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Introduction

The birth of permutation statistics is traditionally attributed to Euler [29].
However, it was not until MacMahon’s extensive study [45] that it became an esta-
blished discipline of mathematics, and it still took a long time before it developed
into the vast field that it is today. In the last thirty years much progress has been
made, both in discovering and studying new statistics, and in extending these to
arbitrary words with repeated letters and to others groups.

Coxeter groups are a class of groups, defined by Coxeter [26] in a certain way
by generators and relations, that arise in a multitude of ways in several areas of
mathematics such as algebra, geometry, singularity theory as well as in physics.
Moreover, their definition allows them to be handled in a combinatorial way. This
approach is often referred to as “combinatorics of Coxeter groups”, and is one of the
prominent parts of what is usually called “algebraic combinatorics”. Without any
doubt, the most fundamental example of a Coxeter group is the symmetric group
Sn. We frequently return to S, in order to illustrate various general concepts and
constructions.

MacMahon considered four different statistics for a permutation o in S,,. The
number of descents des(c), the number of excedances exc(o), the number of inver-
sions inv(o) and the major index maj(c). Given a permutation o = oy -+ -0, We
say that (7, j) € [n] x [n] is an inversion of ¢ if i < j and o; > ¢;, that i € [n — 1]
is a descent if o; > o;41 and that i € [n] is a excedance if o; > i. The major
index is the sum of all the descents. MacMahon showed, algebraically, that exc
is equidistributed with des and that inv is equidistributed with maj. Since then
any statistic equidistributed with des is said to be Eulerian, and any statistic equi-
distributed with inv is said to be Mahonian. Note that most of the permutation
statistics found in the literature fall into one of these two categories, and curiously
new Mahonian statistics appear much more frequently then Eulerian ones.

From the Coxeter group point of view, these statistics have some fundamental
algebraic interpretations. The number of inversions inv(o) is the length of o, na-
mely the minimum length of an expression of ¢ in terms of generators, denoted by
{(c), whereas des(o) is the number of generators s; such that £(os;) < £(c). Mo-
reover, the symmetric group naturally acts on the polynomial ring in different ways
and many mathematicians have studied the rings of the invariants. Surprisingly
some of the statistics previously defined, such as major index, a priori completely
disconnected from this field, appear with an important role in the representation
theory of these actions. Of course these considerations can be made also for other
Coxeter groups.

In the first part of this thesis we study the interplay between the combinatorial
and algebraic aspects of these statistics on Coxeter groups. In particular we define

vil



viii INTRODUCTION

several new Mahonian and Eulerian statistics on the Coxeter groups of type B and
D extending many of the existing ones on the symmetric group. Note that the
problem of extending the concept of major index to B,, was open for many years
and despite the fact that several “major index” statistics have been defined for
B, no generalization of MacMahon’s result has been found until the recent paper
[3]. First of all we analyze the combinatorial properties of these new statistics and
prove some important combinatorial identities that they satisfy, and then we look
at their meaning in representation theory. We focus our attention mostly on type
D and see that the results obtained extend nicely those for the symmetric group.

In Chapter 1 we briefly give some basic preliminaries about Coxeter groups that
are needed in the rest of the work. Moreover, we describe with particular attention
the principal source of reference and examples, namely the symmetric group.

The flavour of Chapter 2 is mostly combinatorial. After giving some combi-
natorial descriptions of the Coxeter groups of types B and D we introduce three
new statistics on D,,, dmaj, ddes and fmajp. We show that two of these are
Mahonian and that a pair of them gives a generalization to D,, of the well known
Carlitz’s identity on the Euler-Mahonian distribution of the descent number and
major index over S, [19], solving a problem first posed by Foata [2].

The results in this chapter are part of paper [8] that will appear in Advances in
Applied Mathematics.

In Chapter 3 we study the natural and tensor action of W and W?, respectively,
on the polynomial ring C[z1, . .., ,]®*. Denote by DIA and TTA the corresponding
invariant algebras. Let Zw (g) be the quotient of the Hilbert series of DIA and
TIA. We show that if W = D, then the series Zp, (g) is actually a polynomial
with nonnegative integer coefficients, which admits a nice expression in terms of
a new “major index” Dmaj. This statistic is Mahonian and is an analogue of
major index but, surprisingly, is different from both dmaj and fmajp. A similar
result holds also for S, and B,, where the polynomial Zw (q) is given by an explicit
formula using the major index and the flag-major index (see [37], [3]). Our proof
allows us to give a new and more direct proof also of the result for B,,. Moreover
we introduce an Eulerian statistic Ddes that together with Dmaj gives a second
generalization of Carlitz’s identity.

In Chapter 4 we study the interplay between representation theory of the Coxe-
ter groups of type D and the statistics Dmaj and Ddes. The set of elements in
a Weyl group having a fixed descent set carries a natural representation of the
group, called a descent representation. Descent representations of Weyl groups
were first introduced by Solomon (see [50]). We construct an analogue of des-
cent representations for the Coxeter groups of type D using the coinvariant algebra
as a representation space. The construction of a basis for the coinvariant alge-
bra is important for many applications, and has been approached from different
viewpoints. Garsia and Stanton presented a descent basis for a finite dimensional
quotient of the Stanley-Reisner ring arising from a finite Weyl group (see [38]). For
type A, unlike for other types, this quotient is isomorphic to the coinvariant algebra
and in this case the basis elements are monomials, indexed by o € S,,, of degree
maj(o). Moreover the coinvariant algebra has a natural grading induced from that
of P, by total degree, and we denote by RZV its k-th homogeneous component. In
the case of S,, a well known theorem due to Kraskiewicz-Weyman expresses the
multiplicity of the irreducible S,,-representations in RZV in terms of the statistic
mayj. Unfortunately, the Garsia-Stanton approach does not work for other Weyl
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groups. For type B these problems are solved by Adin, Brenti and Roichman in the
recent paper [1]. They provide a descent basis of R*(B) and an extension of the
construction of Solomon’s descent representations (see [50]) for this type. Here we
show how to extend these results to the Weyl groups of type D. We construct an
analogue of the descent basis for the coinvariant algebra of type D via a Straigh-
tening Lemma. The basis elements, indexed by v € D,,, are monomials of degree
Dmagj(vy). This new basis lead to the definition of a family of D,-modules Rs, s,,
whose elements are even-signed permutations having S; and Ss as “descent set”
and “negative set”, respectively, and for this reason we call them negative-descent
representations. They are analogous but different from Solomon descent represen-
tations and Kazhdan-Lusztig representations (see [43]). We decompose R} into a
direct sums of these Rg, g,. Finally, we introduce the concept of D-standard Young
bitableaux and by extending the definition of Dmaj on them we give an explicit
decomposition into irreducibles of these negative-descent representations, refining
a theorem of Stembridge [54]. This algebraic setting is then applied to obtain new
multivariate combinatorial identities.

The results in Chapters 3 and 4 have been obtained jointly with Fabrizio Caselli.

The second part of this thesis is devoted to the study of a family of polynomials
which are generating functions for the dimensions of the Ext-groups between ge-
neralized Verma modules. There is one set of generalized Verma modules for each
pair (g, p), up to conjugacy, consisting of a semisimple Lie algebra g and a parabolic
subalgebra p. If W is the Weyl group of g and W(m) is the Weyl group of a Levi
subalgebra of p = m @ u, then the set of generalized Verma modules attached to
(g,p) is indexed by the coset space W™,

The problem of computing the u-cohomology of irreducible highest weight mo-
dules is completely solved by the Kazhdan-Lusztig conjectures which have been
proved by Brylinski and Kashiwara in [17]. Note that Vogan showed that these
conjectures are equivalent to the formula

Poy(q) =D ¢*dime(Ext" @~ " (g, 1)),
E>0

where for any z,y € W with 2 <y, P; ,(q) is the Kazdhan-Lusztig polynomial of
the pair z,y, and for any € W M, is the Verma module associated to = and L,
is its unique irreducible quotient.

On the other hand, the “Extension Problem” , namely the problem of computing
the u-cohomology of the (g, p)-generalized Verma modules, is equivalent to compute
the dimensions of spaces of extensions between generalized Verma modules. It is
as yet unsolved in general, and there are not even conjectures for the form of the
answer. If ¢ and p form an indecomposable Hermitian symmetric pair then Shelton
[48] proves a recursion formula for the polynomials defined by

Buu(q) =Y (—1)H =00k gk dimg (Ext® (N, Ny)),
E>0

where N, and N, are the generalized Verma modules attached to (g, p) correspon-
ding to v and v in W™,

In Chapter 5 we solve these recursion relations, in the case when (g,p) cor-
responds to a classical Hermitian symmetric pair. There are five possibilities for
(9,p) when g is classic and our main results are explicit product formulas for the
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E-polynomials. Moreover these formulas can be stated in two different ways, one in
terms of Weyl group elements and one in terms of partitions. Finally, the formulas
imply that the E-polynomials are combinatorial invariants, i.e. that they depend
only on the interval defined by u and v in W™ as an abstract poset.

The material in this chapter is part of the paper [7] accepted for publication in
Transactions of the American Mathematical Society.



CHAPTER 1

Coxeter groups

Coxeter groups are a class of groups defined by generators and relations. They
arise 1n several fields of mathematics. In this chapter we restrict our attention of
the definitions, notation and results that are needed in the rest of this work.

1.1. Definition

Welet P := {1,23,... } , N := P U{0}, and Z be the set of integers; for
a € N we let [a] := {1,2,...,a} (where [0] := @) and [*n] := [-n,n]\ {0}. The
cardinality of a set A will be denoted by |A|.

Let S be a set. A matrix m: S xS = PU{oo} is called a Cozeter matriz if it
satisfies

m(s,t) = m(t,s),for alls,t € S;

m(s,t) =1 s=1.

Equivalently, m can be represented by a Cozeter graph whose node set is S and
whose edges are the unordered pairs s,? such that m(s,t) > 3. The edges with
m(s,t) > 4 are labeled by that numbers.

For example let S := {a, b, ¢,d} with Coxeter matrix

1 2 4 2
2103 2
Tl 4 315
2 2 5 1
then the Coxeter diagram is
b d
5
a 4 C

A Coxeter matrix m determines a group W with the presentation

{ Generators: S

(1.1) Relations:  (st)™() = ¢, for all s,t € S : m(s,t) # oo,

where “e” denote the identity element of the group. Since m(s, s) = 1 we have that

s?=¢, forallses,

1



2 1. COXETER GROUPS

and so S is a set of involutions. In particular, m(s,t) = 2 if and only if s and ¢
commute; this in the Coxeter graph means that s and ¢ are not joined by an edge.

If a group W has a presentation such as (1.1) then the pair (W, S) is called
a Cozeter system. The group W is the Cozeter group. The cardinality of the set
of Cozeter generators S is called the rank of (W, S). We will investigate only on
groups with finite rank. The system is irreducible if its Coxeter graph is connected.

The following two statements are equivalent and make explicit what it means
for W to be determined by m via the presentation (1.1):

1. If G is a group and f : G — G is a map such that
(S FE)™et) =e,

for all s,t € S with m(s,t) # oo, then there is a unique extension of f to a
group homomorphism f: W — G.
2. W is the quotient Fs/N, where Fg is the free group generated by S and N
is the normal subgroup generated by {(st)™(*t) : st €S, m(s,t) # co}.
The finite irreducible Coxeter groups have been classified (see e.g., [42]). We are

mostly interested in the Coxeter groups of type A, B and D: we analyze them in
detail in this and next chapter, see Table 1 at the end of this chapter.

1.2. Length function

In this section we define one of the most important statistics on Coxeter groups,
the length.
Let (W,S) be a Coxeter group. Each element w € W can be written as a
product of generators s; € S,
W = 85189 " 8p.
The length of w 1s
(1.2) Y w) :=min{r e N:w=s;...s, for some s1,...,s € S}.

If r = ¢(w) then the word s; - - s, is called a reduced expression for w. Here some
basic facts of the length function.
For all u,w e W

) lw)=1ewesS,;

ii) £(w) = fw);
198) L(uw) = L(u) + L(w);
iv) L(sw) =L(w) £ 1, for s€S.
Now we are able to define the polynomial

Wi(g) = > ¢,
weW

called the Poincaré polynomial of W. It has homological and geometrical interpre-
tations and has also a nice factorization as we will see in more detail later.

We let
(1.3) T:={wsw™' : s€S, we W}

The elements of T are called reflections. The definition shows that S C 7', and
the elements of S are usually called simple reflections. We make the following
definitions:

Tr(w) :={teT : L(tw) < {(w)},
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and
Tr(w) ={teT : L(wt) < {(w)}.

Tr(w) is called the set of left associated reflections to w, and similarly for T (w).
We have the following characterization of the length function

e (w)| = £(w).

Now we introduce two of the basic objects of this thesis, the descent sets. We
will study these issues in more details in the rest of the work. We define the left
descent set of w by

Dp(w) =T (w)N S,
and, similarly, the right descent set of w by,
(1.4) Dr(w) :=Tr(w)NS.

The next is one of the fundamental concept in the combinatorial theory of
Coxeter groups. We say that a Coxeter system has the Exchange Property if it’s
satisfies as follows.

Exchange Property. Let w = s;---s, be a reduced expression and s € S. If
{(sw) < £(w) then sw =s1---§; s, for some i € [r].

THEOREM 1.1. Let W be a group and S a set of generators of order 2. Then
the following are equivalent:

i) (W, S) is a Cozeter group;

it) (W, S) has the Exchange Property.

1.3. Symmetric group

In this section we analyze the symmetric group from a combinatorial point of
view. We give some notation and definitions that we use in the rest of the work and
finally we give a combinatorial proof of the known fact that the symmetric group
is a Coxeter group, following the setting of the book [10].

Sy, is the set of all bijections o : [n] = [n]. If ¢ € Sy, then we write 0 = 01 .. .0y
to mean that (i) = oy, for i = 1,...,n and we call this the complete notation of
o. If o € S, then we may also write o in disjoint cycle form and we will usually
omit to write the 1-cycles of o.

For example, if ¢ = 64175823 then we also write 0 = (2,4,7)(1,6,8,3). Given

o,7 € S, we let o7 := ¢ o 7 (composition of functions) so that, for example,
(1,2)(2,3) = (1,2,3).
As a set of generators for S, we take S = {s1,...,s,_1} where s; := (4,7 + 1),

fore=1,...,n— 1. The effect of multiplying an element o € S,, by the transposi-
tion s; on the right is that of interchanging the places of ¢(7) and o (i + 1), and on
the left is that of interchanging ¢ and ¢ + 1 in the complete notation of o.

For example, let o = 3765214 then o(3,4) = 3756214 and (3,4)c = 4765213.

The Coxeter graph of S,
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Now we wonder who is the length function for S,,. The reply is given by the
following well known result. We need to introduce the following “statistic” on S,
(and in general for each o = (o1,...,0,) € Z™). The inversion number of o is

inv(o) = |{(i,j) € [n] x [n] : i< j, (i) > a(4)}].
Note that
. inv(o) +1, ifo(d) <o(i+1),
(1.5) inv(os;) = { imjgg) 1, if UEZ) > ggi +1).

ProrosiTION 1.2. Let o € S,,. Then
{(o) = inv(o).

ProoF. Since inv(e) = £(e) = 0, then (1.5) implies that inv(o) < £(o). Conver-
sely, we prove the other inequality by induction on inv(o). If inv(c) = 0 then o = ¢
and the thesis holds. So let ¢ € S, such that inv(c) = k& > 0. Then there exists
s; € S such that inv(os;) = k — 1 (otherwise would imply o = ¢). Hence by
induction inv(c) = inv(os;) + 1 > €(os;) + 1 > £(0) and we are done. O

This proposition can be used to obtain direct proofs the following facts.
The Poincaré polynomial for the S, 41, admits a nice expression, namely
n

(1.6) Sn+1(q) = Z qz(o) = H[’+ 14,

UESn+1 i=1
where [i]; ;=14 ¢+ -+ gi~1.

ProproOSITION 1.3. Let o € S,,. Then
Dr(o) :={si €S : o(i) > o(i+ 1)}.
The set of the reflections defined in (1.3) takes the following form
T={(j) el xn : 1<i<j<nh

Its elements are called transpositions.
There are several way to prove the following well known theorem. We present
this one as in [10].

THEOREM 1.4. (Sy,S) is a Cozeter system of type A,_1.

Proor. We show that the pair (S,,S) has the Exchange Property, and so
the thesis follows by Theorem 1.1. The relations s;s; = sjs; for |1 — j| > 2 and
$iSi+15i = Si+15iSi+1 1mply that the type is A,_1.

Let 4,41,...,1p € [n — 1] and suppose that

(17) E(Sil ~~~8ip8i) <£(8i1 "'Sip)~
We want to show that there exists a j € [p] such that

52'1"'52',,52':52'1"'51'"'

j HE-7 SN

p

Let 0 :=s;, -5, b:= 0(i) and a := (i + 1). By Proposition 1.2 we know that
(1.7) means that b > a. Hence, there exists j € [p] such that @ is to the left of b
in the complete notation of s;, ---s;,_, but a is to the right of b in the complete
notation of s;, - --s;,. Hence, the complete notation of s;, ---8;, ---s;, is the same
of 54, - -+ s;, except that a and b are interchanged and this implies the thesis. O
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1.4. Bruhat order

Here we introduce this partial order structure, that has a remarkable role in the
algebraic and combinatorial theory of Coxeter groups. We start with some poset
notation and terminology following the book of Stanley [51].

