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Introduction

It is known that a Coxeter group W, partially ordered by the Bruhat order,
is a graded poset, with rank function given by the length, and that it is also
E L-shellable, hence Cohen-Macaulay, and Eulerian.

The aim of this work is to investigate whether a particular subposet of W,
namely that induced by the set of involutions of W, which we denote by
Invol(W), is endowed with similar properties.

The problem arises from a geometric question. It is known that the symmetric
group S, partially ordered by the Bruhat order, encodes the cell decomposition
of Schubert varieties. In [RS1], [RS2] Richardson and Springer introduce a
vast generalization of this partial order, in relation to the cell decomposition of
certain symmetric varieties. In a particular case they obtain the subposet of S,
induced by the involutions.

In this work the problem is completely solved for an important class of Coxeter
groups, namely that of classical Weyl groups. Our main result is that, if W is
a classical Weyl group, then the poset Invol(W) is graded, with rank function
given by the average between the length and the absolute length, and that it is
E L-shellable, hence Cohen-Macaulay, and Eulerian.

The proofs are combinatorial and use the descriptions of classical Weyl groups
in terms of permutation groups: the symmetric group S,, the hyperoctahedral
group B, and the even-signed permutation group D,,.

In particular we obtain, as new results, a combinatorial description of the ab-
solute length of the involutions in classical Weyl groups, and a combinatorial
description of the covering relation in the Bruhat order of the hyperoctahedral
group and of the even-signed permutation group.



6 INTRODUCTION

It is also conjectured that the result proved for classical Weyl groups actually
holds for every Coxeter group, and it is shown that for the class of dihedral
groups, which are Coxeter groups but not Weyl groups, the result is valid.

This work collects the results obtained in [Incl], [Inc2], [Inc3]. In [Incl] we
study the poset Invol(S,,), showing that this is a graded poset, with rank func-
tion given by the average between the number of inversions and the number of
excedances, and that it is E L-shellable and Eulerian. In [Inc2] we extend these
results to the poset Invol(B,,), finding an explicit formula for the rank function.
Finally, in [Inc3], we give a unified description of the results obtained in [Incl]
and [Inc2], extending them to the even-signed permutation group.

The organization of this work is as follows. In Chapter 1 we give the basic
definitions, notation and results that are needed in the sequel. In particular we
focus on posets, Coxeter groups, Bruhat order, Weyl groups and classical Weyl
groups, with their combinatorial descriptions. In Chapter 2 we introduce the
main problem, saying something about the motivations, stating the main result
about classical Weyl groups and giving the conjecture on Coxeter groups. In
Chapter 3 we expose some general methods to prove that a poset is graded and
E L-shellable: we use these methods in the proofs of the following chapters. In
Chapter 4 some preliminary results are illustrated, about the absolute length of
the involutions and about the covering relation in the Bruhat order of classical
Weyl groups. In Chapters 5, 6 and 7 the main results are stated and proved,
about, respectively, the symmetric group, the hyperoctahedral group and the
even-signed permutation group.
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Chapter 1

Notation and preliminaries

1.1 Notation

We let N = {1,2,3,...} and Z be the set of integers.

For n,m € Z, with n < m, we let

[n,m] ={n,n+1,...,m}.
For n € N, we let
0] = [1,n);
[-n] = [-n,-1];
[£n] = [-7,n\{0} = [-n]U[n].

We denote by = the congruency modulo 2: n = m, with n,m € Z, means that

n — m is even.

Finally, we denote simply by < the lexicographic order:
(al, as, ..., an) < (bl, bg, ceey bn)

means that ay, < bg, where k = min{i € [n] : a; # b;}.

1.2 Posets

We follow [Stal, Chapter 3] for poset notation and terminology.

7



8 1. Notation and preliminaries

The word poset is an abbreviation of partially ordered set. Thus, a poset is a
pair (P, <) consisting of a set P together with a partial order relation <. The
relation is suppressed from the notation when it is clear from context.

Let P be a poset. If () C P, then the subposet of P induced by () is the poset
(@, <) whose order relation is the restriction of the order relation of P.

Let z,y € P. We write £ < y to mean that ¢ < y and z # y. We denote by
< the covering relation: © <y means that < y and there is no z such that
z < z < y. The Hasse diagram of a finite poset P is the graph whose vertices
are the elements of P, whose edges are the covering relations, and such that if
z < y, then y is drawn “above” x.

If z,y € P, with x <y, we let [z,y] = {z# € P: 2z < z < y}, and we call it
an interval of P. The set (z,y) = {# € P : z < z < y} is an open interval.
If 2,y € P, with z < y, a chain from z to y of length k is a (k + 1)-tuple
(0,21, ...,xk) such that ¢ = 29 < 1 < ... < 2 = y, denoted simply by
“Po < 21 < ... < x3”. A chain 29 < 21 < ... < 71 is said to be saturated if all
the relations in it are covering relations: zo <1 < ... < T

A poset is said to be bounded if it has a minimum and a maximum, denoted by
0 and 1 respectively.

A poset P is said to be graded of rank n if it is finite, bounded and if all
maximal chains of P have the same length n. If P is a graded poset of rank n,
then there is a unique rank function p : P — [0,n] such that p(0) = 0, p(1) = n
and p(y) = p(z) + 1 whenever y covers z in P. Conversely, if P is finite and
bounded, and if such a function exists, then P is graded of rank n.

If P is a graded poset and @ is a totally ordered set, an edge-labelling of P with
values in @ is a function X : {(z,y) € P? : z <y} — Q. If X is an edge-labelling
of P, for every saturated chain zo <z < ... 1z we set

Azo, 21, ..y xr) = (M@0, 1), A(21, T2)y 2oty MTp—1, T))-

An edge-labelling A of P is said to be an EL-labelling if for every z,y € P, with
z < y, the following properties hold:

1. there is exactly one saturated chain from z to y, say
=<1 <...<42 =Y,
such that A(xg,z1, ..., 2x) is a non-decreasing sequence, that is

Ao, 1) < A(x1,22) < oo < XM@p1, Tk );
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2. this chain has the lexicographically minimal labelling: if

=Y <y <... dyYr =Y,
is a saturated chain from x to y, different from the previous one, we have
AMzo, 1,0y ) < AM(Y0, Y1, -, Yk)-
A graded poset P is said to be lexicographically shellable, or EL-shellable, if it

has an EL-labelling.

Finally, a graded poset P with rank function p is said to be Eulerian if

{z € [z,y] : p(z) is even}| = [{z € [z,y] : p(2) is odd}|,
for every z,y € P such that z < y.

In an EL-shellable poset there is a necessary and sufficient condition for the
poset to be Eulerian. We state it in the following form (see [Bjo, Theorem 2.7]
and [Sta3, Theorem 1.2] for proofs of more general results).

Theorem 1.2.1 Let P be a graded EL-shellable poset and let A be an EL-
labelling of P. Then P is Eulerian if and only if for every x,y € P, with z <y,
there is exactly one saturated chain from x to y with decreasing labels.

Connections between FEL-shellable posets and shellable complexes, Cohen-
Macaulay rings and Gorenstein rings can be found, for example, in [Bac], [BGS],
[Bjo], [Gar], [Hoc], [Rei] and [Sta2]. Here we only recall some basic facts.

A finite simplicial complex A is said to be pure d-dimensional if all maximal
faces are of dimension d. A pure d-dimensional complex A is said to be shellable

if its maximal faces can be arranged in sequence o1, 09, ..., o in such a way
that
i—1
ag; n U Ej
j=1
is a pure (d — 1)-dimensional complex for i € [2,t], where
o={r:7Co;}.

Such an ordering of the maximal faces is called a shelling of A.

The order complex A(P) of a poset P is the simplicial complex of all chains of
P. A poset P is said to be shellable if A(P) is shellable.
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Let P = {z1,%2,...,zs} be a finite poset. Let K be a field or K = Z. The
Stanley-Reisner ring associated with P is

:K[a:l,:cg,...,xf]

R
P IP )

where Ip is the ideal in the polynomial ring K[z, z2,..., ] generated by all

monomials x;x; for which x; and z; are uncomparable in P.

A poset P is said to be Cohen-Macaulay if Rp is a Cohen-Macaulay ring.
Hochster and Stanley have shown that if the order complex A(P) is shellable
then P is Cohen-Macaulay (see [Hoc] and [Sta2]). Finally Bjorner has proved
the following (see [Bj6, Theorem 2.3]).

Theorem 1.2.2 Let P be a graded poset. If P is EL-shellable then P is
shellable, hence Cohen-Macaulay.

A poset P is said to be Gorenstein if Rp is a Gorenstein ring. Hochster and
Stanley have proved the following (see [Hoc, p. 211] or [Sta2, p. 57]).

Theorem 1.2.3 Let P be a graded poset and suppose that A(P) triangulates a
sphere, or a multiple cone over a sphere. Then P is Gorenstein.

1.3 Coxeter groups

A Coxeter matriz of order n is a matrix m : [n] x [n] = N U {oo} such that
1. m(i,i) =1, for every i € [n];
2. m(i,j) =m(j,i) > 2, for everyi,j € [n], with i # j.

A Cozeter system is a pair (W, S), consisting of a group W and a subset S =
{s1,...,5.} of generators of W, subject only to the relations

(sisj)m(i’j) =1, foreveryi,j€ [r],

where m is a Coxeter matrix of order r. In particular m(i,j) = oo means that
no relation occurs for the pair (s;, s;). Formally, W is the quotient F/N, where
F' is a free group on the set S and N is the normal subgroup generated by all
elements (SiSj)m(i’j). The group W is called Coxeter group.
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The Cozxeter graph (or diagram) of a Coxeter system (W, S) is the graph whose
node set is S and whose edges are the unordered pairs {s;, s;} such that m(s, j) >
3. The edges {s;, s;} such that m(i, j) > 4 are labeled by the number m(3, j).

Since m(i,4) = 1, for i € [r], every generator s; is an involution. Moreover, the
relation (s;5;)™(%9) = 1 is equivalent to

8;8j8i8j ... = 85;j8;8;8;... .
~ -~ ) ~ g )

m(i,5) m(i,5)

In particular m(i,j) = 2 (that is, s; and s; are not neighbours in the Coxeter
graph) if and only if s; and s; commute in W.

The length of an element w € W, denoted by I(w), is the minimal k such that w
can be written as a product of k generators. If w = s;, 84, . .. 85, with k = l(w),
then the word s;, s, ... s;, is called a reduced expression of w.

A reflection in a Coxeter group W is a conjugate of some element in S. The
elements of S are also called simple reflections. The set of all reflections is
usually denoted by T':

T={wsw':5€8, weW}

The absolute length of an element w € W, denoted by al(w), is the minimal k
such that w can be written as a product of & reflections.

Since the generators are particular reflections, for every w € W we have

al(w) < l(w).

If a Coxeter system (W, S) has Coxeter graph G, then we say that the type of
(W, S) is G. A Coxeter system is irreducible if its type is connected.

The finite irreducible Coxeter systems have been completely classified, as we
state in the following (see, e.g., [Huml]).

Theorem 1.3.1 If (W,S) is a finite irreducible Cozeter system, then its type
is necessarily one of those in Table 1.1.

Note that the groups (whose types are) represented in Table 1.1, are pairwise
non-isomorphic, except that Io(3) = Ag, Io(4) = By and I,(6) = Ga.
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1.4 Bruhat order

Let (W, S) be a Coxeter system.

The Bruhat graph of W is the directed graph whose vertex set is W and such
that an ordered pair (u,v) of elements of W is an edge if and only if v = wut, for
some reflection ¢t € T, and I(u) < I(v). If (u,v) is an edge of the Bruhat graph,
then we write u — v.

The Bruhat order of W is the partial order relation which is the transitive
closure of the relation — defined above: given u,v € W, then u < v in the
Bruhat order if there exists a chain

U=Uy > U —> U —> ... > U = V.

A subword of a word a1az ...ay, is a word a;, aj, .. . a;,, with

The following result, known as “subword property”, gives a characterization of
the Bruhat order relation (see, e.g., [BB]).

Theorem 1.4.1 (Subword property) Let u,v € W and let s;,8;, ...5;, be
a reduced expression of v. Then u < v if and only if there exists a reduced

expression of u which is a subword of s;, 84, .. - Siy, -

It is known that the map which associates with every element w € W its inverse

w™! is an automorphism of the Bruhat order, as we state in the following.

Proposition 1.4.2 Let W be a Coxeter group and let u,v € W. Then the

following are equivalent:

1. u <y
2. u ' <ol
If W is finite it is known that W has a maximum, which is usually denoted by

wo. This element is an involution: w? = 1. Moreover, translation and conjugacy
by wg induce (anti)automorphisms of the Bruhat order.
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Proposition 1.4.3 Let W be a finite Cozeter group, with maximum wy, and let

u,v € W. Then the following are equivalent:

1. u <oy
2. wov < wou;
3. vwy < uwop;

4. wouwy < wovwy-

The Bruhat order of Coxeter groups has been studied extensively (see, e.g.,
[BW], [Deo], [Ede], [Pro], [Rea] and [Ver]). In particular it is known that it
gives to W the structure of a graded poset, whose rank function is the length.
It has been also proved that this poset is always EL-shellable, hence Cohen-
Macaulay (see [Ede], [Pro] and [BW]), and Eulerian (see [Ver]).

The aim of this work is to investigate whether a particular subposet of W,
namely that induced by the set of involutions of W, is endowed with similar
properties. The problem will be completely solved for an important class of
Coxeter groups, namely that of classical Weyl groups.

1.5 Weyl groups

In this section we give some basic notions about Weyl groups. For preliminaries
about this part we refer to [Hum2].

Let G be a connected and reductive linear algebraic group. Let T be a maximal
torus of G and let N be the normalizer of T' in G. The quotient W = N/T is
the corresponding Weyl group.

Now let B be a Borel subgroup of G containing 7. Then B, acting by left
translations, has a finite number of orbits on the flag variety X = G/B. The
set V of these orbits has a natural partial order: if u,v € V, then u < v if u is
contained in the Zariski closure of v.

The Borel subgroup B defines a set S of involutorial generators of W such that
(W, S) is a Coxeter system. It is known that there is a bijection of the set of
orbits V' onto the Weyl group W. Moreover, the order on V' corresponds to the
combinatorially defined Bruhat order on W.
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1.6 Classical Weyl groups

Among the finite irreducible Coxeter systems (see Table 1.1) we find all the
irreducible Weyl groups: the classical Weyl groups, whose types are A, By,
D,,, and the exceptional Weyl groups, whose types are Eg, E;, Eg, Fy, Gs.

The classical Weyl groups have nice combinatorial descriptions in terms of per-
mutation groups: the symmetric group is a representative for type A,, the
hyperoctahedral group for type B,, and the even-signed permutation group for
type D,,. In this section we describe in detail such groups.

1.6.1 The symmetric group
We denote by S, the symmetric group, defined by
Sp = {0 :[n] = [n]: o is a bijection}

and we call its elements permutations.

To denote a permutation o € S, we often use the one-line notation: we write
0 = 0103...0p, to mean that o(i) = o; for every ¢ € [n]. We also write
o in disjoint cycle form, omitting to write the 1-cycles of o: for example, if
o = 364152, then we also write 0 = (1,3,4)(2,6). Given o,7 € S, we let
o1 = oo7 (composition of functions) so that, for example, (1,2)(2,3) = (1,2, 3).

Given o € S, the diagram of ¢ is a square of n xn cells, with the cell (i, 7) (that
is, the cell in column 4 and row j, with the convention that the first column is
the leftmost one and the first row is the lowest one) filled with a dot if and
only if o (i) = j. For example, in Figure 1.1 the diagram of ¢ = 35124 € S5 is
represented.

= N W s Ot
[ ]

123 45
Figure 1.1: Diagram of ¢ = 35124 € Ss.

The diagonal of the diagram is the set of cells {(4,) : ¢ € [n]}.
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As a set of generators for S, we take
S = {81, 82y .- 7371—1}7

where s; = (4,7 + 1) for every i € [n —1].

As we have already mentioned, the symmetric group is a representative for the
Coxeter groups of type A, (see, e.g., [BB]).

Theorem 1.6.1 (S,,,S5) is a Cozeter system of type A,_1.

The concepts introduced in general for Coxeter groups (length, reflections,
Bruhat order) have all a simple combinatorial description in the symmetric
group. For example the length of a permutation o € S, is given by

I(o) = inv(0o),

where
inv(o) = {(i,)) € [n]* 10 < j, (i) > a(j)}]
is the number of inversions of o.

In the symmetric group the reflections are the transpositions:
T ={(i,j) € [n] i < j}.

In order to give a characterization of the covering relation in the Bruhat order
of the symmetric group, we introduce the following definition.

Definition 1.6.2 Let o € S,,. A rise of o is a pair (i,j) € [n)? such that
1.i<y,
2. o(i) < o(j).

