Xj�j�kN es0j�j(2nC1)k(k!)1N4kp"�(p+5)Pli=1 ki+5l�2l
.Theorem 3.12. The bounds (3.11) and (3.10) imply that the values of fruitless treepower series expansions of de�nition 2.6:0(j;f) =Xk�1 0k(j;f); 0(j;f);(i;h) =Xk�1 0k(j;f);(i;h); : : : ;



3.1. Upper bounds on the values of trees 55via =W and V1' , for j Im 'j � s0 and jtj = O(�), are asymptoti power series in �and ".Moreover, for k � "�1 and � < p"p+5+21, the value of trees of order k is bounded fromabove by k with � 1Proof. Let us �rst onsider the value of the fruitless tree power series expansion 0jthrough =W'6. In eah node, v 6= v0, we apply an operator Oj so we an divide Oj intree terms (applying a label i = 0; 1; b respetively for R0j ; R1j and Qj). Then we uto� the terms due to the operators Rij.We obtain the lists of trees desribed above and we an use the bound (3.11). Thisimplies that the series 0j are asymptoti moreover for k � "�1 k! � "�k and so if� < p"p+5+21 is small enough then (3.11) is bounded by k with � 1.Applying the bounds (3.10) is the same only easier as one onsiders diretly fruitlesstrees.If we want to onsider formal power series on marked trees we only need to rememberthat for any h(t) 2 B(a;D) applying the linear funtionD(j;h)(A) �Xv2A h(�v)�vjA;is equivalent to multiplying by Nk maxt2C(2a;D�p") jh(t)jif j 6= 0 and by kp" maxt2C(2a;D�p") jh(t)jif j = 0.Now we de�ne a generality riterium. From now on a Proposition is said to be true\in general " if it is true for (possibly �xed) funtions f and for all j�j � "p0; j"j � "0for some non zero "0.Corollary 3.13. (i)In general the values through =W1' of non analyti trees, or offruitless trees with total frequeny � suh that �F = 0, of order k � "�1, are of thetype: P ("; "�1)k where P is a polynomial.(ii) A formal power series of de�nition 2.6 whose summands are all fruitless trees with7�F 6= 0 is asymptoti under the same onditions of Theorem 3.12; moreover its termsof order8 k < (p")�( 1�F �2b) in � are all bounded from above by9:P ("; "�1)kO"(e� "b�F ):6Notie that we are not distinguishing between analyti and non analyti terms.7For instane 0i j with i or j � m.8remember that �F is the diofantine exponent of !1.9We will derive muh better bounds for systems with one fast frequeny



56 Chapter 3. Basi estimates on tree expansionsProof. (i) We are not interested in shifting the integration in the omplex plane, so allthe integrands of integral a) an be bounded with " independent onstants. Then aswe onsider trees of order k � "�1, one an bound the fators k! with "�k.(ii) We are simply using the bounds (3.8). Fixed k < (")�( 1�F �2b) (b < 12�F ) then thefrequenies that are aessible at order k are suh that j�j � Nk. Moreover !1 isdiofantine: j!1 � �1j � F j�1j��F ; with �1 2 Zmand so for � � kN : E(D; �) � e� j!1��1jp" ej!2jj�2j � Cke�( k��Fp" ):Consequently max��(")�( 1�F �2b) E(D; �) = O"(e� 1"b�F ):
3.2 Identities for asymptoti power series.We will prove some simple lassial identities, true for asymptoti power series, whihwill be useful in the following setions.Lemma 3.14. (i) The sum and produt of asymptoti power series is still an asymp-toti power series. The division by an asymptoti power series x(�; ") suh that x(0; ") 6=0 is still asymptoti. The integration and derivation of an asymptoti power series onthe parameter � is still an asymptoti power series.(ii) Consider two formal power series that satisfy the formal relation AB � C andsuh that A = 1Xk=0(�)kAk with jAkj � ( �0 )k for all k � K,with  � 1 ; same for B and C. Then their order K trunations A�K, B�K satisfythe relation A�KB�K = C�K + o(K);for all � � �0.(ii) Consider a funtion f(x) analyti in a domain D andx(�) = KXk=0(�)kxk with jxkj � ( �0 )k;for all k � K and for some  � 1, suh that x(�) 2 D for all ketaj � �0. Thefollowing property holds:f(x)� KXk=0(�)k[f( kXh=0(�)hxh)℄k = o(K);



3.2. Identities for asymptoti power series. 57for all j�j � �0=2.Proof. (i) onsider two asymptoti power seriesA = 1Xk=0(�)kak(") B = 1Xk=0(�)kbk(")with a0 6= 0 and suh that max(jakj; jbkj) � "�pk for all k � K = "�q. Their produtand sum is obviously asymptoti. Moreover:A�1 � 1Xk=0 rk(�)k � 1a0 11 + 1a0 P1h=1 ah(�)hthis is an analyti funtion of x = Aa0 �1 provided that jxj > 1. Now for any trunationof A of order K = "�q this ondition is veri�ed and we an �nd the oeÆients rk(k � K) as �nite ombinations of the ai with i � k.(ii)This says simply that:A�KB�K = KXk=0(�)k kXh=0 AkBk�h + (�)K KXk=1 kXb=1 (�)bAkBK+b�k = C�K+(�)K KXk=1 kXb=1 (�)bAkBK+b�kwhere (�)K KXk=1 kXb=1 (�)bAkBK+b�k � 2K()K+1:(iii) f(�) = f(PKk=0(�)kxk) is an analyti funtion of � for � � �0 So its Taylorexpansion at order K has the property:f(�) = KXk=0 (�)kk! f (k) + f (K+1)(�0)(K + 1)! (�)K+1:Finally we apply Cauhy estimates on f (K+1)(�0) in j�j � �0=2.Lemma 3.15. The equation A+B � C+D where A;B;C;D are formal power seriessuh that jakj; k are at most polynomially small in " while bk; dk = O"("1) for allk � "�q is in general equivalent to the two equations:a �  b � d for all k � "�q:Proof. We are simply saying that in general it is not possible thatP ("; "�1) = f(") where f is a tranendental funtion:



58 Chapter 3. Basi estimates on tree expansionsThis leads to the following relation for matrix formal series. Consider three matrixformal power series D 2 Mat n�n and X:Y 2 Mat n�h and let D(K), X(K), Y (K)be their trunations to order K = "�q:D(K) = KXk=0(�)kDk("); X(K) = KXk=0(�)kXk("); Y (K) = KXk=0(�)kYk("):Suppose that D(K) is symmetri and that for � � "p :set supi;j Dij;k = jDkj; and jDkjjXkj � ( � )k; jYkj � C(")( � )kfor some � 1 and C(") = O"("1). Moreover suppose that X0 has an h� h non zerominor and Xij 0 = O"(1).Lemma 3.16. (i) Suppose that the expansions of D and X admit a deompositionDk = D1 k +D2 k, Xk = X1 k +X2 k, all trunations of an asymptoti series; moreover(D1 k)ij and (X1 k)ij at most polynomially small in ", while (D2 k)ij (X2 k)ij are O"(C(")). Then the formal power series relation DX � Y is equivalent toD1X1 � 0 D1X2 +D2X1 +D2X2 � Y for all k � "�q:(ii) The formal power series relation DX � Y;implies that D(K) has in general at least h eigenvalues � � O"(C(")) for all j�j � "�p.If D1 0 +D2 0 is non singular, the eigenvalues are � = O"(C("))(iii) Moreover if D is a onvergent series in � with onvergene radius �0 = "p1 thenD as well has an eigenvalue � � O"(max(C("); ()"�q) for all j�j < "max(p;p1).Proof. (i) Is a diret onsequene of Lemma 3.15.(ii) Lemma 3.14 (ii) implies that:D1(K)X1(K) = R1 ; with jR1j � o(K)where K = "�q, D1 is (in general) symmetri and the olumns of X1 are independentand of order one. Let us set D1(K) in diagonal form �1(�); : : : �n(�); orrespondinglyX 01 still has independent and order one olumns. This means that for eah j = 1; : : : ; hthere exists i(j) suh that (X1 0)i(j) j 6= 0. Then the equation �i(j)X1 i(j) j � 0 impliesthat �i(j) k = 0 for all k � K.AsD(K) is a C(")-small perturbation ofD1(K)+D2 0, lassial perturbation theoryguarantees the existene of at least h eigenvalues10 of order � O"(C("))(iii) We simply note that as D is onvergent then D = D(K) + o(( ��0 )K) with �0 ="p1.10The small eigenvalues are exatly h if for instaneD1 0 +D2 0 = � Idn�h 00 C(")Idh � :



Chapter 4Upper bounds on homolinisplittings IWe prove that determinant of the splitting matrix is exponentially small in ". Thetehniques are those of [GGM1℄ and we disuss them �rst for ompletely isohronoussystems and then we generalize to Hamiltonian (*) with F (q) = os q � 1.Notie that suh bounds probably an be derived using the methods proposed in[LMS℄ (where the authors onsider the ase m = n). This would be a quik (and in-trinsi) proof of the exponential smallness. Notie however that the bounds so obtainedare generally not optimal as one has to set the Hamiltonian system in normal form andonsequently looses the information on the nature of the singularities of f . We haveseen in Chapter 3 that the singularities of f �x the parameter D of the bound (3.8), sothat the exponentially small term in the value of a fruitless tree of total frequeny � isE(D; �). In Chapter 6 we will prove that, for funtions f( ; q) whih are trigonometripolynomials in  and rational in eiq, the exponentially small term E(D; �) is optimalas the (omputable) �rst order of the splitting matrix has (under some non degenerayassumptions as disussed in Lemma 3.16) exatly m exponentially small eigenvalues:�i = X��N Pi ;�("; "�1)E(D; �):4.1 Canellations and splitting determinantsWe use the tree formalism of Chapter 2 to �nd formal identities for the splitting vetorand the splitting matrix. Then we apply the various Lemmas on asymptoti power seriesof Subsetion 3.2 to prove O"("1) upper bounds on the splitting determinant. This is ageneralization of the strategy proposed in [GGM1℄ for partially anisohronous systemswith three degrees of freedom. It is based on the existene of linear formal power seriesrelations (like those of Lemma 3.16 for the splitting matrix.Suh linear relations are disussed in Subsetions 4.1.2 and 4.1.3; Subsetion 4.1.1is dediated to proving that the stable-unstable manifolds are Lagrangian; we do not



60 Chapter 4. Upper bounds on homolini splittings Ineed this property to prove the exponentially small bounds we report the proof only forompleteness.4.1.1 The generating funtion of the splittingUsing Observation 1.43 and the Lemmata 2.13 we an verify that the n+1 dimensionalmanifold �Ij('; q; �) =Pk(�)k�Ikj ('; q) is Lagrangian. In partiular we have that:Theorem 4.1 (Eliasson, Gallavotti ). The splitting vetor �Ikj (') is the derivativewith respet to the angle 'j, j = 1; : : : ; n of a funtion S(') alled generating funtion.S(') is the value = ÆW of of the tree vetor:XB2Âk BN(B)jS(B)j :Proving the theorem is equivalent to proving for eah k; j the relation:0kj = XA2Akj AjS(A)j = XB2Âk Dj(B)N(B)jS(B)j (4.1)where N(B) is as usual the number of nodes in B and Dj = Dj(h(t) = 1) is de�ned in(1.34).The theorem is equivalent to this last relation ((4.1)) as�Ikj (t = 0) = = ÆW(0kj )and as we are onsidering fruitless trees:= ÆW'(XB2ÂkXv �vj BN(B)jS(B)j) = �'j= ÆW' XB2Âk BN(B)jS(B)j :We prove relation (4.1) simply by translating it in a relation between trees with twomarkings:Proof. For eah A 2 Akj we onsider N(A) opies Av of A, eah having an evidenednode v; now as j 6= 0 Akj � rAkj . For eah oset [v℄ we have m[v℄ idential opies, wewill name them A[v℄; we have:XA2Akj AjS(A)j = XA2Akj 1N(A) X[v℄ Æv=1 m[v℄A[v℄jS(A)j =XA2 rAkj 1N(P (A; v))X[v℄ m[v℄P (A; v)jS(A)j



4.1. Canellations and splitting determinants 61Then by Lemma2.13(ii): m[v℄P (A; v)jS(A)j = m[vA℄�vAj BjS(B)jwhere B 2 Â is the tree (�rst node v) suh that �vAj B = P (A; v).Corollary 4.2. With the same tehnique one an prove thatXA2Âk AN(A)jS(A)j = 1k XB2Âk :ÆvB=1 BjS(B)j ;this is the representation of the generating funtion given in [G2℄. This representationshows that the generating funtion is a funtion of the homolini trajetories  j('; t).Proof. For eah tree in Âk we onsider k opies eah with one node Æv = 1 in evidene,onversely for eah tree in B 2 Âk : ÆvB = 1 we onsider N(B) opies eah with onenode in evidene. The orresponding oeÆients are two points stabilizers and so arethe same for orresponding trees on the left and right hand side. Now alulating thevalue of the generating funtion, and summing over k = 1;1, we obtain (simply viathe de�nitions of the values of trees):S('; �) = 1Xk=1 (�)kk =[f(Xh<k(�)h h(t; '))℄k�1 � �Z0 d~�=f( (t; ~�; ')):We will not be interested in proving that this is a true (not formal) relation. To doso one simply needs to show that all the involved funtions have dynamial meaningand so their series expansion in � is a-priori onvergent.Remark 4.3. The generating funtion is a funtion on rootless trees; all A1 the osetsof Â with respet to the usual equivalene relation : A1 � A2 if there exists v in A2suh that A1 = P (A2; v):Let K 2 A1 and onsider a representative A: then there are N(A) trees in the osetK all with N(A) nodes. As the trees in K have the same value the value of K is wellde�ned, the generating funtion is:S(') = = ÆW'(XK2A1C(K)K)and the oeÆient C(K) =PA2K 1N(A)jS(A)j .Corollary 4.4. The fruits an be written in terms of the generating funtion (at leastas trees): Gij = aj= ÆW'[XB2Âk 1N(B)jS(B)j�Dj(xij)[B℄ + Æj0Lxi0(B))�



62 Chapter 4. Upper bounds on homolini splittings I4.1.2 Canellations due to energy onservationWe onsider the anellations due to energy onservation i.e. the fat that the S/Umanifolds are on the same energy level. These anellations are best seen diretlyon the values of trees an in a non-perturbative setting; then if needed they an betranslated in anellations on the trees. This anellations were �rst notied in [G1℄.Let us set H�(I�(t; '); p�(t; ');  �(t; '); q�(t; ')) � E� �Xh (�)hEh;where by the KAM results reported in Subsetion 1.1.1, E� is analyti in � near � = 0and is independent of �(t). Realling that  �(0�; ') = ' and q�(0�; ') = � we �nd:I�(0+; ') � AI�(0+; ') + (p�(0+; '))2 + 2�f('; �) = 2E� =(I�(0�; '))2 + (p�(0�; '))2 + 2�f('; �);now we derive in 'j with j = 1; : : : ; n and ompute at the homolini point1 I(0+; ' =0) = I(0�; ' = 0):A ��'j (�I�('))j'=0 � (2I�(0; ' = 0) = ��'j (�p�('))j'=0(2p�(0; ' = 0):Now let us write this perturbatively (i.e. in terms of trees); by the boundednessondition pk(0�; ') = =0� ÆW'0k(0;x00):We are on the lower branh of the separatrix so p0(�) = �2 and I0(') = A�1~!; nowall 0(j;h) =Pk�10k(j;h), let � be the splitting matrix and for j = 0; n set2:ajI(1)j = =0� ÆW'=00(j;x0j) = =0� ÆW1'=00(j;x0j );d0 = = ÆW'=00(0;x00) j(this is the ' gradient of �p�). Finally all I(1) = fI(1)j gnj=1.Proposition 4.5. The splitting matrix satis�es the following equation�(~! + AI(1)) = �d0(�2 + I(1)0 ):This means that we an tie the behavior of some fruits to that of the splitting matrix.1Clearly at the homolini point p+ and p� oinide as well2Note that as we are at the homolini point the only non zero ontributions ome from fruitlesstrees



4.1. Canellations and splitting determinants 63Remark 4.6. There are quite a few anellations anellations (on fruitless trees)oming from the symmetry of = via integration by parts in the time variable. Thisanellations are a simple generalization of the results in [GGM1℄. Nevertheless theyimply some heavy omputations and are only atually not needed to prove exponentialsmallness for the splitting determinant, therefore we will state this results in AppendixA.73.4.1.3 Relation between trees with and without fruitsWe have seen that trees with K fruits are homogeneous funtions of degree K in theGl hj with l = 0; 1, j = 0; n. We know as well that Gl hj (' = 0) = 0. We want to estimatethe matrix det(�) where �i;j = �jXk (�)k�Iki (' = 0))so it should be lear that it is useful to group trees by their degree in Gl hj rather thanin �. We then deompose 0T = A�A(1F )� � � � and add up the degrees in � (this arethe formal power series disussed in Chapter 3):0j =Xk 0kj Glj =Xk Gl kj �(j;h) =Xk �k(j;h) Glj = =W1�(j;x[l℄j ) =Xk Gl kjet... The anellations desribed in Chapter 2 are obviously still true in the sense offormal power series.Remark 4.7. To pass from A1(kF ) to A1((k + 1)F ) one an apply the fruit addinglinear funtions disussed in Setion 1.2.The problem is that in general A 2 A(kF ) and PhDihj (A) (or PhBihj (A)) donot have the same symmetry group and so we annot translate this relation on the�kF ! �k+1F exept in the ase of k = 0.We use Remark 2.8 to write a tree with one fruit in v as a tree with a mark xij timesthe fruit funtion Gij The fruit adding funtions beome speial mark adding funtionsTDe�nition 4.8. Dj(xlj) = Dlj; Lxl0 = Ll; F l(A) = xl0(y)�y0f�(A)F lh(A) = h(y)xl0(y)�y00f�(A) F lxm0 = F lmwhere as usual � is δ=0.3Notie that the anellation mehanism that we illustrate in the Appendix A.7 is exatly the sameused in [GGM1℄, the only di�erene is that here the anellations an be seen diretly on the treesand so the notation is more ompat.



64 Chapter 4. Upper bounds on homolini splittings ILemma 4.9. In A1F1 we have:�1F(j;h) = Xl=0;1 nXm=0Glm nD[l℄m(0(j;h)) + Æm0[L[l℄(0(j;h)) + Æj0F [l℄h (00)℄o (4.2)Proof. By Lemma 1.39 we only need to prove that the summands in the two sides ofthe relation have the same symmetry oeÆient. This is true as the symmetry groupof trees with one fruit is the subgroup of the symmetries, of the orresponding fruitlesstree, that �xes the node where we will attah the fruit.As both Dlj and Ll at as sum on the nodes one an write them as sums on theosets [v℄: Dlj =Xv xlj�vj =X[v℄ m[v℄xlj�vj ; � � �so that the summands of (4.2) are all di�erent.Consider a tree A in �1F(j;h) arrying a fruit of type l label r and order m in the nodev; we will all B the tree obtained by removing the fruit. If B 2 A (it respets thegrammar) then A = Gl mr x[l℄r m[v℄�vrB and jS(A)j = jSa(B)jm[v℄ :If B =2 A, onsider again A. If v 6= v0, then r = 0, Æv = 0 and there is a unique nodefollowing v, all it y. Then A = Glm0 m[y℄g�x[l℄0 (B0; y)for some B0 2 A (B0 is simply A without the piee 0

l m

��
��
��
��

��
��
��
�� ).Again we have jS(A)j = jS(B0)jm[v℄ , namely as y is the only node following v then v is�xed by S(A).We now onsider v = v0, B =2 A, this means that:A = Gl m0 F [l℄h (B00)and there is an only node of level 1; by Remark1.27: jS(A)j = jS(B00)j.De�nition 4.10. In the following we will be interested in trees marked only with thefuntions xij so we will ontrat the notations:0lmi j = 0(i;xli) (j;xmj ) ; � � �4.1.4 Formal power series relations involving the splitting ma-trixProposition 4.11. The splitting matrix depends only on the trees with zero or onefruit.



4.1. Canellations and splitting determinants 65Proof. Using Lemma4.9 we write:�j�Ii(t = 0; ' = 0) = a�1i = ÆW10 (0i j) + �jf= ÆW10fXl=0;1 nXr=0 Glr[D[l℄r (0i)++Ær0(L[l℄(0i)℄g+ terms of order � 2 in Glrgso as Glj(' = 0) = 0 (see the proof of Lemma 2.9) the terms of order � 2 in Glj don'tgive ontributions to the derivative:�i j = = ÆW10 [0i j + Xl=0;1 nXr=0 �j(Glr)[D[l℄r (0i) + Ær0(L[l℄(0i)℄Similarly the value of �jGlr = 12ar�j= ÆW10 (�lr)with r = 0; : : : ; n and j = 1; : : : ; n depends on trees with at most one fruit:2Glr j = 2�jGlr = ar= ÆW10 [0li j + Xm=0;1 nXh=0Gmhj[0l [m℄r h + Æh0(L[m℄(0lr) + Æj0F l [m℄(00))℄:This is a linear relation that we an express in matrix form as:G = A(OMG+ J)where G is a 2n+ 2� n matrix with entries:Gi j = � �jG0i�1 if i = 1; : : : ; n+ 1�jG1i�n�2 if i = n + 2; : : : ; 2n+ 2 :The matrix J is again 2n+ 2� n with entries:Ji j = � = ÆW1000i�1; j if i = 1; : : : ; n + 1= ÆW1001i�n�2; j if i = n + 2; : : : ; 2n+ 2O and A are 2n+ 2� 2n+ 2 matries:O = ���� 0n+1 Idn+1Idn+1 0n+1 ���� A = 12 �������� 1 0A 10 A ��������where A is the diagonal matrix with eigenvalues aj j = 1; : : : ; n. Finally M is a2n+ 2� 2n+ 2 matrix with entries:



66 Chapter 4. Upper bounds on homolini splittings I
Mi j =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
= ÆW10 (01 1i�1; j�1+ Æj 1(L1(01i�1)+ Æi 1F 1 1(00)) if i = 1; : : : ; n+ 1j = 1; : : : ; n+ 1= ÆW1000 1i�n�2; j�1+ Æj 1(L1(00i�n�2)+ Æi n+2F 0 1(00)) if i = n+ 2; : : : ; 2n+ 2j = 1; : : : ; n+ 1= ÆW10 (00 0i�1; 0+ Æj n+2(L0(00i�n�2)+ Æi n+2F 0 0(00)) if i = n+ 2; : : : ; 2n+ 2j = n+ 2; : : : ; 2n+ 2= ÆW1001 0i�1; j�n�2+ Æj n+2(L0(01i�1)+ Æi 1F 0 1(00)) if i = 1; : : : ; n+ 1j = n+ 2; : : : ; 2n+ 2Proposition 4.12. The matrix M is symmetri.Proof. If i; j 6= 1; n+ 1, then Mij =Mji is equivalent to Proposition2.14.Same if i; j = 1 or n+ 1, then the symmetry ondition is:00;10 0 + L0(010) = 01;00 0 + L1(000)and so equivalent to the symmetry of the operators Qj (see Propositions2.14,2.15).Lastly if i = 1; n+ 1 and j 6= 1; n+ 1 the ondition is:0l;m0 j = 0m;lj 0 + Ll(0mj )that is Proposition2.15 for trees without fruits.It an be useful to evidene the blok struture of the matrix M:
M =

����������������
a00 ut00 a01 ut01u00 M00 v10 M t01a01 vt10 a11 ut11u01 M01 u11 M11

���������������� G[ J ℄ = ��������������
gt0G0gt1G1

��������������8i; j 2 [1; : : : ; n℄ (M11)ij = =ÆW10000i j ; (M00)ij = =ÆW10011i j ; (M01)ij = =ÆW10010i j ;(u11)j = =ÆW100000 j ; (u0)j = =ÆW100110 j ; (u01)j = =ÆW100100 j ; (v01)j = =ÆW100010 j :Remark 4.13. The de�nitions of M and J imply that J = OMT where T is the2n+ 2� n matrix : T = ���������� 0n+10Idn
����������



4.1. Canellations and splitting determinants 67Again from the de�nitions of � and G we have that A� = 2G0 = 2TOGIn the preeding Subsetion we proved that2�(~! + AI(1)) � �g0(�2 + I(1)0 )where !+AI has norm of order O"("� 12 ) and (if there are slow frequenies) �g0(�2+I0)has norm O"("P ) for some P (see Chapter 3; remember that this are all onvergentseries). Independently in Appendix A.8 we have proven that M is degenerate andsatis�es the equation:MY1 = B where Y t1 = ( n+1z}|{0 ; 1z}|{2 ; nz}|{�~! )and Bt = 2( 1z }| {I(1)0 (t = 0); nz }| {I(1)(t = 0) ; n+1z}|{0 ). This relation gives a onstraint on G0 (as(O �M)G =MT ) that oinides with the one given by the energy onservation.Proposition 4.14. The matrix G0 = 12A� satis�es the relation:G0(A�1~! + I(1)) = �g0(�2 + I(1)0 );notie that g0 = 12d0.Proof. It is obvious from the energy onservation see Proposition4.5, now we derive itfrom the degeneray of M. We use PropositionA.24 and the relations between M Jand G: (O �AM)G = AMT ! (A�1Y1)tOG� (Y t1M)G = Y t1MTthis implies that �!tA�1G0 + gt0(2� I(1)0 )� (I(1))tG0 = 0we have used O2 = I, Y t1M = Bt and BtT = 0.So one an see that the (hard) anellations due to the integration by parts areonly needed to hek the onsisteny of our equations.We want to estimate detG0; now for the �rst time we onsider the existene of afast time sale, we will say j 2 F if ~!j = !jp" is fast (resp. S). We onentrate only onthe m fast variables  1;  m by applying the 2n+ 2�m matrix Y t2 = ( 0|{z}n+2 ; Idm; 0|{z}n�m).Then we set MY2 =MF = ��������������
mt0M0mt1M1

�������������� :



68 Chapter 4. Upper bounds on homolini splittings ILemma 4.15. The order k < C"� 12(1+�F ) trunations of the matrix M1 and the vetorm1 are of order O"(e�"� 12(1+�F ) ).Proof. The entries of this matries are all derivatives �jL, where j 2 F is a fastvariable, and L is the integral of a funtion in ~H0. We are onsidering the analytiparts of M, u11 and M11, and M is a funtion on fruitless trees. So we only haveontributions from fruitless trees with analyti markings and non-zero total frequenyin the fast diretion �F 6= 0 and we an apply Corollary 3.13 (ii).Proposition 4.16. There exist two matrix formal power series X and Y , in Mat(n�m) suh that their K � "� 12(�F+1) trunation is jXj = O"(1) and jY j = O"(e�"� 12(1+�F ) ),for j�j � "P and " � "0 6= 0 (here we hoose P = (p + 5)=2 + 1, following Theorem3.12, in Setion 4.2 we will use less restritive hyptheses on P). Moreover this seriessatisfy the formal equation: G0X � Y:Proof. We an prove this only formally, i.e. the onvergene of the vetors we de�neis not guaranteed; the bounds on the trunations are assured by the omputations ofChapter 3.Y t2 (O �AM)G � Y t2AMT ! �X tG0�m0 � gt0�AFM t0G0�m1gt1�AFM t1G1 = AFM t1where �X = (0; Idm) in an n�m matrix and AF is them�m diagonal matrix a1; : : : ; am.Substituting relation (4.14) we have:G0( �X �M0AF � 1�2 + I(1)0 (A�1~! + I(1)) �m0) � g1 �mt1 + (Idn +G1)M1AF :Notie that the problem in proving the onvergene is not so muh in the onvergeneof G1 or g1 (that have dynamial meaning) as in that of proving onvergene for the\bare" parts M0; M1; m0 and m1. This all is done, for systems with three degrees offreedom, in [GGM4℄4.Now we an apply Lemma 3.16 to G0 or equivalently to �; we have proven that thedeterminant of the splitting matrix is bounded from above by some onstant of orderO"(e�=" 12(1+�F ) ) where  is a suitable onstant of order one. Consider the splittingmatrix trunated at some order k � C"� 12(1+�F ) all it ��k, we an write it as a sumof matries ��k = ��k1 + ��k2 where �2 ontains all the exponentially small terms(oming from analyti integrals with non-zero fast mode as disussed in the end ofSetion 3.1). Both �1 and �2 are well de�ned as asymptoti series. We an divide X4We will disuss the artile [GGM4℄ in detail in Setion 6.2.