1.4.1. Poset notation. Given a poset (P, <) and u,v € P we let [u,v] := {z €
P : u <z <wv} and call this an interval of P. We say that u and v are comparable
ifu<wvorwv<u A sequence (ui,...,un) € P® such that uy < -+~ < wuy, isa
chain. If P has a minimal element, denoted 0, then we call a subset of the form
[0, u], for u € P, a lower interval of P. We say that v covers u, denoted by u < v
if |[u,v]| = 2. The Hasse graph of P is the graph having P as vertex set and
{{u,v} : u < vorv < u} as set of edges. Given any Q C P we will always
consider ) as a poset with the partial ordering induced by P and call @ a subposet
of P. We say that z € P is join-irreducible if it covers at most one element of P.
Given two posets P and @ we write P = () to mean that they are isomorphic as
posets.

1.4.2. Definition. Let (W, S) be a Coxeter system and T its set of reflections
defined in (1.3). We give the following definitions. Let u,v € W. Then

i) u % v means that u=lv € T and L(u) < L(v);

i1) v — v means that u L v for some t € T;
%) u < v means that there exist v; € Wsuch thatu = vy 5 vs = -+ 5 vy = v.

The Bruhat graph is the directed graph whose nodes are the elements of W and
whose edges are given by ii). Note that the Bruhat graph is acyclic.
Bruhat order is the partial order relation on the set W defined by iii).
The following observations are immediate:
i) u<v=L(u) <l(v);
it) if t € T, then u < ut & £(u) < l(ut);
#%4) e is the minimum of W.

1.4.3. Quotients. Let (W,.S) be a Coxeter system. For any J C S let Wy be
the parabolic subgroup of W generated by the set J, and

W = {w e W L(sw) > (w) for all s € J}.

Note that W7 is the system of the minimal right coset representatives of Wj. Note
that W? = W. Moreover it’s immediate to see that an element w belongs to W7 if
and only if no reduced expressions for w begins with a letter from J.

The quotient W, is a poset and it’s partially ordered by Bruhat order. If W is
finite wy and wY denote the unique maximal elements in W7 and W respectively.
Given u,v € W7, u < v, we let

[u, 0] ={zeW’: u<z<0},
)7

and consider [u,v]” as a poset with the partial ordering induced by W+,

The preceding construction can of course be mirrored. There is a complete
system

TWi={weW : L(ws) > (w)forall s € J} = (W’/)~!
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of minimal length representatives of left cosets wWj;. Furthermore, an element w
belongs to YW if and only if no reduced expressions for w ends with a letter from
J.

The following is well known (see, e.g., [10] or [42]).

ProposiTiON 1.5. Let J C S. Then:

i) Bveryw € W has a unique factorization w =’ wwy such that 7w € W and
wy € Wjy.
ii) For this factorization £(w) = £(7w) + L(wy).

For example, in the case of the symmetric group, the parabolic subgroups
are often called Young subgroups and the right maximal quotient corresponding to

J := S\ {s;} has this explicit form
IS, = {c€S, i o(l)<o(2)<...ok)and o(k+1) < o(2) <...0(n)}.

We close this section by giving a well known result on the Poincaré polynomial.
We’ve already seen in the case of the symmetric group that it admits the nice
formula (1.6). Is something similar true in general ? Surprisingly, the answer is
yes, and it is given by the following theorem (see e.g., [42]).

THEOREM 1.6. Let (W, S) be a finite irreducible Cozeter system, and n = |S]|.

Then there exist positive integers eq,... e, such that
n
Wiq) = H[ei + g
i=1

In particular, |W| = H?:l(ei +1) and |T| = {(wg) = 2?21 €i-
The integers eq,. .., e, are called the exponents of (W, S) (see Table 1).

| Type | Order | |T] | Exponents |
Ay, 2D [ (n+ D! ("3 1,2,....n

B,, (n>2) 2"n! n? 1,3,5,...,2n—1
Dp, (n>4)] 277l [n?—n|1,3,...,2n—3,n—1

TABLE 1. Classical Coxeter groups

1.5. Partitions

Partitions are combinatorial objects that have several relations with Coxeter
groups. We use them often in this work, and now we recall some basic notation.

A partition X of a nonnegative integer n is an infinite sequence (A1, Az, ...) of
nonnegative integers with finitely many terms different from 0, where Ay > Ay > -«
and 221 Ai = n. The sum ), A\; = n is called the size of A and we write A - n
or [A] = n. The number of parts of A (i.e., the number of non-zero A;) is the length
of A, denoted £(A). The set of all partition is denoted by P and its subset with
£(A) < n by P(n). A partition A is said to be strict if Ay > A2 > ....We denote
by Ps the set of all (integer) strict partitions and Pg(n) the subset of all the strict
partitions with £(A) < n.

Let A F n, then we draw a left-justified array of n boxes with A; boxes in the
it? row and call it the Young diagram of \.
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FIGURE 1. The Young diagram of A = (5,4,2,1)

The conjugate partition X' = (X, A}, ...) of A is defined by the condition that
the Young diagram of A’ is obtained flipping the Young diagram of A over its main
diagonal (from upper left to lower right); equivalently A} is the number of parts of
A that are > ¢, for all 1 > 1. Note that A = £(}).

Figurg 2. The Young diagram of X’

Given A = (A1,..., ) € P we let d(A) be the length of the Durfee square of
A,
(1.8) d(A) := max {i € [k]: A\ > i}.

For any u, A € P we define p C A if and only if g; < A; for all 7. If we identify
a partition with its Young diagram, then the partial order C is given simply by
containment of diagrams. It’s well known, and not hard to see, that this makes P
into a lattice, usually called Young’s latice (see e.g., [52, §7.2]).

The dominance order is a partial order defined on the set of partitions of a
fixed nonnegative integer n as follows. If g and A are partitions of size n, then we
define p < A if

prtpe+oo e <A+ A+ N
for all 1 > 1.
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CHAPTER 2

Enumerative aspects of Coxeter groups

In this chapter we look at some of basic enumerative aspects of Coxeter groups.
Every element possess several significant numerical attributes, called “statistics”;
we have already seen, in the previous chapter, the most important example, the
length. Here we are interested only in the combinatorial properties of these statis-
tics, without considering their algebraic meaning that will be the main argument
of the next two chapters.

We begin by considering the symmetric group. We give some definitions and
basic results on permutation statistics on S,, and B,,. Then we introduce and study
three new statistics, dmaj, ddes and fmajp on the even-signed permutation group
D,,. We show that dmaj and fmajp are Mahonian, and that the pair (ddes, dmaj)
gives a generalization of Carlitz’s identity.

The results in §2.3 are news, and are part of the paper [7] that will appear in
Advances in Applied Mathematics.

2.1. Symmetric group

This is a preliminary section in which we collect some basic and well known
results on the combinatorics of the symmetric group. This field was influenced
mostly by Dominique Foata, and the reader can give a look to [21, 30, 31, 33].

2.1.1. Mahonian and Eulerian Statistics. For o € S, and in general for
any o = (01,...,0,) € Z", we define a “combinatorial” descent set by

Des(o) :={i€[n—1] : o(i) > o(i+1)}.

Note that for Sy, the map i — s; is a bijection between Des(o) and the right descent
set Dr(0) defined in (1.4).
As from this object we define the descent number of o by

des(o) := |Des(o)],
and the major indez, first introduced by MacMahon (see [45]) by

maj(o) = Z i.

i€Des(o)

For example if o = 325461 € Sg then Des(o) = {1,3,5}, des(o) = 3 and maj(o) =
9.
The number of permutations in S, with k& descents is denoted A(n,k+ 1)

Aln,k+1) ={oc €S, : des(o) = k}|.

The numbers {A(n,k+ 1) : n > 1,k+ 1 € [n]} are called “Eulerian numbers”,
and it’s easy to see that they satisfy the recurrence

A k+1) = (k+ DA — 1,k — 1)+ (n — k) A(n — 1, k),

9
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with the initial condition

1, for k=0,
ALk +1) = { 0 otherwise.
The polynomials
n—1
Ap(z) = Z pltdes(o) — Z A(n, k + 1)zF+?
o€ES, k=0

are the so-called “Eulerian polynomials” that do not have closed forms for them-
selves, but do have a nice generating function given by

Ap(z)u” 1
1 - = .
+Z n! 1_2 z—1)n—1ymn
n>1 n>1

n!

Any permutation statistic whose distribution on S, is given by n-th Eulerian poly-
nomial A, (z) is said to be Eulerian. One important example of Eulerian statistic
is exc(o), the number of excendances of a permutation o € S,

exc(o) == {i € [n] : o(i) > i}
The following result is well known.

THEOREM 2.1 (MacMahon). Let n € P. Then

3 grei) = 37 4o,

oES, oES,

It follows that any statistic equidistributed with the length is said to be Ma-
honian. A first proof of the result appeared in [45], and other proofs can be found
in [49] and [51]. Here we present the most famous due to Foata, who provide an
explicit bijection ¢ : S, — S,, with the following two properties:

1. maj(o) = inv(e(0));
2. ides(o) = ides(p(0)).

where ides(o) := des(o™1).
We describe the algorithm to construct the bijection ¢. Let ¢ = (1) ---o(n) be a
permutation.

i) Define wy := o(1); assume that wy has been defined for some k£ with & €

[n — 1]; then

i) if the last letter of wy is greater (resp smaller) than o(k 4 1), split wy after
each letter greater (resp. smaller) than o(k + 1); then

i73) in each compartment of wy determined by the split move the last letter to
the beginning; for obtaining wg41 put o(k+1) at the end of the transformed
word; replace k by k + 1;

iv) if k = n, then ¢(0) = wy if not return to 7).
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For example, the image under ¢ of o = 749261583 is obtained as follows:

w1:7|

ws = 7| 4] 9

wy = T 4 9 2
ws = 4] 7| 2| 9] 6|

we = 4 7 21 9 6 1]
wr = 4 2| 7 1] 9 6] 5

ws = 4 2 7 1 6] 9] 5 8§
and (o) = wg = 472619583.

2.1.2. Joint-Distribution. It is also interesting the study of pairs of sta-
tistics, usually an Eulerian one and a Mahonian one and equidistribution of such
“bistatistics”.

The most natural joint equidisribution is given by (des, ). There is a simple
recursive rule to compute the generating function

W(tiq) = Y tdestw)ghl),
weW

for any Coxeter group W.
THEOREM 2.2. Let (W, S) be a Cozeter system. Then

L) J svs|_Wia)
W(t,q)_étl l(1—¢)I5\ lm.

A proof can be found in [10]. Sometimes it’s possible to find also simple
expression without using the previous theorem. For example, for the symmetric
group, we have the following result due to Stanley [51]:

3" Su(t;9) e (1 =t)exp(z(1 —t);9)
]

= g 1—t-exp(z(l—1t);q)

in Z(q)[t])[[z]], where

In
Jg!’

[n]g!

exp(z;q) = Z
n>0

and So(t;q) == Si(t;q) = 1.
In the case of S, there exist a number of enumerative results on the joint distri-
butions (see e.g., [32] and [33]). Remember that £(c) = inv(o) for all ¢ € S,.
The first pair of equidistributed Euler-Mahonian bistatistics was that (des, inv)
and (des, imaj), denoted by

(des, inv) = (des, imayj),

where imaj := maj(c~!). This is an easy consequence of Foata’s bijection.
Of special interest is also the Euler-Mahonian pair (des, maj), whose joint
distribution on S, is given by Carlitz’s ¢-Eulerian polynomials A, (%, q)

An(t,q) = ZAH,R(Q)tk - E pdes (@) gmai(o).
k=0

o€S,
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and Ag(t,q) := 1. For example, A3(t,q) = 1 + 2tq? + 2tq + t?¢>. Analogously to
the Eulerian numbers, the coefficients A, x(g) satisfy the recurrence

Anyk(q) = [k + 1]qAn—1,k(q) + qk[n - k]qAn—l,k—l(Q)a
with
1, for k=0,
Aok() = { 0 otherwise.

The following formula is due to Carlitz’s and its proof can be found in [19].

THEOREM 2.3. Let n € P. Then

r nyr __ A"(t’q)
TZZO[ it = [[ioo(l —t4)

i Z[q][[t]]-

Denert in 1990 conjectured that the pair (des, maj) was equidistributed with
(exc,den), where exc is the number of excedances of a permutation and den is
a Mahonian statistic crucially different fron inv. This result was proved first by
Foata and Zeilberger [33] that called den the Denert statistic and after by Han [40].
More recently Skandera [49] defined a new Eulerian statistic stc such that the pair
(stc, inv) is equally distributed with (des, maj) and provide a simple bijective proof
of this fact. Note that (des, inv) and (des, maj) are two different families of Euler-
Mahonian bistatistics on S,,.

It’s possible also to consider pairs of Mahonian statistics. The following results

hold.
PROPOSITION 2.4. The three pairs of statistics
(mayj, inv) = (imaj, inv) ~ (imaj, maj),
have the same distribution on S, .
PROPOSITION 2.5. The pair of statistics (maj, inv) is symmetric, namely
(maj,inv) = (inv, maj).

Proofs of this results can be found in [32].

2.2. The Hyperoctahedral group

An increasing number of enumerative results true for S,, have been generalized
to the hyperoctahedral group. Several “major index” statistics have been intro-
duced and studied for B,, (see [22, 23], [46] and [53]), but no generalization of
MacMahon’s result has been found until the discover of the flag-major index in the
recent paper [3]. After that Foata posed the following question, recently solved in

(2].
ProBLEM 1 (Foata). Extend the “Euler-Mahonian” bivariate distribution of

descent number and major index to B,,.

Here we introduce some basic combinatorial descriptions of the Coxeter groups
of type B and then we show the results mentioned above.
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2.2.1. Combinatorial description. We denote by B,, the group of all bijec-
tions § of the set [—n,n]\ {0} onto itself such that

B(—i) = —pB(1)
for all i € [-n,n]\ {0}, with composition as the group operation. This group is
usually known as the group of signed permutations on [n], or as the hyperoctahedral
group of rank n. We identify S,, as a subgroup of B,, and B, as a subgroup of
San, in the natural ways. If 8 € B, then we write 8 = [f1, ..., 0,] to mean that
B(i) = B; for i = 1,...,n, and we call this the window notation of 5. As set of
generators for B, we take Sp 1= {sP,... sB_, sP} where for i € [n — 1]

sBo=1[1,... i—1,i4+1,ii+2,... 7]

and
s& =[-1,2,...,n] = (=1,1).

Note that multiplying an element 3 € B, on the right by s? (s£) has the effect of
exchanging the values in position ¢ and 7+ 1 (respectively, changing the sign of the
value in the first position). This makes clear that Sp generates B,, moreover it’s
well known that (B, Sg) is a Coxeter system of type B (see e.g., [10]).

The Coxeter graph of B,

As for S,, we give an explicit combinatorial description of the length function
£ of B, with respect to Sg. For f € B, we let

(2.1) Neg(B) :={i €[n]: B <0},

neg(B) = N1(B) := [Neg(B)|,
and
Na(B) = [{{i,j} C’;]) B + B; < 0}].
Note that, if 3 € B, then it’s not hard to see that
(2.2) N(B)+Na(B) == > )ﬁ(i)
B

i€ENeg(
ProprosITION 2.6. Let 3 € B,,. Then
£(B) = inv(B) + N1(B) + N2(f)-

A consequence of this proposition-definition is this characterization of the right
descent set.

ProprosITION 2.7. Let 3 € B,,. Then
(2.3) Dr(B) = {s] € Sp : B(i) > Bli+1)},
where 5(0) := 0.
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2.2.2. Flag statistics on B,. Weintroduce the so-called flag-statistics. They
have a very important role in representation theory as showed in next chapter. Here
we are only interested in their combinatorial properties.

Following [3] we let

— B
Ti i= 8{8;—1""*8g -

The family {;}; is a set of generators for B,, and for any 3 € B,, there exist unique
integers rq, ... ,rp—1, with 0 <7; <2i+1for : =0,... ,n— 1 such that

(2.4) 8= T,:’i_f oerharligl,

The flag-major index is defined by

(2.5) fmaj(B) := Z_: T

The fmaj was the first statistic of type “major” on B, to be Mahonian, (see [3,
Theorem 2.2]).

ProproOSITION 2.8. Let n € P. Then

E gfmai(®) — Z ¢

BEBn BEBy
If we consider the following order on Z

-1<-2<---<-n=<--<0<1=<2<---<n=<---
instead of the usual ordering, then there is the following, (see [3, Theorem 3.1]).
ProprosITION 2.9. Let § € B,,. Then
fmaj(B) =2 -maj(B) + N1(B).

We will use often this characterization in the rest of this work.
The flag-descent number of (3 is defined by

(2.6) fdes(B) =2 des(B) +mi(8),

where

1, it p(l) <o,
m(A) '_{ 0, otherwise.
For example, if § = [—4,-3,5,1,-2] € Bs then fmaj(f) = 2-8+3 = 19 and
fdes(B) =2-3+1=T1.