A rise (i,7) is said to be free if there is no k € [n] such that

l.i<k<y,

2. o(i) < o(k) <o(j).

For example, the rises of o = 35124 € S; are (1,2), (1,5), (3,4), (3,5) and
(4,5). They are all free except (3,5). The following is a well-known result.
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Proposition 1.6.3 Let 0,7 € S, with 0 < 7. Then o < 7 if and only if

T = U(ZJJ)J

where (i,7) is a free rise of o.

In order to give a characterization of the Bruhat order relation in S, we intro-
duce the following notation: for o € S,, and for (h, k) € [n]?, we set

alh, k] = [{i € [n] : 0 (i) € [k, n]}.
The characterization is the following (see, e.g., [Pro]).

Theorem 1.6.4 Let 0,7 € S,,. Then o < 7 if and only if
olh, k] < 7[h, K],

for every (h, k) € [n]>.

Finally, the maximum of §,, is
wo=n{n—-1)(n-2)...321L

Note that, given o € S, the diagrams of the permutations o1, wyo, owy

and woowyp are obtained from the diagram of ¢ by, respectively, interchanging
rows and columns (transposing), reversing the rows, reversing the columns and
reversing rows and columns. So the effects of these operations on the Bruhat
order are described in Propositions 1.4.2 and 1.4.3.

1.6.2 The hyperoctahedral group

We denote by S, the symmetric group on the set [+n]:
Sin = {0 :[£n] = [£n] : o is a bijection},
which is clearly isomorphic to Sa,.

We denote by B,, the hyperoctahedral group, defined by
B, = {0 € 84, : 6(—i) = —a(i) for every i € [n]}

and we call its elements signed permutations.
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To denote a signed permutation ¢ € B,, we use the window notation: we write
o = [01,02,...,04,], to mean that o(i) = o; for every ¢ € [n] (the images of
the negative entries are then uniquely determined). We also denote o by the
sequence |o1||o2| ... |on|, with the negative entries underlined. For example,
42153 denotes the signed permutation [4,—2,1,—5,—-3]. We also write ¢ in
disjoint cycle form.

Signed permutations are particular permutations of the set [£n], so they inherit
the notion of diagram. Note that the diagram of a signed permutation is sym-
metric with respect to the center. In Figure 1.2, the diagram of 0 =321 € B3
is represented.

[0 N [= = DN W
L]

Figure 1.2: Diagram of ¢ =321 € Bs.
The (main) diagonal of the diagram is the set of cells {(¢,¢) : i € [£n]}, and
the antidiagonal is the set of cells {(¢, —4) : i € [£n]}.

As a set of generators for B,, we take

S= {507317' "an—l}a
where so = (1,-1) and s; = (i,4 + 1)(—i,—i — 1) for every i € [n —1].

The hyperoctahedral group is a representative for Coxeter groups of type B,
(see, e.g., [BB]).

Theorem 1.6.5 (B,,S) is a Coxeter system of type B,,.

There are various known formulas for computing the length in B, (see, e.g.,
[Bre, Proposition 3.1]). Here we present a new one: the length of o € B,, is

given by

__inv(o) + neg(o)

l(o) = 5 ) (1.1)

where
inv(o) = |{(i,§) € [£n]? : i < j, o(i) > o(5)}],
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which is also the length of ¢ in the symmetric group S+, and

neg(o) = [{i € [n] : o(i) < 0}

It is known (see, e.g., [BB]) that the set of reflections of B,, is
T ={(i,=i) :i € [n]} U{(6,5) (=i, =j) : 1 < i < |j| < m}.

It is useful to extend a notation introduced for the symmetric group: for o € B,
and for (h, k) € [£n]? we set

olh, k] = |{i € [-n, }] : 0(i) € [k, n]}-

Definition 1.6.6 Let 0,7 € B,. We say that the pair (o,7) satisfies the B-
condition if

olh, k] < 7[h, k]

for every h, k € [£n]?.

The following result gives a combinatorial characterization of the Bruhat order
relation in B, (see, e.g., [BB, Theorem 8.1.8]).

Theorem 1.6.7 Let 0,7 € B,. Then o < 7 if and only if the pair (o,7)
satisfies the B-condition.

Comparing Theorems 1.6.4 and 1.6.7, we can conclude the following.

Proposition 1.6.8 Let 0,7 € B,. Then o < 7 in the Bruhat order of B, if
and only if o < 7 in the Bruhat order of the symmetric group Sin.

The maximum of B,, is

11]():12...”

and the effects on the diagram of a signed permutation of taking the inverse,
composing with wy and conjugating by it are the same as described for the

symmetric group.
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1.6.3 The even-signed permutation group
We denote by D,, the even-signed permutation group, defined by

D, = {0 € B,, : neg(o) is even}.

Notation and terminology are ineherited from the hyperoctahedral group. For
example the signed permutation ¢ = 321, whose diagram is represented in
Figure 1.2, is also in Ds.

As a set of generators for D,, we take
S = {80, S1y--- 7371—1}7

where sp = (1,-2)(-1,2) and s; = (4,4 + 1)(—i,—i — 1) for every i € [n — 1].

The even-signed permutation group is a representative for Coxeter groups of
type Dy, (see, e.g., [BB]).

Theorem 1.6.9 (D, S) is a Coxeter system of type D,,.

In order to make no confusion between signed permutations and even-signed
permutations, we will denote if necessary by Ip and Ip the length functions and
by <p and <p the Bruhat order relations in the respective groups B,, and D,,.

About the length function in D, it is known (see, e.g., [BB]) that
Ip(o) =1lB(c) — neg(o).

Thus, by (1.1), the length of o € D, is given by

_ (o) —neg(o)

(o) 5 (1.2)

It is known (see, e.g., [BB]) that the set of reflections of D, is
T = {(i,4)(=i,=j) : 1 < i <|j| < m}.
In order to give a combinatorial characterization of the Bruhat order relation

in D,,, we introduce the following notation: for ¢ € D,, and (h, k) € [-n] X [n],

we set
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Ocenter [P k] = O[a|nx[£H]>
onwlh, k] = 0[_nh-1]x[k+1,n]s
on[h, k] = O|n|x[k+1.n]>
oNteft[P, k] = Onx[kt1,n]5
owup[h, k] = Ol_pn—1]x[k-

We say that (h, k) € [-n] x [n] is free for o if
Ocenter [h'7 k] =0.

Definition 1.6.10 Let 0,7 € D,,. We say that (h, k) € [-n] x [n] is a D-cell
of the pair (o,7) if it is free for both o and T and

UNw[h, k] = TNw[h,k].

If (h, k) is a D-cell of (o,7), then we say that it is valid if
ONleft[hs k] = Tiese [P, K],
or, equivalently, if

O'Wup[h, k] = TWup[h, k]

Finally, we say that the pair (o,7) satisfies the D-condition if every D-cell of

(o,7) is valid.

The following result gives a combinatorial characterization of the Bruhat order
relation in D, (see [BB, Theorem 8.2.8]).

Theorem 1.6.11 Let 0,7 € D,. Then o < 7 if and only if the pair (o,7)
satisfies both the B-condition and the D-condition.

Note that o <p 7 implies ¢ <p 7, while the converse is not true.

For example, consider the two even-signed permutations 0 = 6432175 and

It’s easy to check that the pair (o, 7) satisfies the B-condition, so ¢ <p 7.

The D-cells of the pair (o,7) are (—3,1), (—3,2), (-2,3) and (—1,3). Among
these, (—3,1) and (—3,2) are valid, while (-2, 3) and (—1, 3) are not valid. Thus
the pair (o,7) does not satisfy the D-condition, so o £p 7.
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oe | oe |
o 0 o 0
[ ] O [ ] O
e 0! ® 0!
o) ] ° o) T °
ool ] | oe | °
I ___Joe__| | _____|__ ] ce__ |
®0 [ ®0 [ o
! e 0 : e 0
e | o© o | o
10 @ 10 @
) ° ) °
o o o o
‘ [ Xe) ‘ [ Xe)
[] : valid D-cell [0 : not valid D-cell
Figure 1.3: D-cells.
The maximum of D,, is
12...n, ifniseven,
Wo = . .
12...n, ifnisodd.



Chapter 2
The main problem

Every Coxeter group W, partially ordered by the Bruhat order, is a graded
poset, with rank function given by the length, and it is EL-shellable, hence
Cohen-Macaulay, and Eulerian.

The aim of this work is to investigate whether a particular subposet of W,
namely that induced by the set of involutions of W, that is

Invol(W) = {w € W : w® =1},

is endowed with similar properties.

2.1 Motivation

The problem arises from a geometric question.

In fact it is known that the symmetric group, partially ordered by the Bruhat
order, encodes the cell decomposition of Schubert varieties (see, e.g., [Ful]).
In [RS1], [RS2] Richardson and Springer consider a vast generalization of this
partial order, in relation to the cell decomposition of certain symmetric varieties,
obtaining, in a particular case, the poset Invol(Sy,).

Here we give an outline of their work. Let G be a connected and reductive linear
algebraic group. Assume that G is defined over an algebraically closed field F'
of characteristic # 2. Let # be an automorphism of G of order 2. Let T' be
a maximal torus of G and let B be a Borel subgroup of G containing T'. We
assume that B and T are #-stable. Let K be the fixed point subgroup of 6.

23
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It is known that K is a (not necessarily connected) reductive group. We denote
by X the quotient variety G/K and call it the symmetric variety defined by
(G, 0). Then B, acting by left translations, has finitely many orbits in X. The
authors study the ordered set V of the orbits, whose order is the following: if
u,v € V, then v < v if u is contained in the Zariski closure of v.

They give some concrete examples of this order on V', and one is the following.
Let G = GL,(F) and define the involution 6; by 6;(g) = !g~!. The fixed point
subgroup K of 6; is the orthogonal group O, (F), and the symmetric variety
X = GLp(F)/On(F) can be identified with the variety of non-singular quadrics
on F™. Let B (resp. T) be the group of all upper triangular (resp. diagonal)
matrices in G. Actually, 6 is replaced by another involutive authomorphism 6,
conjugate to 8; by an inner automorphism, such that B and T are @-stable.

In this case, the authors show that there is a natural bijection of V onto the
set of involutions of the symmetric group Sy, and that this bijection is an anti-
isomorphism of posets (where the involutions of S,, have the induced Bruhat
order).

2.2 The main result
The following is the main result of this work.

Theorem 2.2.1 Let W be a classical Weyl group. The poset Invol(W) is

1. graded, with rank function given by

for every w € Invol(W);
2. EL-shellable;

3. Eulerian.

Theorem 2.2.1 will be proved separately for the symmetric group, for the hy-
peroctahedral group and for the even-signed permutation group, respectively
in Chapters 4, 5, 6. In next section we discuss some algebraic and topological
consequence of Theorem 2.2.1.
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2.3 Algebraic and topological consequences

Let W be a classical Weyl group. Our result have the following algebraic and
topological consequences.

Theorem 2.3.1 The poset Invol(W) is Cohen-Macaulay.

Proof. By Theorem 1.2.2, it is a consequence of the E L-shellability. O

Theorem 2.3.2 Let 0,7 € Invol(W), with o < 7, be such that p(1) — p(o) =
d+2 > 2. Let A be the order complex of the open interval (o,7). Then A

triangulates a d-dimensional sphere.

Proof. The complex A is pure d-dimensional. Since Invol(W) is EL-shellable
and Eulerian, by the definition of EL-labelling and by Theorem 1.2.1, we have
that every interval in Invol(W) of length 2 has exactly two maximal chains.
Thus every (d — 1)-face of A is included in exactly two d-faces. Since A is
shellable, by a result of Danaraj and Klee [DK, p. 444], it follows that A
triangulates a d-dimensional sphere. O

Theorem 2.3.3 Let 0,7 € Invol(W), with o0 < 7 and p(1) — p(o) > 2. Let
P =Jo,7] or P = (0,7). Then P is Gorenstein.

Proof. Tt is a consequence of Theorems 2.3.2 and 1.2.3. |

2.4 A conjecture

It is natural to conjecture that our main result actually holds for every Coxeter
group. In infinite cases, we mean that every interval [0, z] of the poset has the
mentioned properties.

Conjecture 2.4.1 Let W be a Cozeter group. The poset Invol(W) is

1. graded, with rank function given by

p(w) = l(w) + al(w)

for every w € Invol(W);
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2. EL-shellable, hence Cohen-Macaulay,

3. Eulerian.

After a preliminary investigation on the affine Weyl groups (which also have
nice combinatorial descriptions), we fill that our techniques may be applicable
also to this class of Coxeter groups.

There is another class of Coxeter groups, which are not Weyl groups, for which
the conjecture is true, namely the class of dihedral groups. To this class is
dedicated next subsection.

2.4.1 The dihedral group

Definition 2.4.2 The dihedral group I»(m), with m > 3, is the Coxzeter group
generated by two elements a and b, whose Coxeter graph is

m
a & }

By the subword property (Theorem 1.4.1), it’s easy to reconstruct the Hasse
diagram of the poset I»(m) with the Bruhat order. We denote by e the empty
word, which is the minimum of the poset. Note that, since

(ab)™ =e,
the poset is finite and the maximum is

wo = abab. .. .
———

m

As an example, in Figure 2.1 the Hasse diagram of I, (5) is represented.

Note that in the dihedral group I>(m) the involutions are the minimum, the
maximum and all the elements of odd rank. So the subposet of I5(m) induced by
the involutions has the same Hasse diagram as another dihedral group. Precisely
(up to poset isomorphism):

Invol(Iy(m)) = I ([%

|+1). (2.1)
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ababa
abab baba
aba bab
ab ba
a b

Figure 2.1: Hasse diagram of I5(5).

The reflections are exactly the elements of odd rank. So the reflections are all
the involutions except the minimum and, only if m is even, except the maximum.

Thus the absolute length is given by

al(w) = 2, if l{w) is even,
] 1, ifl(w) is odd,

for every w € Iy(m)\{e}, and al(e) = 0.

Theorem 2.4.3 The poset Invol(I>(m)) is

1. graded, with rank function given by

for every w € Invol(I2(m));
2. EL-shellable, hence Cohen-Macaulay;

3. FEulerian.

Proof. Since the results are known to hold for every Coxeter group, in particular
for dihedral groups, by (2.1) it follows that Invol(I2(m)) is graded, E L-shellable

and Eulerian.
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On the other hand it’s easy to check that the rank function p of Invol(Iz(m))
and the average between the length and the absolute length actually are the
same function. In fact for every w € Invol(I;(m)) we have

(0, ifw=e,
l(w)+1’ if w# e and w # wy,
l(w) + al(w) 2
plw) = 5 =< ma42
5 if w =wp and m is even,
1
B, ifw=wandm s odd



Chapter 3
General techniques

In this section we expose some general techniques that we will follow to prove
that a poset is graded and EL-shellable.

3.1 Gradedness

Let P be a finite bounded poset.

Definition 3.1.1 A successor system of P is a subset

HC{(z,y) € P*:az <y}
An insertion system of P is a successor system H of P such that

(insertion property) for every z,y € P, with x < y, there exists z € P
such that
(z,2) € H and z<uy.

A covering system of P is a pair (H,p), where H is an insertion system of P
and p: P - NU{0} is a statistic on P such that

(p-base property) p(0) = 0;

(p-increasing property) for every (z,y) € H, we have
p(y) = p(z) + 1.

29
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Next theorem gives a general method to prove that a poset is graded with a
given rank function: it suffices to find a covering system of P.

Theorem 3.1.2 If there exists a covering system (H, p) of P, then P is graded
with rank function p.

Proof. By the p-base property, p(0) = 0. Now let z,y € P, with x <y. By the
insertion property, there is z € P, such that (z,2) € H and z < y. Since H is
a successor system, we have x < z, and since = <y, necessarily z = y. By the
p-increasing property, we have p(y) = p(z) = p(z) + 1, O

By Theorem 3.1.2, to prove that a poset P is graded, it suffices to find a covering
system of P, and this can be done by the following steps:

1. exhibit a successor system H of P;

2. prove that H is an insertion system, by showing that the insertion property
holds;

3. exhibit a candidate rank function p and prove that (H,p) actually is a
covering system, by showing that the p-base property and the p-increasing
property hold.

A covering system (H,p) also gives a complete description of the covering
relation in P: the pairs of elements which are in covering relation are exactly
the pairs in H.

Theorem 3.1.3 Let (H, p) be a covering system of P. Let x,y € P. Then

rdy & (v,y) € H

Proof. If x <y, then we have already observed, in the proof of Theorem 3.1.2,
that (z,y) € H. On the other hand, for every (z,y) € H we have z < y. In
fact, from the insertion property and the p-increasing property, it follows that
p is order-preserving, that is, for every s,t € P, s < t implies p(s) < p(t). If
we suppose, by contradiciton, that there is z € P such that x < z < y, then we
have p(y) > p(x) + 2, which is in contradiction with p(y) = p(x) + 1. O
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3.2 Labels

Let @ be a totally ordered set, the set of labels.