4.2. Extension to partially isohronous systems 69as well in analyti (X2) and non analyti (X1) terms, both asymptoti power series.So we apply Lemma 3.16(ii) whih states that:Corollary 4.17. In general, the matrix ��k1 has (at least) m zero eigenvalues o(�k)-lose to Span(X�k1 ). Moreover the determinant of the splitting matrix is bounded fromabove by: j det�j � O"(e�=" 12(1+�F ) );for some order one .Moreover in Setion 6.2 we will use the following statement:Corollary 4.18. The splitting matrix satis�es the following equation:G0(Idn � 1�2 + I(1)0 (A�1~! + I(1))ut01 +M t01A) = �u11g1ut11 �G1AM11 + AM11:Proof. We insert Proposition 4.14 in the last n lines of the linear equation: G =A(OMG+ J).4.2 Extension to partially isohronous systemsIn this Setion we will summarize the (few) modi�ations that are neessary to applyour tehniques to partially isohronous systems.We onsider the following Hamiltonian:(I; A(")I)2 + �! � J + p22 + "(os(q)� 1) + �f( ; �; q): (4.3)As in Setion 1.1 I 2 Rn ;  2 Tn, p 2 R; q 2 T and we have oupled our systemswith N loks of frequeny �! 2 RN . The ation angle variables of the loks areJ 2 RN ; � 2 TN .A is the diagonal matrix with eigenvalues ai desribed in Chapter 1.The system 4.3 is integrable for " 6= 0, � = 0. It represents a list of n unoupledrotators, N loks and a pendulum. We will denote the frequeny of the rotators(whih determines the initial data I(0)) by ! so that:I(t) = I(0) = A�1! ;  (t) =  (0) + !tJ(t) = J(0) ; �(t) = �(0) + �!t:The loks �j are not hanged by turning on the perturbation in �. As in the previoussetions we will look for S/U trajetories onverging exponentially to a quasi-periodifuntion with diofantine frequeny 
 = (!; �!). So we will �x the initial data of therotators as in Setion 1.1. As usual we divide our frequeny vetor 
 = (!; �!) in slowand fast frequenies and allm the total number of fast frequenies in the n+N vetor



70 Chapter 4. Upper bounds on homolini splittings I
. Notie that the lok frequenies an be indi�erently slow or fast. It is well knownthat for diofantine values of 
 one an apply a loal KAM sheme, equivalent to that ofTheorem 1.1, to onstrut the loal S/U manifolds for the Hamiltonian 4.3. As usualwe apply the anonial hange of variables 1.10 and set the unperturbed Lyapunovexponent to one. Consequently the harateristi frequeny is ~
 = "� 12
.We use the Hamiltonian ow to extend the loal manifolds. The extended S/U man-ifolds are graphs on the angles. As in the previous setion we onsider them at thePoinar�e setion q = �. To avoid using many variables we will set the initial data5 ; � = ' 2 Tn+N and set:J�i ('; �; �) = I�n+i('; �; �) for i = 1; : : : ; n:Now we onstrut the S/U manifolds perturbatively exatly as in subsetion 1.1.2. TheHamilton equations are_Ij = �(�)f j ( ; �; q); _ j = ajIj; for j = 1; : : : ; n;_Ji = �(�)f�i( ; �; q); _�i = �!i; for i = 1; : : : ; N;_p = sin(q)� (�)fq( ; q) ; _q = p; (4.4)We insert in the Hamilton equations the onvergent power series representation:Ij(t; '; �) = 1Xk=0(�)kIkj (t; ')  j(t; '; �) = 1Xk=0(�)k kj (t; ') for j = 1; : : : ; nJi(t; '; �) = 1Xk=0(�)kIkn+i(t; ') �i(t; '; �) = �i + �!p"t for i = 1; : : : ; n�nally p(t; '; �) = 1Xk=0 pk(t; ') q(t; '; �) = q0(t) + 1Xk=1(�)k k0 (t; ')we obtain, for k > 0, the hierarhy of linear non-homogeneous equations:_Ikj =F kj (f hi gni=0h<k) ; for j = 1; : : : ; n+N_ ki =ajIki ; for i = 1; : : : ; n_pk =(os q0) k0 + F k0 (f hi gni=0h<k) ; _ k0 = pkwith F kj = �[fj(k�1Xh=1(�)h h; �+ �!p"t)℄k�1 + Æj0[sin(k�1Xh=1(�)h h0 )℄k:Using the whisker alulus developed in subsetion 1.1.3 we �nd:Iki (t) = =t(F ki )  kj (t) = ajOtj(F kj )with i = 1; : : : ; n+N and j = 0; : : : ; n.5Our onvention will be that the rotator angles are '1; : : : ; 'n and the loks are 'n+1; : : : ; 'n+Nso the fast variables are not ordered sequentially but will be 'i1 ; : : : ; 'im .



4.2. Extension to partially isohronous systems 714.2.1 Tree representationPassing to tree representation is now easy (and idential to what done in Chapter 2).We have seen that �kj = 0 for k 6= 0 so the labels j of nodes v 6= v0 will still havevalues in 0; : : : ; n and the vetor spae V(Aj ) suh that V(0kj ) =  kj for j = 0; n, isunhanged.We have seen however that markings represent derivatives on the node funtionf Æv( 0; : : : ;  n+N so the set of trees adapted to this dynamis is generated by mA viathe usual fruit adding funtions (with type label i = 0; 1, order label Æ 2 N and anglej = 0; n) and via mark adding funtions:h(t; v)�vJ with J = 0; n+N:We will improperly all this spaes A and 0T as well. The funtion W is de�ned on Aexatly as in Setion 2.1.1, leading to the relation:�Ikj = = ÆW(�j0k) ; for j = 0; n+N:The same holds for V1 and W1. As an example we write down expliitly the funtion	'(A) for A 2 0T :	'(A) = (�12)N(A)[(�)Æv0 Yv2 0Av 6=v0(�)Ævajv ℄rPn+Nj=0 nvA(j)ejf Æv0 Y�2F(vA)x[i�℄j� Y�2M(vA)h�(vA; �v0)Yv2 0Av>v0rPn+Nj=0 nv(j)ejf Æv Y�2F(v) x[i�℄j� Y�2M(v) h�(v; �v)wjv(�w; �v) � Y�2F(A)Go(�);i(�)j(�)where N(A) is the number of free nodes, F(v) are the fruits stemming from v, M(v)is the list of markings of the node v and �nally nv(j) is the number of elements infv; s0(v);F(v);M(v)g having angle label equal to j. Remember that jv, j� = 0; : : : ; n,while the angle-markings are Jv = 0; n+N .The energy onservation for the system ((4.3)) leads to the relation:�(~
 + A1I(1)) = �d0(�2 + I(1)0 );where as in subsetion 4.1.2 , � is the n+N �n+N splitting matrix, d0 = r'�pj'=0,I(1)j =P1k=1 Ikj (t = 0; ' = 0) and A1 is an n+N � n +N matrix so de�ned:A1 = ���� A 00 0 ���� :Remark 4.19. We an repeat the proedure proposed in this Subsetion for any Hamil-tonian ((*)) suh that p2=2+F (q) = 0 is the separatrix of a generalized pendulum (seethe introdution). We only have to use the Wronskian matrix of the generalized pen-dulum in equations (1.14) and onsequently hange the funtions xi0 in the de�nitionof O0. The qualitative behavior in unhanged.



72 Chapter 4. Upper bounds on homolini splittings IWe an �nd bounds similar to those of Corollary 3.13 (ii) for the fruitless treesof the expansion of Hamiltonian (*). However if we do not impose Condition 3.2 tof( (t); q(t)) we do not �nd optimal bounds as we annot get near to the singularities.We set that F (q) is analyti in j Im qj � r1 and f( ; q) is analyti in j Im qj � r1, jIm  ij � r1. This means that:f( ; q) = X�;h2Zn+1 f�;hei(�� +hq) ; with jf�;hj � Ce�r1(j�j+jhj):Theorem 4.20. The ontribution of fruitless trees of total harmoni � is bounded by:e�r1j�jCk1 (k!)1E(2; �)(")�k;where C; 2 are " independent onstants and 1 = 2� + 2.Proof. The proof is idential to that of Proposition 3.8, if f( ; q) is trigonometri in . The only di�erene is that in the proper integrals we do not go "-lose to thesingularities so suh terms are not divergent in " (the fator "�k omes from smalldenominators). The proof for general analyti funtions f( ; q) is not diÆult butquite long; we will report it in the Appendix A.6.4.2.2 Formal power series relations involving the splitting ma-trixThe linear non-perturbative equation (4.2) is unhanged ,so :�i j = =W10 [0i j + Xl=0;1 Xk=0;n �j(Glk)[D[l℄k (0i) + Æk0(L[l℄(0i)℄;and the derivatives of the fruits are (j 2 [0; : : : ; n+N ℄):Glk;j = �jGlk = 12aj=W10 [0lk;j + Xm=0;1 Xh=0;nGmhj[0l [m℄k;h + Æh0(L[m℄(0lk) + Æj0F l;[m℄(00))℄this are linear relations :G = A(OMG+ J) � = (N tG+ J1): (4.5)G is now a 2n+ 2� n +N matrix with entries:Gi j = � �jG0i�1 if i = 1; : : : ; n+ 1�jG1i�n�2 if i = n + 2; : : : ; 2n+ 2The matrix J is again 2n+ 2� n+N with entries:Ji j = � =W1000i�1 ;j if i = 1; : : : ; n+ 1=W1001i�n�2 ;j if i = n + 2; : : : ; 2n+ 2



4.2. Extension to partially isohronous systems 73O, A and M are the 2n+ 2� 2n+ 2 matries de�ned in the preeding subsetion:O = ���� 0n+1 Idn+1Idn+1 0n+1 ���� A = �������� 1 0A 10 A ��������where A is the diagonal matrix with eigenvalues aj j = 1; : : : ; n.
M =

����������������
a00 ut00 a01 ut01u00 M00 v10 M t01a01 vt10 a11 ut11u01 M01 u11 M11

���������������� G[ J ℄ = ��������������
gt0G0gt1G1

��������������8i; j 2 [1; : : : ; n℄ (M11)ij = =W10000i;j ; (M00)ij = =W10011i;j ; (M01)ij = =W10010i;j ;(u11)j = =W100000;j ; (u0)j = =W100110;j ; (u01)j = =W100100;j ; (v01)j = =W100010;j:� is the n+N � n +N splitting matrix; J1 is again n +N � n+NJ1 i j = =W10000i;j�nally N is 2n+ 2� n+N , we represent it in blok struture as:
N = ��������������

nt0N0nt1N1
��������������where:N1ij = =W10000i;j ; N0ij = =W10001i;j ; (n1)i = =W100000;i ; (u0)j = =W100100;i;with i 2 (1; : : : ; n+N); j 2 (1; : : : ; n).As in the previous Setion we onsider the n+N�m matrix YF suh that Y tF is theanonial projetion on the fast omponents; we apply this projetion to the seondrelation in ((4.5)); then we use the energy onservation and the relation:G0 = I� = ���� Idn 00 0 �����:



74 Chapter 4. Upper bounds on homolini splittings IWe obtain:Y tF� = (Y tFN t)G+ Y tFJ1 = (N1F )G1 + n1Fgt1 + (N0F )tG0 + n0Fgt0 + J1F == (N1F )tG1 + n1Fg1 + (N0F )tI�+ 1�2 + I(1)0 n0F (
 + A1I(1))t�+ J1F :We have again found m independent vetors X suh that (at least formally) �X = Ywith jXj = O"(1) and jY j = O(e ap" ):X = YF + IN0F + 1�2 + I(1)0 (
 + A1I(1))n0FY = (J1;F + (N1F )tG1 + n1Fg1)t:This and Theorem 4.20 imply that:Theorem 4.21. The Hamiltonian (*) , onsidered in the domains Vm de�ned in theIntrodution, has an homolini point at q = �;  = 0. The order k < C"�( 12(�F+1) )term of the splitting determinant in suh point is bounded from above by:("C1)k(k!)1"�ke�2=" 12(1+�F ) ;where C; 2 are " independent onstants and 1 = 2� + 2.Proof. We an adapt Corollary 3.13 (ii) to �nd exponentially small upper bounds fordet�. Namely we setX�:j�F j6=0 e�r1j�jE(C2; �) � X�:j�F j6=0 exp(� nXj=m+1 j�jj(r1 � "�j!2j2)e�(r1j�F j+ j!1jj�F j��Fp" ):Now if � > 0 then r1 � "�j!2j2 > 0,while if � = 0 we onsider this a ondition on 2.So we an sum on the slow frequenies �j with j > m. Finally we split the sum overthe fast frequenies in j�F j � "�( 12(�F+1) ) (where j!1jj�F j��Fp" dominates) plus a remainder(where jr1jj�F j dominates).Finally this implies Theorem 0.6 provided that � � "1+ �+1�F+1 As the splitting deter-minant is smaller than: Xk<K[det�℄k + (�7�0)K;and we an hoose K = C"�( 12(�F+1) ).



Chapter 5Upper bounds on homolinisplittings IIFollowing [BB1℄, we onstrut reursively a transformation # : Tns 3 '! � 2 Tns suhthat in the indued sympleti oordinates the generating funtion of the splitting (whihwe prove is S Æ#) is the integral = of a funtion F (�; t) 2 H0 plus a remainder of order�K with K = O("�B) with B = � 1�F + b. This implies that the splitting determinant,i.e. the determinant of the Hessian of S, is O"("�b�F ). So this setion provides apossibly simpler proof of the upper bounds on the splitting determinant. Moreover theexistene of # implies a stronger ondition, whih is useful to prove \fast " di�usion1.For eah � 2 Tns the Hessian matrix of S Æ # has the following blok struture:M(�) = ������ MF NFN tF MS ������ (5.1)where MF is an m�m matrix whose entries are O"("1), NF is a n�m�m matrixwhose entries are O"("1) and MS ontains terms whih are polynomial in "; "�1.As in the preeding setion we use tree tehniques, so we will give onstrutiveproofs of our assertions, nevertheless the strategy of this Chapter shadows quite faith-fully [BB1℄. Namely we will study an auxiliary problem:��i = Æi0 sin(�0)� (�)ai�if(�) + Ai(�)gi(t) (5.2)where the gi(t) are pre�xed funtions in H0. We will look for exponentially quasi-periodi \solutions" of this system. There are two main di�erenes:1. As usual the tree tehniques an be easily applied to anisohronous systems, so ourresults apply to Hamiltonian (4.3).1We will not prove fast Arnold di�usion in this thesis, so this Chapter should be seen as analternative (possibly more intrinsi) way of proving exponentially small homolini splitting



76 Chapter 5. Upper bounds on homolini splittings II2. On the other hand it is quite diÆult to prove the onvergene of Lindstedt series.The auxiliary problem is not Hamiltonian so there is no guarantee that the quasi-periodi \solutions" of this system exist. Although it should be possible to proveonvergene using the tehniques of [GGM4℄, the proedure is not easy.To avoid this we will onsider order (�)K trunations of the solutions, withK = "�b.In the next subsetion we will use the results of Chapter 3 to explain why this issuÆient. Let us �rst remind a simple variation property of the generating funtionthrough hanges of oordinates on Tn.Proposition 5.1. Given an analyti transformation # : Tn ! Tn, let #� be the or-responding sympleti transformation lifted to the otangent bundle. The generatingfuntion of the splitting in the oordinates I 0;  0 = #�(I;  ); p0 = p; q0 = q at thePoinar�e setion q0 = � is S 0 = S Æ #�1.Proof. Given # : Tn ! Tn we onsider the presribed sympleti transformation: 0 = #( ) I 0 = J(#)�tq0 = q p0 = pthis is the anonial lift to phase spae of #�1 : Tn+1 ! Tn+1. As the pendulum angleq is unhanged and the Poinar�e setion is the same q = q0 = � the two oordinatesystems desribe the same S/U manifolds so:J�( 0; �) = �J(#)j#�1( 0)��tI�(#�1( 0); �)By the de�nition of the generating funtion we have�J( 0; �) = � 0jS 0( 0) = �J(#)j#�1( 0)��t� jS( )j =#�1 :
5.1 Moving Poinar�e setionsFollowing the ideas in [BB1℄ we will study an \auxiliary" system ofK(n+1) linear non-homogeneous ODE's whose solutions we will all �hj (t) with h � K and j = 0; : : : ; n.The idea is to hoose the \auxiliary" system and the initial data (depending on aparameter � 2 Tnd ) so that �j(�; t) 2 H0. Then we will de�ne a funtion ~S(�) and wewill �nd suÆient onditions on the \auxiliary" system suh that there exists a (real)analyti transformation # : Tnd ! Tnd with S = ~S Æ #.The \auxiliary system" is of the type (0 < h � K, j = 0; : : : ; n):�(0)j (t) =  (0)j (t)��(k)i = ai�F (k)i (f�(h)j gk�1;nh=0;j=0) + Aki gi(t)� i = 1; : : : ; n��(k)0 = os(q0(t))�(k)0 + F (k)0 (f�(h)j gk�1;nh=0;j=0) + Ak0g0(t)



5.1. Moving Poinar�e setions 77This is the order K Taylor expansion of the equation 5.2.We have modi�ed the foring terms by the funtions Ai(�)gi(t) where g(t) 2 H0 isan even funtion tending exponentially to a quasi-periodi funtion with zero averagefor jtj ! 1.The initial data on �(k)j are for the moment free and the only restrition is that thefuntions �(k)j (t) tend exponentially to a quasi-periodi funtion as jtj ! 1. For� 2 Tn, we set �(h)j (t = 0) = �(h)j (�) for h > 0, while �(0)j (�) = � for j 6= 0 and�(0)0 (�) = � (the initial data are ��lose to (�; �)). We an repeat the proedureused in Subsetion 1.1.4 to determine the �kj (�; t) reursively (the required asymptotibehavior is the same). The only di�erene is in the initial data; this implies that �(k)jhave the form:�kj (�; t) = x00(t)�(h)j (�) + ajO tj[F kj (f�(h)i (�; �)gk�1;nh=0;j=0) + Akjgj(�)℄ (5.3)Correspondingly: _�kj (t) = =t[F kj (f�(h)j gk�1;nh=0;j=0)) + Aki gi(t)℄Remember that we are using the formalism of subsetion 1.1.4 where we did not needany onvergene property on the series Pk(�)k�kj to reursively establish the bound-edness of the �kj (�; t).Proposition 5.2. If the funtions gi repset the property:=x0i gi 6= 0;for eah � we an �x Akj (�) and �(k)j (�) so that �kj (�; t) 2 H0.Proof. We proeed by indution using the fat that F 0j (�0i ) is in H0 and thatF kj (x1; � � � ; xm) 2 H0 if xi are in H0. Suppose that �(h)i (�; �) 2 H0, for all i = 0; : : : ; nand h < k:�(k)j (�; t) = x0j(t)�(k)j (�) + ajhQtj�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)�+12x0j(t)=�x1j(�)�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)��+12x1j(t)=�x0j(�)�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)��i:If we hoose Akj (�) = �=[x0j (�)(F kj (f�(h)i (�; �)gk�1;nh=0;i=0)℄=x0jgj(�) (5.4)and �(h)j (�) = �=�x1j(�)�F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akj (�)gj(�)�� (5.5)



78 Chapter 5. Upper bounds on homolini splittings IIthe non analyti terms anel and we have that:�(k)j (�; t) = Qtj[F kj (f�(h)i (�; �)gk�1;nh=0;i=0) + Akjgj(�)℄so �(k)j (�; t) is in H0 as F kj (f�(h)i (�; �)g) 2 H0 e Q : H0 ! H0.Notie that Ahj (�) is now the integral of a funtion in H0 and that (obviously) _�hj (t)is in H0 as well. For simpliity we will normalize the gi setting=x0i gi = 1:In this Chapter we will always onsider trunated series:Ai(�) = KXk=1(�)kAki (�);�i(t; �) = KXk=0(�)k�ki (t; �) : : : : : : ;with K = "� 12�F � "�q. However the relations we will �nd are all formal series relationson the orresponding omplete series. We will express the Akj and �ki (t; �) as values of�nite sums of fruitless trees (see the next subsetion).This means that we an use the bounds on fruitless trees disussed in Chapter 3.Lemma 5.3. Provided that f( ; q) is analyti in some H(a;D) and respets the bounds3.2 then:(i) �kj 2 H0 respets the bounds of Remark 3.9. Moreover if jtj = O(�) it respets thebound 3.10.(ii) Aj (and all the values =W1 of the trees we will desribe in the following subsetion)is the trunation of an asymptoti power series in �; ".Proof. (i) To apply Remark 3.9 we only need to remember that �kj 2 H0 is boundedby onstrution. We will see in the next subsetion that �kj is a �nite sum of values ofanalyti trees.(ii) The Akj are the integral = of funtions in H0 so their tree representation will bethrough analyti trees whih an be bounded by 3.8.We will repeatedly use Lemma 3.14 to write formal power series identities as identitiesbetween the order K trunations plus a known (smooth in � and �) remainder of ordero(e�K). We will say that the identity is true up to order O(�K).As seen for system (1) the energy onservation implies that (Subsetion 4.1.2) thevalue of Ak0(�) is related to the Akj (�) with j 6= 0. For ompatness we will state thisrelation in terms of the sumAi(�) = KXk=1(�)kAki (�);�i(t; �) = KXk=0(�)k�ki (t; �) : : :Proposition 5.4. For eah value of � we de�neki = (�12)Æi 0= _gi(t)(�i(�; t)� �0i (�; t)) = O(�);



5.1. Moving Poinar�e setions 79for i = 0; : : : ; n. We have:2A0(�) = 11 + k0 nXj=1 Aj(�)(!j + kj) (5.6)up to order O(�K).Proof. Our auxiliary system is the order K trunation of the expansion of system 5.2.This means that, by Lemma 3.14, for small enough �, ", the funtion �j(�; t) 2 H0solves the equation 5.2 up to order O(�K):��i = Æi0 sin(�0)� (�)ai�if(�) + Ai(�)gi(t) + (�)KFR(�; t): (5.7)The funtion FR is analyti and bounded in t 2 R � (�id; id), j Im �j � s0. Remark3.9 and Lemma 3.14 (iii) ensure that jFR(�; t)j � CK"�pK for some p 2 N . The energyonservation for system 5.2 leads to:Xj=0;:::;n _�2j(�; t)2 +os(�0(�; t))�(�)f(�(�; t))�Xj Aj(�)=t _�j(�; t)gj+GR(�; t) = ost;the funtion GR has the same properties as FR. _�j(t) is ontinuous and _�0j = !j forj 6= 0 , _�0j = �2x00, so we obtain:Pnj=0Aj= _�jgj = 0 =PKk=0(�)k�Pni=1 �!iAki=(gi) +Ph<k Ahi= _gi�k�hi ��2Ak0(�) � =(x00g0) +Ph<k Ah0= _g0�k�h0 	:This is a formal power series relation:nXi=1 !iAi=(gi)� 2A0=(x00g0) � nXi=1 Ai= _gi(�i � �0i ) + A0= _g0(�0 � �00):We use the normalization =gix0i = 1. By the boundedness of the �ki theki = (12)Æ0i= _gi(�i � �0i )are smooth funtions of � and are of order �, so (1+k0)�1 is a well de�ned asymptotiseries for small enough �. Passing to the order K trunation we obtain the desiredequality. Notie that the remainder is a known smooth funtion of � and � by Lemma3.14(ii).