The pair of statistics (fdes, fmaj) gives a generalization of Carlitz’s identity
(Theorem 2.3) to B,. More precisely we have the following theorem due to Adin,
Brenti and Roichman [2] (see [1] for a refinement).

THEOREM 2.10. Let n € P. Then
B ZﬁEBn tfdes(ﬁ)quaj(ﬂ)

2l = R T =

r>0

i Z[q][[t]].

Note that the powers of q in the denominator of the formula are the degrees of

the Weyl group B, (see Table 1 of Chapter 4).
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2.2.3. Negative statistics. Now we introduce, following [2] another type of
statistics called negatives. Their nature is more combinatorial respect to the flag-
statistics and they are the natural analogues of maj and des for B,,.

For any @ € B,, the negative-descent multiset is defined by

NDes(B) := Des(8) [H{—p(i) : i € Neg(8)}.

For example, if § = [-3,1,—6,2,—4,—5] € Bg then Des(f) = {2,4,5} and
NDes(8) = {2,3,4%,5%,6}. Note that if 3 € S, then NDes(f) is a set and coin-
cides with the usual descent set of 5. Also, note that NDes(3) can be defined
rather naturally also in purely Coxeter group theoretic terms. In fact, for i € [n]
let n; € B, be defined by

i =1[1,2,...,i—1,—1i,i+1,...,n],

so m = sP. Then ny,...,n, are reflections (in the Coxeter group sense, see e.g.,
[10] or [42]) of B, and it is clear that

NDes(B) :={ic[n—1]:¢Ps") < E(ﬁ)}@{z € n]: (87 m) < (B}

These considerations explain why it is natural to think of N Des(8) as a “descent
set” | so the following definitions are natural.
For 8 € B, we let

ndes(f) := |N Des(f)]

and
nmaj(f) := Z 1.
i€NDes(8)

The two most important combinatorial proprieties of these two statistics are
that nmaj is Mahonian and that they give a generalization of Carlitz’s identity to
B,, solving the Foata’s problem.

THEOREM 2.11. Let n € P. Then

Z tndes(ﬂ)qnmaj(ﬂ) — Z tfdes(ﬁ)quaj(ﬁ).
BEB, BEB,

2.3. The even-signed permutation group

In this section we give some basic combinatorial descriptions of the Coxeter
groups of type D. Then we introduce the analogues of the negative statistics
and flag-major index for D,, and we study some of their combinatorial properties.
Moreover we find a Carlitz’s identity for D,. The definition of flag-descent number
for D,, needs some background and so it will be given at the end of next chapter.

2.3.1. Combinatorial description. We denote by D,, the subgroup of B,
consisting of all the signed permutations having an even number of negative entries
in their window notation, more precisely

D, :={y€ B, :Ni(y) =0 (mod 2)}.

As a set of generators for D,, we take Sp := {s¥,sP ... sP_,} where fori € n—1]

D . _ B
=5
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and
s8 =1[-2,-1,3,... ,n] = (1,-2)(2,-1).

It’s clear that Sp generates D,. Note that S, C D, C B,. For the rest of the
section, if there is no danger of confusion, we will write simply “S” and “s;” instead
“Sp” and “sP” for i =0,1,...,n— 1. It’s well known that the pair (D,, Sp) is a
Coxeter system of type D, and this can be proved in similar way as Theorem 1.4
using next Proposition 2.13.

The Coxeter graph of D,

There is a well known direct combinatorial way to compute the length for
v € D, (see, e.g., [10, §8.2]), namely

ProprosITION 2.12. Let v € D,,. Then
(2.7) Uy) =inv(y) = Y () = Nily).
i€Neg(y)
Equivalently, using the observation (2.2)
(2.8) £(y) = inv(y) + Na (7).

For example, if v := [-4,1,3,-5,—2,—6] € Dg then inv(y) = 10, des(y) = 2,
maj(y) =8, N1(v) =4, Na(y) = 13 and £(y) = 23.

This characterization of the length function allows a simple description of the
right descent set of an element of D, .

ProrositTion 2.13.
Dr(y) ={si €S : v(i) >v(t + 1)},
where y(0) := —y(2) and y(n + 1) := 0.
For example, if v = [-2,1,5, -3, —4, —6] then Dg(y) = {so, s3, 54, $5}.

2.3.2. Negative statistics on D,,. The goal of this section is to show that
the results of previous one can be generalized to D,,. Toward this end we will use
often the following decomposition of D,. We let

(2.9) T :={y € D, :des(y) = 0}.

It is well known, and easy to see, that

(2.10) Dy= W {yu:very,
ueS,

where |# denotes disjoint union. Note that (2.10) is one case of the multiplicative
decomposition of a Coxeter group into a parabolic subgroup and its minimal coset
representatives (see Proposition 1.5), more precisely T' is the right quotient cor-
responding to the maximal parabolic subgroup generated by J := S\ {so}. We
are ready to introduce the main object of this section, a new “descent set” for the
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elements of D,,. This gives rise in a very natural way, to new “major index” and
“descent number”. We define the D-negative descent multiset

(2.11) DDes(v) := Des(v) H{—(i i€ Neg(y)} \ {0},

where Neg(7y) is the set of positions of negative entries in =, defined in (2.1).

For example, if v = [—4, 1,3, =5, —2, —6] € Dg then Des(y) = {3,5} and DDes(y) =
{1,3% 4,5%},

Note that if ¥ € S, then DDes(y) is a set and coincides with the usual descent
set of 4. Also, note that DDes(y) can be defined rather naturally also in purely
Coxeter group theoretic terms. In fact, for i € [n — 1] let & € D,, be defined by

& i=[-1,2,...,4,—1—1,i+2,... n].
Then &1, ... ,&,—1 are reflections (in the Coxeter group sense, see e.g., [10] or [42])
of D, and it is clear from (2.7) that
DDes(y) :={i € [n—1]: (ysi) < LN} H{i € [n = 1] : 6(y7'&) < (7))}

These considerations explain why it is natural to think of DDes(y) as a “descent
set”, so the following definitions are natural.
For v € D,, we let

ddes(7y) := |DDes(v)|

dmaj(y) = Z i

i€DDes(v)
For exampleif y = [—4, 1,3, =5, —2, —6] € Dg then ddes(y) = 6, and dmaj(y) = 21.
Note that from (2.11) there follows that

(2.12) dmaj(y) =maj(y) = D> () = Ni(y) = maj(y) + Na(7).
i€Neg(v)

and

This formula is also one the motivations behind our definition of dmaj(7y), because
of the corresponding formulas (2.7) and (2.8).
Also note that

(2.13) ddes(v) = des(y) + Ni(v) +€(7),

where

0 if1e~([n]).
Our first result shows that dmaj and £ are equidistribuited in D,,.

() ::{ =1 if 1 ¢ y([n])

ProprosITION 2.14. Let n € P. Then
3 g = 3 gt
YED, YED,

ProOF. Let T be defined by (2.9). It is clear from our definitions that for all
ue S, and o €T,

(2.14) maj(ou) = maj(u), inv(ou) = inv(u), Ni(ou) = Na(o).

Therefore, from (2.8), (2.10), (2.12) and the corresponding result for S,, (Theorem
2.1) we conclude that
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Z qdmaj('y) — Z Z qdmaj(au)

YED o€T ueSy,

— E Z qmaj(ou)+N2(ou)
o€T ues,

- T 3 g
c€eT u€Sy

— ZqNg(o) Z qznv(u)
o€eT u€Sy

— E Z qinv(au)+Ng(au)
o€T ues,

=Y
YEDR

as desired. O

As before, let T'={vy € D,, : des(y) = 0} so

T={yeDy:v(1) <~v(2) <...<v(n)}.
Therefore, given v € T, # ¢, there is a unique k € [n] such that

y(k) <0< ~y(k+1).

Given v € ' we associate to v the strict partition
(2.15) A@) = (=3(1) = 1,—9(2) = L. —(k) — 1),
The following proposition will be treat with more detail in Chapter 5 (Proposition
5.15).

PRrROPOSITION 2.15. The map A defined by (2.15) is a bijection between T and
Ps(n—1). Furthermore vy < o in T if and only if A(y) C A(o) and £(y) = |A(7)]
forally,o0€T.

We find it convenient to identify a strict partition A € Pg(n) with a subset of
[n]. In fact we have an inclusion preserving obvious bijection ¢ between Ps(n) and

p(n) :=={S: 5 C [n]} given by:
(A1, A2y o An) €5 A0, Aay e A )
We begin with the following lemma.
LEMMA 2.16. Let n € P. Then

ZtNl(a)-}—e(a)qu(a) — Z tlslquesl nl:f 1+tq
i=1

o€eT SC[n-1]

Proor. From (2.8) we have that Ny(c) = (o), for all ¢ € T. By Proposition
2.15 we have {(c) = |A(0)| and by definition of ¢ that |[A(c)| = Zzeqﬁ (A()) b
Therefore Ny(o) = Zz€¢( A(o)) b ;

Let o € T. Suppose first that 1 € o([n]), then |¢(A(c))| = N1(c). On the other
hand, if 1 € o([n]), we have that |¢(A(0))] = Ni(o) — 1. Hence |¢(A(0))| =
Nl(o) + ¢(o), and if we let S = ¢(A(c)) the result follows. O
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We are now ready to prove the main result of this work, namely that the
pair of statistics (ddes, dmaj) solves Foata’s problem for the group of even-signed
permutations D, .

THEOREM 2.17 (Carlitz’s identity for D,). Let n € P. Then

tddes(v) sdmaj(v)
(2.16) > I+ 110t Loep, nfl :
730 T - —tg) [Tz (1 —t2¢%)

in Z[q][[¢]].
ProOF. Let T be defined by (2.9). Then it is clear from our definitions that
des(ou) = des(u) , Ni(ou) = Ni(o), e(ou) = ¢(o)

Z ou(i) = Z (i),

i€Neg(ou) i€Neg(o)
for all o € T' and u € S,,. Therefore we have from (2.10), (2.12), (2.13), (2.14) and
Lemma 2.16 that

and

Z tddes(’y)qdmaj(w) _ Z Z tdes(ou)+N1(cru)+6(ou)qmaj(ou)+Nz(ou)
YED, o€T uesS,
— Z tN1(O')+E o Z tdes u) ma]
o€eT u€Sy
— H 1+tq thssu maj(u
i=1 uUeS,
and the result follows from Theorem 2.3. O

Note that, as in Theorem 2.10 for B,,, the powers of ¢ in the denominator of formula
are the Coxeter degrees of D, (see Table 1).
The following result is the analogue of Proposition 2.5.

PROPOSITION 2.18. The pair of statistics (dmaj,£) is symmetric, namely
(dmayj, ) =~ (£,dmaj).

ProoF. Let T defined as in (2.9), using the decomposition (2.10), the relations
(2.8), (2.12), (2.14) and Proposition 2.5 we obtain

Z tl dma] — Z Z tinv(au)+N2(ou)qmaj(au)+N2(ou)

v€D, o€T ues,

_ ZtNg(o)qu(o) Z finv(w) gmag(u)
oeT Uu€ESy

_ Ztm( Z gmaj(u va u)
oeT u€ESy

_ Z Z ¢mai(ou)+Na(ou) ginv(ou)+ Na(ou)
oeT uesS,

— Z tdmaj(v)qf(v)
€D,
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2.3.3. The D-Flag Major Index. For i = 0,...,n — 1 we define

(2.17) t; .= 8;Si_1 50,

explicitly for all ¢ € [n — 1]

(2.18) ti=[=1,—i—1,2,3,....,i+2,...,n],
and for 2 =10

(2.19) to=[-2,-1,3,... ,n] = 0.

These are Coxeter elements (see e.g., [42, §3.16]), in a distinguished flag of parabolic
subgroups

1<Gi<Gy<...<G, =D,

where G; ~ D; (i > 2) is the parabolic subgroup of D,, generated by sg, s1,...,si_1.
The family {¢;}; is a new set of generators for D,, and we have the following
proposition.

ProPOSITION 2.19. For every v € D, there exists a unique representation

22 S =L =t
with0 < h, <1,0<k, <2r—1 and
(2.21) kr€{2r—1,r—1} if h, =1

forallr=1,... ,n—1.
Proo¥. We proceed by induction on n. For n = 2 the result is clear, so suppose

n > 3. We define

Dy, = {tk"_

n—1

‘w i kp_1€[0,2n— 3], w € D,_1},
D4 = {totfl"__lgw D w € Dy},

D, 1= {totzz;‘fw W€ Dyp_1}.
It is not hard to see that |D, 1| = |D, —1| = |Dp—1| and that D, 1N D, _1 =0 as
¥(n) =1and o(n) = -1, forally € D,y and 0 € D,, _1.
On the other hand if ¢/,_ wy = ¢ _;ws with wy,ws € D,,_1 and r;s € [0,2n —
3], it is easy to see that r = s and wy = ws, hence |D, 4| = (2n — 2)|Dp_1].
Moreover the elements y € D,, 4 satisfy y(n) # £1. Therefore we have the following
decomposition of D,

<Dn::l)m*tﬂljm1tﬂljm—1;
and so the result follows by induction. O
Note that the representation (2.20) is not unique if we drop the condition (2.21).
For example consider v = [-2,4,1,—3] € D4. Then v has two different represen-
tations of type (2.20), namely, v = tatot3tot; and v = tota. The representation of
Proposition 2.19 is the first one.
Let v € D,,, then we define the D-flag major index of v by

n—1 n—1
(2.22) fmajp(y) = Z k; + Z h;.

i=1 i=1

For 0 < m < 2n — 1 we define r,, y € Dy, as follows: for n = 2,
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e ifm=20
, . $1 fm=1
2m = g1s0 ifm=2
S0 fm=3
and for n > 2,
€ ifm=20
. ) SnemSn—m+1 " Sn—1 fo<m<n
) Sm_nt1Smen - S05283Sp—1 fn<m<2n—1
05953 Sp_1 fm=2n-1
The set {rnm : 0 < m < 2n} forms a complete set of representatives of

minimal length for the left cosets of D,,_1 in D,,. Moreover this is still valid for every
i € [3,n], namely, r; ,, € D}* for all m € [0,2i—1], where J; := S\ {sn_1,...,8i_1}.
Hence we have the following decomposition

Jn—1
n—1 "

D, =D!"D Dy,

Note that the length of r; ,, is m, where

| m f0<m<2i—2
M=ol ifm=2i— 1.

From ¢) of Proposition 1.5 we know that each element y € D,, has a unique repre-
sentation as a product

n—1

(223) Y= H rn+1—k:,mn+1_k
k=1

where 0 < m; < 2j for all j. From i) of Proposition 1.5 it follows that
(2.24) Uy) = my.
j=2

Thanks to the unique representation (2.23) we define a map ¢ : D,, — D, in the
following way:

n—1 n—1
¢(H rn+1_k’ymn+1—k) = H ¢(rn+1_k7mn+l—k)’
k=1 k=1
where for ¢ # 2,
o S ifm<20—2
o(rim) = { tot™Tl i 2i—2<m<2i—1,

and for i = 2,
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e ifm=0
L tl fm=1
¢(T’27m) T totq fm=2

The definition of ¢, together with Proposition 2.19 and (2.23), imply the following
result.

ProrosiTiON 2.20. The map ¢ : D,, — D,, s a bijection. g

Now we are ready to state one of the main results of this section, namely that
the D-flag major index is equidistributed with the length in D, .

THEOREM 2.21. Let n € P. Then

Z quajn(v) — Z ql(v).

YED, YED,

Proor. By definition of m, the map ¢ is a bijection which sends the length
function in the D-flag major index. O

Note that the flag major index (fmaj) defined on B, (2.5) does not work on

D,,. Namely if we consider v € D,, as an element of B, then fmaj(y) is not equi-
distributed with length on D,,. For example, if v = [-2,—1] then frmajp(y) =1
while fmaj(y) = 4, and in D3 there is no element of length 4.
Note also that fmajp restricted to S, is not the major index and it’s not equi-
distributed with length. It seems to be a new statistic on S,. It’s easy to see
that for each v € S, fmajp(y) is always even and that fmajp(y) > maj(y). If
we let Ep(q) := ZveSn g/maip(Y) for n < 4 we have Ei(q) = 1, Ea(q) = 1+ ¢2,
E3(q) = 1+3¢” + ¢* + ¢° and E4(q) = 1 +5¢? + 6¢* + 795 + 3¢5 + ¢1° + ¢'%.

We finish this section by describing a combinatorial algorithm that allows us
to compute the D-flag major index fmajp, without using the representation of
Proposition 2.19.

Let 0 = (a1,...,an) € Z" and ¢ > 1. We use this split-notation

g = [al][az, e ,ai+1][ai+2,... ,an].

Sometimes it will be useful to denote the first part by A and the second by C;
where i represents the number of its elements.
We define the following operations on ¢ € Z":

0
g = [—az][—al, as, ... ,ai+1][ai+2, [P ,an],
and
-
o= [—ai][—ait1, a2, ..., a][aits, ... an].
. =Y =1 o1 =
In these cases we will write o = (A% C?, [a;4a,...,a,])and o= (A, C;,[aiza, ..., a,]).