Definition 3.2.1 Let H be a successor system of P. A good labelling of H is
a function X : H — @ such that

(injectivity property) for every (z,y),(z,2) € H, we have

Az, y) = Nz,2) = y==z.

Let H be a successor system of P and let A be a good labelling of H. Let x € P.
An element ¢ € Q) is a suitable label of x if there is y € P such that (z,y) € H
and A(z,y) = i. By the injectivity property, such a y is unique, and we call it
the transformation of x with respect to the label 4, and denote it by

t; (2).

The set of all suitable labels of z is denoted by A(z).

To show that H is an insertion system we give a good labelling of H, and we
use the following equivalent version of the insertion property:

(insertion property) for every z,y € P, with x < y, there exists a
label i € A(z) such that

tf(z) <.

If (H,p) is a covering system of P, then by Theorem 3.1.3 we have z < y if and
only if (z,y) € H. In this case a good labelling A of H is an edge-labelling of
P. Tt is useful to introduce the following terminology: if x € P and ¢ € A(x)
then we call tI'(z) the covering transformation of z with respect to the label 4,
and denote it by

ct? (z).

Thus, for every € P, i € A(z) we have z < ctf(z). On the other hand, if z <y,
then y = ctF(x) for a unique i € A(z), and we write also

r<y.

K3
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3.3 FEL-shellability

In each of the posets that we consider we define a particular edge-labelling,
which we call “standard”. Then we prove that the posets are EL-shellable by
showing that the standard labelling of P is an EL-labelling, and this is done
with the following general considerations.

Note that, if (H, p) is a covering system of P, then by the insertion property,
for every z,y € P, with x < y, the set

{i € A(z) : ctf (z) <y}
is not empty. This allows to give the following definition.
Definition 3.3.1 Let (H,p) be a covering system of P. Let x,y € P, with
x <y. The minimal label of & with respect to y, denoted by miy(x) (or simply
mi), is
miy(z) = min{i € A(z) : ct;(z) <y}

The minimal covering transformation of z with respect toy, denoted by mct{f (2),
is the covering transformation of x with respect to the minimal label:

mctf(w) = cth .(z).
It is useful to state the following, which is a consequence of the definitions.

Theorem 3.3.2 Let z,y € P, withx <y. Then

z < mctf(x) <uy.
By Theorem 3.3.2, the following definition is well-posed.

Definition 3.3.3 Let z,y € P, with x < y. The minimal chain from z to y is
the saturated chain

r=rodr1<...42 =Y,

defined by

Ti = mctfj(:ci_l),

for every i € [k].
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By the definition of minimal covering transformation, this chain has, among all
the saturated chains from z to y, the lexicographically minimal labelling. To
prove the EL-shellability of the poset, it remains to show that this chain has
increasing labels (increasing property) and that any other saturated chain
from z to y, has at least one decrease in the labels (decreasing property).






Chapter 4
Preliminary results

In this chapter we discuss some preliminary results, which play a crucial role
in the proof of the main result of this work. Precisely, we give a combinatorial
description of the absolute length of the involutions in classical Weyl groups,
and we describe the minimal covering transformation (in the sense of Definition
3.3.1) in these groups, in particular discovering a characterization of the covering
relation in the groups B, and D,,.

4.1 Absolute length of involutions in classical

Weyl groups

In classical Weyl groups there is a nice combinatorial description for the absolute
length of the involutions, as we show in this section.

We recall that the absolute length of an element w € W, denoted by al(w), is
the minimal & such that w can be written as a product of k& reflections.

4.1.1 The symmetric group
We recall that in the symmetric group the reflections are the transpositions:

T ={(i,5) € [n]* - i < j}.

35
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Let 0 € S,,. The number of excedances of o is
exc = |{i € [n] : o(4) > i},
that is, the number of dots of the diagram which are above the diagonal.

In the symmetric group the absolute length of an involution is simply given
by the number of excedances. Note that an involution of S, has the diagram
symmetric with respect to the diagonal.

Theorem 4.1.1 Let o € Invol(S,). Then

al(o) = exc(o).

Proof. Let {i1,...,i} be the excedances of 0. If we set j, = o(ip), for p € [e],
then we have

0= (i17j1)"'(i67j6)' (41)
Since al(o) is the minimal number of transpositions in which o can be decom-
posed, it follows that
al(o) < exc(o).

On the other hand, for every x € S, and for every transposition (i,5) we have
exc(x(i,J)) < exc(x) + 1, as it can be easily checked. So

exc(o) < al(o).

Thus al(c) = exc(o) and (4.1) gives a minimal decomposition of ¢ as a product
of reflections. O

For example, for o = 32154 € Invol(Ss), we have al(o) = exc(o) = 2. In fact

o= (173) ) (47 5)
t1 to

is a minimal decomposition of ¢ as a product of reflections of Ss.

4.1.2 The hyperoctahedral group

We recall that in the hyperoctahedral group the set of reflections is
T ={(i,—1) =i € [n]} U{(i,4) (=i, —j) : 1 < i < |j| < m}.

We define a new statistic on a signed permutation o.
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Definition 4.1.2 Let o0 € B,,. The number of deficiencies-not-antideficiencies
of o is
dna(o) = |{i € [n]: —i < o(i) < i},

that is, the number of dots of the diagram of o which are below the main diagonal

(deficiencies) and not below the antidiagonal (not-antideficiencies).

For example, consider the signed permutation 0 = 4731562 € By7, whose
diagram is shown in Figure 4.1. Looking at the picture, dna(o) is the number
of dots which lie in the gray area. In this case dna(o) = 4.

Figure 4.1: The dna statistic.

Note that, if o is an involution of B,,, as in our example, an alternative descrip-
tion of dna(o) is the following:

_n-— fiz* (o) + afizt (o)

dna(o) 2 ,

where
fizt(o)=|{i € [n] : 0(i) =i} and afizt(c)=|{i € [n]:0o(i) = —i}|

are, respectively, the number of positive fixed points and positive antifized points
of o, that is, the number of dots of the diagram of ¢ which are, respectively, in
the cells (4, 7), with 4 > 0, of the main diagonal and of the antidiagonal.

In the hyperoctahedral group the absolute length of an involution is given by
the dna statistic. Note that an involution of B, has the diagram symmetric
with respect to both the diagonals.
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Theorem 4.1.3 Let o € Invol(B,). Then

al(o) = dna(o).

Proof.  Let {i1,...,ir} be the deficiencies-antiexcedances of o, that is, the
indices ¢ > 0 such that —i < (i) < 4. Let {h1,...,hs} be the positive antifixed
points of o, that is, the indices ¢ > 0 such that o(i) = —i. Obviously dna(c) =
r+s. If we set j, = 0(ip), for every p € [r], then we have

T S

0= H(ipajp)(_ipa —Jp) - H(hqa —hy). (4.2)
p=1 q=1
Since t, = (ip, jp)(—ip, —Jjp), for p € [r], and t,q = (hq, —hy), for g € [s], are
all reflections of B,,, we have

al(o) <1+ s =dna(o).

On the other hand for every x € B,, and for every reflection ¢ of B, we have
dna(xt) < dna(x) + 1. So
dna(o) < al(o).

Thus al(o) = dna(o) and (4.2) gives a minimal decomposition of ¢ as a product
of reflections. O

For example, for the involution of Figure 4.1, we have al(c) = dna(c) = 4. In
fact
0= (1a4)(_1a _4) : (75 _2)(_7a 2) : (3: _3) : (6: _6) (43)
AN AN AN ,

~

~~ ~~

t1 to t3 tq

is a minimal decomposition of ¢ as a product of reflections of By.

4.1.3 The even-signed permutation group

We recall that in the even-signed permutation group, the set of reflections is
T ={(,5)(=i,—j) : 1 < i <|j| <n}.

A surprising fact is that in the hyperoctahedral group and in the even-signed
permutation group, the combinatorial description for the absolute length of an
involution is exactly the same: in both cases it is given by the dna statistic.
But the reasons are different.
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Theorem 4.1.4 Let o € Invol(D,,). Then

al(o) = dna(o).

Proof. Let {i1,...,ir} be the deficiencies-antiexcedances of o. Note that an
even-signed permutation which is an involution must have an even number of
positive antifixed points, so we can consider them in pairs: let {hq, k1,..., s, ks}
be the positive antifixed points of . We now have dna(o) = r + 2s. If we set
Jp = 0(ip), for every p € [r], then we have

T 8 8

0= H(ipajp)(_ipa _jp) ’ H(hqa kq)(_hqa _kq) ’ H(hq: _kq)(_hqu kq)- (4-4)
p=1 q=1 g=1
Since t, = (ip, Jp)(—ip,—Jp), for p € [r], tr429—1 = (hq,kq)(—hg,—k,) and
try2q = (hq, —kq)(—hg, kq), for g € [s], are all reflections of D,,, we have

al(o) < r+ 2s = dna(o).

On the other hand for every x € B, and for every reflection ¢ of B,, we have
dna(xt) < dna(x) + 1. So
dna(o) < al(o).

Thus al(0) = dna(o) and (4.4) gives a minimal decomposition of o as a product
of reflections. O

For example, for the involution of Figure 4.1, which is also in Invol(D7), we
have al(c) = dna(o) = 4. Note that the decomposition in (4.3) does not work
in D7, since (3,—3) and (6, —6) are not elements of D;. But

0= (1,4)(-1,-4) - (7,-2)(7,2) - (3,6)(3, =6) - (3, =6)(—3,6)

RN RN vl
~" ~~ ~~ ~~

t1 to i3 ta

is a minimal decomposition of ¢ as a product of reflections of D.

4.2 Minimal covering transformation in classical
Weyl groups
In this section we apply the general techniques introduced in Chapter 3 to

classical Weyl groups, obtaining results which give new proofs of known facts
and which will be the starting points for the proofs of next chapters.
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4.2.1 The symmetric group

By Proposition 1.6.3, we can define a natural edge-labelling of S, (the same
introduced by Edelman in [Ede] to prove the EL-shellability of S,,).

Definition 4.2.1 The standard labelling of S,, is the edge-labelling
A {(z,y) € S5 rwayl = {(i,4) € [n]* 10 < 5}
defined in the following way: for every o,7 € S,, with o < T, we set
Ao, 7) = (i, ),
where (i,7) is the free rise of o such that
T=0(i,j).

With the terminology introduced in Section 3.2, we can say that the suitable
labels of o are its free rises and that, if (4, ) is a free rise of o, then the covering
transformation of o with respect to (4,7) is

thﬁj) (o) = o(i, ).

In order to describe the minimal covering transformation, we give the following
definitions.

Definition 4.2.2 Let 0,7 € S,,, with 0 < 7. The difference index of o with

respect to T, denoted by di,(c) (or simply di), is the minimal index on which o
and 7 differ:

di,(0) =min{i € [n] : 0(i) # 7(3)}.

We write di, instead of di (o), when there is no ambiguity about the permuta-

tions ¢ and 7 which we are referring to.

Lemma 4.2.3 Let 0,7 € S, with o < 7. Then

o(di) < 7(di).

Proof. First note that, by definition, we have

o(di) # 7(di).
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Now suppose, by contradiction, that o(di) > 7(di). In this case we would have
oldi,o(di)] = 7[di,o(di)] + 1. But 0 < 7 and, by Theorem 1.6.4, this implies
oldi,o(di)] < 7[di, o(di)], which is a contradiction. O

Lemma 4.2.4 Let 0,7 € Sy, with o < 7. Then the set

{jeldi+1,n]:0(j) € [o(di) + 1,7(di)]} (4.5)
18 not empty.
Proof. Set k = o~ (7(di)). If k € [di — 1], then o(k) = 7(k), that is k = di,
which is a contradiction. If ¥ = di, then o and 7 agree at the index di, which

is also a contradiction. Thus k € [di 4+ 1,n]. Also, o(k) = 7(di), so k belongs to
the set (4.5). O

Previous lemmas ensure that next definition is well-posed.

Definition 4.2.5 Let 0,7 € S,, with 0 < 7. The covering index of o with
respect to T, denoted by ci (o) (or simply ci), is

cir(o) =min{j € [di + 1,n] : 6(j) € [o(di) + 1,7(di)]}.
By definition (di, ci) is a free rise of o, so it is one of its suitable labels. In next

two propositions we prove that it is the minimal label of o with respect to 7, in
the sense of Definition 3.3.1.

Proposition 4.2.6 Let 0,7 € Sy, with o0 < 7. Then

ctfd"i’cz.)(a) =o(di,ci) <.
Proof. Let x = o(di,ci). We may assume, without loss of generality, that
di =1. Set R =[1,ci — 1] x [0(1) + 1,0(ci)]. For every (h,k) € [n]?, we have

o[h, k] +1, if (h,k) € R,

XWM:{amm, if (h, k) ¢ R.

Thus, by Theorem 1.6.4, to prove that x < 7, we only have to show that
Tlh, k] > o[h, k] + 1 for every (h,k) € R. But if (h, k) € R, then we have

olh, k] = olh,7(1) + 1] < 7[h,7(1) + 1] < 7[h, k] — 1,

sox <T. O
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Proposition 4.2.7 Let 0,7 € Sy, with 0 < 7. Then

mir (o) = (di, ci).

Proof. Let (i,j) be a free rise of ¢ such that

ct*(gifj) (0) =0(i,j) <.

We want to prove that (di, ci) < (4,7). Suppose, by contradiction, that (4,7) <
(di, ci), so either ¢ < di, or i = di and j < ci. If i < di, since o and 7 must
differ at the index 4, the minimality of di is contradicted. If ¢ = di and j < ct,
set & = o(i,7). We have £(di) = o(j) and, since £ < 7, by Lemma 4.2.3,
&(di) < 7(di). So o(j) < 7(di) and this contradicts the minimality of ci. O

Thus in the symmetric group the minimal covering transformation of o with
respect to 7 is

met? (o) = o(di, ci),
and we have the following.

Theorem 4.2.8 Let 0,7 € Sy, with o < 7. Then

o dmetd (o) < 7.

Starting from Theorem 4.2.8, with the techniques described in Section 3.3,
it could be proved that the standard labelling of S,, is an FEL-labelling,
rediscovering the result proved by Edelman.
4.2.2 The hyperoctahedral group
Definition 4.2.9 Let o € B,,. A rise (i,j) of o is central if

(0,0) € [i, 5] x [0(i), 0 (4)]-

A central rise (i,7) of o is symmetric if j = —i.

In order to find a characterization of the covering relation in B,,, we start
defining a successor system.
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Definition 4.2.10 Let 0,7 € B,,. We say that (o,7) is a good pair in B, if
either

1. 7 =0(i,5)(—1i,—j), where (i,7) is a not central free rise of o, or

2. 7 =0(i,j), where (i,7) is a central symmetric free rise of o.

Definition 4.2.10 is illustrated in Figure 4.2 (whose caption will be made clear
later), where black and white circles denote respectively o and 7, inside the
gray areas there are no other dots of ¢ and 7, and the diagrams of the two
permutations are supposed to be the same anywhere else.

Figure 4.2: Covering relation in B,,.

We set

Hg, = {(0,7) € B : (0,7) is a good pair in B,},
and define the standard labelling A of B,, by associating with every good pair
(0,7) € Hpg,, the pair (i,j) € [£n]? mentioned in Definition 4.2.10, which is

obviously unique.

By Propositions 1.6.8 and 1.6.3, it follows that Hp, is a successor system of
B,, and, since 7 is uniquely determined by o and by the label (4,7), A is a good
labelling.

Given o € B, the suitable labels of o are then the not central free rises of ¢
and the central symmetric free rises of o. If (¢,7) is a suitable label of o then
the transformation of o with respect to (4,7) is

1P (o) = o(i,7)(—i,—j), if (,7) is not central,
(é:3) a(i,7), if (4,7) is central symmetric.
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Now let 0,7 € B,, with ¢ < 7. In order to prove that the insertion property
holds, we define the label

in. (0,7) (di, c1), if (di, i) is not central,
o,T) =
B (di,—di), if (di,ci) is central.

Note that ip, (0, 7) is always a suitable label of o. So we can define the signed
permutation

= ¢Pn

o(di,ci)(—di,—ci), if (di,ci) is not central,
XB, (0, T) B, (U,T)(U) =

o(di,—di), if (di, ci) is central.
Proposition 4.2.11 Let 0,7 € By, with o < 7. Then

xB, (o,7) < T.

Proof. Let x = xB, (0,7). If (di,ci) is not central then
X = o(di,ci)(—di, —ci) = met>* (wo (metS (o))wp).

Thus, by Proposition 1.6.8, Proposition 1.4.3 and Theorem 4.2.8 (applied twice),
we have
X< T

If (di,ci) is central, then x = o(di,—di). We may assume, without loss of
generality, that di = —n. So necessarily o(di) = —1. Set R = [£n] x {1}. For
every (h,k) € [£n]? we have

olh, k] +1, if (h,k) € R,

Xl k] = { olh, ¥, it (h, k) ¢ R.