80 Chapter 5. Upper bounds on homolini splittings II5.2 Tree representations of the auxiliary dynamisIn desribing the tree representation of �(h)j (�) we will use the fat that the strutureis the same as in the tree representation of system (1). Therefore we will not repeatthe proofs (whih are idential) but simply ite the Theorems we are adapting.De�nition 5.5. Let T be the set (of equivalene lasses) of marked rooted labeled treeswith fruits suh that:a) eah node arries the labels j = 0; : : : ; n Æ = 0; 1 and k � 0.b) The labels respet the following grammar:Æv = 0 ; kv = 0 implies that jv = 0 ; s(v) � 2;kv > 0 implies that Æv = 0 s(v) = 0:By de�nition we will all fruits the nodes with kv > 0. The markings are the same as inSetion 1.2 (i.e. an angle marking Jv = 0; : : : ; n and a funtion marking h(t; v) 2 H0).As usual we will onsider the vetor spae V(T ) generated by T on Q . We an rede�neall the subspaes of De�nition 1.31.The order of a tree is now: o(A) =Pv Æv+kv and we an express V(T ) as a diretsum of �nite dimensional spaes of presribed order. As in the preeding Setion wewill all S(B) the symmetry group of a tree B 2 T .Given these de�nition we an set (see identity 2.1) �(Æ; k) =j  , δ , k, �v0j �(Æ; k) 2 Tjand: V1(�v0j �(Æ; k)) = 8<: (�)ajQj(rejf 1)℄ if k = 0; Æ = 1aj(�)kAkjQj(gj)℄ if k 6= 0; Æ = 0We an repeat what done in subsetion 2.1.1 and set �kj in orrespondene with ele-ments �kj of V( 0T kj j). Then we an restate Proposition 2.2:Proposition 5.6. For eah j; k V1(�kj ) = �kj (�; t) where:�kj = XA2 0T kj 1jS(A)jA � XA2 0T kj (A)Now, as in Subsetion 2.1.2, to eah tree A 2 0T (possibly marked) we assoiate avalue W1.Given a tree in with no marks on the �rst node we add the marks j1; : : : ; jl, h1(t);



5.2. Tree representations of the auxiliary dynamis 81: : : ; hl(t) and set:W1( lYi=1 hi(vA; t)�vAji �(1; 0)) =Yi hi(vA; t)rPi ejif 1;W1( lYi=1 �vAji hi(vA; t)A) =Yi hi(vA; t)(r~m+Pi ejif Æ)Yv2s(vA)\ 0AajvQjv [W1(A�v)℄Yv2F(vA)ajvQjv [gjv ℄Akvjv ;Akj = �=x0jW1( 0�kj );where ~mi is the number of nodes in s(v0) having jv = i. As in Setion 2.1.2 0�j is�j � Fj.In 0T we an de�ne the hange of �rst node. Notie that Proposition 2.11 is still true.Remark 5.7. A tree with a fruit kv 6= 0 jv is equivalent to the tree deprived of thefruit, marked Qjv [gjv ℄ on the node w preeding v, and multiplied by ajvAkvjv . Notie thatthe dependene on the initial data is ontained only in Akvjv (�) and that this markingsare always in H0.This means that we an use the analyti bounds 3.8 to bound the values of trees in 0T(even those with \ fruits" i.e. nodes with kv > 0). On the other hand as hj(t) = Qtj(gj)we an apply proposition 1.16 (i) and the hange of �rst node also to the nodes withkv > 0 exept that we never obtain trees 2 0T .Remark 5.8. The Akj and �kj are trigonometri polynomials in �.Lemma 5.9. We an restate Propositions2.14 and 2.15, if we onsider,1) For i; j 6= 0, for all k and for any f; h 2 H0 we have the identity:�k(i;f) (j;h) = �k(j;h) (i;f):2) If i 6= 0, for all k and for any f; h 2 H0 we have the identity:�k(i;f) (0;h) + Lh(�k(i;f)) = �k(0;h) (i;f):the linear operator Lh is de�ned in Setion1.2.2.De�nition 5.10. We all rT the subset of 0T of trees that stay in 0T by applying thehange of �rst node2.2our onvention is not to onsider trees with only one node kv > 0 in T r as these are not propernodes



82 Chapter 5. Upper bounds on homolini splittings IIDe�nition 5.11. We onsider a funtion ~S(�) that is similar to the generating fun-tion S('). We all T̂ the set of trees in rT having no markings; reall that for any B 2 0T, N(B) is the number of free nodes of B (i.e. suh that kv = 0) and (B) = 1SvB (B) :~S(�) = =W1�fXB2T̂ (B)N(B)Bgas usual restrited to trees of order � K.Lemma 5.12. The following identity holds:Aj(�) = =W1�XB2T̂ (B)N(B)Xv2B �vjBProof. The proof is idential to that of Theorem4.1.Clearly this is di�erent from Aj(�) = �j ~S(�), whih is generally false as we areonsidering trees with � dependent fruits. Nevertheless the Aj(�) are linear funtionsof �� ~S(�) as we will see in the following proposition. Let us �rst prove a tehnialLemma.Lemma 5.13. Let T̂ k be the subspae of rT of trees of order k:=W1�[XB2T̂ k (B)N(B) Xv:kv>0 d�jAkvjvAkvjv B℄ = Xi;h<k d�jAhi=gi(�k�hi � AiQigi)Proof. We �x our attention on the nodes v of B with kv > 0; we haveXB2T̂ k (B)N(B) Xv:kv>0 d�jAkvjvAkvjv B = XB2T̂ k (B)N(B) X[v℄:kv>0m[v℄d�jAkvjvAkvjv B: (5.8)Now we shift the �rst node in v ( a representative of the oset [v℄ ), we obtain A(v) =2 Bwhose �rst node v has kv > 0, moreover in A(v): s(v) = v1 e jv1 = jv3; we all the setof trees of this form Dk ;kv . Notie that any tree in B 2 T k�kvj with at least a nodev : kv = 0 is equal to A�v1 for some tree A(v) 2 Dk ;kv ; moreover the value of A(v) is:=gjvajvQtjvW1[A�v1 ℄:Now 4 �k�hj � ajAk�hj Qjgj, is a sum of trees in T k�hj with at least one node v : kv = 0,and we have: Xi;h<k=gi(�k�hi � aiAk�hi Qigi) = =W1�( XA2Dk ;h (A)A) (5.9)3remember that P(A; v) shifts the labels jw of the nodes in the path vA; v towards the �rst nodevA, see De�nition 1.404we subtrat the only tree with all the node labels kv > 0



5.2. Tree representations of the auxiliary dynamis 83as in Dk ;h (A) = (A�v1).In the right hand side of relation 5.9 we onsider N(A) opies of eah tree A in eahwe evidene a node v with kv = 0XA2Dk ;h (A)A = XA2Dk ;h (A)N(A) X[v℄:kv=0m[v℄A:
Proposition 5.14. for eah � we have:��j ~Sk(�) = Akj + Xh<k;i=0;:::;nMhj i=(gi�k�hi )� Xh<k;i=0;:::;nMhj iAk�hi =(giQi(gi))where Mi j = �iAj(�) is an n� n+ 1 matrix.Proof. To prove this assertion we �rst onsider the relation��j ~Sk(�) = =W1�[XB2T̂ (B)N(B)Xv2B �vjB℄ + =W1�[XB2T̂ (B)N(B) Xv:kv>0 ��jAkvjvAkvjv B℄: (5.10)Then by Lemma5.12 the �rst sum is =gjAkj , in the seond sum we set Mkvj jv = ��jAkvjvand apply Lemma 5.13.Now we want an homogeneous linear equation relating r ~S to A = fAjgnj=1 of the typeA = (1�M)�1r ~S(�);where M is an n � n matrix of order �. In order to have suh an identity we haveto impose onditions on the funtions gj. There are (at least) two possible and nearlyequivalent hoies. One has a learer dynamial meaning (and is the ondition proposedin [BB1℄) and leads to possibly more expliit formulas; the seond on the other handan be easily implemented by a omputer, moreover it is obvious that there existfuntions gi 2 H0 satisfying the latter ondition so one does not have to verify theexistene. We will desribe both onditions and use the seond one.(a) =[gi(�i(�)� �0�)℄ = 0 for eah i = 0; : : : ; n: (5.11)With this restrition Proposition 5.14 states that:��j ~S(�) = Aj � Xi=1;:::;nMj iAi=(giQi(gi))�12 Mj 01 + k0 Xi=1;:::;n(!i + ki)Ai=(g0Q0(g0))



84 Chapter 5. Upper bounds on homolini splittings IIup to order (�)K. We write this relation ompatly as:r ~S(�) = (1�M)A whereMi j =Mi j + Mi 01 + k0 (!j + kj):Notie that jMj = O(�) so that 1�M is invertible.The seond ondition (whih is easier to verify) is the following, as usual we all A theset of fruitless trees, 0ki = XB2Aki (B)B;the value of this sum does not depend on the hoie of the gi and we ask that5:(b) =[gi(t)V1( KXk=1(�)k0ki ℄ = 0 for eah i: (5.12)This means that =gi(�i(�; t)��0i (�; t)) depends only on trees with at least one nodekv > 0 and so: =gi(�i(�; t)� �0i (�; t)) = Xj=1;:::;nAj(�; �)Cij(�; �)up to order (�)K.We de�ne Cij(�; �) = Æijai=giQi(gi) + KXh=1(�)h=giC(h)ij (�; t):The funtions C(h)ij are V1� applied to 0�hi deprived of one \fruit" with label j6. Wesubstitute in Proposition 5.14 and �nd��j ~S(�) = Aj � Xi=1;:::;nl=0;:::;n Mj lCliAi � 12(1 + k0) Xl=0;:::;nMj lCl0 nXi=1 Ai(!i + ki)whih is the required linear relation; in this ase:Mij = Xl=0;:::;nMilClj � 12(1 + k0) Xl=0;:::;nMi lCl0(!j + kj):Proposition 5.15. The generating funtion an be written in ompat notation as:~S(�; �) = �Z0 f=f(�(�; t)) + Xi=0;:::;n ��0(Ai)[=(gi(�i(�; t)� �0i (�; t))℄d�05for any non zero " this is a �nite set of orthogonality onditions6We disussed in Lemma 4.9 the problem of taking away a fruit from a tree without hanging itsombinatorial oeÆient, for trees with more than one fruit it is not easy to desribe the needed linearfuntion, but it is lear that it is well de�ned , so we will not go in any details.



5.2. Tree representations of the auxiliary dynamis 85� Xi=0;:::;nA2i=(giQigi); (5.13)up to order O(�K).Proof. The proof is idential to that of Corollary 4.2; In ~Sk, for eah tree A onsiderk opies:~Sk = XB2T̂ k (B)BN(B) = 1kXB2T̂ k( X[v℄:kv=0Æv=1 (B)m[v℄BN(B) + X[v℄:kv>0 (B)m[v℄kvBN(B) )The �rst sum in the right hand side is equivalent to the �rst term in the right handside of 5.13, as in Corollary 4.2. Finally we an apply Lemma 5.13 to the seond term:=W1� X[v℄:kv>0 (B)m[v℄kvBN(B) � = k�1Xh=1 nXi=0 hAhi=(gi(�k�hi � Ak�hQigi)):Now we onsider two formal power series:A = 1Xh=1(�)hA(h) B = 1Xh=1(�)hB(h);the following equality holds:�Z0 d�0B��A � 1Xk=2 (�)kk k�1Xh=1 hAhBk�h:Finally if we hose A = B we obtain that:12A2 � 1Xk=2 (�)kk k�1Xh=1 hAhBk�h:Notie that ondition (a) would give a leaner expression for the generating funtion.As usual the remainder is a known smooth funtion of �; �.We an gather the results in the following Theorem:Theorem 5.16. Given n+ 1 funtions gj(t) respeting ondition 5.12, We an �x theinitial data and the funtions Aj(�) so that for eah � 2 Tn: (1) The order K solutionof equation 5.2, �(�; t) 2 H0, it is a polynomial in � and a trigonometri funtion in�.(2) There exists an order K generating funtion ~S(�), again polynomial in � andtrigonometri funtion in �. This funtion is of order O(�) together with its � deriva-tives; moreover it respets Proposition 5.15 (always to order (�)K) and is the integral



86 Chapter 5. Upper bounds on homolini splittings II= of a funtion in H0. (3) The oeÆients Aj(�) again polynomial in � and trigono-metri funtions in � are related to eah other and to the generating funtion by theidentities (valid up to order K):2A0(�) = 11 + k0 nXj=1 Aj(�)(!j + kj)A = (1 +M)�1r ~S5.3 Connetion between the auxiliary dynamis andthe splittingTheorem 5.17. There exists an analyti hange of oordinates7 # : Tns1 ! Tns1 suhthat ~S(#(')) = S(') + o(�K).We follow losely the strategy of [BB1℄. First we move along the trajetory for atime t� suh that �0(t�) = �.Lemma 5.18. For eah � 2 Tns1 there exists t�;� analyti in � 2 Tns1 and j�j � �0 suhthat: �0(�; t(�; �); �) = � t(�; 0) = 0Proof. We apply the impliit funtion theorem knowing that�0(�; 0; 0) = � _�0(�; 0; 0) = �2:By our bounds 3.10 we have thatsupj�j��0�2Tns j�0(�; 0; �)� �j � �0C;so jt(�; �)j � C�0. Then we verify:supj�j��0jtj��0C ; �2Tns j1 + 2 _�0(�; t; �)j = KXk=1(�)k supj�j��0jtj��0C ; �2Tns j�k0(�; t)j � 12 :Notie that r�t(�; 0) = 0 so r�t(�; �) = O(�).Lemma 5.19. Now onsider the appliation Tns1 ! Tns1 :'j = �j(�; t(�; �); �) (5.14)for suÆiently small values of � this is a di�eomorphism of Tns1 , � lose to the identity.7remember that for � 2 Tns we mean the thikening of the torus of length s: Tns = Tn � (�is; is)



5.3. Connetion between the auxiliary dynamis and the splitting 87Proof. Let us write relation 5.14 as: 'j(�; �) = �+#1(�; �) with #1(�; 0) = 0; preisely:#1(�; �) = !t(�; �) + KXk=1(�)k�kj (�; t(�; �)):The relation is invertible loally as:'j(�; 0) = �j �i�j(�; 0; 0) = Æij:The funtion we obtain is a di�eomorphism of Tnd provided thatsupj�j��0�2Tns j!jr�t(�; �)�1 + KXk=1(�)k _�kj (�; t(�; �))�+r� KXk=1(�)k�kj (�; t(�; �))j < 12 :This holds true as jr�t(�; �)j = O(�). Moreover j _�kj (�; t)j and jr��kj (�; t)j arebounded by 3.10 for jtj � C�.Now we invert the relation 'j(�; �) = � + #1(�; �) we all the inverse #2(') andt(#2('); �) � t'.Consider the equation:�	j(t) = fj(	(t)) + Æj0 sin(	0(t)) + Aj(#2('))g(t+ t') + (�)KFR(#2('); t+ t') (5.15)with initial data 	j(0) = ' if j 6= 0 and 	0(0) = �. The funtion FR is de�ned in5.7. This equation admits an order (�)K solution (we all it 	j('; t)) whih is thetrunation of an asymptoti power series in �; ". So for � � "p the solution is � loseto the separatrix of the pendulum and exponentially quasi-periodi.We an solve equations 5.15 perturbatively and, as the initial data are now � indepen-dent, we obtain: 	kj (t) = Oj[F kj (	h) + Akjgj℄:Lemma 5.20. The asymptoti onditions determine the solution uniquely so 	('; t) =�(#2('); t+ t') up to order (�)K.Proof. �j(#2('); t+ t') and 	j(t) oinide at t = 0 by de�nition. Moreover they solvethe same equation up to order O(�K). Namely as seen in expression 5.7 there existsGR(�; t) suh that�	j(t) = fj(	(t)) + Æj0 sin(	0(t)) + Aj(#2('))g(t+ t') + (�)KGR(#2('); t+ t')where GR is bounded and exponentially quasi-periodi with < GR >= 0. So H('; t) =�j(#2'; t+ t')� 	j(t) is a bounded and exponentially quasi periodi solution of�H('; t) = (�)KGR(#2('); t+ t'):By the results of Subsetions 1.1.3 and 1.1.4 H('; t) = O(�K) for t 2 R � (�id; id), jIm �j � s0. Remark 3.9 and Lemma 3.14 (iii) ensure that jHR(�; t)j � (CK"�pK forsome p 2 N . Moreover H(�; t) is analyti in � for j Im �j � 12s0



88 Chapter 5. Upper bounds on homolini splittings IIWe an represent the series expansion in term of trees; in this ase we have thenon analyti operators Oj and so we do not think of the nodes kv > 0 as fruits andapply the operators V and W. Notie that the nodes with kv > 0 now have valueajAkj (#2('))Otj(g(t+ t').Lemma 5.21. The generating funtion�S(') = =W'fXB2 rT (B)N(B)Bg; (5.16)satis�es the relation:�S(') = ~S(#2(')) + nXi=1 A2i=[gi[Qt+t'i (gi)� Oi(gi)℄℄ +O(�K):Proof. We use Proposition 5.15 whih an be obviously restated for 	j as:�S('; �) = �Z0 f=f(	('; t)) + nXi=0 (��0Ai)[=(gi(	i('; t)� 	0i ('; t))℄d�0� nXi=0 A2i=(giOigi);then we apply Lemma 5.20 and 	0i = �0i obtaining�Z0 f=f(�(#2('); t)) + (��0Ai)[=(gi(�i(#2('); t)� �0i (#2('); t))℄d�0�A2i=(giQigi)℄ + nXi=0 A2i=(gi(Qigi �Oigi)) + LR(');where LR is analyti in ' for j Im 'j � s04 .To avoid onfusion with the omplex norm, jvj = pPi vi�vi, we will de�ne for allv 2 C n q(v) =Pni=1 v2i .Lemma 5.22. Following [BB1℄ we prove that for all ' 2 Tns0 :j ~S(#2('))� S(') + o(�K)j � Cjq(r ~S)j: (5.17)Proof. By our de�nitions �S(') � S(') is the (value =W of the) sum of trees A withat least one node v : kv > 0, weighted by (A)N(A) , so it is at least linear in the Ahj forj = 1; : : : ; n, h = 1; K � 1; as usual we all fruitless trees the trees of order zero in Ajet.. The linear term in the Ahj is sum of trees with only one fruit j; h:



5.3. Connetion between the auxiliary dynamis and the splitting 89Lin = XB2T̂ 1F (B)B:As there is only one fruit (node v1) the oeÆient (B) = 1S(B) is the order of thestabilizer of the path vB v1. We an shift the �rst node to v1 without hanging theombinatorial oeÆient and apply 5.13)=W1(Lin) = Xj=0;:::;nAj=gj(t+ l')	0Fj (t) = Aj(=g(�)V1(0j(�)) + Aj(=g(�)V1(�1Fj (�))plus higher order terms in Aj. By ondition 5.12 the linear part is zero. Then�S(')� S(') = Xk=3;K nXi=1 nXj=1 k�2Xl=1 k�l�1Xh=1 AliAhj ~Ck�l�hijwhere ~Ckij is a sum of trees, deprived of two fruits with labels i; j, and whose orderwithout these fruits is k. Now we substitute �S with ~S using Lemma 5.21. Finally wesubstitute (=g �M)�1r ~S = A+ o(�K).As usual in equation 5.17 we an expliitly ompute the remainder whih is ananalyti funtion of � and ' for ' 2 Tns1 with for instane s1 = 14s0.Now �nally we an prove the theorem and onstrut the transformation # : Tnd ! Tnd(d < s0=4) sending x in ~S. This is almost idential to the proof of Theorem 4.1 in [BB1℄.Proof of Theorem 5.17. We want to �nd # suh that~S(#2(') + #('))� S(') = fR(�; ') = o(�K); (5.18)for some funtion fR(�; ') analyti in � � �0 and ' 2 Tnd . Note that if r ~S(�) = 0then the equation is solved by # = 0. In general we look for a solution of the form#(') = r ~S(�)j�=#2(')y (5.19)where y is a salar parameter and from now on we will write r ~S(#2(')) instead ofr ~S(�)j�=#2('). Then we an write8:~S(#2(') + v) = ~S(#2(')) +r ~S(#2('))v + (v; R('; �; v)v (5.20)where the matrix R('; �; v) is suh that:�v; R('; �; v)v� = ~S(#1(') + v)� ~S(#1('))�r ~S(#1('))v:8The operator (a; b) with a; b 2 C n is the real salar produt(a; b) = nXi=1 aibi



90 Chapter 5. Upper bounds on homolini splittings IISubstituting 5.19 in 5.20, we �nd that 5.18 is equivalent to:�S(')� S(') + q�r ~S(#2('))�y+(r ~S(#2(')); R('; �;r ~S(#1('))y)r ~S(#1(')))y2 = o(�K);and �nally to �S(')� S(') + o(�K)q�r ~S(#2('))� = y +R1('; �;r ~S(#2('))y)y2 (5.21)where R1('; �;r ~S(#2('))y) = �r ~S(#2(')); R('; �;r ~S(#2('))y)r ~S(#2('))�q�r ~S(#2('))�is smooth and satis�es R1('; �; y) = O(�) and �yR1('; �; y) = O( �jyj) for all ' 2 Tns .Now we �x the o(�K term fR to be equal to the remainder (whih is a known analytifuntion of � and ' ) of expression 5.17 so that the norm of the left hand side of relation5.21 is bounded from above by C.By the ontration mapping theorem, for � small enough, for all u 2 R suh thatjuj < 2C, there exists a unique solution y = g(�; '; u) of the equationu = y +R1('; �;r ~S(#2('))y)y2;suh that jyj < 3C. Moreover, The funtion g(�; '; u) so de�ned is smooth and analytiin ' 2 Tnd , j� � �0 as r ~S(#2(')) is so.Setting #0(') := g(�; '; ~S(#2('))� S(') + o(�K)jr ~S(#2('))j2 )r ~S(#1(')) (5.22)if r ~S(#1(')) 6= 0 and #0(') = 0 if r ~S(#2(')) = 0, we get a ontinuous funtion #0(')whih satis�es 5.18 and suh that j#0(')j � 3Cjr ~S(#2('))j = O(�) and r#0(') =O(�).To omplete the proof, we remark that if f; g : U ! C are analyti in U open subsetof C m and g is not identially zero and f = O(g) loally in U , then fg (whih a-prioriis de�ned only where g 6= 0) has an analyti extension de�ned in the whole set U .Namely on eah loally irreduible hyper-surfae on whih g is zero, also f is zero withvanishing order al least equal to that of g. So applying standard results of omplexanalysis (see for instane [R℄) we obtain our laim.Hene ~S(#2('))� S(') + o(�K)jr ~S(#2('))j2 ;( whih is bounded by C in Tnd ) is



5.3. Connetion between the auxiliary dynamis and the splitting 91analyti in Tnd , so is g and �nally #. Moreover The transformation#(') = #2(') + #0(') = '+ �L(');is a di�eomorphism in Tnd , with d < s04 suh that:supj�j��0�;'2Tns (2jr�#1j+ j#0(')j) = O(�) � C� < 12 : (5.23)
Theorem 5.23. (i) The splitting matrix �, whih is the Hessian of S(') at ' = 0,satis�es the relation: � = (1 + �O)t ~�(1 + �O) + o(�K) (5.24)where ~� is the Hessian of ~S(�) at � = 0.(ii) ~� has the blok struture desribed in equation5.1.Proof. Relation 5.24 is a diret onsequene of Theorem 5.17. Namely as ' = 0 impliesthat also #(') = 0 we have9 (by the parity of f):r� ~Sj�=0 = r' ~Sj'=0 = 0and onsequently J'#j'=0H( ~S)j�=0J'#j'=0 = H(S)j'=0:Finally using relation 5.23 and the fat that # is �-lose to identity we obtain relation5.24.(ii) We use the analyti bounds 3.8, for ~S. ~� = H( ~S)j�=0 where ~S is a trigonometripolynomial in � and the = integral of a funtion in H0 let us onsider the Fourier seriesof H( ~S): H( ~S)ij = X��KN �i�jei��'S(�);where S(�) is the sum of the values through the analyti integrals (a) of trees in 0Tof order � K and total frequeny �. By The bounds 3.8 all the S(�) with non zerofast omponent �F are O"("1) while those with zero fast omponent are polynomial in"; "�1.

9Given f : Rn 2 Rn we will all Jf the Jaobian and H(f) the Hessian.





Chapter 6Lower bounds on the splitting forsystems with one fast frequenyWe �nd lower bounds on the splitting determinant and on the eigenvalues of the split-ting matrix, for systems with one fast frequeny, suh that f( ; q) is a rational funtionof eiq and satis�es suitable non degeneray onditions. This an be done independentlyby using the results of Chapter 4 or of Chapter 5.6.1 Basi lower estimatesIn Setion 4 we have proved that the splitting matrix � at the intersetion point�;  = 0; q = � an be written for any K � "� 12�F as:� = ��K1 +��K2 +(�)K�R =Pk�K(�)k(�1 k+�2 k)+ (�)K�R. We are interestedin systems with one fast frequeny so �F = 0; we hoose K = Cp" with C � 1.All the entries of ��K2 are exponentially small by de�nition, they will ontain a fatorthat is the integral of some funtion analyti in a domain H(b; d) with total fast mode�1 6= 0 . Moreover det(��K1 ) = 0 by Lemma 3.16. The remainder (�)K�R is boundedby: j(�)K�Rijj � ( ��0 )K < C2(���10 )K):(with �0 = "3=2 as seen in Appendix A.4).Similarly in Chapter 5 We have proved that the splitting determinant is equal tothe determinant of ~� times the determinant of (1 + �O)2. And that ~� has the blokstruture 5.1.We know from KAM theory that the series expansion for � is absolutely onvergentfor j�j < �0. This means that the series expansion of the determinant:det� = �nXk<KQk�k +RKis absolutely onvergent as well, and that eah summand of Qk ontains at least afator (�2 k)ij for some i; j and h < k.



94 Chapter 6. Lower bounds on the splittingWe know that X�K1 = O"(1) is O((�=�0)K) lose to the eigenvetor of ��K1 witho((�=�0)K) eigenvalue. Now we set ��k1 in blok form via an orthonormal hange ofvariables: ��k1 = �������� �R 00 �01 �������� with �R = o((�=�0)K):We are onsidering a system with one fast frequeny so �01 is an n� 1� n� 1 matrix.Proposition 6.1. (i) If det�01 6= 0 and ��K2 11 6= 0, the splitting determinant is givenby the determinant of �01 times the size of ��K2 . Preisely the bounds:a"p � det�01 � b"�p ; a"pe� p" � j��K2 11j � b"�pe� p"j��K2 ij j � b"�pe� p" (6.1)imply that a2"2pe� p" � det� � b2"�2pe� p" :(ii) If the eigenvalues of �01 are bounded by:a0"p0 � j�ij � b0"�p0 for i = 1; : : : ; n� 1then so are n� 1 eigenvalues of �. The remaining eigenvalue is bounded by:a00"p0e� p" � j�ij � b00"�p0e� p" :Proof. ��K2 +�R respets the same bounds (with possibly di�erent onstants a; b) as��K2 as the remainder (���10 )K < 12 min(a; b)"pe� p"for small enough values of ".Moreover the bounds 6.1 imply that det� is:det� = det�01��K2 11 +Qwhere Q ontains at least two entries of ��K2 .(ii) This is simply the fat that the determinant is the produt of the eigenvalues.This deouples the problem in a polynomial and an exponentially small part. Wewill proeed in two steps:1. Compute the �rst order of �2, with the purpose of �nding general lower bounds.Then use the upper bounds on analyti and non analyti integrals of order k � 2of Chapter 3 to extend the lower bounds on all ��k2 . This gives us the size of theexponentially small eigenvalue.2. Compute the non zero eigenvalues of ��k1 , via lassial perturbation theory.