Moreover for all n € P we define

(2.25) —M=—]0---0 =] n-times.
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Note that for every o € Z™ and 7 > 1, o= o.
For example, if v € D5, v = [-2][1, 3, —4,5] =

= [-1]12,3,-4,5] = (A%, CY),

(A, Cy), then

S @) —1,-3,4) = (F.CD),
and
= [-2][-3,4,1)5] = (4, Cs, [5]).

These are the two technical properties that we will use in the algorithm. Fix
i €[n—1],let t; be asin (5.11),

ti=[1[—i—1,2,3,....d[i+2,...n].
It’s easy to see that for all i € [n — 1] we have

1

i
(2.26) t;=titi =t;
and by (2.25) that for k € P
k-t
(2.27) th = 4

Now consider ¢;_1 = [-1][—4,2,...,i—1][i+ 1,... ,n]. As before it is not hard to
see that

1

(2.28) titiiy = 4.

Now we are able to state the algorithm to compute the unique representation of v
as in Proposition 2.19, namely

Y= foc1-f1
where for all r € [n — 1], f, = ti7th with h, € [0,1] and &, € [0,2r — 1].
We construct a sequence ey, ... ,e,_1 of elements of D,, such that

i) e=¢€, eno1=7;
1) € = fac1+ fnos, forall i€[l,n—1];
i) y(J) = ei(j), forall j>n-—1i

From 77) there immediately follows that e,_; = 7.

We need to do n — 1 steps. From now on to avoid confusion, we put on A
an index corresponding to the number of steps. We begin with eg = [1][2,...,n].
Assume that e,_; has been constructed, and we will construct e,_;41 = en—ifi—1.
Then by i),

Cn—i = (An_z', Ci—l, [’y(l + 1), .. 'y(n)])

For simplicity, we define p(#) and p(—i) to be the positions of y(¢) and —v(7) in
Ci_q1 or C’?_lrespectively. There are four cases to consider.

1) (1) € Cica
Then we let k;_qy =¢—1—p(¢) and h;_y = 0. Hence fi_1 = t;:}_p(”.
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2) —v(i) € Ciy
Then we let k;_1 = 2i —2 — p(—i) and h;_1 = 0. Hence fi_; = tfz__12_p(_z).

3) (1) € An—i
Then —7(i) € C{_, and in particular p(—i) = 1. We let k;_1 = 2i—3 and h;_; = 1.
Hence f;_1 = totﬁ_l?’.

4) =7(i) € Ani
Then (i) € C? , and p(i) = 1. We let k;_y = i — 2 and h;_y = 1. Hence
ficr =toti73.

We have determined the factor f;_i. By i) we let ep_jy1 = €p—1fi—1. From
(2.25) and (2.27) it follows that e,_;41(¢) = () and by (2.28) i) again holds.
Therefore

en—it1 = (An—it1, Cima, [v(2), ..., v(n)]),

where in cases 1) and 2),

_”‘1—1 _”‘1—1

An—iyr :=An_y , Ci_a:=Ci_1 \[v(7)],

while in cases 3) and 4),
_”cz—l _”cz—l
Ap—ipr =45, Cica i=Cly \[Y(D)].
Observe that in the first step p(n) = y(n) — 1 and p(—n) = —y(n) — 1. These can
be used for the computation of e;.

We finish this section by illustrating the procedure with an example.
Let v = [5,3,—4,1,—2] € D5s. We start from

e =ep = [1][2,3,4,5] = (Ag, C4).
15— step i=5, —y(5) =2€ Cy
We are in case 2) and p(—5) = 1,50 kg = 7, hqy = 0 and fy = t5. It follows that
Ay =Ag= [=1] and C5 =Cs \[=2] = [3,4, 5]. Hence,
e1 = [-1][3,4, 5][-2].
274 step i=4, —y(4) = -1 € A;
We are in case 4) so ks = 2, hg = 1 and f3 = tgt3. It follows that A, :Z?: [—3]
and Cs :85) \[1] = [-4, —5]. Hence,
es = [-3][—4, —5][1, —2].
34— step i =3, v(3) = -4 €,
We are in case 1) and p(3) = 1,80 ks = 1, hy = 0 and fa = t2. It follows that
As =Ay=[3] and Cy =Cs \[=4] = [5]. Hence,
es = [3][5][—4, 1, —2].
4th_ step i=2, y(2) =3 € A3
We are in case 3) so ky = 1, hy = 1 and f; = tot1. It follows that A4 :Zé: [5] and
Co = 0. Hence,
eq = [5][3,-4,1, 2] =,
and we are done. Finally v = tItt3tatot; and fmajp(y) = 12.



CHAPTER 3

Invariant algebras

Let W be a classical Weyl group. Consider the natural, diagonal and tensor,
actions of W and W?, respectively, on the polynomial ring Clzy,...,2,]®" and
denote by DIA and TIA the corresponding invariant algebras. Let Zw (q) be the
quotient of the Hilbert series of DIA and TIA. This series, for S, and B,, is a
polynomial which admits a nice expression in terms of maj and fmaj, respectively.

In this chapter we analyze the case of D,. We find an explicit formula for
Zp, (7) which implies, in particular, that this series is actually a polynomial with
nonnegative integer coefficients (Theorem 3.28). To do that we introduce several
new mahonian statistics on B,, and D,, and a new “major index” for D, called
Dmaj. Our proof is based on the theory of ¢-partite partitions introduced by Gor-
don in [39] and further studied by Garsia and Gessel in [37]. Using similar ideas, we
find a new and simpler proof of Adin-Roichman formula for Zg_(q) (Theorem 3.5).
Finally, we define a new descent number Ddes on D,, so that the pair (Ddes, Dmaj)
satisfies the Carlitz’s identity for D, .

3.1. Algebraic setting

In this preliminary section we give some tools that are needed in the rest of
this chapter.

3.1.1. Notation. In all this chapter we use this linear order on Z"
—1<-2<...<—1n=<...<0<1<2<...<xn<...

instead of the usual ordering. Moreover it’s also convenient use this different nota-
tion for elements in B, and D,, that we call pair notation.

For each ¢ € S, and H C [n], we let (¢, H) := [f1,...,0s] be the signed
permutation defined as follows:

8 = —oy, ifi1€H,
S\ oy, ifidH.

Note that in this notation we have

(3.1) (o, H)™' = (671, 0(H))
and
(3.2) (o, H)(1,K) = (o7, KAT™Y(H))

For example, if (o, H) = (43512,{1,2,5}) = [-4,-3,5,1,—2] € Bs then (o, H)~!
(45213, {2,3,4}) = [4, -5, -2, —1, 3] and if (1, K) = (21345, {2, 5}) then (o H)(r, K)
(34512, {1}).

N

25



26 3. INVARIANT ALGEBRAS

As for B, we introduce a pair notation for D,,. For each ¢ € S,, and K C [n—1]
we let (o, K)p := [y1,...,7n] be the unique even-signed permutation v such that
|vi| = o5 for all i € [n] and K U {n} D Neg(y) 2 K. More precisely

—oi, ifieK,
vi ‘=4 0, ifi ¢ KU {n},
(=)Elg,, ifi=n.

For example (54312,{1,3,4})p = [-5,4,—3,—1,—-2] € D5. We will usually omit
the index D in the pair notation of D,, when there is no risk of confusion with the
pair notation of B,,.

3.1.2. Group Actions on Polynomial Rings. Let W be a classical Weyl
group, i.e W = S,, B, or D,,. There is a natural action of W on the polynomial
ring P, := Clz1,...,z,], ¢ : W — Aut(P,,) defined on the generators by

w(i)
[w(@ O
for all w € W and extended uniquely to an algebra homomorphism. This action
gives rise to two actions on the tensor power Pf?t =P,® --®@P, (t-times): the
natural tensor action op of W' := W x --- x W (¢-times), and the diagonal action
of W on P& ¢p := pr od defined using the diagonal embedding d : W «— W,
we (w,. .., w).
The tensor invariant algebra

TIA = {p € P2 : pr(w)p = p forallw € W'}

p(w) : z; —

is a subalgebra of the diagonal invariant algebra
DIA = {p € P%" : pp(w)p=p forallwe W}.

These two algebras are naturally multigraded and hence we can consider the cor-
responding Hilbert series

FD(Q) = Z dimC(DIAnly"'ynt)q?l "'qglta

1,...,N1

Fr(q):

> dimg(TIA,,  n, )it - -qf,

n1,-..,N¢

where DIA,,, . ,, and TIA,, 5, are the homogeneous components of multi-degree
(n1,...,nt) in DIA and TIA respectively and ¢ = (q1,...,q).
We denote the quotient series by

Fp(q)
Fr(q)

3.1.3. t-Partite Partitions. In this section we recall the language of t-partite
partitions which were originally defined by Gordon [39] as well as some results of

Garsia and Gessel [37] that we use in the rest of this work.
Let F, be the set of all functions f : [n] — N. For f € F, we let

=350,
i=1

2Zw(q) =

€ Z{[q]]-
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and we denote F, ; := (F,)". Moreover, for f = (f1,..., fi) € Fn, we define

:Zfi(j),

and we let 7, :={f € Fnr : o;(f) =0 forallj € [n]} and Fp = {f € Fuy :

a;(f) =1 forall j € [n]}.
A t-partite partition with n partsis a sequence f = (f1,...,ft) € Far,

A A2 0 filn)
L) f(2) ..o faln)

satisfying the following condition:

for i, € [t] and j € [n], if fi(§) = fi(7 + 1) for all ¢ < iy, then f;,(j) > fi, (7 + 1).
Note, in particular, that for igp = 1 this implies that

() > A2)>...> fi(n) >0,

so f1 i1s a partition with at most n parts.
We denote the set of all the ¢-partite partitions with n parts by B, ;. In particular,
B, 1 is the set of all integer partitions with at most n parts.
For example, if n = 5 and ¢ = 2, then f = (f1, f2) with fi = (4,4,4,3,3) and
f2=1(3,3,2,5,4) is a bipartite partition with 5 parts.

Given a permutation ¢ = oy - - -0, we say that the partition A = (Ay,...,A,)
is o-compatible if, for all i € [n — 1],

Ai = Aig1 > (o) = { (1)’ if o > Oit1

otherwise.

We also set g, (o) := 0. Clearly, a partition A is o-compatible if and only if it is of
the form
Ai =pi +pig1+ -+ Pa

with p; > €; (o) for all i. We let P(c) be the set of all o-compatible partitions.
For example, if o = 15342 then A = (6,6,4,4,3) € P(0).
The following theorems are due to Garsia and Gessel (see [37, Theorems 2.1 and
2.2]):

THEOREM 3.1. The map €,

A1 A A
(0, A, p) — < too Hos o o >,
is a bijection between By, » and the set Py, o of the triplets (o, A, p), where
i) o€ Sy;
ity A€ P(o);

iii) p€P(oh).

THEOREM 3.2. Let W = 5,,. Then

|f1| |f2|
Z.fEBn 2

Z maj(o ma] -1
mum L '

Zg heB,, 91 92 €S,

Zs,(q1,92) =



28 3. INVARIANT ALGEBRAS

We let
By =1{f€Buz : a(f) =0 forall j € [n]}
and
Bflyz ={f€Bnyr : aj(f)=1 forall j € [n]}

the sets of all the even and odd bipartite partitions with n parts, respectively.
Moreover we let

Pro =0, A p) €Pno t A+ pouy =0 foralli € [n]}
and
Proi=(o, A\ u) €Pna t Ai+ oy =1 foralli € [n]}.

It’s clear that, by restriction, the map Q of Theorem 3.1 gives rise to two bijections
na & Ppgand By 5 & Pp .
Theorems 3.1 and 3.2 can be extended to the general case (¢ > 2) as follows,
(see [37, Remark 2.2]).

THEOREM 3.3. There exists a bijection between B, . and the set P, ; of the
2t-tuples

(o1,... ,O't,)\(l),...,)\(t))

where o; € S,, A1) € P(oi) for all i € [t] and oy - 0901 = e. This bijection is
given by

Qoy,.. o, A ,)\(t)) =

A ® (t)

o1—1-01(1) oi—101(2) T oi_1-01(n)

We define Bf, ,, B}, ¢, Pr, , and Py, analogously to the case ¢ = 2. Note again
that the correspondence €2 restricts to bijections By, , <> Py, and B} , < Py ..

THEOREM 3.4. Let W =5, andt € N. Then

t
Zs, ()= > [,

g1,...,001=1
where the sum is over all t-tuples (o1,...,0:) of permutations in S, such that

Ot0¢t_1 01 = €.

The following is the corresponding result of Theorem 3.4 for B, and it is due
to Adin and Roichman [3].

THEOREM 3.5. Let n,t € N. Then

t |
Zo, @)=y, [[d™"

B1,...,ptE€By =1

where the sum is over all the signed permutations [(1,...,0: € B, such that

Br---Pr=e.
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3.2. New Statistics on B, and D,

In this section we introduce some new combinatorial objects and we prove some
preliminary results that are used in the proof of the main result of this chapter

(Theorem 3.28).

3.2.1. Bijections and Parity Sets. We define a bijection ¢, : 2"l — 2071,
for every n € N, in the following inductive way: for n > 1,

L Cnﬂon—l(H)a lng [TL—I],
e ={ S0y, g
and ¢o(0) := 0.
For example, let n = 4 and H = {2}, then,
304({2}) = C4803({2}) = 6463502({2}) = C4C3g01(®) = C4CSClS00(@)
= CaC3({1}) = Ca({2,3}) = {1,4}.
There is also a direct way to compute ¢,,.
LEMMA 3.6. Let n € N and H C [n]. Then
pn(H)={i€[n]: |[i,n]\ H[=1}.

ProoFr. We proceed by induction on n. If n = 0 it is trivial, so suppose n > 1.
If n € H we have

en(H) = en_1(H\{n})
= {ielh-1:En-1\(H\{n})| =1}
= {ign]:|li,n]\ H| = 1}.
The case n € H is similar and is left to the reader. O

). For this it’s
0,) € Bn,1~

Our goal is to understand the action of a permutation ¢ on ¢, (H
useful to introduce the following concept. Let A = (A1, Az, ..., An,0,
We define the parity set of A to be

H()\) = {Z S [n] L )‘i+1 = 0}
Let 0 € S, and H C [n]. Let A € By, 1 be such that # = H(A). Then we define
A% = H(p),

where g is any partition in B, 1 such that A\; + Bo@) =0 for all 7 € [n]. Note that
the definition of A? doesn’t depend on A and u but only on H and o.
Observe that the following statements are equivalent:

i) (H(A)7 = H(p);

i) Ai + po(i) = 0 for all i € [n].
For example, suppose n = 4 and o = 4312. Let \; = p; + -+ + p, and p; =
ri4+ -4 1y, for @ = 1,...,n. The condition A\; + p,;) = 0 forall i € [n] is
equivalent to the following system of congruences:

p1t+p2+p3stpi=ry
P2+ p3+ps=r3+ry
p3t+pa=ri+rat+rst+ry
pa=rT2+ 713+ T4
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If H = {1,3} is the parity set of A then py, ps are even, and py, ps are odd. All
these conditions force r3, r4 to be even and 7y, 73 to be odd, hence A% = {3,4}.
It is also possible to give an explicit direct description of A7.

LEMMA 3.7. Letn € N,H C [n] and 0 € S,,. Then
A7 ={ie[n]:|[e™0), 07 i+ 1))\ H| = 0},
where o7 (n+ 1) :=n + 1.

PrOOF. Let X be a partition with parity set H and set p; := A; — Ajy1. Let p
be a partition such that A; + p,(;) = 0 and set r; := p1; — pt; 1. Then, by definition,
i € A? if and only if r; is even. But

o= i — fip
= Ao'_l(i) — Ao'_l(i-l—l)
= > P
J€lo=t(i),0=1(i+1))
and the result follows. O

We can now prove the main technical result of this section.
LEMMA 3.8. Let n € N. Then for all H C [n] and ¢ € S, we have
opn(H) = @n(H).
ProoF. From Lemma 3.6 we have that
i €opn(H) <= |[e(i),n]\ H| =1,
and
i € (A7) <= |[i,n]\ A = 1.

The latter condition is equivalent to the following statement: the number of the
following congruences

o= (@), 07 i+ 1)\ H]
e~ i+ 1),07 (i +2))\ H|

[e=(n), 0™ (n + 1)) \ H| 0

which are not satisfied is congruent to 1. Hence the sum of the members in the
left-hand side is congruent to 1. But

Do @) e G+ )\ HI= |[o7 (@),n+ 1)\ H]
j=i
and we are done. O

Note that Lemma 3.8 implies that (o, H) — H? is a left action of S,, on 2["],

Let p: 2" — 271 be the following projection of sets

H, ifn¢ H,
(3:3) HH{QW%Hn@f
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Let 0 € S, H C [n] and A € B, 1 be such that H(A) = H. We define
H? = H(p)

where i € B, 1 is such that A\; + py;) = 1 for all i € [n].
The proof of the following technical lemma is left to the reader.

LEMMA 3.9. Let 0 € S, and H C [n]. Then

H° = H°A{n} = (HA{n})".
LEMMA 3.10. Let 0 € S, and K C [n— 1]. Then
pn-1(K7\{n}) = p(opn_1(K)).