Thus to prove that x < 7 it suffices to show that 7[h,k] > o[h,k] + 1 for

every (h,k) € R. By the simmetry of the diagram, it’s enough to show that
7[h,1] > o[h,1] 4+ 1 for every h € [—n]. But, if h € [-n] we have

olh,1] = o[h, 7(di) + 1] < 7[h, 7(di) + 1] < 7[h,1] — 1.

We recall that the length of ¢ € B, is given by

_ inv(o) + neg(a)-

I(0) -
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Proposition 4.2.12 The pair (Hp, ,l) is a covering system of B,.

Proof. By Proposition 4.2.11, Hg, is an insertion system of B,. The p-base
property is trivial. It remains to prove the p-increasing property. Consider
(0,7) € Hp, and let A(o,7) = (i,7). We have

ino(r) inv(o) +2, if (¢,7) is not central,
inu(t) =
inv(o) +1, if (¢,7) is central syemmtric,

and
neg(o), if (¢,7) is not central
neg(t) = o e o s .
neg(o) + 1, if (i,7) is central symmetric.
Thus in each case (1) = (o) + 1. O

We have found a covering system of B,,. So we have a characterization of the
covering relation in B, which we state in the following.

Theorem 4.2.13 Let 0,7 € B,,. Then o A7 if and only if either

1. 7 =0(i,5)(—i,—j), where (i,5) is a not central free rise of o, or

2. 7 =0(i,j), where (i,j) is a central symmetric free rise of o.

Theorem 4.2.13 is illustrated in Figure 4.2.

If 0 € B,, and (i, j) is a suitable label of o, then the covering transformation of
o with respect to (i,7) actually is a covering transformation, denoted by

ctg:‘j) (o).

In next proposition we prove that ip, (o, 7) is the minimal label of o with respect
to 7, in the sense of Definition 3.3.1.

Proposition 4.2.14 Let 0,7 € B,,, with o < 7. Then

(di,ci), if (di,ci) is not central,

mi, (o) =ipg, (0,7) = { (di, —di), if (di,ci) is central.

Proof. If (di,ci) is not central (case 1) then ig, (o,7) = (di,ci), otherwise
(case 2) ip, (0,7) = (di,—di). Let (i,j) be a suitable label of & such that
ctgfj) (o) < 7. We want to prove that

i, (0,7) < (,7)-
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Necessarily ¢ > di. If i > di then ip_(0,7) < (4,]). So, suppose i = di.

In case 1, we have to prove that j > ci. Suppose, by contradiction, that j < ci
and set £ = o(i,5). We have £(di) = o(j) and, since £ < 7, by Lemma 4.2.3,
&(di) < 7(di). So o(j) < 7(di) and this contradicts the minimality of ci.

In case 2, we have to prove that j > —di (actually, the only possibility is
j = —di). If we suppose j < ci, as in case 1 we get a contradiction. Thus j > ci.
Since (di, j) is a suitable label of o and it is central, it has to be symmetric,
that is j = —di. d

Thus in the hyperoctahedral group the minimal covering transformation of o
with respect to 7 is

metP (o) o(di,ci)(—di,—ci), if (di,ci) is not central,
g =
T o(di, —di), if (di, ci) is central,

and we have the following.

Theorem 4.2.15 Let 0,7 € B,,, with o < 7. Then

o dmetP (o) < 1.

Starting from Theorem 4.2.15, it could be proved that the standard labelling of
B,, is an EL-labelling, rediscovering a known result.

4.2.3 The even-signed permutation group

Definition 4.2.16 Let o € D,,. A central rise (i,j) is semifree if

{keli,j]:o(k) €[o(),0(D]} = {i, =44},

in other words if the only dots of the diagram of o lying in the rectangle [i, j] X
[0(i),0(4)] are those in the cells (i,0(3)), (—j,—0(j)) and (§,o(5)).

An example of central semifree rise is illustrated in Figure 4.3 (3).

As we did for B,,, we start defining a successor system of D,,.

Definition 4.2.17 Let 0,7 € D,,. We say that (o,7) is a good pair in D, if
7 =0(i,5)(~i,~4),

where (i,7) is either
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1. a not central free rise of o, or
2. a central not symmetric free rise of o, or
3. a central semifree rise of o.

Definition 4.2.17 is illustrated in Figure 4.3 (whose caption will be made clear
later), where we use the same notation as in Figure 4.2.

Figure 4.3: Covering relation in D,,.

We set
Hp, ={(o,7) € D? : (0,7) is a good pair in D, },

and define the standard labelling A of D,, by associating with every good pair
(0,7) € Hp,, the pair (i,j) € [£n]?> mentioned in Definition 4.2.17, which is
obviously unique.

It’s easy to see that Hp_ is a successor system of D,, and, since 7 is uniquely
determined by o and by the label (i,j), A is a good labelling.

Given o € D, the suitable labels of o are then the not central free rises of o,
the central not symmetric free rises of o and the central semifree rises of o. If
(i,7) is a suitable label of o then the transformation of o with respect to (2, 5)

1S
ti (o) = o (i, §)(=i, —j)-

In order to prove that the insertion property holds, we need the following
definition, which can be given in general for the symmetric group, and which
the hyperoctahedral group and the even-signed permutation group inherit.

Definition 4.2.18 Let 0,7 € S, with 0 < 7. Suppose that the set

{j€lci+1,n]:0(j) € [o(di) +1,0(ci) — 1]}
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is not empty. Then the second covering index of o with respect to T, denoted
by sci. (o) (or simply sci) is

scir(o) =min{j € [ci+ 1,n] : 6(j) € [o(di) + 1,0(ci) — 1]}.
Definition 4.2.19 Leto,T € D, witho < 7. We say that (o, 7) is a D-special
pair if

1. (di <) ci <0
2. (o(di) <) o(ci) < 0;
3. 7(di) = —o(ci);

4. [ci+1,—ci— 1] x [o(ci), —o(ci)] is empty for o.
Moreover, a special pair (o,7) can be either of the first kind, if
5. [ci+ 1, —ci— 1] x [o(di), —o(di)] is not empty for o,
or of the second kind, if
57, [ci+1,—ci—1] x [o(di), —o(di)] is empty for o.

Let 0,7 € D, with 0 < 7. We define the label

(di, ci), if (o, 7) is not a D-special pair,
ip,(0,7) =< (di,sci), if (o,7) is a D-special pair of the first kind,
(di, —ci), if (o,7) is a D-special pair of the second kind,

Note that, if (o,7) is a D-special pair of the first kind, then, by 4 and 5’, sci
necessarily exists. Also note that ip_ (o, 7) is always a suitable label of o, so we
can define the even-signed permutation

xp, (0,7) = tﬁ)’; (0,7) (o).
All cases are shown in Figure 4.4, where o, 7 and x = xp, (0, 7) are represented.
Black circles denote o, white squares 7 and white circles x. Only the dots in
columns di and —di of 7 are represented, possibly with a gray rectangle around,
denoting the range of variation of 7(di). Inside the gray rectangles there are no
other dots of ¢ and x than those indicated and the diagrams of ¢ and x are
supposed to be the same anywhere else.

If (0, 7) is not a D-special pair, we distinguish between the following cases:
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. (di <) 0< e,

L (di<) i<,

o(di) < 0 < o(ci);

i, 0 < o(di) (< o(ci));

(o(di) <) o(ci) < 0;
0 < o(di) (< o(ci));
o(di) <0< a(ci), o(ci) > —o(di);

o(di) <0< o(ci), o(ci) < —o(di);

7. (di <) ci <0, (o(di) <) o(ci) <0, 7(di) # —o(ci);
8. (di <) ¢i <0, (o(di) <) a(ci) <0, 7(di) = —o(ci),
[¢i + 1, —ci — 1] x [o(ci), —o(ci)] is not empty for o.

Otherwise (o, 7) can be either a D-special pair of the first kind:

9. (di <) ¢i <0, (0(di) <) o(ci) <0, 7(di) = —o(ci),
[ci +1,—ci — 1] x [o(ci), —o(ci)] is empty for o,
but [¢i + 1, —ci — 1] x [o(di), —o(di)] is not,
and we distinguish between

9a. sci <0 and
9b. sci > 0;

or a D-special pair of the second kind:

10. (di <) ci < 0, (o(di) <) o(ci) < 0, 7(di) = —o(ci),

[¢i + 1, —ci — 1] x [0(di), —o(di)] is empty for o.

Theorem 4.2.20 Let 0,7 € Dy, with o < 7. Then

XD, (Ga T) <.
The proof of Theorem 4.2.20 is rather technical and will be exposed at the end
of this section.
We recall that the length of o € D,, is given by

(o) = inv(o) ;neg(o)‘
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,,,,,,,,,,,,,,,,,,,,

T
not
- empty {----
for o

9a 9b 10

Figure 4.4: Minimal covering transformation in D,,.
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Proposition 4.2.21 The pair (Hp,,l) is a covering system of D,,.

Proof. By Theorem 4.2.20, Hp,_ is an insertion system of D,,. The p-base
property is trivial. It remains to prove the p-increasing property. Consider
(0,7) € Hp,. We refer to the cases as in Figure 4.4. We have

inv(r) inv(og) +4, in cases 1 and 10,
no(t) =
inv(o) + 2, in all other cases.

and
neg(r) = neg(o) + 2, ?n cases 1 and 10,
neg(o), in all other cases.
Thus in each case I(T) = (o) + 1. O

We have found a covering system of D,. So we have a characterization of the
covering relation in D,,, which we state in the following.

Theorem 4.2.22 Let o,7 € D,,. Then o <1 if and only if
T = U(Za])(_l7 _j)a
where (i,J) is either
1. a not central free rise of o, or

2. a central not symmetric free rise of o, or

3. a central semifree rise of o.

Theorem 4.2.22 is illustrated in Figure 4.3.

If 0 € D, and (i,5) is a suitable label of o, then the transformation of o with
respect to (4, ) actually is a covering transformation, denoted by

et (0) = (i, §) (=i, —)-
We now prove that ip, (o, 7) is the minimal label of o with respect to 7.

Proposition 4.2.23 Let o,7 € D,,, with o < 7. Then

mir (o) =ip, (0,T).
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Proof. Let x = xp,(0,7). If (0,7) is not a D-special pair (case 1), then
ip, (0,7) = (di,ci), if (o,7) is a D-special pair of the first kind (case 2), then
ip, (0,7) = (di, sci), and if (o,7) is a D-special pair of the second kind (case
3), then ip, (o,7) = (di,—ci). Let (i,j) be a suitable label of o such that
ctg,"j) (0) <7 andlet £ = ctg’"j) (o). We want to prove that

7:Dn (07 T) S (7'7.7)

Necessarily ¢ > di. If ¢ > di then ip,_(0,7) < (i,7). So suppose i = di.

In case 1, we have to prove that j > ci. Suppose, by contradiction, that j < ci.
By the definition of ci, we have o(j) > 7(di). But £(di) = o(j), so £(di) > 7(di),
which contradicts £ < 7.

In cases 2 and 3, we have to prove, respectively, that j > sci and 57 > —ci.
Suppose that the contrary is true. Looking at Figure 4.4 (9a, 9b, 10), it’s
easy to see that, in both cases, the only possibilities are j = ci or j < ¢i and
o(j) > 7(di). But if j = ci, then & = o(di, ci)(—di, —ci) and the pair (¢, 7) does
not satisfy the D-condition, since (di + 1,—o(ci) + 1) is a not valid D-cell of
(&, 7), contradicting £ < 7. On the other hand, if j < ¢i and o(j) > 7(di), then
the conclusion is the same as in case 1. d

Thus in the even-signed permutation group the minimal covering transformation

of o with respect to 7 is

( o(di, ci)(—di, —ci), if (o, 7) is not a D-special pair,
o(di, sci)(—di,—sci), if (o,7) is a D-special pair
metP (o) = { of the first kind,
o(di, —ci)(—di, ci), if (0, 7) is a D-special pair

of the second kind,

\

and we have the following.

Theorem 4.2.24 Let 0,7 € D,,, with o < 7. Then

o aAmetPr (o) < 7.

As for S,, and B,,, starting from Theorem 4.2.24, it could be proved that the
standard labelling of D,, is an EL-labelling, rediscovering a known result.

To prove Theorem 4.2.20 we need two preliminary lemmas.
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Lemma 4.2.25 Let 0,7 € D,, be such that (o,7) satisfies the B-condition. Let
(h,k) € [—n] x [n] be such that onw[h,k] = Tnwl|h,k]. If (h,k) is free for o,
then (h, k) is also free for T, hence it is a D-cell of (o,7).

Proof. Consider the equality o[p)x[+n] = Tnx[xn] ( = k). We have o7y [1n) =
UN[h, k] (since (h, k‘) is free for 0’) and Tlh]x[£n] = TN[h, k] =+ T[h] x [£k]- So

Tk x[+k] = ON[h, k] — N [h, k],

and
UN[h, k] > TN[h, k]

On the other hand, by the B-condition, we have o[|h|, k + 1] < 7[|h|, k + 1], that
is
onwlh, k] + on[h, k] < Tvw[h, k] + Tn[h, E].

So, by onw|[h, k] = Tnw|[h, k], we have
UN[h, k] < TN[h, k]
Thus on[h, k] = Tn[h, k] and ()« [+x] = O, that is, (h, k) is free for 7. O

For the second lemma, we introduce the following notation: for ¢ € D,,, (h, k) €
[-n] x [n] and k1 € [k], we set

Oteselhs k1 k] = O ph—1]x[k1 k]

Oright[h; k1, k] = O[hn]x[ke,k]-

Lemma 4.2.26 Let 0,7 € D,, be such that (o,7) satisfies the B-condition. Let
(h, k) € [-n] X [n] be such that onw[h, k] = Tww[h, k]. Let k1 € [k]. Set

Oleft = Otege|[h; ki, k],
and similarly for oright, Tiert and Trighe. Then
Tright < Oright,
Oleft < Tleft < Oleft + Oright-

Moreover, if 0right < Tright, 0 particular if origne = 0, then

{ Tright = Oright,

Tieft = Oleft,
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and if k1 € [2,k] we have
O'Nw[h, kl — 1] = TNw[h, kl — 1],

otherwise, if k1 = 1, we have

CTWup[h, k] = TWup [h, k]
Proof. By the B-condition, we have o[h — 1, k1] < 7[h — 1, k1], that is

onwlh, k] + oiere < TNw [, K] 4 Tie gt

So, by onw[h, k] = Tww[h, k], we have gjeft < Tiefs.
Consider the equality Ol+n]x[k1,k] = T[£n]x[k1,k] (=k— k1 +1), that is

Oleft + Oright = Tieft + Tright-

It follows

Oright — Tright — Tleft — Oleft > 0.

So Tright S Oright and Oleft S Tieft S Oleft + Oright-
If Oright < Tright then obviously Tright = Oright and Tleft = Oleft-

In this case, if k1 € [2, k] we have

onwlh, ki — 1] = onwlh, k] + 01t = TNW I, k] + Tiege = TNw[h, k1 — 1],

and if k1 = 1 we have

UWUP[h’ k] = Oleft = Tleft = 7'WuIJ[h: k]

We can now prove Theorem 4.2.20

Proof of Theorem 4.2.20. Let x = xp, (0,7). We recall that

o(di, ci)(—di, —ci), if (o, 7) is not a D-special pair,
x =1 ol(di,sci)(—di,—sci), if (o,7) is a D-special pair of the first kind,
o(di,—ci)(—di, ci), if (o,7) is a D-special pair of the second kind.

We refer to the cases as in Figure 4.4. Let us show, case by case, that x < 7.
In every case we may assume, without loss of generality, that di = —n.
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In all cases, except 1, 9 and 10, we have
x = metB (o),

0, by Theorem 4.2.15, the pair (x, 7) satisfies the B-condition.

In case 1, in order to prove that (x,7) satisfies the B-condition, we only have

to show that o[h, k] < 7[h, k] — 2, when h € [—ci] and k = —o(di). We have
olh,k] = olh,7(di) + 1]

T[h, T(di) + 1]

IA

Tlh, k] —1— T[di,h] x[k,7(di)—1]
T[h, k] — 1.

IA

Suppose, by contradiction, that o[h, k] = 7[h, k] — 1. It follows that o[h, 7(di) +
1] = 7[h,7(di) + 1] and 7g; p)x[k,r(di)—1) = 0. The pair (o,7) satisfies the B-
condition, onw[h +1,7(di)] = Tnw[h + 1,7(di)] and (h+ 1,7(d?)) is free for o,
thus, by Lemma 4.2.25, (h+1, 7(di)) is a D-cell of (o, 7). Since (o, 7) satisfies the
D-condition, it has to be valid, that is, owyp[h + 1,7(di)] = Twuplh + 1, 7(di)].
But owup[h + 1,7(di)] = 0 and, since Tjg; px[k,r(di)—1] = 0, We have Ty yp[h +
1,7(di)] = 1, a contradiction. Thus o[h, k] < 7[h, k] — 2.