6.1. Basi lower estimates 956.1.1 Lower bounds on the Melnikov integralIn this subsetion we will use for the �rst time the restrition that f( ; q) is a rationalfuntion of os(q); sin(q) .Let f(q;  ) := Tn+1 ! R have the usual Fourier expansion in the rotator angles:f(q;  ) = Xj�j�N f�(q)ei�� where all the funtions f�(q) are rational funtions of x = eiq with no poles on the unitirle (f�(q) = H�(x)).The parity of f leads to f�(�q) = f��(q) while the reality of f implies that �f�(q) =f��(q). Moreover f has zero mean value.We are onsidering lower bounds on the �rst order of the expansion of the splittingmatrix (these are all analyti integrals) so at �rst we will make no di�erene betweenslow and fast variables. Mij = =f i  j (q(t); !p"t);M is the Melnikov term for the splitting matrix.We substitute x = ( et�iet+i)2 (notie for eah value of x there are two solutions et and�e�t) in the H�(x) and we obtain for eah value of � a rational funtion of et (weall it F�(et)). The parity ondition is F�(y) = F��(�y) = F��( 1y ) the reality is1�F�(y) = F��(y) and so we have �F�(y) = F�(�y) = F�( 1y ). Notie that F has all thepoles of f as funtion of x plus possibly poles at et = �i. The absene of poles onthe unit irle jxj = 1 implies that there are no poles for real values of t; this and thefat that x ! 1 (exponentially) for t ! �1 imply that all the F�(et) are the sum ofa onstant funtion and a funtion G�(et) that is exponentially dereasing to zero fort! �1. The Melnikov integral depends only on G:=(�i�j)ei�� !p" tF�(et) = (�i�j) 1Z�1 G�(et) = (�i�j)I�as purely osillating funtions give no ontribution to = and G� is learly L1.Now if the funtions f�(x) are not all polynomials (and so the funtion f is atrigonometri polynomial) then some of them must have poles for �nite values of x. Letus all the poles xj� j = 1; : : : ; n� and the the orresponding values of t (in jIm(t)j � 2�and via the relation x = ( et�iet+i)2 ) ti� 2 C i = 1; 2N� eah with degree pi�. The poles ofF (et) are the ti� plus possibly �i�2 + 2ik�.Lemma 6.2. The poles of G� in jIm(t)j � � ome in groups of four, namely if theomplex number ti� = ai� + ibi� is a pole for G� then so are ��ti� = �ai� + ibi� , �ti� + i� =�ai� � ibi� + i� and ��ti� + i�; orrespondingly G��(et) has poles �ti� ; �ti� et...1By �F (y) we mean the funtion having as oeÆients the omplex onjugates of the oeÆients ofF , so �F (y) = F (�y).



96 Chapter 6. Lower bounds on the splittingProof. Eah xj� has two preimages tj� and �tj� + i�; moreover by the reality onditionF�(y) = �F (�y), if y = etj� is a pole so is ��y.We notie that jzjF (ez)! 0 uniformly for z = t+ id with d 2 R �xed and R 3 t!1;moreover F (et) = F (et+2i�) so we onsider the integral 6.1.1 plus the same shifted by2i� and apply Jordan's lemma. Preisely if !� = !p" � � > 0 we shift by 2i� and if it isnegative by �2i� , we will all �� the sign of !�. If �� = + we will onsider the polesin the prinipal domain 0 � Im t � 2� instead of �� � Im t � � and vie versa for�� = �. I�(1� e�2j!� j�) = 2�i�� 2N�Xi=1 Res �� (ei!� tG�(et); t�i ) (6.2)The apex �� = � on the Residue indiates that the poles are set in the upper or lowerhalf-plane. Let Xk=�pi� ;1 gi ;k� (t� ti�)kbe the Laurent expansion of G� near the poles ti� = ai� + ibi� :Res (ei!�tG�(et); t�i ) = e�!�bi�ei!�ai� Xk=1;pi� (i!�)k�1k � 1! gi ;�k� (6.3)For eah value of � suh that !� > 0 we onsider a pole ti� suh that Ret � 0 2 and theorresponding pole �ti� of G��. The ontribution to the integral is2�i( Res +(ei!� tG�(et); t�i )� Res �(e�i!�tG��(et);�t�i ) (6.4)and as G�(et) = G��(e�t) the Laurent expansion of G�� near the pole isXk=�pi� ;1(�1)kgi ;k� (t + ti�)k:The sum 6.4 is: e�j!� jjbi� jeij!� jjai� j2 Xk=1;pi� (ij!�j)k�1k � 1! gi ;�k� :Now we onsider the poles ��ti� and �ti� of G� and G��; the relation G(y) = G( 1�y )implies that the Laurent series of G� in the point ��ti� is:Xk=�pi�;1(�1)k�gi ;k� (t+ �ti�)k2by the symmetry relations there must be suh a pole.



6.1. Basi lower estimates 97( gi ;k� are the oeÆients of the expansion near ti�). So �nally for eah � suh that!� > 0 and eah ouple of poles ti� and ��ti� of F� (and �ti�, �ti� of �� )in the upperhalf-plane (resp. lower half-plane) we obtain the real value:(I� + I��)(1� e�2j!� j�) =4�ie�j!� jjbi� j Xk=1;pi� (i!�)k�1k � 1! (eij!� jjai� jgi k� + (�1)ke�ij!� jjai� j�gi ;k� ) (6.5)One should notie that this formula holds also for funtions with some non polarsingularity for �nite t 2 C ; in the latter ase we always obtain exponentially dereasingfuntions of !� (as predited by the Paley Wiener theorem) but we annot give generalformulas for the dereasing rate as the residues are no longer �nite sums k = 1; pi�.Consider a � suh that �F 6= 0 then if all the pj� are �nite the frequeny � ontributesa term of order either zero or e�=p".6.1.2 Systems with one fast frequenyLet us go bak to systems with one fast frequeny:!1 = O"(1) j!2j = O"("( 12+�));with 0 � � � 12 . On suh systems we an give \general" lower bounds on the determi-nant of the splitting matrix provided that we impose some non-degeneray onditionson the frequenies of f so that the hypothesis of Proposition 6.1 are veri�ed.Proposition 6.3. The sum of the exponentially small terms of order 2 � k � K arebounded from above by: C4e�!1d1 Dp" X1<k�K(�)k(Cp"3p"P )k) (6.6)d1 is the divisor of the frequenies of f in the fast omponent (j = 1)(it is di�erentfrom one only for funtions f(q;  ) whose fast frequenies are not oprime see AppendixA.3) and P = max(p+ 5; 4�S + 4)Proof. We apply Corollary 3.8 disussed in Setion 3.1. Namely, a tree with fruitsarrying an analyti integral of total frequeny � is bounded from above by:Jk(�) = [XA2A (A)℄e Im 'j�jCk1 (k!)1N2kE(D; �) p"3p"(p+5)k ;restrited to frequenies � with non-zero fast omponent, �F 2 Z. We are onsideringsystems with one fast frequeny so, if K < "� 12+�, �F = 0 and 1 = 4 + 4�S.We hoose K = =p", bound E(D; �) with 2e�j!1�F j Dp" e"�j!2jjmj, the sum on fruitlesstrees of order k by (2n)k and �nally k! with C2p"k. Now we sum on the frequenies



98 Chapter 6. Lower bounds on the splittingj�j � kN with non zero fast omponent aessible at order k. First we �x the valueof �F and sum on the slow modes (e"�j!2 = O"(1) even for � = 0), we obtain a fatorbounded by Ck for some order one C. Then if �kF is the minimum non zero fast modeaessible at order k�2 k � X�F��kF Jk(�F ) = p"3( Cp"p+7+4�S )k X�F��kF e�j!1�F j Dp" �C4p"3( Cp"p+7+2�S )ke�j!1�kF j Dp" : (6.7)as the ontributions to �2 k are by de�nition all of the form J(�). Finally by thede�nition of the divisor in the fast diretion d1 � �kF for all k. This leads to theproposed bound with P = p + 5 + 4�S + 4 the better bound proposed rises from theobserving that in eah node we an have either a small denominator oming from theimproper integrals (so "2�S+2 or a term from the proper integral "(p+5)=2.If we �x j�j � jp"jP , we an add up the terms 2 � k � K:��K2 � �M2 � C"3=2( �jp"jP )2[e� j!1d1jDp" ℄;where M2 is the fast (exponentially small) part of the matrix M .Finally we onsider the Melnikov term M2; to have a simpler expression we onsiderat �rst only funtions f(q;  ) suh that the fast and slow variables  F are partiallydeoupled3 f(q;  ) = g1(q;  F ) + g2(q;  S) +G( ; q).Lemma 6.4. The size of the �rst order of �2 is (generally) greater than:M2 � C3"�3e�j!1jhMp"where hM = min�;ti� �F bi� evaluated on the frequenies �F 6= 0 ( �F is the fast ompo-nent) and 3 = pM2 where pM is the order of the pole bi� whih realizes the minimum.Proof. We use the results of Subsetion6.1.1. The trees of order one are all analytiso M2 ij is zero if i; j are both slow. In partiular in equation 6.5 there are onlyontributions from frequenies � suh that �F 6= 0. We write !� = !1p"�F + B whereB � CO"(1). We substitute all the osillating terms and the e�Bbi� in 6.5 with orderone onstants : jM2 ijj = 4� X� : �F 6=0j�j�N j�i�jj Xl=1;:::;n� e� j!1�F jjbi� jp"1� e�2 j!1�F jp" �Ci�(")�pi� :3This is alled a non-degeneray ondition in [BB1℄; in this way r1 = 1 and the �rst order matrix�M1 has a n� 1� n� 1 minor whose entries are of order one in ".



6.1. Basi lower estimates 99Moreover setting bM = min�;ti� �F bi� ;all the summands are smaller or equal to e�j!1jnMbMp" (")�pM=2.Proposition 6.3 and Lemma 6.4 imply immediately the following.Theorem 6.5. The Melnikov integral M2 dominates in the expansion of ��K2 , for� < min("P�3�3=2; "(P )=2, provided that the perturbing funtion veri�es the onditiond1D � hM . In this ase the entries �2i;j suh that M2 ij 6= 0 are bounded from belowby 12M2 ij.For example if the fast omponent of the frequenies of f(q;  ) ontains the divisord1 (see Appendix A.3) and all the G�(et) have the same poles then the onditiond1D � hM is automatially satis�ed.Even if these onditions are not veri�ed one an give rules to determine the (" independent ) \possible" dominating order, by simple onsiderations on the modevetors � 2 Zn. In general, our andidate will be the �rst analyti integral (fruitlesstree) whose total fast mode is d1 and ontaining a node v suh that F�v has a pole withimaginary part equal to D. The value of this integral is still the Fourier transform ofan exponentially dereasing funtion with known singularities (the same as those ofG(et)) but the singularities are not (generally) polar any more and we annot use thesame estimates as for the Melnikov term.Remark 6.6. \Hopefully" the size of the exponentially small eigenvalue is O[e� j!1d1jDp" ℄for j�j � j"jP .Proof. A term of order [e� j!1d1jDp" ℄ appears for the �rst time in a fruitless tree of orderk = m1 (m1 is the minimal length in the fast diretion, Appendix A.3) ontaining anode v suh that F�v has a pole with imaginary part equal to D.The problem is that, as we have said in subsetion 6.1.1, if m1 6= 1 then it isnot neessarily true that the value of the tree is greater than CP (1")[e� j!1d1jDp" ℄ as thesingularities are generally not polar. If the last inequality holds we an add up thetrees of higher order using the upper bounds and the assertion is true. If the value iszero or not of the orret order then we onsider the ontributions to fruits of orderk = m1 oming from the same fruitless tree, if this is again zero (or not of the orretorder) we pass to a higher order fruitless tree with the same fast mode 4 and so on.This ends the analysis of step 1. Now we ompute the polynomial eigenvalues:Lemma 6.7. The matrix �1 is of order �r1 ; the leading order has ontributions onlyfrom analyti integrals (with zero total fast mode) and so has the �rst line and olumn(orresponding to the fast variable) equal to zero. So the non zero eigenvalues of ��K1are of the size of the eigenvalues of ��K1;r1 if this matrix has rank n� 1.4in the Appendix A.3 we have proven that eah divisor is aessible for in�nite k



100 Chapter 6. Lower bounds on the splittingProof. By LemmaA.12 r1 is the �rst order suh that in the generating funtion thereis an analyti integral with total zero fast omponent. The value of suh integralis generally NOT exponentially small in " as seen in Corollary5 3.13. The leadingorder of ��K1 is the Hessian of Sr1(') at zero. So it is lear that suh integral givesontributions only to the slow omponents of the matrix. Finally lassial perturbationtheory ensures that the eigenvalues of ��K1 are �r1+1 lose to those of ��K1;r1 . Thisprovides upper and lower bounds on the non-zero eigenvalues.This �nally leads to the following theorem on the splitting determinant for pertur-bating funtions f rational in eiq that ontain their divisor in the fast diretion andsuh that the F� have all the same poles :Proposition 6.8. For " suÆiently small and for all � < min("P�3�3=2; "(P )=2 thesplitting determinant is bounded (from above and below) by expression of the typeC(")e� j!1d1jDp" where C(") is a rational funtion of ".6.2 Examples of Melnikov dominaneIn this setion we will use a simpli�ed version of [GGM4℄ and [Ge℄ to �nd improvedlower bounds on the splitting determinant. We work on examples with three time salesand three degrees of freedom, it should be lear however that the tehnique is general(for systems with one fast frequeny) so we point out the neessary generalizations. We�rst review the tehniques of [Ge℄ whih enable us to pre�x the Lyapunov exponent,thus simplifying the expression of the �kj ('; t). The artile [GGM4℄ then proves theonvergene of the Lindstedt series by showing the existene of ompensations betweenseemingly divergent terms due to the small denominators. We will not go into thedetails of this (very interesting ) tehnique as we only want to �nd better upper boundsfor the terms of the series expansion of the splitting determinant of order k � "� 12+�.In Subsetion 6.2.1 we desribe (an adapted version of) the tehniques of [GGM4℄;then in Subsetion 6.2.2 we �nd appropriate bounds, similar to those of Chapter 3.Notie that the proofs would be simpler if we ould assume that the splitting determinantis exponentially small wherever it is onvergent by KAM theory.6.2.1 Systems with pre�xed Lyapunov exponentAs in [Ge℄ and in [GGM4℄ we onsider the following Hamiltonian:12(I2 + "J2 + p2) + (g + �G(�; g))(os(q)� 1) + �F ( ; �; q); (6.8)I;  , J; � and p; q are onjugate ation angle variables. The harateristi frequenywill be a diofantine vetor: !1p" ; " 12!2. G(�; g) is an, a priori unknown, analyti funtion5Clearly it is possible that for some perturbating funtion the integral is zero or arbitrarily small,but this implies giving a relation between f and "



6.2. Examples of Melnikov dominane 101of its arguments for j�j � �0 and jgj � g0. We will prove that G an be determineduniquely by imposing that the Lyapunov exponent of the separatrix is g (at least toorder k = "�1). Finally the parameter g will be �xed (as a funtion of �) so thatg(�) + �G(�; g(�)) = 1. Under suh onditions the system 6.8 is of the type desribedin Setion 1.1.We an apply the theory developed in Setion 1.1 to the Hamiltonian 6.8 so we willnot repeat the proedure but simply write the equations for the time evolution on theseparatrix.First we will expand G in Taylor series in �:G(�; g) = "�1X�0 (�)kgk+1;the equations for the separatrix are:Ik(t) = =F k1 ;  k = O1F k1 ; Jk(t) = =F k2 ; �k = "O1F k2 � O2F 2k ;qk = O0(F k0 +Pkh=1 gh[os(Pj�k�h(�)jqj)℄k�h) ;for k � 1 while q0(t) = artan(egt) and  0(t); �0(t) = ' + !t ( and we will all' =  (t = 0); �(t = 0) the � independent initial data of the rotators). As in Subsetion1.1.2 : F kj = [�jf( (�); �(�); q(�))℄k�1 + gÆj0[sin(Xh<k(�)hqh)℄k;where �1 = � �2 = ��; �0 = �q:In the following we will write the operators Oj with j = 0; 1 as:Oj(G) = =twj(t; �)G(�) + x0j=0�(�)x1jG; (6.9)it is easily seen that this is equivalent to 1.31.We an represent the series expansion in terms of trees as in Chapter 2. The nodesv 6= v0 will arry the labels: jv = 0; 1; 2, �v 2 N0 , Æv = 0; 1, �v = 0; 1, with the usualgrammar:Æv = 1! �v = 0 ; Æv = �v = 0! s(v) � 2; Æv = 0! j(v) = 0 ; j(v0) = 0 8v0 2 s(v)The �v = h represents the appliation of a \ounter-term" gh. As the gh have degreeh in � we rede�ne the order of a tree as:O(A) =Xv2A Æv + �v:Finally the label �v = 0; 1 represents the appliation respetively of the �rst and seondsummand in 6.9.



102 Chapter 6. Lower bounds on the splittingWe expand the funtion f(' + !t; q0(t) in its harmonis and apply an extra label�v 2 Z2 suh that j�vj � N .Following [GGM4℄ we will all leafs the subtrees stemming form a node v with �v = 1,this terms (just like the fruits in Subsetion 2.1.2 ) ontribute by a �xed funtion x0j, times a oeÆient depending on the subtree A�v. So one an fatorize the valueof a tree as a produt of values of marked leaess trees whih in [GGM4℄ are alledamputated trees. Graphially we represent the leafs by drawing a line on their stalkand do not onsider the nodes inside the leaf as nodes of the amputated tree; we willall L(v) the list of nodes v0 with s(v0 = 0) attahed to the node v .Notie that with this notation all the nodes v > v0 of an amputated tree have�v = 1 so we an remove this label from all the nodes exept the �rst.Using the notations of Setion 1.2 we will onsider the set T of marked trees withleafs, A of trees without leafs, and the subsets of De�nition 1.31. In partiular we willbe interested in : �kj = XA2T kJ 1jS(A)jA and 0j = XA2Akj 1jS(A)jA:notie that now 0 represents the leaess ontributions to the series expansion.The value W(A) of a tree with a marking h(t)�l in v0 and leafs L(v0) is de�nedreursively: W(h(v0; t)�v0l 01; t) = �h(vA; t)relf 1W((h(vA; t)�vAl A; t) = �gÆv0�v0ajv0h(�v0)(r~mv0f Æv0 ) Yv2s(v0)V(A�v); (6.10)where mv(j) is the number of nodes v0 in the list s(v);M(v) having label jv0 = j;a0 = a1 = 1, a2 = ", g10 = 1 and g0�v = g�v . Finally for A 2 T�:V(A) = =t(�v0 )wjv0 (t(�v0); �v0)W(A); with t(x) = 8<: 0 if x = 0t if x = 1Remember that wj(t; �) = (t� �) if j = 1; 2w0(t; �) = t� �osh(gt) osh(g�) + sinh(gt)osh(g�) � sinh(g�)osh(gt) :This de�nition an be extended to V(T ) by linearity, as seen in Subsetion 2.1.2, thisimplies that:  k(t) = V(�k1) �k(t) = V(�k2);similar identities an be found for the ations, however for the moment we will on-entrate on the angles. Notie that if �v = 0 the valueV(A�v) = x0jv(t)=x1jv(�)W(A�v; �):



6.2. Examples of Melnikov dominane 103As for trees with fruits, a tree with a leaf in v is equivalent to the tree without theleaf (amputated), marked x0jv and multiplied by the value of the leaf (whih is time-independent); we an write:W(A; t) = gÆv0�v0ajv0 (r~mv0f Æv0 ) Yv2s0(v0)V(A�v) Yv02L(v0) x0jv0 (�v0)=x1jv0W(A�v0); (6.11)Remark 6.9. Notie that in an amputated tree the integrals are all ordered: namelythe �v have all the same sign and j�vj � j�wj:De�nition 6.10. Given an amputated (marked ) tree A and a node v in A we willonsider the total rotator harmoni of the subtree A�v:�T (v) =Xw�v �w;remember that the nodes inside a leaf are not nodes of the amputated tree.Notie that in a leaess tree the total rotation �T (v0) gives the dependene on theinitial data '. If the tree has leafs eah with total rotation �LT (i) the dependene onthe initial data is ei(�T (v0)+Pi �LT (i))�':Lemma 6.11. (i) Given a funtion F (t) suh thatF (t) = Xj�j�M 1Xk=0 f�;kei!��te�kgjtj ; with f~0;0 = 0then the integral=t(t� �)F (�)d� = =t=�F (� 0) = Xj�j�M 1Xk=0 f�;k(i! � � + �(t)kg)2 ei!��te�kgjtj (6.12)(ii) Given a funtion G(t) suh thatG(t) = Xj�j�M 1Xk=0 g�;kei!��te�kgjtj ; with g~0;1 = 0then =t(sinh(gt)G(�)osh(g�) � G(�) sinh(g�)osh(gt) ) ==t(osh(g�)=� G(� 0)osh(g� 0) �=t sinh(g�)osh2(g�)=� sinh(g� 0)G(� 0) = H(t)moreover the funtion H(t) has the same properties as F :H(t) = Xj�j�M 1Xk=0 h�;kei!��te�kgjtj ; with h~0;0 = 0:



104 Chapter 6. Lower bounds on the splittingProof. (i) We are simply using the identity:�PH = 0! H = =t _H:(ii) Same as (i) we have to prove that�P=t(sinh(gt)G(�)osh(g�) � G(�) sinh(g�)osh(gt) ) = �P sinh(gt)G = 0:The last identity is obvious as �P sinh(gt)G = 12g~0;1. in the left hand side, we notiethat the only onstant terms an ome from the onstant terms of G so:�P=t(sinh(gt)G(�)osh(g�) � G(�) sinh(g�)osh(gt) ) = g~0;0=t( egjtje�gj� j � egj� je�gjtj ) = 0:Proposition 6.12. The value of a tree with �v0 = 1 is a limited funtion of t; moreoverwe an �x reursively the oeÆients gh h � k (independently from the initial data ')so that the value of a tree of order k with sv0 = 1 an be expanded as:V(A)[t℄ = Xj�j�kN 1Xh=0 a�;h(A)ei!��te�hgjtj ; with XA2Akj (A)a~0;0(A) = 0:So as we are interested only in V(�j) we an set a~0;0(A) = 0.Proof. If jv0 = 1; 2 the proof is obvious as k = =t=�F k1 + =0=�F k1 ;where F k1 (and onsequently =�F k1 ) has no polynomial omponent as proven in Sub-setion 1.1.4.For jv0 = 0 we obtain the onditions:�P 1osh(gt)(F k0 + kXh=1 gh[sin(k�hXj=0 qj)℄k�h = 0�P sinh(gt)(F k0 + kXh=1 gh[sin(k�hXj=0 qj)℄k�h = 0 (6.13)The �rst ondition is always veri�ed as the funtions  k; �k; qk and x00 = 1osh(gt) areall limited and x00 tends exponentially to zero. The seond ondition �xes the ghreursively: gk�P (tanh2 t) = 2gk = ��P (egjtj(F k0 + k�1Xh=1 gh[sin(k�hXj=0 qj)℄k�h)): (6.14)



6.2. Examples of Melnikov dominane 105The latter identity makes sense only if the right hand side is ' and t independent:�P (egjtj(F k0 + k�1Xh=1 gh[sin(k�hXj=0 qj)℄k�h)) = �P egjtjW(0k0) = Let us proeed by indution: W(t; A) is a produt of (Qj �n(j)+l(j)f Æ and V(A�v) withv 2 s(v0) so it is a limited funtion whih an be expanded as:W(A; t) = Xj�j�kN 1Xh=0 w�;h(A)ei!��te�hgjtjnaturally we annot expet that w~0;0 = 0.As seen in Lemma 6.11(ii) the onstant part of egjtjW(A; t) depends only on w~0;1;moreover W(0k0) is limited and adding leafs with jL = 0 means multiplying by 1osh(gt)whih is exponentially dereasing. Therefore the only ontributions to 6.14 ome fromtrees with at most one leaf L with jL = 0.Let us now onsider leafs with jL = 1; 2. Given a tree A let us hoose a leaf L anddetah from the tree all the leafs idential to L; we will all B the orresponding treewithout the leafs L and B the set of trees with no leafs idential to L. Adding k leafs Lto the tree B is equivalent to applying k derivatives �jL to the nodes of B. Thereforeif the total rotation of B is zero suh derivative is zero as well.The total zero momentum ontributions from trees with one leaf L with jL = 0anel with the orresponding ounter-terms. To illustrate this anellation let usFourier expand f( ; q) fully obtaining a \frequeny" label �v; nv. Now let us omparethe zero momentum ontributions of a tree A with a node v arrying a leaf and theorresponding tree A without the leaf (whih appears in the ounter-term. In the �rstase we onsider the zero order (in egt) terms of the expansioneinq(t) = ((egt + i)2e2gt + 1 )2nin all the nodes and have a j = 0 derivative in v. In the seond we onsider the orderone term in egt in the node v and order zero term in all the others. The order one termis 4inv so the ratio of two values is two (in the �rst tree there is a fator two omingfrom the egt expansion of osh�1(gt)). This implies that the onstant term of all treesA of order h arrying a leaf jL = 0 are aneled by the tree with only one node �v = hand the same leaf.This means that we an apply Lemma 6.11 to all the nodes so that=twj(t; �)W(A; �) = "j�1=t=�W(A; � 0) if j = 1; 2 (6.15)=tw0(t; �)W(A; �) = =t=�W(A; � 0)osh(g� 0) + =t(osh(g�)=�W(A; � 0)osh(g� 0)+



106 Chapter 6. Lower bounds on the splitting=t sinh(g�)osh2(g�)=� sinh(g� 0)W(A; � 0);in eah node with jv = 0 we hoose one of the three terms and denote it with an extralabel pv = 1; 2; 3 in the nodes with jv = 1; 2 we set pv = 1.This Proposition and the relation 6.14 show that the oeÆients gh are �xeduniquely; a diret onsequene is that the value of the splitting vetor and splittingmatrix an be expressed via amputated trees suh that for eah node v the integrations=t are always on funtions F with no onstant omponent f~0;0. This is true for v0 aswell as �I = =F k1 and F k1 has no onstant omponent. To omplete this brief review ofthe artiles [Ge℄ and [GGM4℄ let us onlude by stating the following property (provedin [Ge℄ and [GGM4℄):Corollary 6.13. Fixing the gh as in relation 6.14 implies that the Lyapunov exponentof the separatrix is g.Notie that all we have done in this Subsetion does not depend on the number ofdegrees of freedom (and on the hoie of the matrix A).Remark 6.14. To prove the onvergene of the Lindstedt series it is neessary toshow ompensations between the \ resonanes" whih are subtrees stemming from vhaving a purely osillating term in W(A�v), suh terms generate small denominators(! � �)�1. In our approximation however (k � "�1) we an approximate all the smalldenominators with "� so we will ignore the ompensations.6.2.2 Improved bounds for three dimensional systemsIn this subsetion we will adapt Setion 3.1 to the Hamiltonian:12(I2 + "J2 + p2) + (g + �G(�; g)) os q + �f(q;  ; �);Where f is a trigonometri polynomial in  ; �. To �x a lass of examples we willonsider f( ; �; q) = (os( ) + os(�))f(q)suh that f(q0(t)) is a rational funtion in egt tending to zero for jtj ! 1 and with atleast one pole with gjIm tj < �=2.We will perform the omputations forf(q) = 2os(q) + 3 ;whih has one simple pole in gjtj = i�=4.Moreover we will onsider an example where f(q) is a trigonometri polynomial and�nd better bounds that those proposed in Setion 3.1 and in [GGM3℄.f( ; �; q) = (os( ) + os(�))(os(q)� 1)