Proor. Suppose n ¢ K?. Then, by Lemma 3.8, we have that

on—1(K7) = Chon(K°) = Cropn(K) = CoChon—1(K) = ocpp_1(K).
If n € K? we have similarly that

Pn-1(K7\{n}) = ¢ (K7) = opn(K) = 0Cpnpn-_1(K) = Cropn_1(K)
and the result follows. O

3.2.2. Generalization to the Multivariable Case. In this section we ge-
neralize the definitions and results given in §3.2.1 to the multivariable case.

Let n,t € N,oy,...,00 € S, and Hy,... , H, C [n]. Let AU ... X®) ¢ Bn,1 be
such that the parity set H(A(?)) = H; for all i € [t]. Then we define

(Hy, ... )07 o= H (),

where the partition p € B, 1 is such that for all j € [n], /\;1) + )\221)(].) + -+
)\(t)

o1 or() T How or(i) = 0. Note that, as for the one-dimensional case, the defi-
nition of (Hy,... ,Ht)(al"“ 7t) doesn’t depend on the A()’s and g but only on the
H;’s and o}’s.

Observe that the following conditions are equivalent:
i) (HAW), ..., HAO))oroe) = H (p);
(b (2) () o=
) A Aoy F o Aoy F o) = 0
LEMMA 3.11. Let n,t € N, 0; € S, and H; C [n] for all i € [t]. Then
(Hy, ... Hy)©ov0) = ¢t (HOv s AHT 92 A AHTY) .

Proor. We sketch the proof in the case t = 2, for ¢ > 2 it is similar. We have
to prove that

(Hy, H2)( %) = Co(HT" AHF?).
Let XD A3) 4 e B,,1 be such that for all ¢ = 1, 2, H(A®) = H;, and for all j € [n]

(3.4) )\;1) + /\(021)(3') = Hozo1(5)-
Let p; = /\5-1) - )\;21, r; = )\;2) - )‘5'1)1 and s; = pj — pjp1 for all j € [n]. The

condition (3.4) is equivalent to
s = Z ri + Z Pi,
i€los " (4),07 (G +1)) i€loT o7 (4) 07 oz (G 41))
and the thesis follows from Lemma 3.7. O
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The next result says that the bijection ¢, is “almost” distributive with respect to
the symmetric difference of sets.

LeEMMA 3.12. Let n € N. Then for all Hy,...,H; C [n] we have:
Cn(H1)A - Dpyp (He) = pnCETY (H1A - AHY) .
Proo¥r. We proceed by induction on ¢. If ¢ = 1 it is trivial, so suppose t = 2.
In this case we have to prove that
(3.5) on(H1)Apn(Ha) = onCn (H1AHS) .

By Lemma 3.6 the set in the left-hand side is given by the i € [n] that verify exactly
one of the following congruences

|[i, n] \ Hi| =1
i, n]\ H2| = 1
Hence
en(H1)Apn(H2) = {i€[n]:[[i, n]\ Ha|+ [[i,n]\ Ha[ =1}

= {i€[n]:|HiAHsN[i,n]|=1}.

The set in the right-hand side is
onCn(H1AH2) = {i€[n]:|[i,n]\Ch(H1AHy)| =1}
= {i€[n]:|HiAH:N[i,n]| = 1}.
Now suppose t > 2. We have
en(H)D - Dpn(Hi) = (onCh(H1A - AH 1)) Apn(Hy)
©nCn (Ch(H1A -+ - AH 1) AH,)
= e, CPHH A - AHY),

where we have used the induction hypothesis and (3.5). O

We can now prove the following generalization of Lemma 3.8.

COROLLARY 3.13. Let n € N. Then for all Hy,--- ,H; € [n] and 01,... ,01 €
S, we have

or - o1pn (H1) Aoy -+ - 020n (H2) D - - - Dorpn (He) = on ((Hl, . ,Ht)(ol"” ’0’)) .
Proo¥r. By Lemmas 3.11, 3.12 and 3.8 there follows that
po ((Hyyoo o H)O70) = o (G (H M AHS A AH]))
= ealH77)A - Dpn (HY)
= o o1 (H1)D - Doren (He).
O

Let o1,...,00 € Sy and Hy, ..., H, C [n]. Moreover, let (1) .. ) ¢ By 1
be such that H (M) = H; for all i € [n]. Then we define

(Hy, .- H)@r o0 = H(p)

V'Vhere p € By 1 is such that )\;1) + )‘221)(]') 4o )‘Ec?_1~~~ol(j) + Hoy oy (j) = 1 for all
J € [n].

The following two results are natural generalizations of Lemmas 3.9 and 3.10
and again we leave the proof of the former to the reader.
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LeEmma 3.14. Let o1,...,00 € S, and Hq,... ,Hy C [n]. Then for all i € [t]
we have:

(Hy, ..., H)vo) = (Hy,... H)Cv ) An}
= (Hl, e ,Hi_l,Hz'A{n},Hi+1, . ,Ht)(gl""’ot).
LEMMA 3.15. Let 01,...,00-1 € Sy, and Ky,... ,Ki_1 C[n—1]. Then

-1 ((K1y oo Kem) 0070\ {n}) = p(oeor- - o1pn1 K1 D - - Dop1pn-1Ki1)
Proor. If n ¢ (Ky,...,K;_1)(?07=1) we have, by Corollary 3.13,
no1((Kiy.oo Keoq)@0ooe=0) = Copn (K, Kooq) 00 9i-1))
Cn(oi—1 o1 K1 A - Doy 10 Ky 1)
Cn (Ut—l <0101 KW A - 'AUt—1Cn90n—1Kt—1)
= Ch(ot-1 o1pn1 KD Doy 1pp_1 K1),

Similarly, if n € (Kq, ... ,Kt_l)(”l"” t-1) we have that
o1 (K1, ..., Ko_q)000-1) = b+l (oro1 o1on 1 KA Aoy _1pn_1 K1)
and the result follows. O

3.2.3. The Statistics ned and Dmaj. In this section we introduce the fun-
damental statistics ned and Dmaj and study some of their basic properties. For
every 3 € B, we define 3 € B,,_; by deleting the last entry of # and scaling the
others as follows

. p(i), if |5(2)] < 18(n)],
pl) = BE) — 1L, if B(é) > 0and |3(z)| > |B(n)],
Bl +1, if 5(i) <Oand [B(z)] > |5(n)].

For example, if 3 = [-4,—3,5,1, —2] € Bs then § =[-3,-2,4,1].
We let B the set of the signed permutations 3 € B, such that g(n) > 0.

LEMMA 3.16. Let B € BY. Then
maj(—p) = maj(B) + neg(B),
where —f3 := [-B(1),...,=B(n)].

ProoOF. We proceed by induction on n. For n = 1 it’s true, so let n > 1. We
have three cases to consider:

i) B(n—1)> pB(n)
Then maj(@) = maj(8)+n—1,maj(—p) = maj(—B3)+n—1 and neg(3) = neg(5).
Since # € B ; by induction we have
(3.6) maj(—f) = maj(B) + neg(f)
and the thesis follows.
it) f(n)>pP(n—-1)>0

Then maj(B) = maj(B), maj(—B) = maj(—pF) and neg(B) = neg(3), and the
result follows by (3.6), as above.

iii) B(n—1) <0
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Then we have maj(—8) = maj(—8) +n — 1 and maj(@) = maj(B). Since —f8 €
+ | by induction there follows that maj(3) = maj(—3) + neg(—3). Hence
maj(—pB) = maj(B) — neg(—=B) + n — 1 = maj(B) — neg(—pB) + n
and the result follows since neg(—f) = n — 1 — neg(f). O

COROLLARY 3.17. Let B € BF. Then
fmaj(—p) = fmaj(B) + n.
Proor. This follows immediately from neg(—3) = n — neg(f) and Lemma
3.16. O

The verification of the following observation is left to the reader.

LEMMA 3.18. Let 0 € S,, and H C [n]. Then

[ —(Grena(H)),  ifngH,
(O',Son(H)) '—{ (6-(;@:3—1([5 \){)n})), ifne H.

We now define one of the crucial concept of this work. For (¢, H) € B, then
we let

(3.7) nedp(c Z 2iei (o Z i
icH i€C, (H)
and similarly for (o, K)p € D, we let
(3.8) nedp (o, K) := 22262 Z 1.
i€K zECn_l(K)

For example, if 8 = [-2,4,—3,—1] = (2431, {1, 3,4}) € By then nedp(f) =2 -3+
2=8andif y =[2,4,-3,—1] = (2431,{3}) € D4 then nedp(y) =2-3+1+2=09.
The main property of nedp is the following one.

THEOREM 3.19. For every (o, H) € B,
(3.9) nedp(o, H) = fmaj(o, ¢on (H)).
ProoF. We proceed by induction on n, (3.9) being easy to check for n = 1.
Let n > 1, H C [n] and o € S,. We have four cases to consider.
a) ng Hyn—1€ Des(o) andn—1€ H
Then
nedg(o,H) = 2(n—1)+ > 2ie(c)+ > i+n
i€H Cr_1(H)
= 3n-—2+nedp(c, H).
Let’ s compute the right-hand side of (3.9). We have n—1,n € ¢, (H) and n —1 ¢
on—1(H). From this, Lemma 3.18 and Corollary 3.17, it follows that
fmaj(o,on(H)) = fmaj(o,on(H))+2(n—-1)+1
fmaj(—(¢,en-1(H))) +2n -1
= fmai(@, gn 1 (H)) + 30— 2,
o (3.9) follows from our induction hypothesis.

b) n ¢ H and either n — 1 ¢ Des(o) orn—1¢ H
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Then
nedp(o, H) = ZQZ'EZ-(&)+ Z i+n
i€H Cr_1(H)
= nedp(c,H)+ n.
Consider now the right-hand side of (3.9). We have two possibilities.
Ifn—1¢ Hthenn—1¢ pp(H),n € gp(H) andn—1¢€ ¢,_1(H). By Lemma
3.18 and Corollary 3.17 we obtain
fmaj(o,en(H)) = fmaj(o,en(H))+2(n—-1)+1

= fmaj(—(o,¢n-1(H))) +2n—1

= fmaj(o,on-1(H)) +n.
Ifn—1¢ Des(o) andn—1€ Hthenn—1,n€ pp(H)andn—1¢ ¢,_1(H). By
Lemma 3.18 and Corollary 3.17 we have that

fmaj(o,pn(H)) = fmaj(o,¢n(H))+1

= fmaj(—(o,¢n-1(H))) +1

= fmaj(@, en-1(H))+(n—1)+ 1,
and (3.9) follows.

c)neH,n—1€ Des(c)andn—1€H
Then
nedp(o, H) = > 2igi(6)+ >, i+2n—2
i€H\{n} Crn1(H\{n})
= nedp(d,H\ {n})+2n—2.

On the other hand, from n — 1,n ¢ ¢, (H) and Lemma 3.18 we have that

fmaj(o, on(H)) = fmaj(o,n1(H))+2(n—1)
= fmaj(o,on_1(H \ {n})) +2n — 2,
and (3.9) again follows.
d) n € H and either n — 1 ¢ Des(o) orn—1¢ H
Then

nedg(o, H) = > 2ig(e)+ >, i

ieH\{n} Crn1(H\{n})
= nedp(e,H\ {n}).
But n € ¢, (H) hence by Lemma 3.18 it follows that
fmaj(o,on(H)) = fmaj(o,on(H)) = fmaj(e, pn-1(H \ {n})),

and this concludes the proof. O

COROLLARY 3.20. Let n € P. Then

Z qnedB(ﬂ) — E q.fmaj(ﬁ).

BeBy PEB,
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d
The following statistic is fundamental for this work and its definition is na-
turally suggested by Theorem 3.19. We will show in §3.3 and in §3.4 that it’s
Mahonian and, moreover, that it plays the same algebraic role for D,,, as maj for
Sp and fmaj for B,, in the Hilbert series of DIA and TTA.
Let v € D,,, we define

Dmaj(y) = fmaj([y1, ... Y1, |[7ml])-

For example, if y = [-2,3, -1, =5, —4], then Dmaj(y) = fmaj([-2,3,—1,-5,4]) =
2-24 3 =7. Note that Dmaj((o, K)p) = fmaj((c, K)).
The next result follows immediately from Theorem 3.19.

COROLLARY 3.21. Let (0, K) € Dy, then

nedp (o, K) = Dmaj(o, on_1(K)).

3.3. The Main Result

In this section we use the combinatorial tools developed in §3.2 to find a closed
formula for Zp, (q) in terms of the statistic Dmayj.

3.3.1. A Basis for TIA and DIA for D,. Let W = D,. The tensor
invariant algebra TIA is (P27)®¢ and PP» is freely generated (as an algebra) by
the n — 1 elementary symmetric functions e;(z%,... ,22) for j € [n — 1] and the
monomial z; - - -z, (see, e.g., [42, §3]). Hence

Fr(q) = L[l ((1 _1(]?) ]1:[1 0 _quj)).

A linear basis for P®" consists of all tensor monomials
t n )
o=@
i=1j=1

where f = (fi,..., ft) € Far. The canonical projection 7 : P* — DIA is defined
by

w(p) = Y ep(7)(D)

YED

so that
DIA =< {n(z]): fE€ Furs}>.
LEMMA 3.22. For f € Fp s,
(@) £ 0= feF; , UF,,,
where Fy , and Fy, , are defined in §3.1.3
Proor. Let §; =[-1,2,3,...,—14,...,n] for i € [2,n]. Note that
op(6;)(&7) = (—1) Dt gf
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Therefore, if C' is any coset in D,, of the subgroup T; = {e,d;}, then
> en() (@) #0
yecC

if and only if

ar(f) + ei(f) = 0.

Hence we conclude that if w(2/) # 0 then f € Ff, UFS . .

For the converse, let H be the subgroup of all the generalized identity permutations
h = (e, B) EDn, (i.e. |h()|_zf0rallze[ ]1). We have that D, = S, x H, hence
every v € D, has a unique representation v = o - h with c € S, and h € H.

For any f € F; U F;, and for any h € H we have ¢p (h)(#7) = %/ hence

> ep(N @) = [Hep(o) (@),
yeEoH
for any o € S,,, and the thesis follows. O

Clearly By U By, 1s a complete system of representatives for the orbits of all

fer: U fﬁ > under the action of the symmetric group. Hence we have

ProrosiTioN 3.23. The set
{w(a?f):fEB uBy, }
1s a homogeneous basis for DIA.

COROLLARY 3.24. The Hilbert series for DIA 1s

Fo(@= Y. a"lqlt

feBg UBg

3.3.2. The Polynomial Zp_ (g1, ¢2). We define an involution « : D,, — D,
by

(3.10) (0, K) = (o7, p(o(K))),

where p is the projection defined in (3.3)
For example, «(4213,{1,3}) = (3241, p({1,4}) = (3241, {2, 3}).

We are now ready to state and prove the following
THEOREM 3.25. Let n € N. Then

D Dmaj
Zp (41, 42) Z gF maj(y) Zmay(a(v)).
YE€EDR

Proor. By Corollary 3.24 and the note below Theorem 3.2 we have that

Z q|1f1|q|2f2|

fEBfL,z'JB?;,

(3.11) = > e T P

(07)\#)6?2,2 ( 7)‘7H)EP2,2

Fp(q1,492)

The first part in (3.11) can be rewritten as

Z |>\| |N| Z ZqEMJ 2 07;

(o, M\ B)EP;, , oESy PiTi
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where the last sum runs through all p;,7; € N, i € [n], such that p; > ¢;(0),
ri > 62'(0'_1) and (H()\))o = H(/,L), with A\; = pPi+ -+ pn and pi=ri+---4r,.
Now we split the previous sum according to the parity set of A. Note that p; is

even if and only if ¢ € H()), and similarly for x. Hence we obtain Zpe |)‘|q|2 o

Z Z Hqus,o H q1 H 2ie;(o™ 1) H qg Z quJ'?qu;Ejpj
1€C, (H 1

0€Sy HC[n] \i€H ) i€ Ho 1€C,(H?) mi,pi€N
(3.12)
2 n 5 5 1 ]
=111 ZJZZ [ 11 a [l 11 &
i=1j=1 74 oES HC[n] \i€eH i€C,(H) i€H°? i€C,(H?)

where p; = 2m; + 2¢;(0) for i € H, p; = 2m; + 1 for i € Cy(H), 7 = 2p; + 2;(07 1)
for i € A and r; = 2p; + 1 for i € C, (A%).
Analogously we can evaluate the second part of (3.11), substituting A° with A“,

obtaining Z(O,)\,H)EPO qll lqlzul

(3. 13)
I X 2 (I T e 11
i=1j= p (L=q7) 0€S, HC[n] \i€H Cn(H ieﬁ i€C,(H?)