In case 10, for the B-condition of (x,7), we have again to show that o[h, k] <
T[h, k] — 2, when h € [c¢i] and k = —o(ci). As before we have o[h, k] < 7[h, k] —1
and, supposing by contradiction that o[h,k] = 7[h,k] — 1, we get onw[h +
1,7(di)] = rnw[h+1,7(di)]. Now (h+1,7(di)) is obviously free for both ¢ and
7. So (h+1,7(di)) is a D-cell of (o, 7) and the conclusion is the same as before.

In case 9a, the B-condition of (x, 7) is proved if we show that o[h, k] < 7[h, k]—1,
when (h, k) € [ci,sci — 1] % [o(di) + 1,0(sci)]. If we suppose, by contradiction,
that o[h, k] = 7[h, k], we get onw[h + 1,7(di)] = Tnw[h + 1,7(di)], with the
same conclusion as in previous cases.

Finally, in case 9b, we have to show that o[h,k] < 7[h, k] — 1, when (h, k) €
[ci] % [o(di) + 1,0(sci)] or (h,k) € [—sci] x [—o(sci) + 1,—o(di)]. If (h,k) €
[ci] x [o(di)+1, 0(sci)] this is proved as in case 9a. If (h, k) € [—sci] x [—o(sci)+
1, —o(di)], suppose by contradiction that o[h, k] = 7[h, k], that is, oyw [h+1, k—
1] = 7ww[h+1,k—1]. Then, by the D-condition of (o, 7), we get owup[h+1,k—
1] = Twup[h + 1,k — 1]. On the other hand, since origni[h + 1;7(di) +1,k] = 0,
by Lemma 4.2.26 we get oyepi[h+1;7(di) + 1, k] = Tiepe[h+1;7(di) + 1, k], which
implies Twyp[h + 1,k — 1] = 1 + owyplh + 1,k — 1], a contradiction.
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It remains to prove that (x,7) satisfies the D-condition.

If (h,k) is a D-cell of (x,7) which is also a D-cell of (o,7), then it has to be
valid for (o,7), and this necessarily implies that it is also valid for (x, ), as it
can be easily checked in every case. So, case by case, we have to look for the
D-cells of (x,7) which are not D-cells of (o,7) (we call them new D-cells) and
show that they are valid for (x, 7).

In case 1, if (h,k) is a new D-cell, then (h, k) € [—ci + 1] x [—o(di), o(ci) — 1]
and onw|[h, k] = Tnw[h, k] — 1. From

O'Nw[h, k] = O'Nw[h,T(d’i)] < TNw[h,T(d’i)] < TNw[h,k] -1,

it follows that onw[h, 7(di)] = Tnw [h, 7(di)]. Moreover (h,7(di)) is free for o.
So, by Lemma 4.2.25, (h, 7(di)) is a D-cell of (o, 7). By the D-condition of (¢, 7),
it has to be valid, that is, oniert[h, T(di)] = Twiese[h, T(di)]. Since (h,7(di)) is
free for both o and 7, this implies xwiesi[h, k] = Oniest[h, k] = Taiesi]h, K-
Thus (h, k) is valid for (o, x)-

In case 2, if (h, k) is a new D-cell, then (h, k) € [—ci+ 1] x [o(di), o(ci) — 1] and
onw[h, k] = Tnw[h, k] — 1. In this case the reasoning is exactly the same as in
case 1.

In case 3, if (h, k) is a new D-cell, then there are two possibilities: either (h, k) €
[di +1,—ci] x [—o(ci),—a(di) — 1] or (h,k) € [—ci + 1] x [—o(ci), —o(di) — 1]
and UNw[h, k] = TNw[h, k] - 1.

In the first one we have onw/[h, k] = Tvw[h, k] and opigne[h; —7(di), k] = 1 <
Tright[h; —7(di), k]. So, by Lemma 4.2.26, we have

Otefilh; —7(di), k] = Tie s [h; —7(di), K] (4.6)

and oyw[h, —7(di) —1] = Tnw[h, —7(di) — 1]. Thus (h, —7(di)—1) is a D-cell of
(0, T), which has to be valid, that is, owyp[h, —7(di) — 1] = Twyp[h, —7(di) — 1].
This, together with (4.6), implies Xwup[h, k] = owup[h, k] = Twuplh, k]

In the second possibility we have x nw [k, k] = Tvw [h, k] and xrighe[h; —7(di), k] =
1 < Tpignt[h; —7(di), k]. So, by Lemma 4.2.26, we have
Xiefe[h; —7(di), k] = Tiepe[h; —7(di), k] (4.7

and xnywlh, —7(di) — 1] = Tvwlh,—7(di) — 1]. But onwl[h,—7(di) — 1] =
xnw[h, —7(di) — 1], thus (h, —7(di) — 1) is a D-cell of (o, 7), which has to be
valid, 0 Xxwuplh, —7(di) — 1] = owuyp[h, —7(di) — 1] = Twuplh, —7(di) —1]. This,
together with (4.7), implies Xwup[h, k] = Twup[h, k).
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In cases 4 and 5 there are no new D-cells.

In case 6, if (h, k) is a new D-cell, then (h, k) € [di + 1, ci] x [o(ci), —o(di) — 1].
The pair (x,7) satisfies the B-condition, we have xyw/[h, k] = Tww[h, k] and
Xright[; 1, k] = 0. So, by Lemma 4.2.26, xwup[h, k] = Twuplh, k]-

In case 7, if 7(di) > 0 then there are no new D-cells. In fact, if 7(di) €
[—o(ci) — 1], then the presence of a new D-cells implies that (di + 1,7(di)) is
a not valid D-cell of (g,7), contradicting o < 7. If 7(di) € [—o(ci) + 1,n]
and (h, k) is a new D-cell, then (h,k) € [di + 1,ci] x [-o(ci), —o(di) — 1]. In
particular, if 7(di) € [—o(ci)+1, —o(di) — 1], since o1 (7(di)) € [ci+ 1, —ci—1],
then k € [—o(ci), 7(di) — 1]. So

onwlh, k] = o[h — 1,7(di) + 1] < 7[h — 1,7(di) + 1] < Tvw[h, k] — 1,
contradicting onw[h, k] = 7w [h, k]

It remains to consider case 7, when 7(di) < 0, that is, when 7(di) € [o(ci)]. If
(h, k) is a new D-cell, then (h, k) € [di + 1, ci] x [—-o(ci), —o(di) — 1]. We have
Oright[h; —7(di), k] = 1 < Trigne[h; —7(di), k]. By Lemma 4.2.26, this implies

Orefelh; —7(di), k] = Tiepe[h; —7(di), k] (4.8)

and oyw[h, —7(di) —1] = Tnw[h, —7(di) —1]. Thus (h, —7(di) —1) is a D-cell of
(o, 7), which has to be valid, that is, owyp[h, —7(di) — 1] = Twyplh, —7(di) — 1].
This, together with (4.8), implies xwup[h, k] = owuplh, k] = Twuplh, k]

In case 8 there are no new D-cells.

In case 9a, if (h, k) is a new D-cell, then (h, k) € [ci+1, sci] x [—o(sci), —o(di) —
1]. We have o,igne[h; 7(di) + 1,k] = 1, so, by Lemma 4.2.26, either 75 = 0ye st
or Tieft = 01t + 1. If we suppose, by contradiction, that 7jcf¢ = 0yep¢, then
(h,7(di) + 1) is a D-cell of (o, 7), which has to be valid. But owyp[h, 7(di) +
1] = 0 # 1 = Twyplh, 7(di) + 1], a contradiction. So Tieys = oresr + 1 and
owuplh, k] = Twuplh, k] + 2. Thus xwuplh, k] = owuplh, k] = Twuplh, k]

In case 9b, if (h,k) is a new D-cell, then either (h,k) € [ci + 1,—sci] X
[—o(sci),—o(di) — 1] or (h, k) € [—sci+ 1] x [—o(sci), —o(di) — 1]. In the first
hypotesis the reasoning is the same as in case 9a. In the second one we have
xnwlh, k] = Tawl[h, k] and origne[h; 7(di) + 1,k] = 1. So, by Lemma 4.2.26,
either Tieft = Xieft O Tieft = Xteft + 1. If we suppose, by contradiction, that
Tleft = Xieft, then onwlh, 7(di) + 1] = xnwlh, 7(di) + 1] = Taw[h, 7(di) + 1].
So, by the D-condition of (o,7), we get owyplh, 7(di) + 1] = Twuplh, 7(di) +
1]. But owyplh,7(di) + 1] = 0 # 1 = Twyplh, 7(di) + 1], a contradiction.
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SO Tireft = Xiest + 1, which implies Twyp[h, k] = Xwuplh, k] + 2, that is, (h, k) is
valid for (x, 7).

In case 10, if (h, k) is a new D-cell, then (h, k) € [di +1] x [-o(di) —1]. The pair
(x,T) satisfies the B-condition, we have xnw|[h, k] = Tnw|[h, k] and [h, n] x [K]
is empty for x. Thus, as in case 6, by Lemma 4.2.26 we get Xwuplh, k] =
Twup|h, k], that is, once again, (h, k) is valid for (x, 7). O



Chapter 5

Bruhat order on the

involutions of S,

In this chapter we study the poset Invol(S,).

In Figure 5.1 the example of the poset S4, with the induced subposet Invol(S,),
is illustrated. Even in this simple case it is not obvious why the poset Invol(S4)
is graded and who the rank function is. Note that, for example, the involutions
2143 and 4231 have distance 3 in the Hasse diagram of Sy, while they are in

covering relation in Invol(Sy).

5.1 Successor system

Definition 5.1.1 Let 0,7 € Invol(S,). We say that (o,7) is a good pair in
Invol(Sy,) if there exists a rectangle R = [i,j] % [0(i),7(i)] such that o and
T have the same diagram except for the dots in R, and in its symmetric with
respect to the diagonal, for which the situation, depending on the position of R
with respect to the diagonal, is described in Figure 5.2: black and white circles
denote respectively o and T, and the rectangle R (darker gray rectangle) contains

no other dots of o and T than those indicated.

Let (o,7) be a good pair in Invol(S,). The case of the pair (o, 7), denoted by
case(o,T), is h € [6], referring to the pictures of Figure 5.2.

59
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Figure 5.1: From Sy to Invol(S
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Figure 5.2: Covering relation in Invol(Sy,).

The main rectangle of (o,7), denoted by R(o,7) is the rectangle R = [i, j] x
[0(i),7(i)] mentioned in Definition 5.1.1 (darker gray rectangle in the pictures).

We set
Hrpvous,) = {(0,7) € Invol(S,)* : (0,7) is a good pair in Invol(Sy)}

and define the standard labelling X\ of Invol(S,,) by associating, with every good
pair (0,7) € Hppyoi(s,)» the pair (i,j) € [n]2, if B = [i,j] x [o(i),7(5)] is the
main rectangle of (o, 7).

By Proposition 1.6.3, it follows that Hr,ye(s,) is a successor system and, since
7 is uniquely determined by o and by the label (7, ), A is a good labelling.

Given o € Invol(S,,), the suitable labels of o are the pairs (i, j) € [n]? such that
exists 7 € Invol(S,), with A(o,7) = (i,4). Such a 7, obviously unique, is called
the transformation of o with respect to (i, ) and it is denoted by

Invol(Sn)
iqy @)

In order to give a more explicit description of the suitable labels in Invol(S,,),
we introduce the following notation. Let o € S,,. We denote by

Iy(0) = {i€[n]:0(i) =i},
Ie(0) {i € [n]:0(i) >},

>
Ii(o) {i €[n]:0(i) <i}

respectively the sets of fixed points, of excedances and of deficiencies of o.
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The type of a rise (i, j) is the pair (a,b), where a,b € {f,e,d} are such that i €
I, (o) and j € I;(0). A rise of type (a,b) is also called an ab-rise. Furthermore,
we distinguish between two kinds of ee-rises: an ee-rise (i, 7) is crossing if i <
o(i) < j < o(j), non-crossing if i < j < 0(i) < o(j). In other words, an ee-rise
(4,7) is crossing if the cells (i,0(j)) and (j,0(i)) are on opposite sides of the
diagonal, and non-crossing otherwise.

For example, for o = 321654 € Invol(Ss), the rises of o are (1,4), (1,5), (1,6),
(2,4), (2,5), (2,6), (3,4), (3,5), (3,6), and their types are, respectively, (e,e),
(e, ), (e;d), (f,€), (f, ), (f,d), (d,e), (d, f), (d,d) (all nine possible types) and

the ee-rise is crossing.

The following is an easy consequence of the definitions.

Proposition 5.1.2 Let o € Invol(S,). The suitable labels of o are the free
rises whose type is one of the following: (f, f), (f,e), (e, f), (e,d), (e, e).

5.2 Insertion property

Lemma 5.2.1 Let 0,7 € Invol(Sy), with o < 7. Then

di < o(di).

Proof. Fist note that o(di) # 7(di). Since o and 7 are involutions, they must
differ also at the index o(di). But di is the minimal index at which they differ,
thus di < o(di). O

We have already observed that (di,ci) is a free rise of o, but if ¢ and 7 are
involutions, more is true.

Proposition 5.2.2 Leto,7 € Invol(Sy,), with o < 7. Then (di, ct) is a suitable
label of 0.

Proof. By Proposition 5.1.2 and Lemma 5.2.1, we only have to show that
(di, ci) is not an fd-rise. We may assume, without loss of generality, that di = 1.
Suppose, to the contrary, that (1,ci) is an fd-rise, so (1) = 1 and o(ci) < ci.
By the definition of ci, there is no k € [2,ci — 1] such that o(k) € [1,7(1)]. In
particular, since o (ci) € [2, ci — 1], we have ¢i > 7(1). Thus |[{k € [7(1)] : o(k) €
[7(1)]}| = 1, which implies

o[r(1),7(1) + 1] =7(1) — 1.
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Also, since di is an excedance of 7 and 7 is an involution, we have [{k € [7(1)] :
7(k) € [T(1)]}] > 2, which implies
Tlr(1),7(1) +1] < 7(1) — 2.

So o[r(1),7(1) + 1] > 7[r(1),7(1) + 1], but ¢ < 7 and, by Theorem 1.6.4, this
is a contradiction. Thus (1, ¢i) cannot be an fd-rise. O

By Proposition 5.2.2 it makes sense to consider the involution

Sn
XInvol(Sn)(U7 T) = t{g:gzl)( )(U)

In order to prove that the insertion property holds, it is useful to introduce the
following definition.

Definition 5.2.3 Let (0,7) € Hynyou(s,)- The multiplicity of (o,7) is

0, ifcase(o,7) =1,
mult(o,7) =< 1, if case(o,7) =2,3,4,5,

2, if case(o,T) = 6.

We introduce the following notation. Given o € S,,, we set
oi =0 %

Given 0,7 € S,, with o < 7, we set

om = mct2 (o).

Proposition 5.2.4 Let o,7 € Invol(S,), with o < T, and let

X = XInwvol(Sy) (07 T)‘
Then
om, if mult(o, x) = 0,
X = omim, Zf mult(a, X) =1,
omimm, if mult(o,x) = 2.

Proof. It can be easily checked case by case, using the description of the
minimal covering transformation in S,,. For example, if (di, ct) is a non-crossing
ee-rise, that is, case(o, x) = 5, then mult(o, x) = 1 and we have
om = o(di,ci);
omi = o(o(di),o(ci));
omim = o(di,ci)(o(di),o(ci)) = x. g
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We can now prove the insertion property of Invol(S,).

Proposition 5.2.5 Let 0,7 € Invol(S,), with o < 7. Then

XInvol(Sy) (Ua T) <

Proof. For every o € S,, such that o < 7, by Proposition 1.4.2, since 7 is an
involution, we have

Uizo_lgT

and by Theorem 4.2.8 we have

om < T.

Thus o < 7 is a consequence of Proposition 5.2.4. O

5.3 Inwvol(S,) is graded

We recall that the length of ¢ € S, is
I(o) =inv(o),
and that the absolute length of o € Invol(S,) is
al(o) = exc(o).

So the average between the length and the absolute length of o € Invol(S,,) is

_ inv(o) + exc(o)

p(o) 5

Proposition 5.3.1 The pair (Hrnyoi(s,), P) 5 a covering system of Invol(Sy,).

Proof. By Proposition 5.2.5, Hrpyei(s,) is an insertion system of Invol(Sy).
The p-base property is trivial. It remains to prove the p-increasing property.
Let (0,7) € Hrpyou(s,)- We have to prove that

_ Ainv(o) + Aexc(o)

Ap = =1
P 2 )

where Az = z(7) — (o). It’s easy to check that

(1,1), if mult(o,7) =0,
(Ainv, Aexc) = (2,0), if mult(o,7) =1,
(3,-1), if mult(o,7) = 2.
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Thus in every case Ap = 1. d

We are now able to state and prove the gradedness of Invol(S,).