6.2. Examples of Melnikov dominane 107In this subsetion we will return to the resummation tree notation as we needto evidene the analyti and non analyti parts in the splitting determinant. Theresummated trees will however arry the extra labels �v (ounter-term label) and �v(rotation label).Moreover we will use the fat that the 2� 2 splitting matrix � satis�es Corollary4.18: �U � V; (6.16)where U; V are 2� 2 matries and U is invertible. This means thatdet� = det(U�K)�1 detV �K + o(�K):The matries U; V are those de�ned in Subsetion 4.1.4; it is easily seen however thatfor systems with three degrees of freedom one an hoose U and V in the followingway6 (Ui; Vi are the olumns of U and V ):U1 = ���� 1 00 "�1 ����! + ���� I1(t = 0; ' = 0)J1(t = 0; ' = 0) ���� U2 = ���� 10 �����M0 � m0�2 + P 10 U1and V1 = g0(�2 + P0) ; V2 = g1m1 + (���� 1 00 1 ����+G1)M1:U1 is the value of the ations of the rotators at the homolini point and orrespondingly�2 + P 10 is the value of p at the homolini point.G0 and G1 are the gradients in ' of the values of fruits respetively of type 0; 1 andlabel j = 1; : : : ; n .g0 and g1 are the gradients of of the values of fruits respetively of type 0; 1 and labelj = 0. This matries an be omputed using the tehniques of the preeding subsetion,for instane: (G1)i j = =x0i (t)W(�i;j; t) with i; j 6= 0 : : :Remark 6.15. For systems with n degrees of freedom we onsider the equationG0(Idn � 1�2 + I(1)0 (A�1~! + I(1))ut01 +M t01A) = �g1ut11 �G1AM11 + AM11;where the �rst olumn of M11 and of ut11 are exponentially small.Proposition 6.16. The Gi and gi an be bounded from above (up to order k = "� 12)by: j(Gk1)ijj; j(gk1)ij; j(gk0)ij � (�)kCk"�k:The following lemma will be useful in the proof.Lemma 6.17. A tree of order k with m nodes Æv = 0 an have at most k �m smalldenominators "�1 and 2m denominators "� 12 .6We are simply using Propositions 4.14 and 4.16 instead of Corollary 4.18



108 Chapter 6. Lower bounds on the splittingProof. Eah node with jv = 1; 2 an arry a small denominator "�1 oming from thepurely osillating terms of W(A; t)=t=� Xj�j�Nkw�;0ei!��the result is again a purely osillating term. If we have m nodes with Æv = 0 then atleast m+ 1 of the k nodes with Æ = 1 have j = 0 so we have at most k �m� 1 smalldenominators due to nodes with j = 1; 2.By the boundedness of W(A; t) the only purely osillating terms for a node withjv = 0 appear in =t sinh(g�)W(A; �)if w�;1 6= 0 and ontribute w�;1i(! � �) 1Xh=1 ei!��tx2h�12h� 1 + i! � � (6.17)whih is a funtion with no purely osillating term. The purely osillating ontributionfrom the =t integral in=t sinh(g�)osh(g�)2=� sinh(g� 0)W(A; � 0)� =t osh(�)=�W(A; � 0)osh(� 0) ;has again only one small denominator. So, even if eah node arries two integrals(and thus two potentially small denominators), there an be only one fator "� 12 foreah node with j = 0. The (remaining) nodes with j = 0 are 2m + 1 so the smalldenominators produe a fator bounded by "�k.Proof of Proposition 6.16. We proeed in two steps:1) Given a tree A, split the integral = on the �rst node in three terms:= = =�2a � =2a + 2aZ�2a ;if we hoose the third term we onsider the nodes following v0 and repeat the proedureon the external integral (eah node arries two integrals as seen in 6.15):=t = =2�(t)a + tZ�(t)a : (6.18)Eah time we apply the �rst term of 6.18 we are utting o� the subtree A�v.Let usall #i with i = 1; : : : ; H the list of suh trees and #0 what remains of A. We have atmost 9k terms of the type:Yi=0;H V(#i; 2�(t)a) 2aZ�2a Yv2#0 �wZ�(t)a Apv;jv(�v)=�vBpv ;jv�0(#j):



6.2. Examples of Melnikov dominane 109where �'(#) = (�1)N(#)[Yv2# ajv(�)Æv ℄Yv�v0r~mvf Æv ; (6.19)
Ap;j(t) = 8>>>><>>>>: 1 if p = 1osh(gt) if p = 2sinh(gt)osh2(gt) if p = 3Bp;j(t) = 8>>>><>>>>: 1 if p = 1; j = 1; 21osh(gt) if p = 1; 2 ; j = 0sinh(gt) if p = 3:2) Given a tree of order k we ompute V(A; 2�(t)a) using Lemma 6.11, we expand allthe funtions f 1osh(gt) et. in series in x = ejgjt and remember that=te�t = e�t� ; � 2 C :The small denominators an be bounded byj�j = jk + i! � �T (v)j � � 1 if k 6= 0p" if k = 0 (6.20)so " small terms our only in integrals of purely osillating funtions.We apply proposition 3.6 bounding the denominators with "�k as seen in Lemma6.17.We bound the de�nite integrals with the maximum of the integrand and aj(") withone: Yv2# ajv(�)Æv maxt2(�2a;2a)(jApv;jv jjBpv ;jv jjYv�v0 �jv Yv02s(v) �jv0f Æv j);this are all " independent onstants (we are not shifting the integration to omplext's). We obtain the following bounds on the Giand gi:jGk1j; jgk1 j; jGk0j; jgk0 j � (�)kCk"�k;whih omes from the small denominators.The fator detU has an � independent part equal to !2" 12 plus a �-dependent orre-tion whih an be bounded byC2max(jI1j; jJ1j; j(M0)ij) = O�(�):



110 Chapter 6. Lower bounds on the splittingM0 and m0 are values of fruitless trees with two markings7, one analyti whih an beapplied on any node and one non analyti on the �rst node; M1 and m1 (whih areexponentially small) are values of fruitless trees with two analyti markings, moreoverone of the markings has j = 1:(M1)i = =W1000 0i;1 ; (m1) = =W1000 01;0:As we are now onsidering resummated trees, their value is obtained through theoperator =W1' and thus by applying =�w+ + =�w� in eah node. Given a tree with totalrotation �T we shift the integration for the analyti trees to R + i�(�T �!)d, as seen inSetion 3.1. We are onsidering integrals of the type:A1(�) = (�12)N(A)E(d; �) Xf�vgm� [ Ys=1;:::;n v�v0(i�v s)msv ℄(i�y j)I dRv02i�Rv0 1Z�1 d�v0e��(�v0 )Rv0xli(�v0+id)dn(v0)f�v0 (q(�v0 + id))ei!v�v0Yv>v0 I dRv2i�Rv ( �wZ�1 d�v + �wZ1 d�v)x0j(�y)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0 dn(v)f�v(q(�v + id))ei!v�v ;with two markings i; xli in the node v0 and j; x0j in the node y. Clearly in the nonanalyti integrals (l = 1) we set d = 0.To re-obtain the nested integrals Qv�v0 =�w we remember that=t+ + =t� = =t + 12�(t)=: (6.21)Moreover, as seen in 2.5 the value of a subtree stemming form a node v is(=�w+ + =�w� )w(�v + id; �w + id)W1'(A�v; �v + id);if we �x the initial data at the homolini point ' = 0 we an group the value as sumof three ontributions=�w+idw(�w + id; �v + id)W1'=0(A�v; �v + id)+12x1j(�w + id)=x0j(�v + id)W1'=0(A�v; �v + id)+7Notie that, for systems with n degrees of freedom, we still should onsider values of fruitlesstrees with two markings, one of whih analyti.



6.2. Examples of Melnikov dominane 11112�(�w)x0j(�w + id)=�(�v)x1j(�v + id)O1W1'=0(A�v; �v + id);so that the seond and third summand are di�erent from zero respetively ifW1'=0(A�v; t)is even or odd. Moreover the seond and third summand at like fruits, namely theontribution of A�v to the value of A is a �xed funtion (resp. x1j and �(t)x0j) times at-independent fator: (E(�T (A�v); d))�1=x0j(�)O1 �	1'=0(A�v; �)or (E(�T (A�v); d))�1=�(�)x1j (�)O1 �	1'=0(A�v; �):The fator (E(�T (A�v); d))�1 is there as we have shifted bak the integration on thereal axis (remember that �(t)x1j(t) is analyti ).We will represent the hoie of one of the summands by applying the type labelshv = b; 0; 1.Lemma 6.18. Given a fruitless tree A 2 Ai;j let v0 and v be its marked nodes; theonly ontributions to the Ml and ml , l = 0; 1 are from trees suh thatw 2 P(v0; v)! hw = b; 0 w =2 P(v0; v)! hw = b; 1:Proof. Given a node w =2 P(v0; v) suppose that hw = 0 and that we don't give the hlabel to the other nodes.The ontribution of A�w is =x0jW1'=0(A�w) and A�w is fruitless and with one marking�jw in the �rst node w. This is the integral of an odd funtion and so it is zero. In thesame way if w 2 P(v0; v) then A�w) has two markings and so W1'=0(A�w) is even and=�(�)x1jW1'=0(A�v) = 0.We have obtained a tree with \leafs" (i.e. markings x0j), it should be notied thata label hv = 1 ats just like a leaf as it ontributes x0j(�w)C(A�v), whereas the labelhv = 1 is a proper marking on Anv. Now starting from the end-nodes we ut awaythe subtrees with labels hv = 0; 1; the value of a tree A is then a produt of values ofamputated trees with leafs and with two markings (i.e. any number of markings x0j(leafs) and at most two markings x1j). If we are onsidering M1 and m1 there is onlyone marking x1j .Remember that, in M1 and m1, we have shifted the integration before dividing Qjusing 6.21. In the previous Subsetion we imposed that the value W' of a tree withleafs A will have no ontributions from the onstant part of V(A�v) for all v 2 A.Lemma 6.19. (ii) Given a tree A with at most two non-analyti marking x1j in the�rst node v0 and in a node v, the value of the tree is given by trees suh that for eahv 2 A v =2 P(v0; v) then V(A�v) has no onstant part.Proof. For any w =2 P(v0; v), the ontribution of A�w to the value of A is V(A�w; t+id),where V(A�w; t) has no onstant omponent. On the other hand if v is marked x1j andw 2 P(v0; v) then A�w is arries a marking whih is not a leaf.



112 Chapter 6. Lower bounds on the splittingRemark 6.20. If we work diretly on the exponentially small piees of the splittingmatrix D we an assume that no node arries onstant omponents. Suh omponentsmust anel out after summing on all the possible ontributions.Proposition 6.21. (i) The ontributions to M0 and m0 of order k are bounded byk!Ck"�3k=2.(ii)The ontributions to M1 and m1 of order k � "� 12 and total rotation � are boundedfrom above by: E(D; �)Ckmax(p"�(p+2)k+1; k!"�3k=2):Proof. (i) We want to evaluate an integral of the type:Xf�vgm� [ Ys=1;:::;n v�v0(i�v s)msv ℄(i�y j)=0xli(�v0)dn(v0)f�v0 (q(�v0))ei!v�v0Yv>v0 =�wx0j(�y)e��(�v)Rv(�v)wjv(�w; �v)Yv�v0 dn(v)f�v(q(�v))ei!v�v ;�rst we apply Lemma 6.19 to evaluate the ontributions of trees A�w suh that w =2P(v0; v) and w follows a node v0 2 P(v0; v). As we are onsidering trees of orderk � "� 12 the small denominators are ontrolled by Lemma 6.17 so we have a fatorbounded by "�k ("� 12k for partially isohronous systems).We repeat the proedure of Proposition 6.16 and split the integration as in expression6.188 . As we are not shifting the integration near a omplex singularity of f(q(t)) wean bound all the jdn(v)f j by an " independent onstant.Having reahed the nodes v 2 P(v0; v) we an have ontributions from trees with zerototal momentum. As jP(v0; v)j � k we still have to perform at most k integrations, kbeing reahed only if v is an end-node.This kind of bounds were disussed in Chapter 3, but the existene of ounter termswill give us better bounds than the expeted (k!)2"k.let us �rst disuss x1j = t.The integrand at the �rst node of the path an have no onstant omponent as it is ttimes a funtion with no onstant omponent. So we an use double integrals:=tA(�)=�B(� 0)e�� 0where the funtions A;B are de�ned in (6.19). We remind that=te��=�� 0e�� 0 = te(�+�)t�(�+ �) � ( 1�(�+ �)2 + 1�2(� + �))e(�+�)t:Let us onsider three adjaent nodes v1 < v2 < v3. The integrand in v3 is te�t withnon zero � 2 C . So we an apply the double integral above and obtain three termsontributing to the integrand in v2. The linear term in t annot produe onstant8notie that, as we annot have subtrees A�v suh that �PV(A�v) 6= 0, we do not have the fator(k!)2 of Proposition 3.6



6.2. Examples of Melnikov dominane 113terms9 The remaining, purely exponential, terms an instead produe onstant fators.The integration of suh onstant fators produes a fator t2 times some term with noonstant fator as integrand of v1. So reursively we an have a small denominator(p")�l after passing l nodes with zero total momentum and so with no divisor. Notiethatthe presene of the ounter-terms implies that it is not possible to have two adjaentnodes both having zero total momentum.One an proeed in the same way forx10 = tosh gt + sinh gt;namely we have the integrals (applied to W(A�v; t)):1osh gt=t sinh2 g� ; =t(t� �) sinh g� ; sinh gt=t sinh g�osh g� ; =t (t� �) sinh g�osh gt osh g� ;1osh gt=t � sinh g�osh g� ; sinh gt=t �osh2 g� ; =t �(t� �)osh g� ; =t �(t� �)osh gt osh g� :Only the �rst �ve terms have onstant terms as integrands, oming from purely osil-lating fators of all the nodes A�v. The result of suh integrations however is either:t2osh gt ; tosh gt t sinh gt ; t2and all (but the third) annot have again onstant terms if applied to a node J = 1; 2.Moreover t sinh gt an only produe a t3 whih we have already disussed. So we anhave zero total momentum ontributions from a hain of single nodes but in eah stepwe an rise the t exponent only by one.The only exeption is a possibleth sinh gt! th+1 sinh gt! th+2but this an only happen one in the whole path and then lead to a known purelypolynomial term. In all the parts with no onstant omponents (and arrying (t� �))we an pass to double integrals so the t degree does not grow.Finally this implies that we produe at most a fator (k)!"�k=2 ( see the proof10 ofProposition 6.16). Finally we onsider the j�mjvj f j, and the proper integral parts whihare " independent and so an be ignored.(ii) We want to evaluate an integral of the type:E(�; d) Xf�vgm� [ Ys=1;:::;n v�v0(i�v s)msv ℄(i�y j)=0xli(�v0 + id)dn(v0)f�v0 (q(�v0 + id))ei!v�v09It is simply t times the result of the integration of e�t, so the eventual onstant terms in v2 areaneled by the ounter-terms.10notie that we have shown that the sum of the non zero t exponents hv is bounded by k=2 as thet exponent annot grow (exept one in the whole path) on a single node having the fator (t � �).so the (m!)2 beomes k!.



114 Chapter 6. Lower bounds on the splittingYv>v0 =�wx0j(�y + id)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0 dn(v)f�v(q(�v + id))ei!v�v ;we have small denominators ontributing at most "�3k=2 and the fator k! as in point(i). Finally we bound j�nv(0)0 f(z)jjRezj>2a;jImzj�2� � nv!Cwhere C = jf(z)jjRezj>2a;jImzj�2� is an " independent onstant.In evaluating the proper integrals, we notie that we do not get " lose to g�=2 whihis the singularity of os(q(t)) and of the Wronskian. So we an bound these funtionswith " independent onstants in C(D �p"; 2a). We obtain:E(D; �)Ck XA2Akj N2kS(A) Yv2A;Æv=1 2jajZ0 dtjdnvf(q(t+ id))jto get better bounds on the integral we have to speify the funtion f(q) so that wean bound the derivatives in q with some funtion whose primitive we an estimatemore eÆiently.In general we an use the same bounds as in Setion 3.1, bounding the integral withthe maximum of the integrand, we obtain:Yv:Æv=1nv!"Pv:Æv=1(p+nv) = Yv:Æv=1nv!"(p+2)k=2; (6.22)as Pv:Æv=1 nv = 2(k +m)� 1� 2m if m is the number of nodes with Æ = 0.Remember that (see Appendix A.2):N(k; j) = XA2Akj (A)Yv2Anv! � (4n)k:
Let us perform the omputations forf(q) = 1os q + 3 ;we an bound the absolute value of the order n derivative of this funtion by:n!Cnj(os q + 3)n+1j ;then in the de�nite integrals we ignore the possible onstant terms (leading to polyno-mial ontributions), the funtions oming from the Wronskian whih are bounded by" independent onstants and obtain:0Z�2a dt=tj�n0 f(q(� + i�=4� ip"))j � n!Cn 0Z�2a dt=t� q(1 + 2p") osh( 2g�)qsinh2(2g�) + 4" osh2(2�)�n+1:



6.2. Examples of Melnikov dominane 115We bound the numerator with an " independent onstant and multiply and divide byosh(2�) whih does not vanish for t 2 [0; 2a℄. We obtain the integral:0Z� sinh(2a) dx xZ�1 dy( 1py2 + 4")n+1 = "�(n�1)=2 0Z�1 dx xZ�1 dy( 1py2 + 1)n+1;if the integrals onverge i.e. for n > 1. For n = 0; 1 we ompute the primitive =t whihis respetively :arsinh (x=p") � x=p" ; for "� 1 ; and p"�1 artan(x=p");both funtions are not divergent in x = 0 and so we an bound the de�nite integral inx by C=p". Now, as in 6.22, Pmv:Æv=1 n(v) � 1 � k. So the worst bounds ome fromthe small denominator terms.Let us now onsider the example 2) whih is a trigonometri polynomial. In thisase we have to onsider the divergene of the Wronskian and of the nodes with Æ = 0in t = ig�=2. However we have an important simpli�ation in the evaluation of theproper integrals R 10 (we hose a = 1). Let us set g0 = os(q0(t)) and g1 = sin(q0(t)) thederivatives �nv(0)f Æ are either g0 or g1 so we remove the label Æ and onsider a newlabel d = 0; 1. The de�nite integrals are then:Yv 1Z0 dt(=t jgdv(� + id)jj osh(g� + igd)j + j osh(gt+ igd)j=t jgdv(� + id)jj osh(g� + igd)j+ (6.23)j sinh(gt+ igd)jj osh2(gt+ igd)j=tjgdv(� + id)j sinh(g� + igd)):Setting d = i�=2�p", it is quite easy to �nd bounds on this integrals; for instane:1Z0 =t j sin(q0(� + id))jj osh(g� + igd)j = p2 1Z0 =t pos(2p") + osh(2t)(� os(2p") + osh(2t))3=2 �C 1Z0 =t 1(� os(2p") + osh(2t))3=2 = Cs(p")2 1Z0 dt sinh(t)q1 + 2 sinh2(t)� os(2p") � C"�1We an bound all the summands in expression 6.23 with C"�1. As there are at most2k � 1 nodes the following proposition holds.Proposition 6.22. We an bound the terms of order k and total harmoni � in M1and m1 of example 1) and 2) respetively by:E(D; �)Ckk!"�3=2k ; E(D; �)Ck"�2k+1:



116 Chapter 6. Lower bounds on the splittingThis implies Melnikov dominane in the examples 1),2)for respetively:� � "2 ; � � "3:Proof. The proposed bounds are obvious form what disussed above.This proves that the formal power series involved in equation (6.16) are asymptotifor � � "2. To prove Melnikov dominane one an work diretly on the splitting matrix(see Remark 6.20) so this removes a fator (k � 1)j"�k=2 in the bounds of example 1).Now we proeed as in Proposition 6.3, summing on the slow modes and on the termsof order higher than one (resp for � � "2 and � � "3. In example 1) we have a simplepole and in 2) a double one:�"� 12 > p"�2"�2 ; �"�1 > "�2"�4:
6.3 D'Alembert-like problemsIn the previous setion we have re�ned the bounds on � that imply Melnikov dominane;we have found � < "2 for example (1) and � < "3 for example (2). Both values of �imply the onvergene of the KAM onstrution as disussed in Appendix A.4. Inthis subsetion we obtain still better bounds for Hamiltonians having a big uni-modal(quasi-monohromati) perturbation, we work on the following lass of examples:12("J2 + p2) + I !1p" + os q � 1 + �A(�+  )B(q) + �f(�;  ; q): (6.24)The funtions A(x), B(x) are trigonometri polynomials of degree N ; the funtion fis a trigonometri polynomial in  ; � and rational in eiq with at least one pole for�nite values of Imq. Finally � is a free parameter. Hamiltonians of the form 6.24are interesting as they provide a \model" for the D'Alambert problem (see [CG℄ for adisussion of the D'Alambert problem). An Hamiltonian of the form6.24 (but where fis a trigonometri polynomial) is proposed in [GGM3℄.The ited artile ontains a proof of the existene of stable/unstable manifolds pro-vided that �"� 12 � 1; moreover the gaps between persistent unstable tori are proved tobe smaller than e�C=p" for any order one C. The proof relies on the monohromatiityof A(� +  ) whih permits us to perform a Poinar�e Birho� transformation on theHamiltonian whih redues the � dependent part of 6.24 to size �p". We report thedetails in Appendix A.5.To prove lower bounds on the splitting determinant for system6.24 we must prove \Melnikov" dominane, whih means omputing the Melnikov inte-gral and �nding appropriate upper bounds on the terms of order h in � and k in � withh + k > 1. The results of the previous setion enable us to �nd suh bounds providedthat f is not a trigonometri polynomial in q.



6.3. D'Alembert-like problems 1176.3.1 Big uni-modal perturbationsFollowing the strategy proposed in the previous setion we onsider the Hamiltonian:12("J2 + p2) + I !1p" + (G(�; �; g))(os q � 1) + �A(�+  )B(q) + �f(�;  ; q); (6.25)we will �rst �x the funtion G(�; al; g) by Proposition 6.12 and then �x g = g(�; �) sothat: g(�; �) + �G(�; �; g(�; �)) = 1:Naturally the perturbation series of the homolini trajetory: �(�; �; '; t), q(�; �; '; t)will now be expanded both in � and �:�(�; �; '; t) = 1Xh;k=0�h(�)k�h;k('; t) : : :and this holds for G(�; �; g) as wellG(�; �; g) = g + Xh+k�1 gh;k:The tree expansion of the homolini trajetory arries the following labels: the usualjv = 0 or 2 �v = 0; 1 then Æv = 0; 1; 2 and kv; hv 2 N0 . The grammar is:Æv = kv = hv = 0! fjs(v)j � 2 ; jv = jv0 = 0 8v0 2 s(v)gÆv = 1! fkv = 1 ; hv = 0g ; Æv = 2! fkv = 0 ; hv = 1g:Now we briey repeat the proedure desribed in Subsetion 6.2.1.The order of a tree will now be given by two numbers (resp. the order in � and � ofthe orresponding values):o1(A) =Xv2A hv ; o2(A) =Xv2A kv:We de�ne the vetor spae of \aeptable" trees of pre�xed order Vh;k by de�ningits generators the set Ah;k of equivalene lasses of \aeptable" trees of order (h; k).Now we proeed exatly as in Subsetion 6.2.1, namely we add two labels: �v = 0; 1and �v and we have the so-alled trees with leafs. Then we onsider marked trees(where leafs are partiular markings) and de�ne the valueW of a tree, with a markingh(t)�l in v0 and some leafs L(v0), as:W(A)[t℄ = �hv(�)kvgÆvhv;kvh(�v0)r~mvf Æv('+ !t; q0(t)) Yv2s(v0)V(A�v);V(A) = =t(�v0 )wjv0 (t(�v0); �v0)W(A) ; for all A 2 A�. (6.26)



118 Chapter 6. Lower bounds on the splittingAs usual mv(j) is the number of nodes v0 2 s(v);M(v) having jv0 = j, g21;0 = g10;1 = 1,g0h;k = gh;k and mv(j) is the number of nodes in the list v; s(v) having label jv = j.Moreover f 1( ; �; q) = f( ; �; q), f (2)( ; �; q) = A(� +  )B(q) and f 0(q) = os q.Finally we de�ne the vetors: �k;h = XA2Ah;k (A)A;suh that �h;k = V(�v02 �k;h) ; qh;k = V(�v00 �k;h):As in Proposition 6.12 we �x the values of the parameters gh;k:gh;k = �P egjtjW(�00h;k � �h;k)where �h;k is the tree with only one node v Æv = 0, hv = h, kv = k.This ensures that V(A) is a limited funtion of t with no onstant term:V(A) = Xj�j�o(A)N 1Xl=0 vl ;�(A) exp �� gljtj+ i('+ !1p"�1t+p"!2�2t)�;and v0;~0(A) = 0 for all A.We have shown that we an extend Subsetion 6.2.1 to systems whose perturbationseries involves two parameters. Therefore we an improve the bounds of Subsetion6.2.2 using the partiular struture of the � perturbation. Notie that a na��f use ofSubsetion 6.2.2 produes the bounds:jGk;hi j; jgk;hi j � (�)k�h( Cp")k+h jMh;k0 j; jmh;k0 j � (�)k�h(k + h� 1)!(C" )3=2(k+h)jMh;k1 j; jmh;k1 j � E(D; �)(�)k�hCk+hmax(p"�(p+2)k+1; (k + h� 1)!"�3=2(k+h));where D depends only of the funtion f and is de�ned in 1.28. Clearly this boundsdo not imply Melnikov dominane for order one values of �.Lemma 6.23. All the divergent terms in h (i.e. h!(p")�3h) ome from the estimates6.20 of the small divisors namely in the estimates of V(A; 2�(t)a) where a is de�nedin 1.28.Proof. The only divergent terms from the de�nite integrals are in M1 and m1. Wehave imposed that B(x) be trigonometri polynomial and f(�;  ; q) non trigonometriin q with D < �=2. So in estimating the de�nite integrals in M1 and m1 we neverreah the poles (��=2) of B(q(t)) and we an estimatemaxt2C(D;a) jB(q(t))j � C = O"(1):



6.3. D'Alembert-like problems 119The estimate 6.20 is learly not optimal, namely given a tree A with total harmoni�T = (�1; �2) at the homolini point ' = 0 , thenW(A) = 1Xl=0 wl ;�(A) exp �� gljtj+ i( !1p"�1t +p"!2�2t)�;and w0;~0(A) = 0. If we onsider the term of order l in e�gjtj the small denominator is:�(l; �T ) = j � �(t)gl + i(!1�1p" +p"!2�2)j � 8><>: 1=p" if �1 6= 01 if �1 = 0 ; l 6= 0p" if �1 = l = 0:So, in eah node v the denominator is big (O"("� 12 )) provided that �T (A�v) = �1(v); �2(v)has non zero fast omponent, �1(v) 6= 0. Moreover eah node (having non zero totalmomentum) having a non zero fast omponent produes a denominator of order " whilesmall denominators are at most p" as seen in the proof of Lemma 6.17.Proposition 6.24. For all k � "� 12 ; h � "�1 following bounds hold:jGk;hi j; jgk;hi j � (�)k�hCh( Cp")k jMh;k0 j; jmh;k0 j � (�)k�hCh(C" )kjMh;k1 j; jmh;k1 j � E(D; �)(�)k�hCk+hp"�(p+2)k+1: (6.27)Proof. We proeed in two steps:1) Consider a tree A having no nodes with possible onstant omponents. Startingfrom the end-nodes, let us \ut away" all the trees A�w suh that �1(w) = 0. We areleft with a set of amputated trees A suh that �1(vA) = 0 and �1(v) 6= 0 for all theother nodes in A. The integration in eah node produes a fator ��2(l; �T (v)) and �is big for all the nodes v > v0.We an suppose that jv0 = 0 as the jv = 1 have an extrasmall fator " and so no small denominators. The node v0 produes (in any ase) atmost a fator "� 12 . Given an amputated tree with k nodes Æ = 1, h nodes Æ = 2 andm( � 2(k + h)� 1) nodes with Æ = 0 the small denominator term is at most:"(h+k+m�1)"� 12 = "k+h+m�3=2:In A( + �) the only frequenies aessible at order one are (n; n) with jnj � N soan amputated tree with only one node v and Æ = 2, then �1(v) 6= 0. This impliesthat if h 6= 0 then k + h + m � 2. So the trees whose nodes do not arry onstantterms and with h 6= 0 nodes Æ = 2 an arry at most a fator " 12 there are no smalldenominators. 2) In Proposition 6.21 we notied that eah tree A an have a path P(of length � k+ h+m) of nodes whih an have zero total momentum �T = 0; lT = 0.As suh terms give rise at most to a fator "�k (for k � "� 12 ), we an ignore the nodeswith j = 1 as eah arries a small fator ".