Hence by (3.11), (3.12) and (3.13) we have that

p(q1, 92 HH(I—Q =SSN T4 I 4«

o HC[n]i€H i€C,, (H)

H qgisl(g_l) H q2+ H que o~ H qu

icH® i€C, (H7) icHo i€C, (H")
=2 E > IIa? H @i
o KC[n—-11He{K,Ku{n}}ieH 1€C,(H)
[T a3t H g+ I & I &
ieH? i€C,(H7) ieHe A{n} i€C, (He A{n})
=3 Z t+e)1+e) [ a9 I -
o KC[n-1] teKU{n} 1€C, (KU{n})

H qgisl(a_l) H qlz

ieK°u{n} i€C, (K7U{n})
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where we have used the fact that ¢,(c) = 0 for all ¢ € S,, and Lemma 3.9.
Applying Corollary 3.21 and Lemma 3.10 it follows that

ned oK ned o~ (K°\{n
Zp.(q1,92) = Z Z o P (o™, (K7\{n}))
o KC[n-1]
= Z Z Dma] 0,pn—1(K)) Dma]( D on_1(K°\{n}))
o KC[n-1]
I SR e —
= @
o KC[n-1]
Dmaj Dmaj(o
= Zq JWZ J((W))’
YyeED,
as desired. 0

We denote by ¢ the inversion in D,, so that ¢(y) := 7. The next lemma says
that it is possible to “substitute” a with ¢ in Theorem 3.25.

LEMMA 3.26. « and ¢ are conjugate in S(D,,).

Proovr. It is well known that two elements of a symmetric group are conjugate
if and only if they have the same cycle type. Since both a and ¢ are involutions it
is enough to show that they have the same number of fixed points. For this it is
sufficient to show that, if we set, for o € Sy,

zg_|{[x62” 1]:(O'A = (0, K) H
and
ao_HIxEZ" 1. a(o, K) :(O',K)H,

then i, = a, , for all o € S,;. It is clear that i, = a, = 0 if ¢ 1s not an involution
in S, . On the other hand if ¢ is an involution with some fixed point then we have
iy = ay = 2¢1(9)+c2(0)=1 while if ¢ has no fixed point then a, = i, = 9¢2(9) , where
¢i(o) is the number of cycles of length i of o. O

COROLLARY 3.27. There exists a function M : D, — N, equidistributed with

length, such that
Zp,(11,92) E Q1 .,
€D,

Proor. By Lemma 3.26 we know that there exists ¢ € S(Dj) such that ayy =
pe. Then the function M := Dmaj o ¢ realizes the above formula for Zp_ (g1, q2).
It follows immediately from next Proposition 3.35 that this M is equidistributed
with length on D, . O

3.3.3. The Polynomial Zp (7). In this section we provide an explicit simple
formula for the polynomial Zp  (g) in terms of Dmaj.
We denote by a : D! — D,, the map

((61, K1), .., (0¢=1, K1) — ((O't_l - ~0'1)_1,p (o411 K1 - ~A0't_1Kt_1)) .
For example,
a((4231,{1,3}), (2143, {3})) = (2413,p(3142({1,3})A2143({3}))
(2413, p({3))) = (2413, {3}).
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Note that this is consistent with the definition of a given in (3.10).

THEOREM 3.28. Let n € N. Then

t
Zp.@= > [l

Y1,---,¥Yt€DR i=1
where the sum runs through all v1,...,v € Dy such that v = a(y1,...,Y%-1).

Proo¥. The proof is similar to that of Theorem 3.25, and hence we will not
go through all the details. By Corollary 3.24 we have that

(3.14) Fp(q) = > Hq'f !

(f1,---,ft)€ €B; ,UB; L i=

Let’s consider the sum in (3.14) restricted to By, ,. By the note first Theorem 3.4
we have that

(3.15)

ORI CLEND SR (RS S 9) | (i

(f1,..f1)€BE i=1 (o1,..,00,A0) L AD)ePg i=1 ot~~~01:ep§z) i=1

where the last sum is over all pg-i) € N, for i € [n] and j € [t], such that pg-i) > ¢gj(03)
and (H(AD), ..., HAE=D)) o) = FAO) with ALY = p{) 4. 4 p We
proceed in a similar way for the sum in (3.14) over By ;. If we split these sums
according to the parity sets of the A(?)’s for i € [t — 1] we obtain, by Lemma 3.14,
that

(3.16) FD@)HH(I_qu): Z Z 1:[ H q]ghah(oj) H q?.

i=1j=1 O1,...,00 Hy,... Hy j=1h€H; heC, (Hj)

I« I «+ II & II ).

heH, heC, (Hy) heH,A{n} heC, (H,A{n})

where the sums run through all o1, ..., 0, € S, such that o, = (op—1 - -0'1)_1 and
all Hy,..., Hy C [n] such that H, = (Hq, ... ,Ht_l)(ol"”’”*—l). Now using the fact

that €, (c) = 0 for all ¢ € S,,, and Lemma 3.14 we obtain that
n t

Fo(@) [TII - g} Z > H t+e) I @ II 4
i=1j=1 oryot Ku, Ky i=1 keK,u{in} keC, (K;u{n})

where the second sum runs over all Ky,..., K; C [n— 1] such that
K, = (Ki,...,K;_1)@2=1) and hence, by Corollary 3.21, Lemma 3.15 and the
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definition of o we conclude that

Zo.@) = Y. Y I = I 4

01,00 K1,... Ky ke K;U{n} k€C,(K;U{n})

-y ¥ ﬁqnedwm\{n})

01,...,0t Ky,... \ K;i=1

oi K; i=1

t—1
_ § E Hquaj(oiVWn—lKi)quaj(ot7p(0t—1"'UIWn—lKlA"'AUIWn—th—l))
7 t

o, K; i=1

t—1
_ Z H qlpmaj(%)thmaj(a(%"”’%_1)).

Y1, Yt—1€ED 5 i=1
O

3.3.4. The case n odd. If n is odd the formula appearing in Theorem 3.28
can be slightly improved. In particular we define one more statistic, Dmaj°, that
allows us to obtain a formula for Zp (q) similar to the corresponding ones for S,
and B, appearing in Theorem 3.4 and Theorem 3.5. Consider the set S, x 2[*~1]
with the binary operation

(o,H)* (1, K) := (O'T,p(KAT_l(H))) .
ProrosiTiON 3.29. Let n > 1. Then A, = (Sn x oln=11, *) s a group.

Proor. The operation is clearly well-defined, the identity element is (e, ) and

inversion is given by (o, H)™! = (¢!, po(H)). We check the associativity property

(o, H)* ((r, K) x (v, L)) = (o,H)* (Tv,p(LAv_l(K)))
= (O'Tv,p(p(LAv_1(K))Av_lr_l(H)))
= (O'Tv,p(LAv_l(K)Av_lr_l(H)))
and
((o,H)* (1, K)) x (v, L) = (o’T,p(KAT_l(H))) * (v, L)
= (0'7'1),p(LAv_lp(KAT_l(H))))
= (O'Tv,p(LAv_l(K)Av_lr_l(H))) ,

where we have used the distributivity of v=! with respect to the symmetric diffe-
rence and the fact that p(p(H)AK) = p(HAK) for all H, K C [n]. O

THEOREM 3.30. A, s isomorphic to D,, if and only if n 1s odd.

Proo¥r. It’s not difficult to see that, if n is odd, the map ® : D,, — A,, defined
by

(3.17) v = (Il p(Neg(7)))

is an isomorphism, where |y| := (|y1], ..., |vn|). Now suppose that n is even and
let ¢ : D, — A, be a group homomorphism. Let (o;, K;) = ¢(s;), for i =
0,...,n — 1, be the images of the Coxeter generators of D,,. Then the Coxeter
relations for D, force the permutations oq, ... ,0,_1 to have the same sign and the



42 3. INVARIANT ALGEBRAS

sets Ko, ..., K,_1 to have all the same parity. These conditions imply that the set
{(04,K;):i=0,...,n— 1} cannot generate A,. O

Let n € N be odd. Then we let
Dmaj® := Dmaj o @,

where we identify A, with D,, through the pair notation and ® is defined as in
(3.17).
For example Dmaj®([3,—1,5,2,—4]) = Dmaj(31524,{1,3,4}) =2-5+3 = 13.

COROLLARY 3.31. Let n € N. Then

t
Zoan(@= 2 JLa"

Y1,--- vt i=1

where the sum is over all y1, ..., € Dany1 such that v -y = e.

Proo¥r. It is an immediate consequence of the proof of Theorem 3.30 that

a(@(11), ... (72)) =Ry m1)
and the thesis follows from Theorem 3.28. O

Theorem 3.30 implies that, if n is even, there is no ® € S(D,) such that
a(®(71),...,®(y2)) = ®(y - --v1)~ ! that would imply the corresponding result of
Corollary 3.31. Nevertheless, we know that this result holds for ¢ = 2 (Corollary
3.27) but we haven’t been able to define a nice statistic, Dmaj®, that works in this
case, or to understand if it exists for t > 2. We therefore propose the following

PROBLEM 2. Let n € N be even. Is there a statistic Dmaj® : D, — N,
necessarily equidistributed with length on Dn, such that

0= T

1,71 1=1

with v -y =e?

3.4. Applications to Weyl groups of type B

In this section we show how the ideas developed for the Weyl groups of type
D can be used to give a new and simpler proof of the closed formula for Zp, (g)
appearing in Theorem 3.5 which was discovered by Adin and Roichman [3] using
different methods.

3.4.1. A Basis for TIA and DIA for B,. Let W = B,,. The tensor in-
variant algebra TIA is clearly equal to (PZ»)®¢. It is well known, (see, e.g.,[42
§3]), that P2« is freely generated (as an algebra) by the n elementary symmetric

functions in the squares of the indeterminates, z%,...  z2,

2 2y ._ 2 2
ej(zy, ..., x,) = E AR £

1<iy<..<i;<n

for j € [n]. Hence

HH

lel _qz
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For all 2/ € P&" let
=D el
EBn
be the corresponding invariant element in DIA. In [3] the authors prove that
( ) ;é 0= f €7 n t’
which implies the following

LEMMA 3.32. The set
{n(@f): feB;,}

1s a homogeneous basis for DIA.

COROLLARY 3.33. The Hilbert series for DIA s

Z q|f1 . |.ft

feBs,

Note that we choose a different parametrization of the basis of DIA with respect
to [3] and we use this one to compute the generating function Fp(q).

3.4.2. The polynomial ZBn( 7). We provide a new proof of Theorem 3.5
using the statistic ned introduced in (3.7).

THEOREM 3.34. Let n,t € N. Then

Zp, (D= ) qum‘” :

B1,...,p1€B, i=1

where the sum is over all the signed permutation 3y, ...,5; € By, such that 3, -- -1 =
€.

Proor. By Corollary 3.33, (3.15) and (3.16) in the proof of Theorem 3.28 we
easily obtain that

t
= > > II{ITa™ II o)

1,,0t Hy,... . Hyi=1 \heH; hEC, (H;)

where the sums run through all oy,...,00 € S, and Hy,...,H; C [n] such that
or = (041 ~0'1)_1 and H, = (Hy,... ,Ht_l)(ol"”’”’—l). By Theorem 3.19 and
Corollary 3.13, we conclude that

t
Zp,(0) = >, > Hq;edswmm))

01,...,0t Hy,... Hy i=1
t
_ fmaj(oi,pn(H;))
= q;
01,...,00 Hy,... \Hyi=1

t—1
— ZE H quaj(oly‘;pn(Hz))quaj(otyo-t—l~~~01Lpn(HI)A"'AO-t—ILpn(Ht—l))
7 t

o, H; i=1

- ¥ I

pr=ei=1
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((ot—1, He—1) - (o1, H1)) ™t = ((04—1 - -01) " oo (HU)A - Aoy_1(Hi—1)).
O

3.5. Combinatorial Properties of Dmaj

In this section we show that Dmaj is a Mahonian statistic. Moreover we
introduce two new “descent numbers” on D,,, Ddes and fmajp so that the pairs
(Ddes, Dmaj) and (fdesp, fmajp) give two different generalizations of Carlitz’s
identity to D, . Note that the flag-descent number fdesp is the Eulerian statistic
pre-announced in §2.3.

With the notation of §2.2, it is not hard to see that for each n > 2 there is the
following decomposition of B,

B*—UU 3l e

where c:O,...,n—land{:EBn_1

ProrosITION 3.35. Let n € P. Then

Z qua] Z q

€D, €D,

Proor. We define a map ¥ : D, — B as follows:

ch" ’tk" )= H\If thn- ’tk" ’

where
(et Y = il
U(totnZi™) = Iy
W(t, k" ") = T:_;i, if ko1 <n-—i;
\Il(tfl"__l-’) = T:Z'_HHTS__;_D if kp_q1>n—1.

It’s easy to see that the map ¥ is a bijection that sends fmajp to frmaj. The thesis
follows from the equidistribution of the D-flag major index and the definition of
Dmayj. O

For # € B,,, by Corollary 3.17 we know that
(3.18) fmaj(=p) = fmaj(B) + n.
From definition (2.6), it is not hard to prove that for 3 € B;f
(3.19) fdes(=3) = fdes(B) + 1.
For v € D, we define the D-descent number by

Ddes( ) = fdes(['yl, vy In—1s |7n|])

For example, if y = [-2,—1,4,5,—6,—3] then Ddes(y) = fdes([-2,—1,4,5,—6,3]) =
2-241=5.
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THEOREM 3.36. Let n € P. Then
Z%Dn P des(v) gDmag(y)

L+ Uit T (01— ) 151 - t2%)

r>0
in Z[q][[t]]-
Proor. From (3.18) and (3.19) we have that

S tiesP)gimaie) o N ides(s) (fmai(p)  gides(=5) ¢fmai(=P)

peBn peBY
= Y des(D)gfmei(9) | g des )+ gfmai(P)n

peBY
— 1+tq Z tfdeé’ 8) fmaJ( )
peBY

— (1+tqn) Z thes('y)quaj('y).
YED
Now the result follows easily from Theorem 2.10. O
Finally, we define the following D-flag descent number on D,,,
fdesp(y) := fdes(¥(v)),
where ¥ has been defined in the proof of Proposition 3.35. Then from Theo-
rem 3.36 and the definition of ¥ it is easy to see that the two pairs of statistics

(fdesp, fmajp) and (Ddes, Dmaj) are equidistributed in D, and hence we may
conclude that

COROLLARY 3.37. Let ne€ P. Then

Z tddes dmajD Z tfdesD fma]D Z thes Dma]( )

YEDR YEDR YEDR

Finally, the case ¢t = 1 and Proposition 3.36 imply the following result.
COROLLARY 3.38. Let n € P. Then

Z qz(’Y) Z qde] Z qua]D v — Z quaj('y)

YED YED YED YED
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CHAPTER 4

Coinvariant algebra

In this chapter we use the statistics Dmaj and Ddes defined in Chapter 3 to
obtain new results in the representation theory of the Weyl groups of type D. We
construct a family of representations for Weyl groups of type D, called negative-
descent representations, using the coinvariant algebra as representation space. A
monomial descent basis the coinvariant algebra of type D is constructed using a
new Straightening Lemma. The basis elements, indexed by v € D,, have degree
Dmaj(y). Extending the statistic Dmaj to D-standard Young bitableaux we give a
refinement of a theorem of Stembridge on the decomposition of the negative-descent
representations into irreducible components. Finally, using some new multivariate
statistics, introduced to prove the previous results, we derive some combinatorial
identities on Weyl groups of type D by comparing suitable Hilbert series. One of
these identities is then used to prove Carlitz’s identity for D, in a very direct way.

4.1. Combinatorial representation theory

We introduce the basic definitions of D-standard bitableauzr and Dmaj on D-
bitableaux, that allow us to prove the main result of this chapter (Theorem 4.21).

4.1.1. Tableaux. Let A - n be a partition, a Young tableau of shape A is
obtained by inserting the integers 1,2,... n as entries in the cells of the Young
diagram of shape A allowing no repetitions. A standard Young tableau of shape A is
a Young tableau whose entries increase along rows and down columns. We denote
by SYT(A) the set of all standard Young tableaux.

For example the tableau T in Figure 1 belongs to SYT(5,3,2,1).

1/3|5|8|10
2167
T.=
4 |11
9
FIGURE 1

A descent in a standard Young tableau 7' is an entry ¢ such that ¢4 1 is strictly
below i. We denote the set of descents in 7' by Des(T). The major index of a

tableau T 1s
maj(T) := Z i.
i€Des(T)

In the example above Des(T) = {1,3,5,8,10} and so maj(T) = 27.

47
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A semistandard Young tableau of shape A (SSYT(X)) is obtained by inserting
non-negative integers as entries in the boxes of the Young diagram of shape A, so

that the entries weakly increase along rows and strictly increase down columns. For
T € SSYT(A) the content vector is

cont(T) := (mg, m1,...),

where m; :=| {cells in T with entry i} |, for ¢ > 0.

A bipartition of a non-negative integer n is an ordered pair ()\(1),)\(2)) of par-
titions such that |A(N| 4+ |AX)| = n denoted by (A1), X)) k5. The Young diagram
of shape ()\(1), )\(2)) is obtained by the union of the Young diagrams of shape A1)
and A(?) by positioning the second to the south-west of the first. We define a
standard Young bitableau T = (T, Ts) of shape (A(") A(?))  n by inserting the
integers 1,2, ..., n in the corresponding Young diagram increasing along rows and
columns. We denote the set of all standard Young bitableaux of shape ()\(1), )\(2))
by SYT(AY), A?)), We define Des(T') and maj(T) as above and the negative num-
ber neg(T) as the number of entries of T3. We define the flag-major indez of a
bitableau by

fmaj(T) := 2 -maj(T) + neg(T).