Theorem 5.3.2 The poset Invol(Sy,) is graded, with rank function given by

_inw(o) + exc(o)
plo) = MU L excl),

for every o € Invol(S,,). In particular Invol(Sy,) has rank
n2
p(Invol(Sy)) = |

Proof. By Theorem 3.1.2, the first part is a consequence of Proposition 5.3.1.

For the second part, note that wg, the maximum of S,,, which is also the maxi-
mum of Invol(S,), has n(n — 1)/2 inversions and |n/2| excedances. O

We also have a characterization of the covering relation in Invol(S,): if 0,7 €
Invol(S,,), then o <1 7 if and only if (o,7) is a good pair in Invol(S,). And a
transformation of o with respect to a suitable label (7, j) actually is a covering
transformation, denoted by
Tnvol(Sy)
Ctigy  (©@)-

As an example consider the involution o = 321654 € Inwvol(6). The suitable
labels of o are (1,4), (1,5), (1,6), (2,4) and (2,5), and we have

(9 | ety o)
(1,4) 623451
(1,5) 523614
(1,6) 426153
(2,4) 361452
(2,5) 351624

Thus

{7 € Invol(Se) : o < 7} = {623451, 523614, 426153, 361452, 351624}.
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5.4 Invol(S,) is EL-shellable

Proposition 5.4.1 Let 0,7 € Invol(Sy,,), with o < 7. Then

mir (o) = (di, ci).

Proof. The proof is exactly the same as in Proposition 4.2.7. O

Thus, if o, 7 € Invol(S,), with o < 7, then the minimal covering transformation
of o with respect to 7 is
Inwvol(Sn
meti 5 (0) = et (o),

and we have the following.

Theorem 5.4.2 Let 0,7 € Invol(S,), with o < 7. Then

o <Qmet!™velSh) () < 7.

Theorem 5.4.2 ensures that next definition is well-posed.

Definition 5.4.3 Let 0,7 € Invol(S,), with o < 7. The minimal chain in
Invol(S,,) from o to T is the saturated chain

oc=00<01<...<0 =T,

defined by

g; = mctf_nv()l(s")(di_l), (51)
for every i € [k].

In order to prove that Invol(S,) is EL-shellable, we prove the increasing and
the decreasing properties, introduced in Section 3.3.

Proposition 5.4.4 (Increasing property) Leto, T € Invol(Sy), witho < 7.
The minimal chain

oc=00<014...<]0 =T,

defined in (5.1) has increasing labels.
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Proof. Suppose, by contradiction, that at a certain step there is a decrease in
the labels. We may assume, without loss of generality, that this happens at the
first step. Thus

01 = mctim’o“s")(a) = ct{;?:f)(s")(a)
and
Invol(Sn
o9 = ct(;’t;)o ( )(01),

with (i,7) < (di,ci). So either i < di or i = di and j < ci. If i < di, since o
and 7 must differ at the index ¢, the minimality of di is contradicted. If ¢ = di
and j < ci, since o(j) € [o(di) + 1,7(di)], the minimality of ¢i is contradicted.
Thus the chain has increasing labels. O

Proposition 5.4.5 (Decreasing property) Let o,7 € Invol(S,), with o <
T, and let

0=00<01<...<0 =T,

be the minimal chain defined in (5.1). Every saturated chain from o to T,

different from the minimal one, say
oco=10<]dnd...d7 =T,

has at least one decrease in the labels.

Proof. We may assume, without loss of generality, that o; # 71. Then
o1 = met!™ N5 (6) = ctgy0)(0)
and
Tl = Ct(i,j) (U),

for some suitable label (i,j) of o different from (di,ci) and lexicographically
greater than it. So either di < i or di =4 and ci < j.

If di < i, then in the covering relations
Mdn<..]T, =T

there must be at least one with label containing di, so lower than (4, 5).

Suppose di = i and ¢i < j. Since the dot in column di has to move from row
o(di) to row 7(di) and because of the presence in the diagram of o of the dot
in the cell (ci,o(ct)), in the covering relations

Ndnd.Tp, =T
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either there is one with label (di,ci), so lower than (7, j), or there is one with
label starting with ci, followed by one with label starting with di, so again with
a decrease. d

The following is a consequence of the increasing and the decreasing properties.

Theorem 5.4.6 The poset Invol(S,) is EL-shellable, having the standard
labelling as an EL-labelling.

5.5 Invol(S,) is Eulerian

In this section we prove that the poset Invol(S,) is Eulerian. In order to do
this, we introduce some notions which, in some sense, invert those introduced
in the preceding sections.

Definition 5.5.1 Let 7 € Invol(Sy). A pair (i,j) is an inv-suitable label of 7
if (i,7) is a suitable label of some o € Invol(S,) and

Invol(Sy)

cti; g (o) =T.

We call such a o (obviously unique) the inverse covering transformation of T

with respect to (i,j) and we denote it by

. Invol(Sy)
ict(; ; (7).
Definition 5.5.2 Let 0,7 € Invol(S,), with 0 < 7. The minimal inverse label

of T with respect to o, denoted by mi,(7) is the minimal (in the lexicographic
order) inv-suitable label (i,7) of T such that

. Invol(Sn)
o ity (7).

The minimal inverse covering tranformation of 7 with respect to o, denoted by

micti™ ! 5") (1), is the inverse covering transformation of T with respect to the

minimal inverse label:

Invol(Sy)

mict! (1) = ict!meHS) (1.

mie(T)

We can now prove that the condition of Theorem 1.2.1 holds for the poset
Invol(S,,), and thus that it is Eulerian.
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Theorem 5.5.3 The poset Invol(Sy) is Eulerian.

Proof. Suppose we label the edges of the Hasse diagram of Inwvol(S,) with the
standard labelling. Since the standard labelling is an EL-labelling, by theorem
1.2.1, we have to prove that, given o,7 € Invol(S,,), with o < 7, there is exactly
one saturated chain from o to 7 with decreasing labels.

In this proof we use the following terminology: if (¢,7) is an inv-suitable label
of 7 we call it simply a move for 7, precisely an h-move, with h € [6], if we are

in case h of Figure 5.2. Furthermore, if ict{f;)Ol(s")(T) = o, then we write

T D> o
(4:9)
We first prove that there is at least one saturated chain from ¢ to 7 with
decreasing labels. Consider the descending chain

T=09gb>o1D>..D>or=o0,

defined by
o; = mict{,nvol(s")(oi_ﬂ,

for every i € [k]. We claim that it has increasing labels (so the corresponding
ascending chain will have decreasing labels). Suppose, by contradiction, that at
a certain step there is a decrease in the labels. We may assume, without loss of
generality, that this happens at the first step. So

og > o1 D> o9,
(4,9) (#',3")

with (', 7") < (4,7). So either ¢’ < ior i =1 and j' < j.

If 4! < i, then (4,7) cannot be the minimal choice for og, since o¢ must have an
inv-suitable inversion containing i’. This contradicts the definition of the chain.

If#/ =i and j' < j, again (4,j) cannot be the minimal choice for go. The proof
of this fact is a case-by-case verification, depending on the type of (i,j). We
show some cases, leaving the others to the reader.

First of all note that (i,j) cannot be a 1-move or a 2-move, in fact in this case
we could not apply to o1 a move (¢,j), with j' < j. If (i,7) is a 3-move and
(,7') is a 1-move, the situation is illustrated in Figure 5.3 (a): if we apply to
oo the two moves (i,j') and (j',j) (in this order), we again reach os:

og D 0'1 > 05
(ihj,) (j”j)
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But (i,5') < (4,7), so (4,7) is not the minimal choice for og. In the picture
we represent a pair of moves by colouring the areas “enclosed” in the moves,
with a lighter grey for the first move and a darker grey for the second one; the
arrow represents the possibility of substituting a pair of moves with another pair
reaching the same involution. Figure 5.3 (b) is the synthetic version of Figure
5.3 (a). If (4,7) is a 3-move, all other cases are synthetically described in Figure
5.3 (c, d, e, f), with the notation described above. If (4,5) is a 4, 5 or 6-move
the reasoning is similar. In each case we get a contradiction.

(e) (f)

Figure 5.3: Proof of Theorem 5.5.3.
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We now prove that any other saturated chain from o to 7, different from the

minimal one, has at least one increase. Let
T=T0DbnNnD>.DTpy=0

be a saturated descending chain from 7 to o, different from the minimal one.
We will prove that in it there is at least one decrease (so the corresponding
ascending chain will have at least one increase). We may assume, without loss
of generality, that o1 # 71. Then

o1 = ict(i’j) (T)

and

T = Z'Ct(il’jl)(’l'),

for some inv-suitable inversion (', j') of 7 different from (4, j) and lexicograph-
ically greater than it. So either ¢ < i’ or i =4’ and j < j'.

If 1 < 4, then in the covering relations 71 [> 72 > ... > 7, = ¢ there must be one
with label containing 7, so lower than (i, 5").

Suppose ¢ = i’ and j < j' and suppose, by contradiction, that the chain 7 =
To > 71 > T2 > ... T, = o has increasing labels. If [ = min{s € [k] : 75(i) = 0(¢)},
then

T D> nh b D> ..D1 D o1,
(7'7.7’) (’57.72) (%]3) ('L’Jl)

with (j <)j' < j2 < j3 < ... < ;. But this is in contradiction with the fact
that (i,7) is an inv-suitable inversion of 7. The proof of this fact is again a
case-by-case verification, depending on the type of (, j).

If (4,j) is a 1-move, a 3-move or a 4-move, then the (4,j.)’s can only be 4-
moves, and none of these can send the dot in column ¢ on or below row o4 (7).
But o(i) < 01(i), and we get a contradiction.

If (4,7) is a 2-move, a 5-move or a 6-move, then the sequence of the (¢, j,)’s is
made of a sequence (possibly empty) of 5-moves, possibly followed by a 3 or a
6-move (but not both) and then by a sequence (possibly empty) of 4-moves. If
(i,j) is a 5-move, then none of these moves can send the dot in column 4 on
or below row o1 (3). If (i,7) is a 2-move or a 6-move, then the 3 or 6-move is
the only one that can move the dot in column ¢. In this case the dot is moved
in row j and none of the following 4-moves can move it on or below row o1 (%).

But, as before, o(i) < 01(4), so in each case we get a contradiction. O






Chapter 6

Bruhat order on the

involutions of B,

In this chapter we study the poset Invol(B,) of the involutions of B,,.

In Figure 6.1 the posets Bs and Invol(Bj3) are illustrated.

6.1 Successor system

Looking at the diagram of a signed permutation, with orbit of an object (which
can be a dot, a cell, or a rectangle of cells), we mean the set made of that object
and its symmetric with respect to the main diagonal, the antidiagonal and the

center.

Definition 6.1.1 Let 0,7 € Invol(B,). We say that (o,7) is a good pair in
Invol(B,,) if there exists a rectangle R = [i, j] x [0(i),7(i)] such that o and T
have the same diagram except for the dots in R, and in the rectangles of its
orbit, for which the situation, depending on the position of R with respect to
the antidiagonal and to the main diagonal, is described in Figures 6.2 and 6.3:
black and white circles denote, respectively, o and 7, and the rectangle R (gray
rectangle) contains no other dots of o and T than those indicated.

The case of the pair (o,7) is (Ah, Mk), with h,k € [6], where Ah (anticase)
and Mk (main case) refer to the pictures of Figures 6.2 and 6.3.
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Figure 6.2: Covering relation in Invol(B,): anticases.
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Figure 6.3: Covering relation in Invol(By,): main cases.

Note that for geometrical reasons not all the 36 pairs are possible cases.

A3.

Let (o,7) be a good pair in Invol(B,). The main rectangle of (o,7), denoted

by R(o,T) is the rectangle R = [i, j] x [0(¢), 7(¢)] mentioned in Definition 6.1.1.

It is useful to consider separately the cases in which R(o,7) is central, that is

(0,0) € R(o,7): not central cases are illustrated in Table 6.1, and central cases

in Table 6.2. In every case, black circles denote o and white circles denote 7.

The darker gray rectangle is the main rectangle R(o,7) and the complete gray

area is the union of the rectangles of its orbit.

In Tables 6.1 and 6.2 almost all cases are illustrated. In fact in some cases there

is more than one possibility, as we show in the following tables.
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M1

M2

M3

Al

A2

A3

A4

A5

A6

Table 6.1:

Covering relation in Invol(B,): not central cases - part 1.




6.1 Successor system

77

M4

M5

M6

Al

A2

A3

A4

A5

A6

Table 6.1: Covering relation in Invol(B,): not central cases - part 2.
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M1 M2 M3

Al

A2 - - -

A3 - - -

A4 : : :

A5 - - -

A6

Table 6.2: Covering relation in Invol(B,): central cases - part 1.
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M4

M5

M6

Al

A2

A3

A4

A5

A6

Table 6.2: Covering relation in Invol(By):

central cases - part 2.
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(A5, M2)a

(A5, M2)b

(A4, M4)b

,,,,,,,,,,,,,,,,,,,,
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(A5, M6)a (A5, M6)b (A6, M5)a (A6, M5)b

(A6, M6)a (A6, M6)b

We set
Hipyous,) ={(0,7) € Invol(B,)?* : (0,7) is a good pair in Invol(B,)},

and define the standard labelling X of Invol(B,,) by associating, with every good
pair (07 T) € HInvol(Bn)a the pair (7’7.7) € [:tn]27 it R = [7'7.7] x [0(7’)77—(7')] is the
main rectangle of (o, 7).

By Theorem 4.2.13, Hy,,01(B,) is @ successor system and, since 7 is uniquely
determined by o and by the label (i, ), A is a good labelling.

Given o € Invol(B,), a pair (i,j) € [£n]? is a suitable label of o if there exists
7 € Invol(B,), with A(o,7) = (i,7). Such a 7, obviously unique, is called the
transformation of o with respect to (4,7) and it is denoted by

Invol(By)
tag ()

6.2 Insertion property

Definition 6.2.1 Let 0,7 € Invol(B,), with o < 7. Consider the following
seven properties of the pair (o,7):

1. ¢i € {—di,—o(di)};
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2. (di,ci) is a central rise of o (not necessarily symmetric);
3. o(ci) # —ci;

4. 7(di) = —di;

5. sci does not exist, or o(sci) > —sci;

6. sci exists, and sci = —ci;

7. sci exists, and o(sci) = —sci.
The B-type of the pair (o,7) is
B-type(o,T) = Bh,
where h = 8 if (0,7) does not satisfy any of the above properties, otherwise

h =min{k € [7] : (0,7) satisfies property k}.

All cases are represented in Tables 6.3 to 6.10. The notation used in the pictures
will be soon described. But we first need the following definition.

Definition 6.2.2 Let 0,7 € Invol(B,,), with ¢ < 7. The B-covering index of
o with respect to T, denoted by Bci, (o) (or simply Bci), is the minimal index
J € [di + 1,n] such that there exists x € Invol(By,), with

1. (07 X) € HInvol(Bn);'

2. Mo, x) = (di, j);

3. x(di) < 7(di).

As it comes out from the pictures, Bci is always well defined and precisely:

ci, if B-type(o,7) = B1,B3, B4,
Bei — —di, . %f B-type(o,T) = B2,

—o(di), if B-type(o,7) = B5,

sct, if B-type(o,7) = B6,B7, B8.

By definition, (di, Bci) is a suitable label of o, so we can consider the involution

Invol(Bn
XInvol(Bn)(Uv T) = t(;::;c(z) )( )
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In the pictures the involutions o, 7 and X = Xrnvo(B,)(0,T) are represented:
black circles denote o, white squares denote 7 and white circles denote x. Only
the dot in column di of 7, with its orbit, is indicated, possibly with a gray
rectangle around, indicating the range of variation of 7(di). The involutions o
and x are supposed to have the same diagram anywhere else. Finally the darker
gray rectangle is the main rectangle of (o, x) and inside the complete gray area
there are no other dots of o (hence of x) than those indicated.

B1 » ci€{—di,—o(di)} Bei=ci

B1.1 B1.2

B1.3 B14

Table 6.3: B-type B1.
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» ci¢{—-di,—o(di)}

BZ 1 (0,0) € [di, ci] x [o(di), o(ci)]

Bei = —di

B2.1 B2.2 B2.3

Table 6.4: B-type B2.
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B3

» ci¢{—di,—o(di)}
» (0,0) ¢ [di,ci] X [o(di), o(ci)] Bei=ci
» o(ci) # —ci

B3.4 B3.5 B3.6

Table 6.5: B-type B3 - part 1.
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» ci¢{—di,—o(di)}
B3 » (0,0) ¢ [di,ci] x [o(di), o(ci)] Beci = ci
» o(ci) # —ci

B3.10 B3.11 B3.12

B3.13 B3.14 B3.15

B3.16 B3.17 B3.18

Table 6.5: B-type B3 - part 2.
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—ci
—di

» o(ci)

B4
» 7(di)

Bei =i

B4.1

B4.3

B4.4

Table 6.6: B-type B4.