120 Chapter 6. Lower bounds on the splittingGiven a tree A (of order � "� 12 )with thenodes arrying momentum labels, we evi-dene the nodes in P and in partiular wedash the branhes going in the nodes withzero total momentum and all the subtreesobtained �Ai with i = 1; : : : ; R � 1. We signon the �rst and last node of the evidenednodes in eah subtree the initial and �nal tdegree; the initial t degree P1(i) is smalleror equal to the number of uts and is equalto the degree of the �nal node above it plusone. The �nal degree is P2(i) � P1(i).
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Figure 6.1:If the path onneting the �rst and the last node of a subtree has length l > 1 andP1 � P2 = r then the subtree produes a small denominator:(p")�(l�1+r) l!(l � r)!supposing that all the internal nodes have �1 = 0 (and �2 6= 0 by onstrution). Then,if an internal node has Æ = 2, one of its followers (either in P or not in P), must befast and so produe a term ". As we are interested only aneling divergent terms fornodes with Æ = 2 we an suppose that all the l nodes have Æ = 2. Let us all Ai thesubtree we have generated , we have a small denominator fator bounded by:XAi ("l(i)(p")�(l(i)�1+2r(i))) � "k=2�R � O"(1)as R � k=2. if we onsider x1j = t. If we onsider a marking sinh gt there an beH subtrees of length 1 and zero total momentum. Eah of these produes a fator "(if Æv = 2 and �T = 0 then there must be a fast node attahed to v); so the smalldenominator term is bounded by:"Hp"k�H�2R � O"(1);as now R � H + (k �H)=2.Theorem 6.25. The Hamiltonian (6.24) is uniformly Arnold unstable in the domain:W (E) := fH(I; J;  ; �) = E ; O"(1) = b � jIj; jJ j � a = O"(1)gfor E 2 [E1; E2℄ with E1; E2 = O"(1), provided that:1) �p" � "p+2 and � � 1 but still O"(1). 2) f( ; �; q) is suÆiently non degenerate;for instane we will suppose that fe1(q); fe2(q) are not identially zero.



6.3. D'Alembert-like problems 121Proof. The bounds (6.27) imply that the ontribution, to the entries of the splittingmatrix, of a tree with fruits (of order k; h < C"� 12 ) arrying an analyti integral offrequeny � is bounded from above by:E(D; �)(�)k�hCk+hp"�(p+2)k+1;Moreover we know that det�(�; � = 0) = 0 as the � perturbation is uni-modal. Sowe an expliitly ompute the �rst relevant order of det� whih is either of �rst orderin � and � or seond order in �. Then we sum up the remainders in � and � usingProposition 6.3





Chapter 7Systems with more generalunperturbed separatriesIn Setion 6.2 we have given suÆient onditions for Melnikov dominane for systemswith one fast time sale whose Hamiltonian is of the type 4.3. Now we would like togeneralize the dependene of the q variable of the (�)-unperturbed pendulum. i.e. asystem whose Hamiltonian is:(I; A(")I)2 + p22 � F (q) + �f(�; q) (7.1)after the saling hange of variables of Remark1.10.Naturally, in equation 7.1, we onsider only periodi funtions F (q) whih are analytiin a strip jIm q � d and that do not modify the qualitative behavior of the unperturbedseparatrix. We will impose the following onditions.Condition 7.1. F (q) is even and analyti for q 2 Td; moreover F (q) veri�es:1. q = _q = 0 is an hyperboli �xed point and the separatrix_q22 � F (q) = 0ontains only this �xed point. This holds true if:F (0) = F (2�) = 0; Fq(0) = 0; Fqq(0) = � > 0; F (q) > 0 for q 6= 0; 2�:2. Moreover, on the separatrix, we an hose a sign for _q and the equation of motionon the separatrix is: _q = �p2pF (q) = G(q)where G(q) � 0 and G(q) = 0 if and only if q = 0; 2�. We will onsider initialdata q(0) = �.



124 Chapter 7. Systems with more general unperturbed separatriesNotie that the evenness of F (q) implies that _q(t) is an even funtion of t. Thisqualitative requests on F ensure the existene of a loal Hyperboli normal form for the\ pendulum" near q; p = 0 and the onvergene of the loal KAM theorem 1.2. In thepreeding Chapter we have onsidered \ perturbative" examples whih did not modifyMelnikov dominane. In this Chapter we proeed in a ompletely non perturbativeway; namely we give onditions on G(q) suÆient to guarantee that the Melnikovintegral dominates in equation 7.1 provided that f satis�es suitable non degenerayonditions.We look for funtions F (q) suh that the time evolution on the separatrix q(t) on apre�xed branh satis�esCondition 7.2. eiq(t) = R(e�t) where R(y) is a rational funtion : (7.2)Automatially the other branh of the separatrix satis�es:eiq(t) = R(et):We will not try to lassify the funtions F (q) satisfying Condition 7.2 but only givelasses of examples. Then, in Setions 7.2 and 7.3, we will show that if G(q) satis-�es the ondition 7.2 then one an prove for Hamiltonian 7.1 the same results as forHamiltonian 4.3 (with the same tehniques of Chapters 4 and 6).7.1 Aeptable funtions F (q)Let us all S1 the unitary irle in C eiq(t) = y 2 S1, and let us all P the real axisplus the point at in�nity. Both S1 and P are irles on the Riemann sphere.Lemma 7.3. The only rational funtions w : P ! S1 suh that R(1) = 1 are of thetype R(z) = P (z)�P (z) ; where P (z) is a polynomial with oeÆents in C ;�P is the polynomial whose oeÆients are the omplex onjugate of the oeÆients ofP . The ondition R(1) = 1 implies that the leading oeÆient of P is real and so anbe set to one both in P and in �P .Proof. Our request is that for all z 2 P , jR(z)j = 1 so we write that R(z) = P (z)Q(z)with P and Q of the same degree, with no ommon zeros and with the same leadingoeÆient. Then, without loss of generality, we an suppose both P and Q to bemoni1.Then if �P ( �Q) is the polynomial whose oeÆients are the omplex onjugateof the oeÆients of P (Q) we have thatP (z)Q(z) = �Q(z)�P (z)1we remind that a moni polynomial is a polynomial whose leading oeÆient is one.



7.1. Aeptable funtions F (q) 125for all z 2 P and therefore for all z 2 C . All the polynomials involved are moni and thedeomposition of rational funtions in moni polynomials is unique soQ(z) = �P (z).In partiular this implies that there an be no real zeros of P .Let us onsider only polynomials P (z) with zeros ai having jaij = 1, with Im ai 6= 0and i = 1; � � �h. We set z = e�t andeiq(t) = hYi=1 (e�t � ai)(e�t � �ai)then modulo 2�q(t) = �i hXi=1 log((e�t � ai)(e�t � �ai)) = 2 hXi=1 artan[ 1Imai (e�t � Re ai): (7.3)We derive the seond term of relation 7.3 and obtain:_q(t) = �2e�t hXi=1 Im ai(e�t � Re ai)2 + ( Im ai)2 : (7.4)We want to �nd onditions on R(z) so that alling D(z) the funtion suh thatD(e�t) = 12 _q2(t), D(z) an be expressed as an analyti funtion of y = R(z) in somestrip S1d (as usual S1d is an annular domain of width d around S1).Before stating a general proposition let us study a simpler (but still interesting)lass of funtions suh that D(z(y)) an be expliitly omputed.Condition 7.4. Consider the set of rational funtions R(z) suh that:1. P (z) is moni and has degree two in z with zeros a1 and a2 suh that jaij = 1..2. R(z) = R(�1z ) and Im ai > 0.This implies that the two zeros of P (z) are a and ��a for some a with jaj = 1. Moreoverit an be easily veri�ed that equation 7.3 parameterizes [0; 2�) injetively and that_q(t) < 0 for all real t.Remark 7.5. (i) Systems satisfying Condition7.4 have q(0) = � and _q(t) an evenfuntion of t.(ii) For systems satisfying Condition7.4 eiq(t) has poles for purely imaginary values oft.Proposition 7.6. For all funtions R(z), satisfying Conditions7.4, there exists aunique funtion H(y) whih is a rational funtion of y with poles not in S1 and suhthat H(R(z)) = D(z).



126 Chapter 7. Systems with more general unperturbed separatriesProof. We will prove it by diretly omputing the funtion H(y). The relation:y = R(z) = (z � a)(z + �a)(z � �a)(z + a) ;implies that (1� y)(z2 � 1)� ibz(1 + y) = 0 where ib = a� �a: (7.5)We ompute the funtion _q(t) = i�zdz(logR(z))�z=e�t; by di�erentiating equation 7.5with y = R(z). y0(1� z2 � ibz) = ib(1 + y)� 2z(1� y); (7.6)we obtain that: iz y0y = izy ib(1 + y)� 2z(1� y)(1� z2 � ibz) :We use relation 7.5 to simplify the denominator so we obtain:zy ib(1 + y)� 2z(1� y)�bz(1+y1�y + 1) = 1� yy ib(1 + y)� 2z(1� y)�2b :The funtion we want to ompute is 12 _q2 so we square the last relation:(y � 12by )2(�b2(1 + y)2 + 4(1� y)[(1� y)z2 � bz(1 + y)℄and we substitute again relation 7.5. As we said we obtain that H(y) is a rationalfuntion of y: 12�y � 12by �2(�b2(1 + y)2 + 4(1� y)2):
H(eiq) is a trigonometri polynomial; Set-ting b = 2Im a = 2� an easy omputationleads toH(eiq) = 12( 1�2 (os q � 1)2 + sin2 q):In Figure 7.1 We show the graph of the sep-aratrix 12p2 = H(eiq) 1 2 3 4 5 6
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Figure 7.1:in the phase plane p; q for various values of 0 � � � 1. The limit value � = 1 is thependulum, while the limit � = 0 is not in our lass of funtions as F (�) = 0. Notiethat for all values of � the system has a ritial point in q = �.



7.1. Aeptable funtions F (q) 127We have imposed that the zeros of P (z) a and ��a have positive imaginary part; thisautomatially fores _q(t) � 0.Naturally this hypothesis is only for notational onvention, to ensure that we areparameterizing the lower branh of the separatrix. If a and ��a have negative imaginarypart we only need to set z = et in relation 7.3 to be on the lower branh of theseparatrix.Example 7.7. We onlude this simple example of funtions F (q) satisfying the ondi-tions 7.2 by representing the phase urves of the Hamiltonian:12p2 � (os q � 1)2 � 12 sin2 qwhere F (q) = H(eiq) with �2 = 12 .
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Figure 7.2: The separatrix is the line in red; notie that there are two stable �xedpoints and one unstable one (di�erent from zero)We will now onsider the more diÆult question of funtions R(z) suh that P (z) is ofdegree higher that two.Condition 7.8. We will restrit our attention to those funtions R(z) suh that:1. R(z) = R(�1z ) so the zeros of P (z) ome in ouples ai, ��ai.2. Let fa; � �aigi=1;h be the list of zeros of P (z) then:hXi=1 �(i) = 1 where �(i) = �( Im ai): (7.7)3. The di�erential of R(z) is di�erent from zero on P .



128 Chapter 7. Systems with more general unperturbed separatriesLemma 7.9. The Conditions 7.8 imply that the image of P through R(z) is S1 overedtwie and preisely the preimage of eah y 2 S1 is the ouple z;�1z .Proof. Let us fatorize the appliation R(z) as2R(z) = Yj=1;2hRj = Yj=1;2h z � bjz � �bjThe image of P through eah of the Rj is S1 overed one. The winding number of aprodut is the algebrai sum of the winding numbers; it is easily seen that the windingnumber of eah of the Rj is�( Im bi) = �( Im bi+h) = �( Im ai):Finally as the di�erential of R in non zero on P then S1 is overed by the image ofP . Standard theorems on ompat Riemann surfaes extend Lemma 7.9 to an annulusS1d .Proposition 7.10. There exists an annulus S1d suh that if we all V the onnetedomponent of R�1(S1d) whih ontains P , the following properties hold:(i) R : V ! S1d is a double overing of S1d.(ii) V is invariant trough the appliation of z ! �1z ; moreover if p; q 2 VR(p) = R(q) , q = �1p:To prove this statement we an use for instane in [F℄, Theorem 4.22:it Suppose X and Y are loally ompat spaes and p : X ! Y is a proper3 loalhomeomorphism. Then p is a overing map.The mapR : V ! S1d is learly a proper loal homeomorphism if we hoose d suÆientlysmall.Corollary 7.11. Given a funtion D(z) holomorphi in a strip V 0 around P and suhthat: D(z) = D(�1z )then there exists a funtion H(y) holomorphi in a strip S1d0 suh that in V 0 [ VH(R(z)) = D(z).2learly bi = ai, bi+h = ��ai for i = 1; : : : ; h.3we remind that a map is proper if the preimage of eah ompat is ompat



7.1. Aeptable funtions F (q) 129Proof. We �x d0 so that the onneted omponent of R�1(S1d) whih ontains P isontained in V 0.For any y 2 S1d0 there exists an open set A 2 S1d0 suh there are two open sets B1, B2that represent it in V 0; moreover for all z 2 B1 �1=z is in B2 and vie-versa. Thisimplies that the funtion D(z) assumes the same values on the Bi and so an be liftedto A. Moreover the appliation B1 ! A is an isomorphism and so the lifted funtionis analyti.Finally we an state the main theorem of this Setion:Theorem 7.12. Given any funtion R(z) satisfying Conditions 7.8 there exists aunique Hamiltonian 12p2 � F (q)satisfying the Conditions 7.1 and 7.2, suh that R(e�t is the motion on the lower branhof the separatrix with initial data q(0) = �. The funtion _q(t) on the separatrix is even.Proof. Given R(z) we only have to prove that the funtionD(z) suh thatD(R(e�t)) =_q2=2 respets the presribed symmetry. We know by expression 7.4 thatD(z) = 2z2� hXi=1 ( Im ai(z � Re ai)2 + ( Im ai)2 + Im ai(z + Re ai)2 + ( Im ai)2 )�2;so we an diretly ompute D(�1=z) and hek the identity. In the same way we hekthat eah summand of _q(t)�2e�t hXi=1 Im ai(e�t � Re ai)2 + ( Im ai)2 ;is even in t as jaij = 1 for all i.Let us show some examples of funtions R(z) satisfying all the onditions 7.8.Lemma 7.13. The funtionR0(z) = �z � iz + i�4 (z � a)(z + �a)(z � �a)(z + a) ; P , S1;with jaj = 1 and �12 < Im a < 0, has non zero di�erential on P .Proof. As we have seen in the proof of Lemma 7.9 the winding number of R0(z) is two;moreover R0(z) = R0(�1=z).We ompute the logarithmi di�erential4 :dz log(R0(z)) = 8iz2 + 1 + (a� �a)( 1z2 � (a+ �a)z + 1 + 1z2 + (a+ �a)z + 1):4we should ompute it as well in a neighborhood of the point at in�nity; it should be obvioushowever that as R(z�1) = 1R(z) and the orientation is reversed then the logarithmi di�erential ina neighborhood of the point at in�nity is equal to the logarithmi di�erential in a neighborhood ofz = 0.



130 Chapter 7. Systems with more general unperturbed separatriesNow we set a = � + i� with � < 0 and �2 + �2 = 1 and impose that the logarithmiderivative is non zero, this leads to:8 �2 z2 + 2 ��1 + z2�2 + � �1 + z2�2 6= 0whih is equivalent to �1� 2 � + �2 + 2 �3 < 0:This holds provided that: �12 < � < 0:
7.2 Computation of the Wronskian matrixConsider an Hamiltonian of the type 7.1 with F (q) satisfying the ondition 5.11 andf(q;  ) a trigonometri polynomial in  and a rational funtion of eiq.We an repeat the proedure of the preeding Chapters to evaluate theMelnikov approximation of the splitting matrix and prove Melnikov dominanefor systems with one fast variable.We want to be able to repeat all the formal tree expansions and the bounds of setion3.1, to do this we have to ompute a solution of the equation:_M = ���� 0 Fq(q(t))1 0 ����M where q(t) solves _q =p2F (q) ; q(0) = �; (7.8)M(t) is a 2� 2 matrix and M(0) = Id.This is the fundamental solution of the linearized \pendulum" and has the role of thematrix W in subsetion 1.1.2. We have to hek that M(t) is in H0(b; d) for some b; d;if this is true one an use the operator = de�ned in subsetion 1.1.3 to extend theintegration. Then one an re-obtain the equations 1.30 for the perturbative expansionof the whiskers only with di�erent funtions xi0 whih nevertheless are x00 2 H0(b; d)x01 2 H(b; d) and with the same parity properties.There are lassial methods to �nd the solution of the linearized equation equation7.8. First we onsider the solution p(E; t); q(E; t) of the equations:� _p = Fq(q)_q = p 12p2 + F (q) = E;naturally p(E; t) = _q(E; t) and q(0; t) = q(t).By simple substitution we see that the ouples_p(0; t) ; _q(0; t) and �Ep(E; t)jE=0 ; �Eq(E; t)jE=0



7.2. Computation of the Wronskian matrix 131are solutions of 7.8. Let us �rst onsider _q(t) = G(y(z)); having �xed a dynamiseiq(t) = y = R(z) we know by equation 7.4 that_q(t) = �2e�t hXi=1 Im ai(e�t � Re ai)2 + ( Im ai)2 :Moreover by Proposition 7.6 _q(t) is even5 and has poles in z = ai; �ai; _q is bounded forjtj ! 1 and jIm(t)j � 2�. So _q is in H0(0; �d) with �d = mini aros(j Re(ai)j) We knowthat q(t) 6= 0 for all t 2 R so the vetorm1(t) = � _q(t)= _q(0)�q(t)= _q(0) � satisfyes the ondition m1(0) = � 10 � :To ompute �Eq(E; t) we derive the energy onservation relation and obtain:_q(0; t)�E _q(E; t)jE=0 � �q(0; t)�Eq(E; t)jE=0 = 1;by variation of onstants we obtain:qE(t) = �Eq(E; t)jE=0 = _q(0; t) tZ0 d�_q2(0; �) (7.9)whih is well de�nes as _q(t) 6= 0 for all real t; moreover it is an odd funtion soqE(0) = 0.Its derivative: _qE(t) = �q(0; t) tZ0 d�_q2(0; �) + 1_q(t)is di�erent from zero for t = 0; _qE(0) = 1_q(0) . We notie that 1_q(t) is a funtion inH0(b; d) for some b; d as it depends only on z = e�t. So qE(t) 2 H0(b;D) for someb; d as the integration an be written as R t0 = =t � =0�(t) whih is losed on H0(b; d).Naturally qE(t) will not, in general, be a funtion only of e�t and it will have non-polarsingularities. This means that, to re obtain bounds like those of setion3.1 ,one hasto prove that qE(t) respets a ondition like 3.26. Naturally as we have seen qE(t) isnot bounded (not even for the standard pendulum). We bound it exatly like we didin setion3.1 to bound analyti trees. The term =0 is a onstant so we ignore it. Theeven funtion Q = 1_q(t)2 has a double pole at z = 0 and at z ! 1; moreover it haspoles for �nite values of z, oming in onjugated ouples that we all bl;�bl =2 R. If_q has 2j poles (the ai; �ai) then l = 1; 2(j � 1). Naturally we have no guarantee thatjblj = 1 so in general the poles are not purely imaginary when written in the t variable.5and so naturally �q(t) is odd.6remember that the ondition 3.2 is satis�ed by all rational funtions of et times polynomial in t.



132 Chapter 7. Systems with more general unperturbed separatriesFor jtj > maxl j log jbljj = ~b we an write Q(t) as funtion of x = e�jtj(all it ~Q(x)) andexpand it in a Laurent series around x = 0.~Q(x) = 1Xk=�2Qkxkonverges in the annulus 0 < jxj < e�~b. When we apply the formal integration 1.18to the expansion we obtain a purely polynomial term tQ0. So for jRe tj > ~b and jImtj � 2� the funtion qE(t) is(=0[ ~Q(x)℄�Q0t) _q(t) + _q(t) � =t[ ~Q(x)�Q0℄;notie that the seond summand is funtion only of x and has a simple pole in x = 0.In the domain M(~b; ~d) :=,jRe tj � ~b and j Im tj < ~d = mini aros(j Re(bi)j) wesimply bound the integral with the maximum of the integrand and obtain that:maxt2D(~b; ~d) qE(t) � 2~b _q(0) maxt2D(~b; ~d) _q(t) maxt2D(~b; ~d) 1_q2(t) :We have found a matrix M with all the properties of W de�ned in subsetion1.1.2,namely it has the same parity and regularity properties, and the same qualitativeasymptoti behavior. So we simply substitutex00(t) = _q(t)= _q(0) x10(t) = �(t) _q(0)qE(t)in the de�nitions of the operators Qj and we an perform all the symboli tree expan-sions of Setion1.2. We have to prove again proposition 1.16, to ensure the possibilityof hanging the �rst node. Then we use the bounds on xij to re-derive the boundson trees of Setion 3.1. The anellations of Chapter 4 depend only on the parityonditions and on the symmetry of the operators Qj so they still hold true.Finally we have to ompute the Melnikov integral whih implies the same om-putations of subsetion6.1.1,provided that f is a trigonometri polynomial in  andrational in eiq.Example 7.14. Naturally it is pleasant to have an expliit expression for x10 and atuallyit is not diÆult to perform the integral 7.9. If we e onsider the funtions satisfyingCondition 7.4, we an ompute the xi0 expliitly (we have used Mathematia to do theomputations).x00 = _q(t)_q(0) = �2 (�1 + �) (1 + �) et (1 + e2 t)1 + (2� 4�2) e2 t + e4 t�(t)x10 =� e�t4(�2 � 1)��1 + e6 t + e4 t (1 + 8�4 + 4 t� 16�2 t)1 + (2� 4�2) e2 t + e4 t) �e2t(1 + 8�4 � 4 t+ 16�2 t)1 + (2� 4�2) e2 t + e4 t �; (7.10)
as usual � = Re a.



7.3. Homolini splitting for the generalized pendulum 1337.3 Homolini splitting for the generalized pendu-lumWe show on an example the proedure for proving lower and upper bounds for systemswith generalized pendulum. We onsider the Hamiltonian:12(I21 + I22 + p2) + (os q � 1)2 + 12 sin2 q + �(os( 1) + os( 2)) os(2q);this is a ompletely anisohronous system with three degrees of freedom. For � = 0 thehyperboli variables p; q are on a pendulum-like separatrix and preisely the dynamisis the one desribed in Example 7.7.q(t) = 2 artan(p2e�t + 1) + 2 artan(p2e�t � 1):For � 6= 0 we have the perturbative equations:_Iki = F ki ; _ ki = Iki_pki = [�12 sin(2q0(t)) + 2 sin(q0(t))℄qk + F k0 ; _qk = pk: (7.11)Where as usual we set  0 = q andF ki = [� if(Xh<k(�)h ~ h)℄k�1 + Æi0[�12 sin(2Xh<k(�)h h0 ) + 2 sin(Xh<k(�)h h0 )℄k:We have omputed the Wronskian matrix of suh dynamis in the previous subsetion,see Equation 7.10 �x00 �(t)x10_x00 _�(t)x10;�where x00 = et(1 + e2t)1 + e4t ; x10 = 2 (et + e3 t) t1 + e4 t + e�t + 3 et � 3 e3 t � e5 t2 (1 + e4 t)notie that this matrix has the same parity, analytiity and asymptoti propertiesas the Wronskian of the linearized pendulum, studied in Subsetion 1.1.2, so that theboundedness onditions on the solutions of 7.11 lead to the reursive equations:Ikj = =tF kj ;  kj = OjF kj ;in the operator O0 the funtions x00 and x10 ome from the Wronskian of the generalizedpendulum.Now we onsider the spaes V(A) and V( 0T ) and assoiate to trees the values V;Wand V1;W1 exatly as in Subsetion 2.1.1 and 2.1.2. The only di�erene is the expliitexpression of the funtions xi0, whih is irrelevant to the tree onstrution.