Given two partitions A() A(2) such that |AD| 4+ |AX?)| = n, we define a D-
standard (Young) bitableau T = (T1,Ty) of type {A() AX(?)} as a standard Young
bitableau of shape ()\(1), )\(2)) or ()\(2),)\(1)) with the condition that n € 77. We let
Des(T), maj(T) and neg(T) as above and we define D-major index of a D-standard
bitableau, the restriction of frnaj, denoted by

Dmaj(T) =2 -maj(T)+ neg(T).

For example T"and S in Figure 2 are two D-standard bitableau of type {(3,1),(2,2,1)}
and we have Dmaj(T) =2 1545 =35 and Dmaj(S) =2 13 +4 = 30.

3|/6|7 12
9 415
1| 4 9
T:= S=
2|5 3|/6|8
8 7
FIGURE 2

We denote by DSYT{XM A®} the set of all D-standard tableaux of type
MA@},

4.1.2. Irreducible representations. The ring of the S,-invariants of P,
P>~ is the ring of the symmetric polynomials. We recall some of its bases.
For k € N we let

(4.1) ex(Z) = Z T, Ty,
1< <ig
where z := (x1,22,...,2,). For any partition A = (A1,...,A,) we denote the

elementary symmetric polynomials by ey 1= ey, - -€x

o



4.1. COMBINATORIAL REPRESENTATION THEORY 49

For k € N we let

n
pE(Z) = Z x¥.
i=1

For any partition A = (A1, ..., A,) we denote the power sum symmetric polynomials

by px :=pa, - -Pa,-
The Schur symmetric functions sy can be quickly defined using tableaux

sx(z) == Z zeont(h),

TESSYT(N)

The irreducible representations, as well as the conjugacy classes, of the symmetric
group S, are known to be indexed by partitions of n. If A and «a are two parti-
tions of n, we denote by x) the value assumed by the character of the irreducible
representation indexed by A on the conjugacy class of cycle type a. The following
theorem is due to Frobenius and we refer the reader to [52, Corollary 7.17.4] for its
proof.

THEOREM 4.1 (Frobenius Formula). Let o be a partition of n. Then

Pal@) =) xasr(a).

Akn
In the case of B,, the conjugacy classes and the irreducible characters are
parametrized by ordered pairs of partitions such that the total sum of their parts
is equal to n. The pair («, 3) corresponding to a conjugacy class describes the sign
cycle type for any element in the class and we use the convention that a corresponds
to the positive and  to the negative cycles. For two partitions «, # and two sets

of independent variables z and y we define

Pos(#,9) = [ [(Pa(2) + 95, (1)) - [[ (P (@) = 25, (),

K3 (2

and we let Xi”é be the value of the irreducible character of B, indexed by (A, ) on
the conjugacy class of type («, #). The analogue of Theorem 4.1 is the following
(see [44, p. 178])

THEOREM 4.2. For any bipartition (o, 8) of n
o A, _ _
pa,ﬁ(l‘, y) = ZXQ,ZS/\(Z‘)SN(Q);
A p

where the sum runs through all ordered pairs of partitions (A, p) of total size |A| +
lul = laf + 18] = n.

Since D, is a subgroup of index 2 of the Weyl group B, , the intersection of
a conjugacy class of B,, with D, is either empty or a single class or splits up into
two classes in D,,. This also leads to a parametrization of the classes of D, by
pairs of partitions («, f) as before, but where £(3) is even and where there are two
classes of this type if § is empty and all parts of a are even. In the latter case these
two classes in D,, are usually labeled by (a,+) and (o, —). On the other hand the
restrictions of an irreducible character of B, to D, is either irreducible or splits up
into two irreducible components. Let (A, ) be a pair of partitions with total size n.
If A # p then the restrictions of the irreducible characters of B, labeled by (A, )
and (u, A) are irreducible and equal. If A = g then the restriction of the character
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labeled by (A, A) splits into two irreducible components which we denote by (A, A)*
and (A, A)”. Note that this can only happen if n is even. Hence we may label all
irreducible characters of D,, by (A, )¢ where A and p are two partitions such that
Al + |p] = n, A < p in some total order < on the set of all integer partitions, and
eis equal to < if A # p and € is equal to + or— if A = p.

We refer to the following theorem as the Frobenius formula for D, ; it’s certainly
known, however, for lack of an adequate reference, we give a proof here.

THEOREM 4.3 (Frobenius Formula for D, ). For any bipartition (o, 5) F n with
£(B) =0 we have

Pas(@9) = S (5 (@5 () + 5,(2)52 ()
A p

+ —_
Y (TG ) @)

where the first sum is taken over all (A, p) = n such that A < p.

Proor. It is a consequence of Theorem 4.2 observing that if A < u then

A A A p)= . AN At AA)T
Xa’,’é = XZ:@ = nggu) and if || = & then Xog = X&,g) —}—Xgﬁ) . O

4.1.3. Coinvariant algebra. Consider the natural action ¢ of a classical
Weyl group W (with W = A,,_1, Bn, D) on P, defined as in §3.1.2 on the ge-
nerators by

p(w) :z; — |ZE3|I|U}(“|’

for all w € W and extended uniquely to an algebra homomorphism. The algebra of
invariants P} is generated by n homogeneous algebraically independent elements
of positive degree together with 1, (see, e.g., [42, § 3.5]). A set of algebraically
independent homogeneous generators of P is called a set of basic invariants. The
set of basic invariants is not uniquely determined, however their degrees dy, ..., d,
turn out to be independent of the choice of the generators and are called the degrees

of W (see Table 1).

For example, in the case of Sy, the n-elementary symmetric polynomialse; (21, .. .

i € [n], defined in (4.1), are a set of basic invariants of P3>".
Let I’ be the ideal generated by a set of basic invariants of W. The quotient

R*(W) =P, /1}V

is called the cotnvariant algebra of W and it is well known that it has dimension
|W | as a C-vector space. Moreover, W acts naturally as a group of linear operators
on this space and it can be shown that this representation of W is isomorphic to
the regular representation (see e.g., [41, § I1.3] or [42, § 3.6]). All these properties
naturally lead to the problem of finding a “nice” basis for R*(W).

4.1.4. The Garsia-Stanton descent basis and its extension. A basis for
the coinvariant algebra of type A has been found by Garsia and Stanton [38] using
the theory of Stanley-Reisner rings. For o € S, they define

a = ] (®oq) 2o())

j€Des(o)

) Zn)
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| Type | degrees |
Ap, (n>1) 1,...,n

B,, (n>2) 2,4,,...,2n
D,, (n>4)]2,4,...,2n—-2,n

TABLE 1. Degrees of basic invariants

If we denote the number of descents in ¢ from position ¢ on by

di(0) .= |{j € Des(o) : j > i},
it’s immediate to see that a, := [[_, xi’((s) They show that the set {a, + I5~ :
o € Sy} is a basis of R*(S,), called the descent basis. Note that the representatives
a, of this basis are actually monomials with deg(a,) = maj(o).

In a recent work [1] Adin, Brenti and Roichman defined a monomial basis for
the coinvariant algebra of type B that seems to be the right generalization of the
Garsia-Stanton basis for type A. We need to introduce the following statistic. For
8 € B, we let

fi(B) := 2 di(B) + ni(P),
where

a1, i Bi) <0,
1i(0) '_{ 0, otherwise.

To any 8 € B,, we associate the monomial

CTT L)
bp 1= Hl‘”ww'

Then the set {bg + B : 3 € B,} is a basis of R*(B,).
The coinvariant algebra has a natural grading induced from the grading of P,
by total degree and we denote by Ry its k-th homogeneous component, so that

R*(W) = P Re.
E>0
In the case of the symmetric group, the major index on tableaux plays a crucial

role in the decomposition of Ry into irreducible representations, and we have the
following theorem due to Kraskiewicz-Weyman, (see [47, Theorem 8.8] for a proof).

THEOREM 4.4 (Kraskiewicz-Weyman). In type A, for 0 < k < (g), the repre-
sentation Ry is isomorphic to the direct sum ®my S, where X runs through all
partitions of n, S* is the corresponding irreducible S, -representation, and

mgx =|{T€SYT(N) : maj(T) =k} |.

The following are the corresponding results for B,, and D,, of Theorem 4.4 and
are due to Stembridge [54]. Here we state them in our terminology.

THEOREM 4.5 (Stembridge). In type B, for 0 < k < n?, the representation
RB is isomorphic to the direct sum @mky(xyu)so"“), where SMH) s the irreducible
representation of By corresponding to (A, p) F n and

Mg o) = {7 € SYT (A, p) : fmaj(T) =k} |.
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The following is the analogous theorem for D, .

THEOREM 4.6. In type D, for 0 < k < n? — n, the representation RkD 5 1S0-

morphic to the direct sum @mky(Ayﬂ)eS()"“)e, where SMH)° s the irreducible repre-
sentation of Dy, labelled as in §4.1.2, and

my (apye = {17 € DSYT{A pu} : Dmaj(T) =k} | .

4.2. Negative-Descent Representations for D,

We first define a family of monomials, indexed by D, , and we prove that it
is a basis for the coinvariant algebra of type D, that we call the (even-signed)
descent basis. To this end we present a straightening lemma for expanding an
arbitrary monomial in P, in terms of the descent basis with coefficients in Pg".
This algorithm is a generalization of the one presented in [1] for types A and B
and allows us to define a family of negative-descent representations of D, .

4.2.1. The descent basis for R*(D,). Let v € D,, for i € [n— 1], we define
di(v) :={j € Des(lrln) : =i} |,

ey i={ & 570 <0

otherwise,
and
hi(v) = 28:(v) + ni (7).
Note that
n—1
(4.2) > hi(y) = Dmaj(y)
i=1
and that

hi(y) = Ddes(y).

DEeFINITION. For any v € D,,, we define
n—1 )
,_ hi(y
er = ][ =6
i=1

For example, let v := [6,—4,-2,3,=5,—1] € Dg, then (h1(y),...,hs(7)) =
(6,5,3,2,1) and ¢y = z3z3xizs2l.

The goal of this section is to prove that the set {c, + I’ : v € D,} is a linear
basis for the coinvariant algebra of type D. We call it the even-signed descent basis
and c, a descent basis element. We denote by

filer, ... 2n) ;:{

Note that {f;}"_, is a set of basic invariants for P?». Moreover, for any parti-
tion A = (A1,...,A) with Ay < n, we define f\ := fx, -+ fr,. For the moment
we restrict our attention on the quotient S := P, /(f,). We naturally identify a
monomial that hasn’t all the variables with its corresponding class in S. We start
by associating to any monomial M € S an even-signed permutation y(M). Let M
be a non-zero monomial in S, M = [[i_, 2¥* (note that p; = 0 for some i > 1).

ei(z?, ... 22), forie[n—1];

T1Tp, for 1 = n.
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We define v = y(M) € D,, as the unique even-signed permutation such that, for
i€ n—1],
1) Pl 2 PhG+1));
i) Ply(i) = P+ = Y@ < [y(i+ 1)
le) Ply(i)| = () <— ’)/(l) > 0.
Note that the last condition determines also the sign of y(n).
We call ¥(M) € D,, the index even-permutation and

AM) = Pyl P,
the exponent partition of M.

LeMMA 4.7. Let M = [[;_, «f* € S and v := y(M). The sequence (pjyiy —
hi(7)),i=1,...,n—1, of exponents in M/c, consists of nonnegative even integers
and s weakly decreasing.

Proor. We have, by definition, pj;y = 0 < 7;(7) = 0 and hence our sequence
consists of even integers. Now it is easy to check that piy(—1)] — ha-1(7) > 0 so
it remains to show that the sequence is weakly decreasing. If piy(i) = Pyt
we also have hi(y) = hiy1(v). If ply) > P+ and plyy = Plyiery then
Py 2 Plyi+1) + 2 and hi(y) < hiyi(y) + 2 and the result follows. Finally,
if Pl > P+l and Py # P+ then hi(y) = higa(y) + 1 and we are

done. O
n—1
We denote by p(M) the partition conjugate to (M)';h—m) , where v =
’ i=1
(M) (note that (M), < n) and we let X, := 'rIQW(l)I - '$|27(k)|’ for all k € [n — 1].
For any monomial M € S we have
_ ¥ ¥ ¥
(4.3) M = ey X ) Xy Xutr)

where v = y(M), p = p(M) and r := £(u).
For example, for n = 4, if M = z{z3xs, then v(M) = [1,2,-3,—4], ¢, =
irdes, p(M) = (1,1) and M = ¢y - 2% - 2.
We now define a partial order on the monomials of the same total degree in S.
DEFINITION. Let M and M’ monomials in S with the same total degree and

such that the exponents of x; in M and M’ have the same parity for every i € [n].
Then we write M’ < M if one of the following holds

1AM 9« M(M), or
2. MMy = XM) and inv(|[y(M")]n) > inv(|y(M)]n)

From now on denote
M®) =M. X},
where v = y(M).
LEMMA 4.8. Let M € S be a monomial and k € [n — 1]. Then

M. fr=M® 1+ 3" ey M,
M/<M (k)

where epr prr € {0, 1},
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ProorF. Let A(M) = (A1,...,An), with A, = 0 be the exponent partition of
M, then A\(M®)) = (A +2, 20+ 2, ..., A +2, \eg1, -, An). It’s clear that M *)
is a terms appearing in the expansion of the polynomial M - f; and that, if M’ is
another term appearing in M - fi then A(M") < M(M®)). Tf X(M ) £ X(M') we
are done so we can suppose A(M*)) = A(M'). This can happen only if v(M)(j) =
Y(M')(j) for all j ¢ J, where J := {j € [n] : X\;(M) = A(M)}. Since |y(M)|n
is monotone increasing in J it follows that inv(|y(M)l,) > inv(|y(M'),|) and the
proof is complete. O

By the description of )\(M(k)) given in the proof of Lemma 4.8 we clearly have that,
for all k € [n— 1],

(4.4) M <M= M'"® < pM*),
Moreover, by the definition of y(M), we have that
(4.5) (M) = y(M*)),

Now let N be a monomial, ¥y = y(N) and p(N) = (g1,...,pr). By Lemma 4.8 we
have that

N-fu=NX1+ > enuM.

MI<NX],
By (4.4) and (4.5) we obtain that
N.f‘“f’” = NXZlffW—i— Z EN,M! M/flw
M'<NX],

el 2 "
NXmXuz + an,m M
MUI<NXL, X7,

where ap a7 are suitable integers. Now let M be any monomial in S. By iterating
this procedure and by taking N := c,(ar), from y(cy(ar)) = 7(M) and (4.3) we have
that

(4.6) M:C’Y(M)fu(M)+ Z aMlyMMI.
M'<M

LEMMA 4.9 (Straightening Lemma). Let M be a monomial in S. Then M
admits the following expression
M = fuomy - eyy + Y marm fu(ur) - (),
M'<M
where nar pr are integers.

Proor. It follows immediately by iterating (4.6). O

For example, let n = 4 and M = zfaz3z]. We have A(M) = (4,4,3), v(M) =
(1,4,-2,-3], (h1, ha, h3) = (2,2, 1), ¢y = zizs2? and p(M) = (3). Then

M = cymyfs
in S.

Now we are ready to state and prove the main result of this section.
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THEOREM 4.10. The set
{CW+I£ 17 € Dn}
is a basis for R*(Dy).

ProoF. By the Straightening Lemma 4.9 the set {c, + I” : v € D,} spans
R*(D,) as a C-vector space and it has the right dimension as stated in §2.2 O

4.2.2. Homogeneous components in R*(D,).
ProprosiTION 4.11. Let v,& € D,,. Then
£ cy= Z Ny Cy + P,
{u€Dy : Aeu)dA(eq)}
where ny, € Z and p € I7.

Proor. Apply the Straightening Lemma (Lemma 4.9) to M = &(c,). Note
that fua) & ID if and only if u(M') = . Hence, if M’ gives a non-zero contribute
in this expansion of M we have M’ = c, (). If we let u =~v(M'), then

Aew) = AM') SAM) = ME-ey) = Aey).

O

By Proposition 4.11 we have that

‘];J,D = spanc{c, + I2 |y € D, A(cy) A}
and

J)f],D = spanc{c, + I2 |y € D, AMcy) 9 A}
are two submodules of R? where k = |A|. Their quotient is still a D,-module
denoted by

Ry = @.
I

For any S C [n — 1] we define the partition
A(S) = (A1, oo, Anct),

where A; := [SN[i,n —1]|. For S1, Sy C [n — 1], we define the vector
Asy,5; =20 Asy + 1g,,

where 15, € {0,1}"~1 is the characteristic vector of S,.
For notation convenience, we introduce this new descent set

Desp(7) = Des(|vln)
and we let
Negn(y) := Neg(y) N [n - 1].
REMARK 4.12. For any v € D,, we have
Aley) = sy, 5.,
where S; = Des, (y) and Ss = Neg, (7).

The next proposition tells us when the representation Rj is nontrivial.
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ProPoOsSITION 4.13. The following three conditions on A = (A1,...,Ap—1) are
equivalent:

i) Ry#0.
it) A= X(cy), for some~y € D,.
i) A = Ag, 5, for some 51,5y € [n— 1] and A\ — Aiy1 € {0,1,2} for all

t=1,...,n—1, where A, := 0.