» o(ci) =—ci
B5 » 7(di) < —di

Bcei = —o(di)

» sci does not exist, or o(sci) > —sci

B5.1 B5.2

B5.3

Table 6.7: B-type B5.
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B6

vV vy VvYy

o(ci) = —ci
T(di) < —di
sci exists

sclt = —ci

Bcei = sci

B6.1

Table 6.8:

B-type B6.
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B7

o(ci) = —ci
7(di) < —di
sct exists

vV vy VvV Vy

sci # —ci

o(sci) = —sci

Bci = sci

B7.1

B7.4

B7.5

Table 6.9: B-type B7.
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» o(ci) = —ci
di) < —di
B8 > T(,l) . ‘ Bci = sci
» Sci exists
»

o(sci) < —sci

B8.4 B8.5

Table 6.10: B-type B8 - part 1.
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B8

vV vy VvVy

o(ci) =
7(di) < —di
sci exists

—ci

o(sci) < —sci

Bci = sci

B8.6

B8.9

B8.10

B8.11

Table 6.10: B-type B8 - part 2.
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In order to prove that the insertion property holds, we need the following defi-
nitions.

Definition 6.2.3 Let (0, 7) be a good pair in Invol(By,). The anti- B-multiplicity
of (o,7), denoted by a-B-mult(o,T), is

0, if a-case(o,T) = Al,
a-B-mult(o,7) = 1, ifa-case(o,7) = A2, A3, A4, A5,
2, if a-case(o,T) = A6.

Similarly, the main B-multiplicity of (o,7), denoted by m-B-mult(o,T), is

0, if m-case(o,7) = M1,
m-B-mult(o,7) = ¢ 1, if m-case(o,7) = M2, M3, M4, M5,
2, if m-case(o,7) = M6.

The B-multiplicity of (o,7), denoted by B-mult(o, ), is
B-mult(o, ) = a-B-mult(o, T) + m-B-mult(o, ).

We summarize the multiplicities in all cases:

M1 M2 M3 M4 M5 M6
0 1 1 1 1 2

Al 0 0 - - - 1 2
A2 1 - 2 - - 2 3
A3 1 - - - 2 2 3
A4 1 - 2 2 2 3
A5 1 1 2 2 2 2 3
A6 2 2 3 3 3 4

The following definitions are valid in general for signed permutations (not nec-
essarily involutions).

Definition 6.2.4 Let 0,7 € B, with o < 7. We say that (0,7) is a B-
exceptional pair if

1. 7(di) < di;

2. 7(7(di)) = di;
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3. o(ci) = —ci;

4. sci exists;

5. o(sci) < —sci;

6. [—7(di), sci] x [7(di) + 1, —di] is empty for o;

Examples of B-exceptional pairs are the pairs (o,7) € Invol(B,)?, with o < 7,
whose B-type is B8 (see Table 6.10).

Definition 6.2.5 Let (o, 7) be a B-exceptional pair. The second covering trans-

formation in B, of o with respect to T, denoted by sctB (o) is

sctBr (o) = o(di, sci)(—di, —sci).

Proposition 6.2.6 Let (o,7) be a B-exceptional pair. Then
sctBr (o) < 7.
Proof. By the symmetry of the diagram and by Proposition 1.4.3, it suffices

to prove that
o(di,sci) < 1.

We may assume, without loss of generality, that di = —n. Let x = o(di, sci)
and let R = [di, sci — 1] X [o(di) + 1,0(sci)]. For every (h,k) € [£n]?, we have

olh, k] +1, if (hk) € R,

XWH:{JWH, if (h,k) ¢ R.

Thus we have to show that 7[h,k] > o[h, k] + 1, for every (h,k) € R. Let
(h,k) € R. If h < ci, then

olh, k] = o[h,7(di) + 1] < 7[h,7(di) + 1] < 7[h, k] — 1.
If h > ci, by property 6 of the B-exceptional pairs, we have
olh, k] = o[—71(di) — 1,7(di) + 1] + 1 < 7[—7(di) — 1,7(di) + 1] + 1,
and, by properties 1 and 2, we have
T[—7(di) — 1,7(di) + 1] < 7[h, k] — 2,

so again 7[h, k] > o[h, k] + 1. O
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We introduce the following notation. Given o € B,,, we set

oi =01,

Given 0,7 € B,, with o < 7, we set

sctBn (o),  if (o,7) is a B-exceptional pair,
om =
mctBr (), otherwise.

Proposition 6.2.7 Let 0,7 € Invol(B,), with o < 7, and let

X = XInvol(Bn,) (0, T)'

Then
om, if B-mult(o,x) =0,1,
) omim, if B-mult(o,x) =2,
X= omimm, if B-mult(o,x) =3,
omimmm, if B-mult(o,x) = 4.

Proof. Tt can be checked case by case, looking at the pictures of Tables 6.3 to
6.10 and using the description of the minimal covering transformation in B,,.

For example, if B-type(o,7) = B6.2, then we have case(o,x) = (A6, M4), so
B-mult(o,x) = 3, and x = omimm is illustrated in Figure 6.4.

O

We can now prove the insertion property of Invol(By,).

Proposition 6.2.8 Let 0,7 € Invol(B,,), with o < 7. Then

XInvol(Bn)(U; T) <7

Proof. For every o € B, with 0 < 7, by Proposition 1.4.2, since 7 is an
involution, we have

gi=o ' <,

and, by Theorem 4.2.15 and Proposition 6.2.6, we have
om < T.

Thus Xrpvo(B,)(0,7) < 7 is a consequence of Proposition 6.2.7. O
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omim omimm = X.

Figure 6.4: Proof of Proposition 6.2.7.

6.3 Invol(B,) is graded

We recall that the length of ¢ € B,, is

(o) = inv(o) —}2—7”Leg(0)7

and that the absolute length of o € Invol(B,,) is
al(o) = dna(o).
So the average between the length and the absolute length of o € Invol(B,,) is

o(0) = inv(o) + negflo) + 2dna(a).

Proposition 6.3.1 The pair (Hpyou(B,), P) 15 a covering system of Invol(By,).

Proof. By Proposition 6.2.8, Hynyo(B,) is an insertion system of Inwvol(B,).
The p-base property is trivial. It remains to prove the p-increasing property.
Consider (0,7) € Hpyoun,)- We have to prove that

_ Ainv + Aneg + 2Adna

A =1
P 4 )

where Az = z(1) — z(0).
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In case (A1, M1) we have

(Ainv, Aneg, Adna) = (1,1,1),
and in case (44, M4)c

(Ainv, Aneg, Adna) = (2,2,0).

All other cases can be unified. We set mult = B-mult(o,7). If Aneg is odd,
and this happens in cases (A1, M6), (A6, M1), (A3, M6), (A6, M3), then

(Ainv, Aneg, Adna) = (2mult — 1,1,2 — mult).
If Aneg is even, that is in all the remaining cases, we have
(Ainv, Aneg, Adna) = (2mult, 0,2 — mult).
Thus in every case Ap = 1. O

We are now able to state and prove the gradedness of Invol(By,).

Theorem 6.3.2 The poset Invol(B,,) is graded, with rank function given by

_inw(o) + neg(o) + 2dna(o)
p(o’) - 4 )

for every o € Invol(B,,). In particular Invol(B,,) has rank

2
p(Invol(B,)) = n ;—n

Proof. By Theorem 3.1.2, the first part is a consequence of Proposition 6.3.1.

For the second part, note that the maximum wg of B,,, which is also the maxi-
mum of Invol(B,,), is such that

(tnv(wo), neg(wo), dna(wo)) = (n(2n — 1), n,n).
O

We also have a characterization of the covering relation in Invol(B,): if 0,7 €
Invol(B,,) then o < 7 if and only if (o, 7) is a good pair in Invol(B,). And the
transformation of o with respect to a suitable label (i, j) actually is a covering

transformation, denoted by

Invol(By)
Ctig) (@)
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6.4 Invol(B,) is EL-shellable and Eulerian

Proposition 6.4.1 Let 0,7 € Invol(B,,), with o < 7. Then

mi, (o) = (di, Bei).

Proof. Tt is similar to the proof of Proposition 4.2.7, using the definitions of
the indices di and Bci. O

Thus, if 0, 7 € Invol(B,,), with ¢ < 7, then the minimal covering transformation
of o with respect to 7 is

metimvolBn) (g) = ctf;;gc(g") (o),

and we have the following.
Theorem 6.4.2 Let 0,7 € Invol(B,,), with o < 7. Then

o <ametimvelBn) () < 7.

Theorem 6.4.2 ensures that next definition is well-posed.

Definition 6.4.3 Let 0,7 € Invol(B,), with o < 7. The minimal chain in
Invol(B,,) from o to T is the saturated chain

oc=0p0<014...<]0 =T,

defined by
o; = mCtinvOl(B")((Ti_l), (61)

for every i € [k].

In order to prove that Invol(B,) is EL-shellable, we prove the increasing and
the decreasing properties.

Proposition 6.4.4 (Increasing property) Let o,7 € Invol(B,), with o <

7. The minimal chain
oc=09<1014...]0 =T,

defined in (6.1) has increasing labels.
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Proof. Suppose, by contradiction, that at a certain step there is a decrease in
the labels. We may assume, without loss of generality, that this happens at the
first step. So

o < o1 < 09,
(di,Bci) (4,5)

with (i,7) < (di, Bei). So either ¢ < di or i = di and j < Bei. If i < di, since
o and 7 must differ at the index 4, the minimality of di is contradicted. So
suppose 1 = di and j < Bci. Let v = g9(di). Since o2 < 7, we have v < 7(di).
But [di, j] x [0(di),v] is the main rectangle of (o, ), for some x € Invol(B,).
Thus the minimality of Bci is contradicted. O

Proposition 6.4.5 (Decreasing property) Let o,7 € Invol(B,), with o <
T, and let

oc=00<01<..<0 =T,
be the minimal chain defined in (6.1). Ewvery saturated chain from o to T,

different from the minimal one, say
o=T7<dn <...]d7 =T,

has at least one decrease in the labels.

Proof. Suppose, by contradiction, that this chain has increasing labels. We
may assume, without loss of generality, that 7 # o1. Let [ = min{h € [k] :
Th(di) = 7(di)}. So, if we set j = Bci, (o), we have
o=09 < 014...]d0 =T
(di.j)
and
c=79 < 1 d Td...d171 4 7 < M1 d...ld7 =T,
(dija)  (diyje) (digi)  (drg1,d141)

with j < j1 < j2 <...<j; and 441 > di.
Let vy, = 7(di) for every h € [0,1]. The situation is described in Figure 6.5.

For simplicity, we call o-move and o-rect, respectively, the move (di,j) and
the corresponding main rectangle [di, j] x [o(di), 01 (di)] (gray rectangle in the
picture), and we call 7-moves and 7-rects, respectively, the moves (di, j-) and
the corresponding main rectangles [di, j,] X [vp—1,v,], for r € [I].

We also call fiz-moves the moves of anti-cases A1 and A2, semifix-moves the
moves of anti-cases A3 and A6, exc-moves the moves of anti-case A4, and def-
moves the moves of anti-case A5.
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7(di) =v — ‘

Vi—1 — ‘

Vi—2 —

o1(di)

v2 > ‘

v ‘

O'(di) =v0 —
di j g1 j2 Ji-1 4

Figure 6.5: Proof of Proposition 6.4.5 (1).

Note that in every case the sequence of the 7-moves is made of a (possibly
empty) sequence of def-moves, possibily followed by a semifix-move, and by a
(possibly empty) sequence of exc-moves.

Suppose that the anti-case of the o-move is A1. In this case the 7-moves are all
exc-moves, and none of them could bring the dot in column di on the row —di.
But the o-move brings that dot on that row, so we get a contradiction.

Suppose that the anti-case of the o-move is A2. In this case the only 7-move
which could move the dot in the cell (j, —j) is the semifix-move, say (di, j).
In all cases, except (A3, M4) and (A6, M4), the 7-move (di, j,) would bring
the dot in column di on the row —j. In case (A3, M4), after this 7-move there
would be a dot in the cell (v;—1, —vm—1). In case (A6, M4), after this 7-move
there would be a dot in the cell (v,—1,—7). In every case the following 7-moves
are exc-moves, and none of them could bring the dot in column di on the row

—di. Again we get a contradiction.

Suppose that the anti-case of the o-move is A3. In this case the 7-moves are all
exc-moves, and none of them could move the dot in the row o7 (di). Thus none
of them could bring the dot in column di on or above the row oy (di). But the
o-move brings that dot on or above that row, so we get a contradiction.

If the anti-case of the o-move is A4, then reasoning is the same as in case A3, if
the main case is M3, M4 or M5, and the same as in next case A5, if the main
case is M6.

Suppose that the anti-case of the o-move is A5 (see Figure 6.6). In this case none
of the 7-moves could move the dot in the cell (j,01(dé)), unless the symmetric
of that dot with respect to the main diagonal is the up-right corner of one of
the 7-rects, say [di, jm] X [Um—1,J]. After this move there would be a dot in
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the cell (v;—1,01(di)). The following 7-moves could not move that dot. So no
7-move could bring the dot in column di on or above the row o1 (di), again with
a contradiction.

o1(di) —

y
) .
i~ e
a4 ]

.

Um—-1 —
111

t ot
di Vm—1j 01(di) = jm

Figure 6.6: Proof of Proposition 6.4.5 (2).

Finally, suppose that the anti-case of the o-move is A6 (see Figure 6.7). In this
case the only 7-move which could move the dots in rows —j and oy (di) is the
semifix-move. The only possibility is that this move is the one corresponding to
the B-rectangle [di, o1 (di)] X [Um—1,j]- After this move there would be a dot in
the cell (vy,—1,01(di)) and the conclusion is the same as in previous case.

01 (dl)
—j - e

}
.

N SNy
J S

Um—1 — =
/ |

di Vm—1 .7 0'1(di) = jm
Figure 6.7: Proof of Proposition 6.4.5 (3).

O

Next theorem is an immediate consequence of the increasing and the decreasing
properties.

Theorem 6.4.6 The poset Invol(B,,) is EL-shellable, having the standard la-
belling as an EL-labelling.
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We can now prove that the condition of Theorem 1.2.1 holds for the poset
Invol(B,,), and thus that it is Eulerian.

Theorem 6.4.7 The poset Invol(B,,) is Eulerian.

Proof. Suppose we label the edges of the Hasse diagram of Invol(B,,) with the
standard labelling.

Let 0,7 € Invol(B,), with ¢ < 7. By Theorem 1.2.1, we only have to show
that there is exactly one saturated chain from ¢ to 7 with decreasing labels.
Consider the two involutions woo and wer of B,. By Proposition 1.4.3, we
have

woT < WoO.

Since the standard labelling of Invol(B,) is an EL-labelling, there is exactly
one saturated chain from wo7 to weo with non decreasing labels (it actually has
strictly increasing labels), say

woT = Xo I X1 <...<Xr = WoO.

Then

0 =woXkr <...<JwoXx1 JWoXo =T

is the unique saturated chain from ¢ to 7 with decreasing labels. O






Chapter 7

Bruhat order on the

involutions of D,

In this chapter we study the poset Invol(D,,) of the involutions of D,,.

In Figure 7.1 the poset Invol(D,) is illustrated.

7.1 Successor system

Definition 7.1.1 Let 0,7 € Invol(D,). We say that (o,7) is a good pair in
Invol(Dy,) if there exists a rectangle R = [i,j] x [0(i),7(3)], either not central
or central not symmetric, such that the same conditions as in Definition 6.1.1
are satisfied, with the exceptions, if R is central not symmetric, that:

1. in cases (A6, M1) and (A6, M3), picture A6 is replaced by picture A6,
and in cases (Al, M6) and (A3, M6), picture M6 is replaced by picture
M6€', as shown in Figure 7.2;

2. in the remaining cases, (A3, M4), (A4, M 3), (A4, M4), (A4, M6), (A6, M4),
the presence in R of one more dot either of o or of T, which is in the orbit

of one of those indicated in the pictures, is allowed.

Let (o,7) be a good pair in Invol(D,). The main rectangle of (o, 7), denoted
by R(o,T) is the rectangle R = [i, j] x [0(¢), 7(¢)] mentioned in Definition 7.1.1.

103
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A6'. | M.

Figure 7.2: Covering relation in Invol(D,,): new cases.

Note that not central cases are exactly the same as in Invol(B,), so they are
described in Table 6.1 (p. 76). Central cases are new, and they are described
in Table 7.1. The notation is the same used in Table 6.1.

The only case in which there is more than one possibility is (A4, M4), as we
show in the following table.