134 Chapter 7. Systems with more general unperturbed separatriesThe upper bounds we derived in Chapter 3 depend only on the degree of the polesof the funtions xi0 and of the q dependent part of the perturbing funtion, in our aseos(2q). The xi0 have simple poles in ei�=4+k�=2 andos(2q(t)) = �16 e2 t (�1 + e2 t)2(1 + e4 t)2has double poles in ei�=4+k�=2. As we are onsidering a system with three degrees offreedom we ould use the improved bounds of Setion 6.2, to do this, however, weshould reformulate Proposition 6.12, whih depends on the expliit expression of theWronskian (not only on parity and analytiity properties). This is straightforward butlengthly so we will use the (muh worst) bounds of Chapter 3.Proposition 7.15. The sum of terms of order higher than one and � "� 12 in thesplitting determinant are bounded from above by7:Cp"3( �jp"jp+7 )2[e� j!1�j4p" ℄;provided that j�j � jp"jp+7. p is the degree of the pole of f( (t); q(t)) nearest to thereal axis, so in this example p = 2.Proof. It is a onsequene of the upper bounds of Chapter 3 and of Propositions 6.3and 6.1.The Melnikov integral for the splitting matrix is:f11 = 1Z�1 16 e2 t (�1 + e2 t)2(1 + e4 t)2 os(t !1p" )dt =4�p"sh( � !12p") �2p" sinh( � !14p")� osh( � !14p")!1�whih, for " suÆiently small is dominated by e� !14p" .fi;j = 0 ; for i 6= j; and f2;2 = p"C("; !2) 6= 0;for some order one C("; !2).Finally the splitting determinant is bounded from below by:Ce� !14p" ; if �"3=2 < "9:7we onsider a three time sale system so �S = 0



Chapter 8Arnold di�usionIn this hapter we present a brief review of the proedure neessary to prove di�usionof the ation variables, one given lower bounds on the splitting determinant. Thereare essentially three steps:1) Prove the existene of heterolini intersetions namely that for � � "P and given!; !0 2 
 suh that j! � !0j � F (")there exists ��(!; !0; �) suh that1I�� (��(!; !0; �); !; �(!)) = I+� (��(!; !0; �); !0; �(!0)):Then the point z�(!; !0) = I�� (��(!; !0; �); !; �(!)); ��(!; !0; �); �lies in2 W�� (!; �(!)) \W+� (!0; �(!0)) \ fq = �g:2)Compare the maximum distane for ! and !0 F (") with the size of the gaps ofpreserved tori, given by the Normal form theorem disussed in Appendix A.4.3) Prove the existene of a trajetory whih \shadows" a hain of heterolini onne-tions and has order one drift in the ations. We will not give any proof of this thirdstep, but only ite some artiles that ontain the proofs of our laims.Let us repeat some de�nitions (taken from [C℄) already ited in the introdution.De�nition 8.1 (Heterolini hains). A heterolini hain is a set of N � 1 tra-jetories z1(t); : : : ; zN (t) together with N + 1 di�erent minimal sets3 T0; : : : ; TN suhthat for all 1 � i � Nlimt!�1 dist (zi(t); Ti�1) = 0 = limt!1 dist (zi(t); Ti):1See Setion 1.1 for the de�nition of �(!)2see Theorem 1.1.1 for the de�nitions of W�� (!; rho)3A losed subset of the phase spae is alled minimal (with respet to a Hamiltonian ow �th) ifit is non-empty, invariant for �th and ontains a dense orbit. In our ase the minimal sets will beunstable tori T (!i) with !i 2 
 .



136 Chapter 8. Arnold di�usionDe�nition 8.2 (Transition hains). A heterolini hain is alled a transition hainif for any r > 0 there exists a trajetory z(t) and a time T > 0 suh thatdist (z(0); T0) � r ; dist (z(T ); TN ) � r ; sup0�t�T dist (z(t); Z) < rwhere Z is the losure of the union over i of the fzi(t) : t 2 Rg. The sets T0 and TNare said to be onneted by as transition hain.De�nition 8.3 (Arnold instability). Given E 2 R onsider an Hamiltonian h(")(with Hamiltonian ow �th) suh that h(0) represents an integrable system.The system (�th; h�1(E)) is alled Arnold unstable if there exist two positive numbers "0and d0 suh that for all " 2 (�"0; "0) there exist (losed) invariant sets T ("), T 0(") �h�1(E) satisfying the following onditions:(i) T ("), T 0(") are ontinuous, at " = 0, in the Hausdor� metri and if �I denotes thenatural projetion over the ation variables then�IT (0) = fIg ; �IT 0(0) = fI 0g ; with jI 0 � Ij > d0 ;(ii) for eah 0 < j"j < "0 T (("), T 0(") are onneted by a transition hain.8.1 Heterolini hainsIn this setion we deal with the �rst two steps of the proof of Arnold instability, namelythe onstrution of heterolini hains.8.1.1 Heterolini intersetion for systems with one fast fre-quenyIn the following we will onsider systems with one fast frequeny and in the a-prioristable variables of Hamiltonian (1.10). We an �x � = "P and ensure Melnikov domi-nane, as disussed in the previous Setions. This means that we have lower and upperbounds on the splitting determinant (and on the eigenvalues of the splitting matrix)of the type: a"pe�"� 12 � det�0(!) � b"�pe�"� 12 :The oeÆients p; a; b;  depend on the perturbing funtion f .We onsider the funtion:F ('; !0; !) = ~I�� ('; !; �(!))�~I+� ('; !0; �(!0)) � p"�I�� ('; !; �(!))�I+� ('; !0; �(!0))�where !; !0 2 
 . Notie thatF (0; !0; !0) = 0 ; det �F�' (0; !0; !0) = 2n"n=2 det�0(!0):



8.1. Heterolini hains 137Hene from the impliit funtion theorem there exists a funtion '(!; !0; ") for whihF�('(!; !0; "); !; !0) � 0;provided j!�!0j is small enough. Fixed !0 standard omputations (see [C℄) show thatthe smallness ondition is: j! � !0j � C"�2pe�2"� 12 :To prove the existene of heterolini intersetions we have to prove the existene ofa hain of KAM tori at distanes of order B = O"(e�C"� 12 ) for some C > 2, namelywe have to adapt to our anisotropi setting (one fast and many slow time sales) thelassial tehniques disussed in detail in [C℄ or [CG℄.Proposition 8.4. There exists a list of Diophantine frequenies !1; : : : ; !h 2 
 suhthat: (i) p"j!i � !i+1j � e�C1"� 12 (ii) "� 12 j�n(!1 � !h)j � O"(1); (8.1)where �n is the projetion on the n-th omponent. To eah of the frequenies !i isassoiated a preserved unstable invariant torus of Hamiltonian 1.10, T (!i; �i) (with�i 2 [�12 ; 12 ℄) of frequeny p"�i!i. The saling fator �i is hosen so that all theinvariant tori are on the same energy surfae, as explained in Remark??.To prove the Proposition we proeed in two steps:1. De�ne an appropriate set �
 of Diophantine frequenies respeting ondition 8.1.2. Prove the existene of unstable KAM tori of frequeny: p"�! for � 2 [�12 ; 12 ℄and ! 2 �
. We will only sketh the proof of this seond point.De�nition 8.5. Given an order one C1 > 2, set A1 = e�C1"� 12 and onsider the set:�
 := n! 2 
 : 8>><>>: (a) p"j! � lj � A1jlj� 8l 2 Zn=f0g : l1 6= 0(b) p"j! � lj � "2jlj� 8l 2 Zn=f0g : l1 = 0 o:As there is only one fast time sale the ondition ! 2 
 an be given only on theslow variables, while the fast variable is obtained by \ energy onservation" ! 2 � (�is the ellipsoid of De�nition??), namely we onsider a funtion F : Rn�1 ! �:F (x) := fvuut2E � n�1Xi=2 x2i � "�1x2n; x2; : : : ; xng;so that given � = 12+a (12 � � � 1) and R; r; R1; r1; r2, appropriate order one onstants4and de�ning: ~
 := f~! 2 Rn : ~!"� 12 2 
g we have ~
 = F (B(R; r) \M)4This onditions automatially imply �r � p"!1 � �R, notie that we are not using the samenotation as in ??, here !i is always the i'th omponent of !.



138 Chapter 8. Arnold di�usionwhere B(R; r) � Rn�1 is the spherial shell5 of radiuses "�R; "�r andM := f! 2 Rn�1 : "r1 � !n � "R1 ; !i > r2"� ; i = 2; : : : ; n� 1g:As we always deal with ~! = p"! we will omit the tilde resaling all the relations. TheJaobian of F in B(R; r)\M is bounded from above and below by order one onstantsso that given a measurable set6 S � 
 meas(F�1(S)) � meas(S).Condition (b) naturally de�nes subsets of B(R; r) \M , moreover we an projetthe set respeting ondition (a) on the subspae of the slow variables, all this set�
4 � B(R; r) \M .Let us all S(x) the n� 2 dimensional sphere entered in the origin and of radius "�x.We take , 2r < R and onsider �R so thatR1=2 < �R < R1 ; rR > r1�R (8.2)De�nition 8.6. Consider the setsS2 :=�! 2 S(R) : "(R1 � (R1 � �R)=4) � !n � "( �R + (R1 � �R)=4); !i � r2"� ; 8i 6= n	;S3 :=�! 2 S(R) : "R1 � !n � " �R ; !i � r2"� ; 8i 6= n	:M \ S(R) � S3 � S2; and the sets all have measure of order "(n�3)�+1.Given a set X 2 S(R) its one C(X) is the set of semilines stemming from the originand reahing points of X. We onsider trunated ones T (X) := C(X)\B(R; r), and,for any r < a < b < R, Ta;b(X) = T (X) \ B(b; a).Notie that by 8.2 if X 2 S3 then T (X) 2M \B(R; r).Remark 8.7. Reall that given a measurable set X 2 S(R), the one of X is measur-able and meas T (X) � "� meas (X), meas Ta;b(X) � "�(b� a) meas (X).De�nition 8.8. Given A2 = e�C2"� 12 with 2 < C2 < C1 and for all s 2 R, 1 < s <4R=r, we onsider the sets:�
2(s) =f! 2 B(R; r) : j! � lj � s"2jlj� 8l 2 Zn�1=f0g jlj � A�12 g;�
3(s) =f! 2 B(R; r) : j! � lj � s"2jlj� 8l 2 Zn�1=f0ggRemark 8.9. Standard measure theoreti arguments imply that the sets (�
i(s) \S(R))C \ S(R) all have measure of order "(n�3)�+2; this implies as well that (�
i(s) \S2)C \ S2 has measure of the same order and the same holds for intersetions with S3and for (�
2(s) \ �
3(s) \ S2)C \ S2. We will repeatedly use suh relations.5We all spherial shell of radiuses b; a the n� 1 dimensional domain fx 2 Rn�1 : a � jxj � bg.6The symbol � means that the two measures are of the same order in ".



8.1. Heterolini hains 139Lemma 8.10. (i) Given a point ! 2 �
2(2R=r)\S2 the whole solid ball B�(!) of enter! and radius � = "2A1+�2 is ontained in �
2(R=r) and its intersetion with S(R) isontained in S3.(ii) The whole trunated one T (�
2(R=r) \ S3) is in �
2(1), same for �
3.Proof. (i) First notie that any n� 2 dimensional \ball" B�(x) \ S(R) 2 S3 if x 2 S2.Now onsider ! 2 
2(2R=r) \ S2 and a vetor x 2 Rn�1 on the unit sphere:j(! + �x) � lj � jj! � lj � jlj�j � j! � lj(j1� � jljj! � lj j); as jljj! � lj � rjlj�+12R"2and jlj � A2, setting � = "2A1+�2 we have 0 < � jljj!�lj j)12 .(ii) Given a point x 2 
3(R=r)\S(R) (or in x 2 
2(R=r)\S(R)) then rx=R 2 S(r)moreover for r=R � t � 1:jtx � lj = tjx � lj � r=RR"2rjlj� = "2jlj�Lemma 8.11. The set �
2(R=r) \ S(R) is union of a �nite number of disjoint onvexdomains. Eah domain is ontained in a n � 2 dimensional \ball" of radius C3"�A2for an appropriately �xed order one C3.Proof. (�
2(R=r) \ S(R)) �S(R) \l2Zn�1jlj�A2 �fx 2 Rn�1 : (x � l) > R"2rjlj� g [ fx 2 Rn�1 : (x � l) < �R"2rjlj� g�;now the intersetion of sets suh that eah onneted omponent is onvex has the sameproperty. Suppose, by ontradition, that there are points x1; x2 2 
2(R=r) \ S(R)suh that the ar x_1x2 is all in 
2(R=r)\S(R) and has length grater than 2R�1pn"�A2.Let hx1; x2i be the plane generated by the vetors x1; x2, and on it onsider the setorS of unit vetors orthogonal to x_1x2, this setor has angle # = 2pnA2. The produtspae of hx1; x2i? with the setor S is a multi-ylinder in whih there annot be entirevetors l 2 Zn�1 with jlj � A�12 .Now we onsider the intersetion of the multi ylinder with the sphere jxj = A�12 �2pn,on hx1; x2i it is an ar of length greater than 2pn so that a ball of radiuspn is ontainedin the multi-ylinder. Now in eah ball of radius pn there is at least one entire vetor.Namely let x be the enter of the ball then [x℄ (entire part of eah omponent) is entireand jx� [x℄j1 � 1.Let N be the number of onneted domains of �
2(R=r) \ S(R) ontained in S3.Eah domain ontains an n � 2 dimensional \ball" of radius � = "2A1+�2 , so thatN � A�(n�2)(�+1)2 "�(n�2)�2n+5.



140 Chapter 8. Arnold di�usionLet us now onsider the Cantor set �
3(R=r) \ S3, by Remark 8.9 we have that(�
3(R=r) \ S3)C \ S3 has measure of order "(n�3)�+2. This implies that �
3(R=r) \S3 \ �
2(R=r) is not empty and the measure of (�
3(R=r) \ S3 \ �
2(R=r))C \ S3 is oforder "(n�3)�+2.Lemma 8.12. There exists a onneted domain D of 
2(R=r) \ S3 suh thatmeas (D \ �
3(R=r)) � A(n�2)(�+1)+12 :Proof. Suppose the assertion to be false, then alling Di i = 1; : : : ; N the onneteddomains:meas S3 � meas (�
2(R=r) \ S3 \ �
3(R=r)) = NXi=1 meas (Di \ �
3) � A(n�2)(�+1)+12 Nwhih is absurd.Then we an use Lemma 8.10 (ii) and onsider the trunated one T (D) � �
2(1),by Lemma 8.12 P = T (D) \ �
3(1) has measure of order A(1+�)(n�2)+12 "�; namely thethe Cantor set P ontains all radial segments having an endpoint in D \ �
3(R=r) andthe other on S(r).Consider an n� 1 dimensional ball of radius � � "�A2 entered on a point x 2 Dand whih ontains D (suh ball exists by Lemma 8.12). Given h = [2(R�r)3�R ℄, onsiderthe points xi = tix with ti = 1� 3=2i� h � i 2 N0 and let us over T (D) with a �nitenumber of balls Bi of radius � and entered on points xi.Setting � = 2C3"�A2 we have that Bi \ Bj is empty if ji� jj > 1 and eah Bi \ Bi+1ontains a trunated one Tai;bi(D) with bi � ai � �=4. We onsider the sets Pi =Tai;bi(D) \ 
3(1), by Lemma 8.12 eah Pi has measure of order "�A(1+�)(n�2)+22 .Now we onsider the Cantor set �
4 whose omplementary set in M \ B(R; r)has measure of order "(n�2)�+1A1. Its intersetion with Pi has measure of order"�A(1+�)(n�2)+22 , provided that A1 < A(�+1)(n�2)+32 . Consider a list !i 2 Pi \ �
4; foreah i we have that !i; !i+1 2 Bi+1 so the list respets ondition 8.1(i) moreoverminy2B0 yn � �R� 2C"�A2 and maxy2Bh yn � rRR1 + 2C"�A2for some order one C so the list respets ondition 8.1(ii).In the Appendix A.4 we have proved, generalizing similar results of [GGM3℄, thatthere exists a sympleti transformation, well de�ned in a regionW of the phase spae(~I;  ), whih sends Hamiltonian 1.10 in the loal normal form:12(J;AJ) +p"G1(PQ;p") + �g1(�S; J; P;Q) + �f1(�; J; P;Q) (8.3)where � = O"(e�C"�12 ) for any order one C. W is of order one in the ations both inthe fast diretion J1 and in the degenerate one Jn, namely there exists points w1; w2 2



8.2. Transition hains 141W suh that j�Jn(w1 � w2)j = O"(1). We an then prove a KAM theorem for theHamiltonian 8.3 for � < "4 with the frequenies ! in �
 by hoosing (A1)2 � �.Roughly speaking KAM theorems are proved by performing an in�nite sequene ofsympleti transformations de�ned in a set of nested domains whose intersetion is nottrivial. Eah approximation step redues the order of the perturbation quadratiallyand is well de�ned provided an appropriate smallness ondition is veri�ed. Roughlyspeaking suh ondition is of the type:��2 � 1 where � is the small parameter and is the Diophantine onstant of the frequeny ! of the preserved torus. To apply thissheme to Hamiltonian 8.3 we �rst perform a �nite number of approximation stepson the slow variables with J1 as a parameter; the small denominators involved arej!S � lj on whih we have the stronger Diophantine ondition so that the approximationsheme works provided that �"�4 � 1. Eventually we will redue the � perturbationto order � and then ontinue with the lassial KAM sheme on all the variables nowthe smallness ondition is �A�21 � 1.Remark 8.13. One ould try as well to formulate a quantitative version of the im-pliit funtion theorem on retangular domains like those ??. Atually this is quitestraightforward for isohronous systems and using the results of setion 5.This wouldbe a �rst step in proving fast Arnold di�usion for isohronous systems with three timesales, whih is treated in detail in [BB2℄.8.2 Transition hainsIn the preeding setion we have proved that for � � "P any two tori T (!; �(!)),T (!0; �(!0)) with !; !0 2 �
 whose distane respets ?? are onneted by a heteroliniintersetion. Then any two tori T (�!; �(�!)), T (!0; �(!0)) with !0; �! 2 �
 are onnetedby a heterolini hain omposed ofn � j�! � !0jeC"�12invariant tori.Proposition 8.14. The heterolini hain onneting two tori T (�!; �(�!)), T (!0; �(!0))with !0; �! 2 �
 is a transition hain.The Hamiltonian 1.1.1 having one fast frequeny and � � "P is Arnold unstable.This proposition is the adaptation to Hamiltonian * of [CV℄. In partiular it followsfrom the following Proposition of [CV℄.Given the heterolini hain T i, zi we all Ui a neighborhood of T i where onean apply the Normal Form Theorem and then Theorem 1.2, we all W s=ui lo the loalstable/unstable manifolds and wi an intersetion pointwi 2 W ui \W si+1 \ Ui:Finally we denote, for i = 1; : : : ; N � 1, by �si a onneted n+1 sub-manifold of W si+1ontained in Ui and interseting transversally W ui lo on the energy surfae at wi 2 Ui.



142 Chapter 8. Arnold di�usionProposition 1. of [CV℄ Given a neighborhood Bi�1 of some7 �i�1 2 �si�1\ (W ui�1 lo)one an �nd �i 2 �si \ (W ui lo), a neighborhood Bi of �i and a time Ti > 0 suh that��TiBi � Bi�1.

7The supersript  denotes the omplementary set



Appendix A
A.1 Examples of funtions in B(b; d)We give examples of funtions F (et) having non polar singularities and respetinghowever ondition 3.2 in the domains C(b;D�p") where D is the (by hypothesis nonpolar) singularity nearest to the real axis.We will not onsider the lassi�ation of suh funtions but only prove the existene ofa lass of funtions f( ; q) trigonometri in  and suh that1 f('+!t; q(t)) has a nonpolar singularity in D respeting ondition 3.2. Notie that the only entire funtionsof q in this lass are the trigonometri polynomials.Let us �rst state an obvious property of the exponential funtion (whih an beveri�ed by diret omputation):Lemma A.1. The funtion f(z) = e az�z0 with a; z; z0 2 C has an essential singularityin z0 and is bounded in the region:Re (z � z0) Re a+ Im (z � z0) Im a = Re (�a(z � z0)) � 0:Now let us onsider analyti funtions f( ; q) = f( )g(q) where f( ) is a trigono-metri polynomial and g is even in q. Then g(q) = G(os(q)) with G(x) real analytifor x 2 (�1; 1) and bounded. We want to �nd funtions G(x) suh that G(os(q(t)) isbounded in some C(b; d).Let C1 be C deprived of the half line Im z = 0, Re z � �1.Theorem A.2. For any z0 2 C1 there exists a funtion G(z) suh that G(z) hassingularities only in z0; �z0 and G(os(q(t)) is limited in C(b; d(z0) for some b.To prove the Theorem let us study the mapt! z = os(q(t)) = 1� 2osh2(t)1in this Appendix we will restrit our attention to q(t) being the separatrix of the standard pen-dulum. We do this only to write down simple formulas but naturally the same reasoning hold for anyq(t) disussed in Chapter 7.



144 Appendieswhih is analyti for t 2 R � (�i�=2; i�=2). Moreover as the map is even we willonsider only the domain t 2 R � [0; i�=2) whose image through os(q(t)) is C minusthe half line Im z = 0 Re z > 1.We will study the urves zd(s) in C for �xed d 2 (�i�=2; i�=2) whih are the image ofthe lines t = s+ id with s 2 R.The following statements an be easily veri�ed by diret omputation.Lemma A.3. For eah z0 2 C1 there exists a unique �=2 > d(z0) 2 R+ suh that theurve z(s; z0) � zd(z0)(s);passes through z0.The zd(s) are all losed urves whose urvature is di�erent from zero for all s 2 R.The urves zd(s) are all symmetri with respet to the real axis and zd(s) = �zd(�s).For all z0 2 C1 suh that Im z0 � 0 let L(z0) L(�z0) be the lines tangent to theurve z(s; z0) in the points z; �z. The symmetry of the zd(s) implies that the equationsof L(z0) L(�z0) are respetively:Re(�(z � z0)) = 0 ; Re(��(z � z0)) = 0:Moreover let z�(s; z0) be the intersetions of the urve respetively with the half planesIm z � 0 and Im z � 0.Standard onsiderations on smooth urves with non zero urvature ensure that thefollowing Lemma holds.Lemma A.4. The urve z+(s; z0) (resp. z+(s; z0)) and a ball2 Br(1) with r suÆientlysmall, are both all one one side of L(z0) (resp. L(�z0)) and touh the line only in z = z0(resp. z = �z0)).Proof of Theorem A.2. Given z0 2 C1 let us suppose thatz+(s; z0) � Re ((�(z � z0)) � 0 ; z�(s; z0) � Re ((��(z � �z0)) � 0;This implies that the funtion:G(z) = e ��(z�z0) + e �(z��z0) ; (A.1)is bounded inside z(s; z0). Moreover for any x 2 R G(z) is real. Clearly if z0 2 C1 issuh thatz+(s; z0) � Re ((�(z � z0)) � 0 ; z�(s; z0) � Re ((��(z � �z0)) � 0;we will hoose G(z) = e� ��(z�z0) + e� �(z��z0) :2Br(z0) is the ball of radius r entered in z0.



A.1. Examples of funtions in B(b; d) 145Theorem A.2 shows that the ondition f 2 B(a; d) does not imply that f is rationalif d 6= �=2 on the other hand if d = �=2 then the following Proposition holds:Proposition A.5. Consider an analyti funtion f(q) (q 2 T) suh that f(q(t)) 2B(a; �=2) and f(qt) has isolated singularities. f(q) is a rational funtion of eiq.The image of Imt = �=2 through t! z = eiq(t) is the half line Re z � 0, Im z = 0and in general the image of t+ id with t 2 R is plotted in Figures A.1and A.2.
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Figure A.2:So the Proposition is equivalent to the following:Proposition A.6. Consider a single valued funtion g(z) with z 2 C analyti inB=f0g where B is some ball entered in zero. Moreover suppose that for some (nonzero) k: jg(z)jj Imzjk � Cin B=f0g then g(z) annot have an essential singularity in z = 0.Proof. The proof of this Proposition is due to Prof. D'AnonaThe proposed bounds have polar growth inthe setors jImzj � jRe(z)j, now if we in-tegrate g(z) k+1 times and all G�(z) thek+1 primitive obtained by utting away Ret = 0, Im t � 0 and starting from a pointz0 with Im z0 = 0 Re z0 far from the origin(but still in B) jG(z)j � C 0:To prove this let us perform one integrationon the path proposed in FigureA.3
z z0 w

Figure A.3:The part that is not lose to the singularity is bounded by some onstant while theintegral on the line parallel to the imaginary axis gives the boundj Z g(z)j � ( Im z)k�1:



146 AppendiesThe primitive G+ obtained by hoosing the ut Re t = 0, Im t � 0 di�ers from G� bya polynomial of degree k. Now given a point w in jImzj < jRe(z)j we onsider a irleC of radius jwj=2 entered in w; the irle does not interset the imaginary axis so:jf(w)j = j ZC G(z)(w � z)k+1 j � C1jwjk+1 ;independently of the hosen primitive.A.2 Evaluation of the oeÆients T (k); N(k)We will prove that: Tj(k) = XA2Akj 1jS(A)j � (4n)k;Nj(k) = XA2Akj Qv2A: Æv=1 nv!jS(A)j � (4n)k (A.2)where nv is the number of nodes in the list v; s(v) that have label j = 0.This are standard omputations on trees and an be found for instane in [Bo℄ fortrees without grammar. However here we present an easy and self ontained proof ofthis statement for our set Akj . We will rely some adaptations of the results of Setion1.2 whih we will not prove again.Given a real parameter � and two real analyti funtions f(x; y); g(y) with x 2 Rn andy 2 R, suh that g(0) = 0 rf(0) = 1; dyg(0) = 1;onsider the equations:xi = ��xif(x; y) for i = 1; : : : ; n g(y) = ��yf(x; y): (A.3)This relation is invertible in some j�j � �0 where the solution x(�); y(�) is analyti in�. We determine the series expansionxj(�) = 1Xh=1 x(h)j �h where x0 � y;reursively like in Subsetion 1.1.4:xkj = F kj with F kj = [�xj�xjf(k�1Xh=1 �hx(h))℄k�1 � Æj0[g(k�1Xh=1 �hx(h)0 )℄k:



A.3. Notions on latties in Zn 147The theory we have developed in Chapter 1 implies that the series expansion an berepresented by labeled trees and preisely:xkj = XA2Akj 1jS(A)j�(A);where the value of a tree �(A) is:Yv2A � Yv02s(v) �jv0�(�jv)Ævf Æv jx=0;y=0;with f 1 = f and f 0 = �g. Notie that f 0 appears only through its derivatives of ordergreater or equal than two.To bound Tj(k) we hoosef(x; y) = ePni=1 xi+y ; g(y) = 1 + 2y � ey;so that the value of any tree is one and Tj(k) = xkj . Now A.2 an be omputed byestimates on the Taylor oeÆients of x(�). An easy diret omputation shows thatrelations A.3 an be inverted forj�j � 14n whih implies A.2.To bound Nj(k) we hoose :f(x; y) = ePni=1 xi1� y ; g(y) = 1 + 2y � ey:Again easy omputations show that the relations A.3 an be inverted for j�j � 14n .A.3 Notions on latties in ZnWe briey review some useful properties of latties in Zn.Let v1; � � � ; vh be vetors in Zn; we will all V the n�h matrix whose olumns are thevj's and K(V ) the lattie spanned by the vj's with oeÆients in Z.Two vetors vi vj 2 Zn are independent if avi+ bvj 6= 0 for all a; b 2 Zn; learly in anylist of vetors in Zn there are at most n independent ones, our vetors vi will not be,in general, independent.Nevertheless, for all w 2 K(V ) we de�ne the \oordinate sets":Aw = fa 2 Zh : V a = wgthese are the osets of Zh modulo the relations between the vi.