(A4, M4)a (A4, M4)b (A4, M4)c (A4, M4)d

We set
Hipyou(Dy) = {(0,7) € Invol(Dy,)? : (0,7) is a good pair},

and define the standard labelling X of Invol(D,,) by associating, with every good
pair (Ua T) € HInvol(D,.); the pair (17.7) € [in]27 if R= [27]] x [U(Z),T(’L)] is the
main rectangle of (o, 7).

By Theorem 4.2.22, Hjy,y01(p,) 18 @ successor system and, since 7 is uniquely
determined by ¢ and by the label (i, ), A is a good labelling.

Given o € Invol(D,,), a pair (i,j) € [£n]? is a suitable label of o if there exists
7 € Invol(D,,), with X(e,7) = (4,j). Such a 7, obviously unique, is called the
transformation of o with respect to (4,7) and it is denoted by

Invol(D,,)
ti ) (o).
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M1 M2 M3

A2 - - -

A3 - - -

A5 - - -

A6

Table 7.1: Covering relation in Invol(D,): central cases - part 1.
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M4 M5 M6
_ - Al
_ - - A2
_ - - A5
_ - A6

Table 7.1: Covering relation in Inwvol(D,): central cases - part 2.
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7.2 Insertion property

Since an element of Invol(D,,) is also in Invol(B;), we can consider the same
types as defined in 6.2.1.

Definition 7.2.1 Let 0,7 € Invol(D,). The D-type of the pair (o,7) is
D-type(o,7) = Dh.k,
if the B-type of (o,7) is Bh.k, referring to the cases as in Tables 6.3 to 6.10.

Note that in Invol(D,,) some B-types cannot occur.

Proposition 7.2.2 Let 0,7 € Invol(D,,), with o < 7. The B-type of (o,T)
cannot be B1.1, B1.4 (see Table 6.3, p. 83) or B6.1 (see Table 6.8, p. 88).

Proof. If B-type(o,7) = B1.1 or B1.4, then (di + 1, 0(ci)) is a not valid D-cell
of (o,7), contradicting o < 7.

Now let B-type(o,7) = B6.1. We may assume, without loss of generality, that
di = —n. We have ¢i = —1 and o[—2,2] = n — 2, which implies 7[—2,2] = n —2.
So neg(c) = n — 1 and neg(r) = n, contradicting o, 7 € D,,. O

We want to define the D-covering index Dci and the involution X rpye(p,)(0,T),
which are the analogs of Bei and Xrnyoi(B,) (0, 7) in Invol(By). In almost all
cases the behaviour in Invol(D,) is exactly the same as in Invol(B,), that
is, Dci = Bei and X1nyoi(D,)(0,T) = XInvoi(B,)(0, 7). Only in some cases the
approach in Invol(D,,) is different with respect to Invol(B,). These are the
cases represented in Tables 7.2 to 7.10.

In particular we consider the cases in which (o, 7) is a D-special pair, in the sense
of Definition 4.2.19 (p. 48), corresponding to cases 9a, 9b and 10 of Figure 4.4
(p- 50). This can occur in D-types D3.7, D3.8, D3.10, D3.16, D3.17.

Definition 7.2.3 Let 0,7 € Invol(D,,), with o < 7. The D-covering index of
o with respect to T, denoted by Dci (o) (or simply Dci), is the minimal index
J € [di + 1,n] such that there exists x € Invol(Dy,), with

1. (07 X) € HITLUO[(Dn);

2. Mo, x) = (di, j);
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3. x(di) < 7(di).

As it comes out from the pictures, Dci is always well defined.

By definition, (di, Dci) is a suitable label of o, so we can consider the involution

Invol(D,
XInvol(Dn)(Ja T) = t(di,Dgi) )(U)

In the pictures the involutions o, 7 and X = Xrnvoi(p,)(0, T) are represented,
with the same notation used in Tables 6.3 to 6.10.

In order to prove that the insertion property holds, we need the following defi-
nitions.

Definition 7.2.4 Let (o, 7) be a good pair in Invol(D,,). The anti-D-multiplicity
of (o,7), denoted by a-D-mult(c,T), is

0, if a-case(o,7) = Al,
a-D-mult(o,7) = ¢ 1, if a-case(o,7) = A2, A3, A4, A5, A6,
2, if a~case(o,T) = A6.

Similarly, the main D-multiplicity of (o, 7), denoted by m-D-mult(o,T), is

0, if m-case(o,7) = M1,
m-D-mult(o,7) =< 1, if m-case(o,7) = M2, M3, M4, M5, M6,
2, if m-case(o,T) = M6.

The D-multiplicity of (o,7), denoted by D-mult(o,7), is

D-mult(o,7) = a-D-mult(o, ) + m-D-mult(o, T).

The following definitions are valid in general for even-signed permutations (not

necessarily involutions).

If o,7 € D,, with ¢ < 7, are such that (o,7) is a B-exceptional pair (see
Definition 6.2.4, p. 92), then the second covering transformation in D, of o
with respect to 7, denoted by sctP» (o), is defined in the same way as in B,:

sctP (o) = sctP (o) = o(di, sci)(—di, —sci).

The following result is the analog in D,, of Proposition 6.2.6.
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D1.3

D1.3

Table 7.2: D-type D1.3.

D2

D2.1 D2.2 D2.3

Table 7.3: D-type D2.
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D3.7

D3.7b

Table 7.4: D-type D3.7.

D3.8

Table 7.5: D-type D3.8.
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D3.10

D3.10b

Table 7.6: D-type D3.10.
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D3.16
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D3.16h D3.16i

Table 7.7: D-type D3.16.
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D3.17

D3.17b

D3.17c D3.17d

Table 7.8: D-type D3.17.

D5.3

D5.3

Table 7.9: D-type D5.3.
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D6.2

D6.2a D6.2b D6.2¢

Table 7.10: D-type D6.2.
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Proposition 7.2.5 Let 0,7 € D, with 0 < 7, be such that (o,7) is a B-
exceptional pair. Then
sctPn (o) < 7.

Proof. Let x = sctP~ (o). By Proposition 6.2.6, we have that (x,7) satisfies
the B-condition. On the other hand, in every case the pair (x,7) has no new
D-cells with respect to the pair (o,7). So (x,7), as well as (o, 7), satisfies the
D-condition. O

In D, there is one more exceptional case to consider.

Definition 7.2.6 Let 0,7 € D,,. Suppose that sci exists and that the set
{j € [sci+ 1,n] : 0(j) € [o(di) + 1, 0(sci) — 1]}

is not empty. Then the third covering index of o with respect to T, denoted by
tcir (o) (or simply tci), is

tcir(0) = min{j € [sci + 1,n] : 0(j) € [o(di) + 1,0(sci) — 1]}.

Definition 7.2.7 Let 0,7 € D,, with 0 < 7. We say that (o,7) is a D-
exceptional pair if

1. 7(di) = o(ci);
2. sci exists;
3. sci = —ci;
4. tci exists;
5. o(tci) < —tci;

An example of D-exceptional pair is (o,7) € Invol(D,)?, with o < 7, whose
D-type is D6.2c (see Table 7.10).

Definition 7.2.8 Let 0,7 € D,, with ¢ < T, be such that (o,7) is a D-
exceptional pair. The third covering transformation in D, of o with respect
to 7, denoted by tctPn (o), is

tetP (o) = o(di, tei)(—di, —tci).
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Proposition 7.2.9 Let 0,7 € D, with o < 7, be such that (o,7) is a D-
exceptional pair. Then
tetP (o) < 1.

Proof. By the symmetry of the diagram and by Proposition 1.4.3, it suffices
to prove that

o(di,tci) < 1.
Let x = o(di,tci). In order to prove that (x,7) satisfies the B-condition, we

may assume, without loss of generality, that di = —n. Consider the rectangle
R = [di,tci — 1] x [o(di) + 1,0(tci)]. For every (h,k) € [£n]?, we have

olh, k] +1, if (hk) € R,

XWMZ{UWH, if (h,k) ¢ R.

So we have to show that 7[h, k] > o[h, k] + 1, for every (h,k) € R. Let (h,k) €
R. If h < sci, then the proof is the same as in Proposition 6.2.6. Now let
h € [sci, tci — 1]. Since 0,7 € Dy, o[—7(di),7(di)] and 7[—7(di), 7(di)] have the
same parity, so we have

o[-7(di) — 1,7(di) + 1] < 7[—-7(di) — 1,7(di) + 1] + 1.

Then
olh,k] = o[-7(di) —1,7(di) + 1] + 2
< 7[-7(di) —1,7(di) + 1]+ 3
< (r[h, k] —2)+3.

Thus 7[h, k] > o[h, k] + 1.

Finally, the pair (x,7) has no new D-cells with respect to the pair (o,7). So
(x,7), as well as (o, 7), satisfies the D-condition. O
We introduce the following notation. Given o € D,,, we set

oi =01,

Given 0,7 € D,,, with o < 7, we set

sctP (o), if (0,7) is a B-exceptional pair,
om =< tctP»(0), if (o,7) is a D-exceptional pair,

metP (o), otherwise.



118

7. Bruhat order on the involutions of D,

Proposition 7.2.10 Let o,7 € Invol(D,,), with o < 7, and let

X = XInvol(Dy,) (U, T)'

Then
om, if D-mult(o,x) =0,1,
) omim, if D-mult(o,x) = 2,
X= omimm, if D-mult(o,x) = 3,
omimmm, if D-mult(o,x) = 4.

Proof. Tt can be checked case by case, looking at the pictures of Tables 6.3 to
6.10 and those of Tables 7.2 to 7.10, and using the description of the minimal

covering transformation in D,,.

For example, if D-type(o,7) = D6.2b, then we have case(a, x) = (A6, M4), so
D-muwlt(o, x) = 3, and x = omimm is illustrated in Figure 7.3.

omimm = X.

Figure 7.3: Proof of Proposition 7.2.10.

We can now prove the insertion property of Invol(D,,).

Proposition 7.2.11 Let 0,7 € Invol(D,,), with o < 7. Then

XInvol(Dn)(Ua T) <.
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Proof. For every 0 € D, with ¢ < 7, by Proposition 1.4.2, since 7 is an

involution, we have

ci=o <,
and by Theorem 4.2.24, Proposition 7.2.5 and Proposition 7.2.9, we have
om < T.

Thus X rnvoi(D,)(0,7) < 7 is a consequence of Proposition 7.2.10. d

7.3 Invol(D,) is graded

We recall that the length of o € D,, is

(o) = inv(o) ;neg(a)’

and that the absolute length of o € Invol(D,,) is
al(o) = dna(o).

So the average between the length and the absolute length of ¢ € Invol(D,,) is

p(o) = (@) ~ neg(o) + 2dna(o)

Proposition 7.3.1 The pair (Hpvo(p, ), P) 15 a covering system of Invol(Dy,).

Proof. By Proposition 7.2.11, Hypyeyp,) is an insertion system of Invol(Dy).
The p-base property is trivial. It remains to prove the p-increasing property.
Consider (0,7) € Hpyoi(p,)- We have to prove that

_ Aidnv — Aneg + 2Adna

A =1
P 4 )

where Az = z(1) — x(0).

In not central cases (see Table 6.1, p. 76) we have Aneg = 0, so Ap is the same
as in Invol(B,,), and it has already been proved that Ap = 1.
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In central cases (see Table 7.1, p. 106) we have

(Ainv, Aneg, Adna) =

(4,2,1), in cases (A1, M6'), (A6', M1),

(6,2,0), in cases (A3, M4), (A4, M3), (A3, M6"),(A6', M3),
(8,2,—1), in cases (A4, M6), (A6, M4),

(8,4,0),  in case (A4, M4).

Thus in every case Ap = 1. O

We are now able to state and prove the gradedness of Invol(D,,).

Theorem 7.3.2 The poset Invol(D,,) is graded, with rank function given by

__inw(o) — neg(o) + 2dna(o)
plo) = 1 ,

for every o € Invol(Dy,). In particular Invol(D,) has rank
n2
p(Invol(Dy,)) = > |

Proof. By Theorem 3.1.2, the first part is a consequence of Proposition 7.3.1.

For the second part, note that the maximum wg of D,,, which is also the maxi-
mum of Invol(D,), is such that

(n(2n — 1),n,n), if n is even,

(inv(wp), neg(wg), dna(wp)) = { (n2n—1)—1,n—1,n—1), ifnisodd.

So
n?/2, if n is even,

p(Invol(Dy)) = p(wo) = { (n? —1)/2, if n is odd.

O

We also have a characterization of the covering relation in Invol(D,,): if o,7 €
Invol(D,,), then o <7 if and only if (o, 7) is a good pair in Invol(D,,). And the
transformation of o with respect to a suitable label (i, j) actually is a covering
transformation, denoted by

I'nvol(D)
Ciigy  (0)-
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7.4 Invol(D,) is EL-shellable and Eulerian

Proposition 7.4.1 Let 0,7 € Invol(D,,), with o < 7. Then

mi, (o) = (di, Dci).

Proof. It is similar to the proof of Proposition 4.2.7, using the definitions of
the indices di and Dci. O

Thus, if 0,7 € Invol(D,,), with ¢ < 7, then the minimal covering transforma-
tion of o with respect to 7 is

metinvolPn) () = ctf;;jgig") (o),

and we have the following.

Theorem 7.4.2 Let 0,7 € Invol(D,,), with o < 7. Then

o <G metimvetPn) (g) < 7.

Theorem 7.4.2 ensures that next definition is well-posed.

Definition 7.4.3 Let 0,7 € Invol(D,), with 0 < 7. The minimal chain in
Invol(D,,) from o to T is the saturated chain

oc=0p0<014...<]0 =T,

defined by
o; = mCt{.nUOl(D")(Uz'_l), (71)

for every i € [k].

In order to prove that Invol(D,) is EL-shellable, we prove the increasing and
the decreasing properties.

Proposition 7.4.4 (Increasing property) Let o,7 € Invol(D,), with o <

7. The minimal chain
oc=09<014...]0 =T,

defined in (7.1) has increasing labels.
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Proof. Suppose, by contradiction, that at a certain step there is a decrease in
the labels. We may assume, without loss of generality, that this happens at the
first step. So

o < op < 09,
(di,Dci)  (i,4)

with (i,7) < (di, Dci). So either ¢ < di or i = di and j < Dci. If i < di, since
o and 7 must differ at the index 4, the minimality of di is contradicted. So
suppose ¢ = di and j < Dci. Let v = o3(di). Since oy < 7, we have v < 7(di).
But [di, j] % [o(di),v] is the main rectangle of (o, X), for some x € Invol(D,).
Thus the minimality of Dci is contradicted. O

Proposition 7.4.5 (Decreasing property) Let o,7 € Invol(D,,), with o <
T, and let

o=00<01<..0 =T,

be the minimal chain defined in (7.1). Every saturated chain from o to T,

different from the minimal one, say
o= ...d7; =71,

has at least one decrease in the labels.

Proof. The proof is essentially the same as in Proposition 6.4.5. There are
a few further cases to be considered, and they can be handled with the same
techniques. O

Next theorem is an immediate consequence of the increasing and the decreasing
properties.

Theorem 7.4.6 The poset Invol(D,,) is EL-shellable, having the standard la-
belling as an EL-labelling.

We can now prove that the condition of Theorem 1.2.1 holds for the poset
Invol(D,,), and thus that it is Eulerian.

Theorem 7.4.7 The poset Invol(D,,) is Eulerian.

Proof. Suppose we label the edges of the Hasse diagram of Invol(D,,) with the
standard labelling.
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Let 0,7 € Invol(D,), with ¢ < 7. By Theorem 1.2.1, we only have to show
that there is exactly one saturated chain from o to 7 with decreasing labels.

Note that, if x € D,,, then wgx not necessarily is in D,,. More precisely, since

neg(wox) = n — neg(x),

we have that wox € D, if and only if n is even.

But, if x € D,, we can consider the signed permutation of B,4;, which we
denote by ext(x), whose diagram is obtained from the diagram of x, by adding
rows and columns +(n + 1), and either the two dots in cells (n + 1,n + 1) and
(-n — 1,—n — 1), if n is even, or the two dots in cells (n + 1,—n — 1) and
(—n —1,n+ 1), if n is odd. In every case woext(x) € Dyy1.

Consider the two even-signed permutations woezt(o) and woexrt(r). They are

involutions of D, 1 and it’s easy to see that

woext(T) < woext(o).

Since the standard labelling of Invol(D,, 1) is an EL-labelling, there is exactly
one saturated chain from wgext(7) to woext(c) with non decreasing labels (it
actually has strictly increasing labels), and necessarily all the elements of this
chain have the form wqext(x), for some x € Invol(Dy):

woext(T) = woext(xo) < woext(x1) < ... Qwoext(xr) = woext(o).

Then
C=Xr<...]x1<dXo=T

is the unique saturated chain from ¢ to 7 with decreasing labels. O
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