148 AppendiesOn K(V ) we introdue the funtion3jwj = mina2Aw hXi=1 jaij:We will then use as oordinates of w any vetor a 2 Aw that realizes the minimum ofjwj.De�nition A.7. The n positive numbers d1; � � � ; dn suh that4dj = Md (v1 j; � � � ; vh j)are the divisors of the lines of V .Notie that the lattie K(V ) � Zn even if h > n.Lemma A.8. K(V ) � Zn if and only if the determinants of the n � n minors areoprime. Given w 2 K(V ) wj � dj for eah j = 1; : : : ; n; moreover for h > 2 for eahj there exist in�nite vetors w 2 K(V ) suh that wj = dj. Let us allWj = fw 2 K(V ) : wj = djg:Proof. The �rst assertion is obvious: it is suÆient that one divisor di 6= 1 and the ioordinates of all the vetors in K(V ) are divided by di so that ei is not in K(V ).The seond assertion is a standard theorem on latties in Zn, it is not immediate sowe will not prove it. The third is almost the de�nition of Md: any linear ombination(in Z) of numbers all having a ommon divisor has the same divisor. If we onsiderk oprime numbers then there will be at least two having Md equal to one. Thisimplies that there exists a unique linear ombination of this two numbers that givesone. The required linear ombination of all the numbers is obtained by adding anylinear ombination of all the numbers that gives zero.De�nition A.9. For eah j = 1; : : : ; n we de�ne the projetion mj of K(V ) in thediretion j as mj = minw2Wj jwj:Let us now onsider the lines of the matrix V ( all them vt )Proposition A.10. For eah j = 1; : : : ; n there exist vetors u 2 K(V ) suh thatuj = 0 and ui 6= 0 for all the i suh that vti 6= �vtj with � 2 Q . We all the set of suhvetors Uj3It is easily seen that this is a well de�ned norm on K(V ):4Md is the maximum ommon divisor.



A.3. Notions on latties in Zn 149Proof. Consider the sub-lattie orthogonal to vtj:U1j = fy : vtjy = 0g;now suppose that there exists vti orthogonal to U1j and whih is not parallel to vtj in Q .This is a ontradition as v?? = v.De�nition A.11. For eah j = 1; : : : ; n we de�ne the projetion rj of K(V ) orthogonalto the diretion j as rj = minu2Uj juj:If we have a perturbating funtion with frequenies ��1; � � � � �k, the lattie K(V )where vi = �i, gives all the possible frequenies reahed in the perturbation series. Weare interested in how the various possible frequenies are reahed and partiularly atwhat order of the perturbation. Consider the following disrete-time dynamial systemon Zn:� At time one we have the list of vetors V (1) � fvi(1)g = f��ig� At time l we have the list of vetors V (l) � fvi(l)g = Pj=1;l vij (1) (sum of lvetors of fvi(1)g ).The vetors fvi(l)g are the possible values of the total frequeny (Pv �v)of a treeof order l.This dynamial system never enters inside the retangle entered in zero of length2di in eah diretion i; nevertheless it touhes eah side of the retangle in�nite times.Lemma A.12. Let �l(j) be the �rst time suh that one of the vetors fvi(l)g has the jomponent equal to the divisor dj and �o(j) be the �rst time suh thatV (o(j)) \ Uj 6= f0g;then , �l(j) = mj and �o(j) = rj.Proof. The two proofs are idential so we will onsider only �l(j).The time �l(j) exists and is �nite, so onsider the elements �v of V (�l(j)) that have thej omponent equal to the divisor dj.�l(j) is minimal, so if the sum expressing �v ontains �i then it does not ontain ��i andvie-versa. This means that:�v = Xj=1;�l vij (1) = kXi=1 ki�i with ki 2 Z and Xi jkij = �l(j):Now the vetor k 2 Zh is in A�v, if there existed k0 2 A�v suh that Pi jhij < �l(j) thiswould ontradit the minimality of �l(j).



150 AppendiesA.4 Normal form theoremTo obtain bounds on the onvergene radius �0 of the KAM theorem 1.1 we perform asympleti hange of variables that brings Hamiltonian (*) in loal \normal form". Wewill use the standard notations (see [P�o℄, [BG℄, or [CG℄, [GGM1℄) and the existeneof the fast time sale. For systems with one fast time sale this provides a sympletihange of variables de�ned in a region W suh that �IW = O"(1), that sends theperturbating terms depending on the fast angle to order e� 1"B for some B(n) < 1. Thiswill be the basis for proving Arnold di�usion for systems with one fast variable. Forompleteness we state the theorem for m fast variables. The �rst step is to set thependulum in loal hyperboli normal form (see [CG℄), we obtain the loal Hamiltonian:12(I; AI) +p"G(pq;p") + �f(p; q;  ); (A.4)where the funtion G(J;p") is analyti for jJ j < ~k20 � p" and will be written as Taylorseries: G(J) =Pk�1 JkGk:The perturbating term f(p; q;  ) is a trigonometri polynomial of degree N in therotator angles and an analyti funtion of p; q � k0. So we onsider the domain:W (k0; s0) � W0 := fjpj; jqj � k0; I 2 V0(") � C n 2 Tn � (�is0; is0)g;where V0(") is some n-retangle ontained in D(�; Æ) (i.e. suh that �IjV0(") = O(!jaj ),see Chapter 1 for the de�nition of the sets D(�; Æ)).We write f in Taylor series:f(p; q;  ) =X f�;k;hpkqhei�� :For all s < s0, k < k0 we use the weighted norm:jf jk;s � jf jW (k;s) =X esj�jjf�;l;hjk2(l+h)ei�� :De�nition A.13. Given a sub-lattie � 2 Zn and a point set D 2 V0(") we say thatD is K � � non-resonant modulo � if for all I 2 D:j!(I) � �j � � 8� : � =2 � \ j�j � K:If �0 is the lattie generated by the N frequenies (�i 2 Zn) of f , we set � 2 �0 tobe the sub-lattie orthogonal to the fast omponents.We hoose a point set D in the following manner:let P be the set of vetors ! 2 
 (see Setion 1.1) suh that j!1 � �F j � j�F j�F for anorder one .Given r0 2 R+ , the domain D(r0) is a thikening of P suh that 8I 2 D(r0) thereexists ! 2 P suh that : jAI � !j � "�+ 12 r0



A.4. Normal form theorem 151for r0 < R; in the following we will set b = 12 + �.Lemma A.14. D0 � D(r0) is � �K non-resonant modulo � withK = � 4R"�b� 11+�F ; � = () 11+�F (4R"b) �F1+�F :Proof. Given I 2 D(r0) !(I) = AI is "br0-lose to an ! 2 P soj!(I) � �j � j!1 � �F j � ("bj!2jj�j+ "br0j�j)with r < j!2j < R so we set:"bj!2j�1j�j�F+1 ; "br0j�j�1j�j�F+1 < 14 :We onstrut an analyti sympleti transformation (�-lose to identity) of theform: Id + �S(I 0; p0;  ; q) = Id+ X1<l�KN �l j�j�lNX� 6=� S(l)�;k;hp0kqhei�� ;that brings the Hamiltonian A.4 in the normal form5(I 0; AI 0) +p"G1(pq;p") + �g1( 0S; I 0; p0; q0; "; �) + �KN f1( 0; I 0; "; �);in a suitable domain D0(r1)� Tns1 � B2k1, whereD0(r) = D(r) \ fI : 9! 2 P suh that jajI � j � !jj � r0"Æj��jg:The Hamilton-Jaobi equations are:�AI 0 � S + 12�2jAS j2 +p"G(qp0 + �qSq)) = p"G1(p0q + p0Sp0; �)+�g1( S + �SI0; I 0; p0; q + �Sp0; "; �)� �f(p0 + Sq; q;  ) + o(�K) (A.5)and we assume that we an �nd some domain D0(r)�Tns �B2k suh that the funtionsin A.5 are evaluated inside their domain of analytiity. We will all �� the naturalprojetion on funtions NOT depending on the fast angles: ��f( ; p; q) = g( S; p; q)and �J the natural projetion on funtions depending only on J = pq:F =XF�;k;hpkqhei��� �JF =XF0;h;h(pq)h:5The separation between the integrable G1 and the non integrable g1 is kept only beause wewill eventually set up a KAM sheme for the slow variables, so we need to estimate the size of theintegrable part.



152 AppendiesWe are looking for a sympleti transformation suh that (��)S = 0, we will solvethe Hamilton-Jaobi equations reursively and determine the funtions G1(J; �) =Pi�0 �iG1(J ; i) and �g1( S; I; p; q; �) = Pi�1 �ig1( S; I; p; q; i). The �rst order leadsto6: G1(J; 0) = G(J) ; G1(J; 1) = 1p"�Jf ; g1( 1S ; I 0; p0; q0; 1) = (�� � �J)f ;S(1)�;k;h = � f�;k;hi[I 0 � �℄ + (k � h)p"GJ(p0q) :The term i[I 0 � �℄+ (k�h)p"GJ(0) = D(�; k; h) is the \small denominator" that inour ase ( i.e. up to order KN ) admits the lower bound D(�; k; h) � � provided that I 0 2D0(r0). The higher order terms are determined reursively; we set �S<l =Pl�1h=1 �hS(h)and [f(�)℄l = 1l!�l�f j�=0.G1(J; l) = 1p"�J [(�2 12 jAS<l j2 +p"G(qp0 + �qS<lq ))�p"G1(p0q + p0S<lp0 ; �)���g1( S + �S<lI0 ; I 0; p; q + �S<lp0 ; "; �) + �f(p0 + S<lq ; q;  )℄l)the remaining resonant terms are in �g1 =P1m=1 �mg1( s; I 0; p0; q;m):g1( S; I 0; p0; q; l) = (�� � �J)[(12�2jAS<l j2 +p"G(qp0 + �qS<lq ))�p"G1(p0q + p0S<lp0 ; �)���g1( S + �S<lI0 ; I 0; p; q + �S<lp0 ; "; �) + �f(p0 + S<lq ; q;  )℄l)the terms of order �l and suh that � 6= � �x the value of S(l)�;k;h. We expand the Taylorseries only in this expression. The symbol fkigrk means the set of vetors in Nr suhthat Pri=1 ki = k, while f�igr� is the set of r vetors in Zn suh that Pri=1 �i = �.S(l)�;k;h = � 1D(�; k; h)[ X�(1)+�(2)=� 12S(m)�(1);k1;h1S(l�m)�(2);k�k1;h�h1(�(1); A�(2))++p" lXr�2 Xfkigrk;fhigrh;fligrl ;f�igr� ( 1r!�rJG(p0q)�ri=1S(li)�i;ki;hihi+Xr�1 Xfkigrk+r;fhigrh;fligrl�1;f�igr�1 1r!�rp0f(p0; q;	)�ri=1kiS(li)�i;ki;hi�p" l�2Xm=0 l�mXr�2 Xfkigrk;fhigrh;fligrl�m;f�igr� ( 1r!�rJG1(p0q;m)�ri=1S(li)�i;ki;hiki�6Notie that the pendulum and rotator terms annot anel eah other, this is a onsequene ofthe loality of our analysis.



A.4. Normal form theorem 153l�1Xm=1 Xka+kb=k;ha+hb=h Xla+lb=l�m;�a+�b=� l�mXr�0 l�m�rXs�0;r+s�1 Xfkigrka+r;fhigrha ;fligrla ;f�igr�a Xfkjgskb ;fhjgshb ;fligslb ;f�igs�b( 1r!s!�rq�s Sg1( S; I 0; p0; q;m)�ri=1ki(S(li)�i;ki;hi�sj=1rIS(li)�j ;kj ;hjTo avoid proliferation of symbols we will set:max(jf j0; jGj0) = E0 and hoose r0 > 1 so that r0"Æi��i � r0" � �0 > k20: Finally wewill all bj = max(b; Æj � �j).Proposition A.15. Consider the nested domains: Dl � D0(rl) � Tnsl � B2kl whererl = 12r0e�l�, sl = s0(1 + l�) and kl = 12k0e�l�; the following bounds hold7:jS(l)�;k;hjl � C1(l � 1)!Bl�1 jG1(J; l)jl � C2(l � 1)!Bl�1jg1( S ; I 0; p0; q; l)jl � C3(l � 1)!Bl�1with C1 = E0� , C2 = C3 = E0 and B =  E20�2k40�2 for some small enough order one .Moreover the so de�ned transformation is a biholomorphism: DK ! D0 providedthat � = s04K , �BK < 1. Thus the system an be written in normal form for� < �2k40�2K3 (A.6)in the domain D(r)� T ns �B2k, with r = 12r0e�s0=4,k = 12k0e�s0=4 s=s0=4.Remark A.16. Notie that for systems with one fast time sale the domain P oinideswith the whole W (k; s0=2) as all one dimensional vetors of norm one are diofantinewith order one . Moreover in this ase � = O(1) as well so if we hoose K = p" , thebound on � is � � " 52 .Remark A.17. Notie that if we hoose K = O"(1) we an perform some steps of thenormal form theorem for � < " so for order one � = �=".Proof. We proeed by indution, using the analytiity assumptions on G and f .We will assume that the desired bounds hold for all l < m and that G1(J; l) andg1( S; I 0; p0; q; l) are analyti in Dm�1. This implies that the transformationI = I 0 + �S<m ;  0 =  + �S<mI0 ;p = p0 + �S<mq ; q0 = q + �S<mp0is well de�ned and Dm ! D0 ifmax(j�S<mq jm; �S<mp0 jm) � 14km ; j�S<m j jm � 14rm"bj ;j�S<mI0 js � 14s0 ; j�S<m ;I0jm < 1:7By jf jl we mean jf jDl .



154 AppendiesSubstituting the bounds in this inequalities (and using Cauhy estimates for the deriva-tives) we obtain the onstraint �max(8C1k20� ; 8C1�0�2 ) < 1 provided that �KB � 12 . Havingveri�ed the analytiity of the transformation up to order m we use analyti bounds onG, G1 and g1 and the assumed bounds on the lower orders to bound G1(J ;m) S(m)and g1( S ; I 0; p0; q;m). We repeatedly use the inequality:Xfki�1gai=1:Pi ki=k aYi=1(ki � 1)! � (k � 1)!:Let us �rst onsider S(m), it is omposed of �ve sums. In eah we substitute the Cauhyestimates and the bounds oming from the indutive hypothesis.(1) The sum of quadrati terms is bounded by (k � 1)!Bk�1 C21s20�2�B .(2) The terms due to G are bounded by:p"E0� (m� 1)!BmXr�2( 4C1k20�B )r � 8p"E0C21k40�2�B (m� 1)!Bm�1provided that 4C1k20�B < 12 .(3) The terms due to f are bounded by:E0� (m� 1)!Bm�1Xr�1( 2C1k20�B )r � 4E0C1k20��B (m� 1)!Bm�1:provided that 2C1k20�B < 12 .(4) The terms due to G1 has the same bound as (2) if we �x C2 = E0.(5) If we �x C3 = E0 as well, the terms due to g1 are bounded by:E0� (m� 1)!Bm�1Xr�0 Xs�0;r+s�1( 2C1k20�B )r( 2C1�0�B )s � 4C1E0�k20�B (m� 1)!Bm�1provided that 2C1�0�B � 2C1k00�B < 12 .This �ve bounds must be all set < 15C1. It is easily seen that, as b � 1 and �0 � k20,all the desired bounds are implied by max( 8C1�0�2 ; 8p"E0C1k40�2�B � 15 . Now we disuss thebounds on G1 and g1. There are always the same �ve terms times a fator �p" for G1and � for g1. So all the bounds are veri�ed if , E0C1k40�2�B �  << 1. We �x C1 = E0� asthis omes from the �rst order and B =  E20k40�2�2 .



A.5. Fast averaging Theorem for uni-modal perturbations 155A.5 Fast averaging Theorem for uni-modal pertur-bationsIn this Appendix we report Paragraph {7 of [GGM3℄. We onsider the Hamiltonian:H = 12("J2 + p2) + I !1p" + os q � 1 + �A(�+  )B(q) + �f(�;  ; q);for � = 0. A(x) is a trigonometri polynomial with zero mean value:A(x) = X0<jnj�N Aneinx:The sympleti hange of oordinates with generating funtion:J 0�+ I 0 + p0q � �p"B(q)X X0<jnj�N Anin ei(�+ )n;is globally de�ned for �p" � 1 (on a domain slightly smaller that the domain ofH) and in the new oordinates the size of the perturbation is �p". Moreover theperturbation is still a monohromati trigonometri polynomial with zero mean value8.Now we pass to loal hyperboli oordinates for the pendulum, let us all then x; y.The Hamiltonian is: "2J2 +p"G(xy;p") +p"�F (�+  ; x; y);moreover, as F is uni-modal then the lattie generated by its frequenies K(V )is one-dimensional,so the sub-lattie � of frequenies � 2 K(V ) orthogonal to the fast dire-tion is f0g.Now, following Remark A.17, for �p" < 1, we an apply an " independent numberof steps of the Normal Form Theorem of Appendix A.4 so that the Hamiltonian isof the form A.4 with a perturbation of order � < "3=2. Finally for � 6= 0 we applythe hange of oordinates just desribed. We obtain a Hamiltonian of the type A.4but with a perturbing funtion f( ; �; x; y) whih is not a trigonometri polynomial.So we trunate the Fourier series of the perturbating funtion at j�j < N with N =12"� 12plog "�1. Finally in the normal form theorem we set K = "� 12p(log "�1)�1.A.6 Proof of Theorem 4.20We onsider a tree A 2 mA with total frequeny � and onsider in eah node v 2 A theFourier expansion of dnvf Æv�v (q):f( ; q) = X�;l2Zn+1 f�;lei( ��+l q) ; jf�;lj � Ce�r1(j�j+jlj):8However it does not depend only on the angle variables any more



156 AppendiesSo the integral a) of Setion 3.1, (evaluated at ' = 0, beomes:(�12)N(A)E(d; �) Xf�vgk� ;flvg[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)f�v ;lv ℄Yv�v0(ilv)nvI dRv02i�Rv0 1Z�1 d�v0e��(�v0 )Rv0eilv0q(�v0+id)ei!v0�v0Yv>v0 I dRv2i�Rv ( �wZ�1 d�v + �wZ1 d�v)e��(�v)Rv(�v+id)wjv(�w + id; �v + id)Yv�v0eilvq(�v+id) ei!v�v : (a)As usual w is the node preeding v, mv(s) is the number of nodes in the list v; s(v)with label j = s, n(v) the number of those with label j = 0, lv 2 N0 and !v = !�v =(! � �)"� 12 .Now we proeed exatly as in Setion 3.1 and we apply Proposition 3.6; �nally, inbounding the proper integrals we notie that we do not approah any singularity. Weobtain the following bound9:Ck(k!)2�+2E(d; �) Xf�vgk� ;flvg[ Ys=1;:::;nÆv=1 ;v�v0(i�v s)mv(s)℄(ilv)nv jf�v;lv j( maxt2H(a0;d) jmax(eiq(t); e�iq(t))j)jlvj:Now we hoose a0 and d = 1 so thatmaxt2H(a0;1) jmax(eiq(t); e�iq(t))j � er1=2(see Figure 1.3 for an example). Finally we apply the bounds on the Fourier oeÆ-ients10 of f( ; q), we obtain:Ck(k!)2�+2E(d; �)( nYj=1 � Yv�v0Æv=1 dmv(j)r1 1Xh=�1xhe�r1jhj��j )Yv�v0Æv=1 dnvr1 1Xh=�1 e�r1jhj=2; (A.7)all omputed in x = 1. As in Chapter 1 [f(x)℄n denotes the term of order n in theTaylor expansion of f(x) around x = 0. The series in expression A.7:1Xh=�1xhe�r1jhj9we are ignoring the nodes with Æ = 0 as they are learly irrelevant10Remember that we are onsidering a tree with total rotation �



A.7. Canellations due to integration by parts 157are absolutely onvergent for e�r1 < jxj < er1 and so we an bound the term of order�j by: Ck Yv:Æv=1mv(j)!e�r1j�j j:Finally one an proeed as in Appendix A.2 To prove that:XA2Akj (A) Yv:Æv=1 nYj=0mv(j) � (Cn)k;we simply hoose f(x0; : : : ; xn) = nYj=0 11� xj ; g(x0) = 1 + 2y � ey:
A.7 Canellations due to integration by partsThis is a simple generalization of the results in [GGM1℄.given A 2 A(i;h) onsider a ontinuous funtion h(t), remember that:W1(A) = � �jv0h(�v0)| {z }marking r~m(v)f Æv0 (�v0) Yvi2s(v0)Qjvi [W1(A�vi)℄is a funtion of the time �v0 .Lemma A.18. Consider a funtion h in H0 and a fruitless tree A , the funtionh(�0)O01 Æ �	1'(A) an be extended to a homomorphi funtion on a prede�ned striparound the real axis �0 2 R. Moreover if h(t) 2 H is o ontinuous then:=�th(t)W1�0(A; t) = 0Proof. The �rst assertion is simply the losure of H0 under the ation of Qj (see Propo-sition 1.16(ii)); the seond is equivalent to proving that for the ontinuous funtionh(�0)W1'(A) one has =(��0�Ph(�0)W1'(A) = 0 (�P is the projetion on polynomials).This is obvious as =P = 0 for any polynomial.Remark A.19. As f Æ(t) = F ( i(0) + ~!it;  0(t) e _ 0(t) = �2x00(t) we have that:�tf Æ(t) = Xj=1;:::;n ~!i� i � 2x00� 0Lemma A.20. Given an odd funtion G 2 H0 the following relation holds:��Qj(G) = Qj[��yG(�y) + 2Æj0x00(�y)�30f 0(�y)Q0(G)℄



158 AppendiesProof. if j 6= 0 one an verify the Lemma diretly integrating by parts (notie that F kjhas no onstant omponents so that �PxijG 6=  for any summand G oming from F kj ),this is a heavy omputation so we give an alternative proof.We onsider the vetor V = � Oj(G)�t(Oj(G) �, by the de�nition of Oj it is a solution of_V = LjV +G where Lj is the 2� 2 blok of the matrix L (de�ned in Subsetion 1.1.4)oming from the ation-angle variables Ij;  j (remember that I0 = p;  0 = q):Lj = ���� 0 1Æj0os(q0) 0 ���� :We derive with respet to t: �V =W0 _V + ( _W0V + _G)the �rst line of the solution _V is�t(O0(G)) = O0(� _q(t)�30f 0(t)O0(G) + _G)plus the �rst omponent of a solution of the homogeneous equation t ! W (t)X thatwe determine via the initial data. Otj(F ) is zero for t = 0, and we have seen inSubsetion 1.1.3 that the initial datum is determined by the boundedness ondition�t(Oj(G))jt=0 = =0(x0jG) so:�t(Oj(G)) = Oj(2Æj0x00(t)�30f 0(t)O0(G) + _G) + x0j(t)=0(x0jG)and as G is odd we an substitute Qj(G) = Oj(G).Next we notie that the vetors W i = � x00(t)_x00(t) �, � �(t)x10(t)�(t) _x10(t) � are solutions of thesystem _W = L0W so we apply the time derivative and obtain11:_xi0 = 2Q0(xi0x00�30f 0(t)) + Æi1�(t)x00 (A.8)the last term is added to have the right behavior in t = 0 (dt�(t)x10j0 = 1).Oj(2Æj0x00(t)�30f 0(t)O0(G) + _G) + x0j(t)=0(x0jG) = Qj(2Æj0x00(t)�30f 0(t)O0(G) + _G)++12Xi (xij=x[i℄j (2Æj0x00(t)�30f 0(t)O0(G) + _G) + x0j(t)=0(x0jG)The last two sums anel eah other via relationA.8, for j = 0, and using the fat thatif j 6= 0 then _x0j = 0 and _x1j = �(t).11we are using the fat that O0(�(�)F ) = �(t)O0(F )



A.7. Canellations due to integration by parts 159Proposition A.21. Consider A 2 A(i;h) with h(t) 2 H ontinuous for t 2 R (as h isin H it is analyti separately in R+ and R�):� Xj=1;:::;n(~!jXv2A �vjA) = 2Xv2A x00(v)�v0A+ 2Lx00(A)� _h(t) �A)�'=0_h(t) �A is simply the tree A marked _h(�0) instead of h(�0).Proof. Let �A = Ah(v0) namely the tree A, marked with the funtion h = 1 we need toprove that:=�tW10 (A) = =W10 ( Xj=1;:::;n(~!jXv2A �vjA)� 2Xv2A x00(v)�v0A� 2Lx00(A) + _h(t) �A):We know that: =��0W10 (A) = = _h(�0)W10 ( �A) + =h(�0)���0 �W10 ( �A)�	where the term in fg parentheses is:�(��0r~m(v0)f Æv0 ) Yvi2S(v0)Qjvi [W1(A�vi)℄++r~m(v0)f Æv0 Xvi2S(v0)W10 (A=vi)��0 [QjviW10 (A�vi)℄) (A.9)Now we setW10 (A�vi) = F (whih is odd as ' = 0) and apply Lemma A.20 to F 2 H0:��0Qjvi (F ) = Qjvi (��viF ) + 2Æj0Q0(x00(�y)�30f 0(�y)Q0(F ))and ��viF = ��vi [W10 (A�vi)℄this is the same expression treated in A.9 alulated on trees of lower order. So weproeed reursively and obtain:0 = =f _h(�0)W10 ( �A) +Xv2AW10�v�v(A)+2Æjv0(W10 [Anv℄)Q0[x00(�y)�30f 0(�y)Q0(W1(A�v))℄gThe symbol �v�v means a �v derivative applied to f Æv(�v) so we an apply LemmaA.19.The third sum is �2W10 (Lx00(A)) (by the de�nition of Lx00(A) ).Corollary A.22. In partiular PropositionA.21 holds for 0k(j;h):Xi=1;:::;n ~!i0k(j;h) i = 20k(j;h) (0;x00) + 2Lx00(0k(j;h)) + _h(t; v0)�v0j 0k



160 AppendiesA.8 Properties of the matrix M due to anella-tionsLemma A.23. The relation_xl0 = 2Q0(x00xl0�30f 0) + Æl1�(t)x00implies that: F l 0(00) = 12( _xl000 � �(t)x00)Proof. In F l 0(00) we hange the �rst node to the only node v1 of level one; then wesubstitute the leaf Q0(x00xl0�30f 0) = 12( _xl0 � Æl1�(t)x00)Proposition A.24. The matrix M veri�es:MY1 = A where Y t1 = ( n+1z}|{0 ; 1z}|{2 ; nz}|{�~! )e At = ( 1z }| {I+0 (t = 0) nz }| {I+(t = 0) ; n+1z}|{0 ); remember that I+j (t = 0; ' = 0) (j = 0; : : : ; n)is the initial datum in the ations at the homolini point ' = 0; �0 = �.Proof. This is a onsequene of Corollary A.22. let us the relation in omponents:2Mk n+2 =Xi !iMk n+2+i + (n+1Xj=1 Æk;n+1+j)I+k�n�2Translated in trees this is:20l 0k 0 + 2L0(0lk) + 2Æk 0F l 0(00) =Xi ~!i0l 0k i � Æl;1( nXj=0 Ækj)�(t)00k (A.10)here we simply used the de�nition of M and the identity:I+j = 12(I+j + I�j ) = �=Wx0j�(�0)00j :Expression A.10 an be derived from Proposition A.21 by setting hlk = xlk forl = 0; 1 and k = 0; : : : ; n. as by Lemma A.23:_hlk(�)0k = 8<: �2F 0l(0 0 ) + �(t)000 k = 00 l = 0k = 1; : : : ; n�(�)00k l = 1 k = 1; : : : ; n :
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