Proor. Ry # 0 if and only if there exists v € D, such that A(c,) = A and
by Remark 4.12, A(cy) = As, s, with S1 = Des, () and S» = Neg,(y). On the
other hand given Ag, s, with A; — X411 € {0,1,2} and S1, Sz C [n — 1] there exists
a vy € D, with Des,(y) =51 and Neg,(y) = Sz, and we are done. O

From now we denote Rs, s, := Rag o, -
ProprosiTION 4.14. For any S1, Se C [n — 1], the set
{¢y : v € Dy, Des,(y) = S1 and Negn(y) = Sa},
where ¢y s the image of ¢y in the quotient Ry, is a basis of Rs, s,.

PRrOOF. Let v # 4 two even-signed permutations such that A(cy) = A(cyr).
By Remark 4.12 follows that As, s, = As: s:, where S, St and S3, S} are Des,, and
Neg, of v and v/, respectively. Hence S; = S, S2 = 5% and inv(|y]n) = inv(]y|n)
so that the monomials ¢y and ¢, are incomparable. O

By the previous proposition it is natural to call the D,-module Rg, s, a negative-
descent representation.

THEOREM 4.15. For every 0 < k < n? —n,

D ~
RY = P Rs, s,
51,52

as Dy - modules, where the sum is over all S1,S5 € [n — 1] such that

2.3 i+ ]S =k

1€5,

Proor. Note that by (4.2), ¢y + I” € RP if and only if Dmaj(y) = k. By
Theorem 4.10 we have that {c, + I” : Dmaj(vy) = k} is a basis for RY and so by
Corollary 4.14, RP? = &g, 5, Rs, s,, as C-vector spaces, where S, Sy C [n—1] with
Y ics, 1+ [52] = k. By Maschke’s theorem, if V' is a finite dimensional G-module for
a finite group G (over a field of characteristic zero) and W C V is a G-submodule,
then V= W @ (V/W) as G-module. Apply this theorem to the poset

(U5 op S8 Cn—1],2- ) i+ S =k}
1€S,

ordered by dominance order on the partitions As, s,. The result follows by induc-
tion on this poset and by the definition of As, s,. O
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4.2.3. Irreducible components of the descent representations. In this
section we prove a simple combinatorial way to compute the multiplicities of the
irreducible representations of D, in Rg, s,. This result is a refinement of Stem-
bridge’s Theorem (Theorem 4.6).

Define C[[p1, p1p2, - - -]] to be the ring of formal series in countably many va-
riables p1, p1pa2,...,p1p2 - Pk, ...; a linear basis for it consists of the monomials
P = pi‘l - -ppn for all partitions A = (Ay,..., Ag).

Let ¢ : C[[p1,p1pa, - --]] = Cllq1, 9192, - - -]] be the map defined on the genera-
tors by

W) =1¢",
and extended by linearity. Note that ¢ is not a ring homomorphism.

For any standard Young bitableau 7' = (T}, Ty) of shape (A1), X)), following
[1], we define for ¢ € [n] |

di(T) :=|{j 2 i : j € Des(T)},

' |1, ifie Neg(T);
(1) = { 0, otherwise,

and
(4.7) Ji(T) =2 di(T) + e(T).
The following lemma is known and we refer the reader to [1] for its proof.

LemMA 4.16. If (AN A2 F . Then

L[SA(l) (1,P1P2,P1P2P3P4, .- ) CSx(2) (P1,P1P2P3, .- )] =

nfi(T)
_ ZTESYT(,\(U,,\@) [lio: 4

[Tio: (1 —q¥q2 - q?)

Let 7' = (T31,7T3) be a Young standard bitableau. We denote by T = (T2, T1)
the bitableau obtained by swapping the two tableaux in 7" and we call it the trans-
pose bitableau of T

The following technical lemma is fundamental in the proof of the main result
of this section (Theorem 4.21).

LEMMA 4.17. Let T = (T1,72) be a Young standard bitableau of total size n
such that n € Ty. Then

[i(T) = f(T) + 1
foralli=1,... n.

Proo¥r. We proceed by backwards induction on z. If i = n it’s obvious. So
suppose ¢ < n. We have four cases to consider.

a) i € Des(T), and i € T
This implies that z;—l— 1eTy zind so d;(T) :Adi+1(T) —|—A1 and €(7) = ¢41(7). In T
we have again d;(T) = d;+1(7) + 1 and ¢;(7) = €;41(T). Hence, by induction,
fi(T) 2di(T) + €i(T) = 2dig1(T) + €i41(T) + 2
finn(D) +2= fi (1) +3
FHi(T) +1.
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b) i € Des(T), and i € T}
If i + 1 € T, then all the conditions are as in case a) and the result follows by
induction. i
Otherwise, if i + 1 € Ty, then d;(T) = dit1(T) + 1 (T) = e41(T) = 1, di(T) =
di+1(T) and € (7T) = €;41(T) + 1. Hence, by induction,

H(T) = 2digi+2+€41—1=fir1(T)+1
= fin(@) +2=2d;(T)+«(T) +1
= f(T)+1.

¢) i ¢ Des(T), and i € T}
This implies that ¢ + 1 € T3 then d;i(7T") = diy1(1) (1) = €;41(1) and the same
relation for 1" and so the thesis easily follows.

d) i ¢ Des(T), and i € Ty
There are two possibilities: ¢ + 1 € 77 or T5. In both cases the thesis easily follows
by induction. O

For an element v € D), let the (graded) trace of its action on the polynomial ring

P, be
Tre, (7)) =Y (v-m,m) g™,

where the sum is over all monomials m € P,, A(m) is the exponent partition of m,
and the inner product is such that the set of all monomials is an orthonormal basis
for P,,. Note that {y-m,m) € {0, £1}.

The following lemma is the restriction to D, of Claim 5.12 in [1].

LEMMA 4.18. If v € D, is of cycle type (, ) then the trace of its action on

P, s
Tre,(7) = tpa,s(@,9)],

where & := (1, p1p2, p1p2psp4, - - .) and § := (p1, p1paps, .. ).

The coinvariant algebra R*(D,,) has the descent basis {c, + 12 : v € Dy}. So
similarly to P, we let
(4.8) Tre,p(v) = Y (v (ey +12), 0+ IP) - g0,

YED,

where the inner product is such that the descent basis is orthonornal.

LEMMA 4.19. Let n € P. Then
Tre,(y) =Trp,p(v) -y 0" Y, @™

t>0  £(A)<n-1

Proor. We consider the following basis of homogeneous polynomials {f, ¢y :
¥ € Dy, pp = ((n)*, ap)} instead of the monomial basis. The trace Trp, is not
changed. But for the Straightening Lemma we have that the maximal monomial
m in f,,c, has exponent partition A(m) = A(cy) + pp(m)’, where the sum of
partitions is componentwise. By (4.8) the thesis follows. O
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REMARK 4.20. It’s clear that

1
Z(Q1 . Qn)t —
- =414
and
n—1
Z (q1 : H 1— 2
M) <n—1 i=1 ai -

We are now ready to state and prove the main result of this section.

THEOREM 4.21. For any pair of subsets S1, Sy C [n — 1], and a bipartition of
n (A, p) b n, the multiplicity of the irreducible D, -representation corresponding to
(A, p)¢ in Rs, s, 15

ms, s, = {1 € DSYT{A, p} : Des(T') = Sy and Neg(T) = Sa}|.

Proor. By Lemma 4.19 and Remark 4.20 we have

a9 1) I gy =10

By Lemma 4.18 we have

(4.10) Tre,(v) = tpas(2,9)]

that, by Frobenius Formula for type D, is equal to

Zx(x (2@ () +su@n@) + 3 (0T ) sa@sa ()

Hence applying the linearity of ¢ and Lemma 4.16 we obtain that R.H.S. of (4.10)
is equal to

- (W 2 I s 1)

) TESYT (M pu)i=1 TeSYT(u,x)i=1

+ 2 (0T Y ﬁqf’m}

Ala|=2 TESYT(AN)i=1
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Splitting each sum on the SYT' in two pieces depending if n is in 7} or in T we
have

tpap(Z,y)] = Hz 11—q1 {ZXAHR

D SR | LD S U

(T1,T2)€SYT(A,u) n€Ty i=1 (T1,T2)ESYT (A, ) n€Ty i=1
+ ) [T+ 3 [La™)
(T1,T2)€SYT(n,A) n€Ty i=1 (T1,T2)ESYT(u,\) neTy i=1
A AT S
D DIl 3 [Ta™
A|Al=% (T1,T2)ESYT(AN), neTy i=1

+ > ﬁqf’m)}

(T1,T2)ESYT (A A), n€T,i=1
Thanks to Lemma 4.17

- 1
Upaps(T,¥)] = T {Ex P (g egn) -

SRS SR | AR DR | P

(T1,T2)eSYT(A,u) neTy i=1 (T1,T2)ESY T (p,\) neTy i=1
ANt : T
o ey ) > [0 +a
AA|=2 (T1,T2)ESYT (A N), neTy i=1

Hence by (4.9) and the definition of D-standard bitableaux we have

n—1
Trro(y ZXAW I A

TeDSYT{ A u} 1=1
n—1
D IR CURST IS D DI | O
X|A|=% TeD-SYT{A A} i=1

We conclude that the graded multiplicity of the irreducible D, -representation cor-
responding to (A, u)¢, in R*(Dy), is

3 nl:[l 40 = Y poemsen,

TeDSYT{A u} i=1 TeDSYT{A u}

and so we are done. O
Theorem 4.6 can be easily obtained from this, by observing that for any T €
n—1 .
4.3. Combinatorial Identities

In this section we compute the Hilbert series of polynomial ring P,, with respect
to multi-degree rearranged into a weakly decreasing sequence. Moreover we will see
Corollary 3.37 as subcase of Theorem 4.25.
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For any partition A = (A1, ..., A,) with at most n parts we let for every j >0
mj(A) = [{i € [n] : A =j},

<m?x>> - (rno(A), f;m, . )

the multinomial coefficient.

The following theorem can be found in [1][Theorem 6.2] and give an explicit
formula for the Hilbert series of the polynomial ring P, with respect to weakly
decreasing multi-degree.

and

THEOREM 4.22. Let n € P. Then
3 ( ) [[o = Sges L™
LN <n m(’\) i=1 ' Hi:l(l —q1- qz)
wn Z{[q, ... qn]]

The Hilbert series of P,, can be computed by considering the even-signed des-
cent basis for the coinvariant algebra of type D and applying the Straightening
Lemma for this type.

It’s easy to see that the map P, — D, x P(n) given by

(4.11) m = (y(m), pp (m)'),

is a bijection.

THEOREM 4.23. Let n € P. Then
RSV D0 ) o
(; <m<A>> ) T ——
in Zl[q1, ..., qa]].

Proo¥r. The L.H.S. of the theorem is the Hilbert series of polynomial ring by
exponent partition. So using the Straightening Lemma for type D, the bijection
4.11 and Remark 4.20 we have

Z M) = Z g erem)tup(m) — Z g .th . Z q2H.
meP, meP, Y€D, t>0 HEP(n—1)
By Remark 4.12 the thesis follows. O

Now we compute the Hilbert series in a different way using the following ob-
servation. The D-negative multiset defined in (2.11) can be written also in this
form

DDes(v) = Des(y) H{Neg(v )} \ {n}.
Now we define
ni(y) =[{j>1:j€Neg(y)N[n— 1]}

Hence we have that

(4.12) ddes(v) = di(v) + (7).
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THEOREM 4.24. Let n € P. Then
n— 1 d ¥)+n; -1
'yED H q; o)

2 < )HA 0= a)(1—qr-an)

£(M)<n

in Z][q1, ..., qn]]-
Proor. Let consider the usual decomposition D, = W, cs {ou : 0 € T},
where T'= {o € D,, : des(c) = 0}. From definitions is clear that for every o € T,

u€ Sy, and i € [n— 1]
di(ou) = di(u) and ﬁi(u_lo'_l) = ﬁi(a_l).

Therefore

3 rﬁqgl(v)ml(v—l) - Yy 1:[ (ou)+:((ou) ™)

YED, i=1 u€eS, ceT i=1

S0 30 TL e

u€eS, ceT i=1

u€eS, i=1 ceT 1=1

An element o € T' is uniquely determined by the set Neg(o~!) N [n — 1]. Hence

n—1 n—1
ZHQ?’(U J:H(1+Q1"'qz’)~
oeT i=1 =1
The thesis follows by Theorem 4.22 observing that d,(u) = 0. O
The following identity easily follows by Theorems 4.23 and 4.24.
THEOREM 4.25. Let n € P. Then
n—1 n—1
di(y)+n:(v~? 26i(v)+mn:
ZHqi(v) (W)IZH% (V)+n:i(y)
NED, i=1 NED, i=1
O

Using Theorem 4.25 we prove that the two pair of statistics (ddes, dmaj) and
(Ddes, Dmaj) have the same distributed on D,,, as already seen in Corollary 3.37

E tddes('y)qdmaj('y) _ Z thes(’y)quaj(’Y).
YED, YED,
Proo¥r oF COROLLARY 3.37. In Theorem 4.25 replace q; with ¢t and ¢q; with
q for i € [2,n — 1] and apply the identities

n—1

di(y) +1(y) = ddes(y), D (di(7) +ni(y™")) = dmaj(v),

i=1
and
n—1
2-61(7) + m(y) = Ddes(y), > (26 +m) = Dmaj(y).
i=1



CHAPTER 5

Hermitian symmetric pairs

In this chapter we give explicit combinatorial product formulas for the poly-
nomials, defined by Shelton, encoding the dimensions of the spaces of extensions
of (g,p)-generalized Verma modules, in the cases when (g,p) corresponds to an
indecomposable classic Hermitian symmetric pair. The formulas imply that these
dimensions are combinatorial invariants. We discuss also how these polynomials
are related to the parabolic R-polynomials introduced by Deodhar.

The results in this chapter are part of a paper [7] that will appear in Transactions
of the American Mathematical Society.

5.1. Shelton polynomials

For a Lie algebra g we let U(g) its universal enveloping algebra. Let g be a
semisimple complex Lie algebra with Cartan subalgebra h, root system A C h* and
positive root system AT with respect to a fixed basis 7. Let 6 = h@n be the Borel
subalgebra with n = 37 _1ga, 7 = ) s09-a and let p = %Za>0a. Let W be
the Weyl group of A.

Fix a parabolic subalgebra p = m @ u of g which contains b and has nilradical
u. Assume that h is contained in m and put A(m) its root system and A*(m) =
AUA(m). Let W(m) be the parabolic subgroup of W generated by the reflections
corresponding to roots in A(m) and W™ the quotient, i.e. the set of minimal length
coset representatives of W(m) in W.

Fix A € h* and consider a one-dimensional b = h @ n-module Cy_,, such that

(H+ N)(z) :=(A—p)(H)z for all H € h, N € n and z € C. The module

M) :=Ulg) ® Ci-p,
U (b)

is called the Verma module, associated with b, A, m with highest weight A — p.

If X is A*(m) dominant integral, let F'(m, A) be the irreducible finite-dimensional
m-module with highest weight A. Letting u acts by zero this become a p-module.
The module

N() = Ug) Q) Flm, A= p),
U(p)

is the (g,p)-generalized Verma module with highest weight A — p. Note that the
quotient W™ parametrizes the set of all (g, p)- generalized Verma modules. More
precisely to each w € W™ we may associate the generalized Verma module N,, =
N(wSwA).

We let O(g, p) be the category of all g-modules M which are:

i) finitely generated over U(g);

i1) U(p)-locally finite;

63
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i13) completely reducible as m-modules.
In the case p = b this is the category O introduced by Bernstein-Gelfand-Gelfand
(see, e.g., [11]). In this work all Ext* groups are computed in the category O(g, p).
The following result is due to Shelton, and we refer the reader to [48] for its
proof. He defines for any v and v in W™, a polynomial E, ,(¢) by:

(5.1) Buy(g) = (1)~ =kghdimg (Ext" (N, V),
k>0

and proves that,

THEOREM 5.1. Suppose that (g,p) corresponds to an indecomposable Hermitian
symmetric pair. Then for all u,v € W™:
i) Euw(q) =0 tfugv;
i) Euul(g)=1;
i13) if u < v and s ¢ Dr(u) with us € W™ then

Eys us(q) if s ¢ Dr(v) and vs € W™;
E (q) — (q - I)Eus,v(q) lfS S DR(U) and us z vs;
u,w\q, (q _ q_l)Eus,v(q) + Eus,vs(q) qu <us <wvs <w;
uns,U(q) Zf’US ¢ wm,

In this paper we solve these recurrence relations in the cases when (g, p) is an
indecomposable classic Hermitian symmetric pair. Our main results are explicit
product formulas for these polynomials. Moreover, these formulas imply that the
polynomials are combinatorial invariants.

We designate a pair by the types of the root systems A(g) and A(m) (see Table
below) and with a change of notation, consistent with those of previous chapters,
we denote the corresponding Weyl groups by W and W and the quotient by W,
where J is the suitable subset of the set of generators.

[ (p) T g ] [mml ]
SU(T‘, 8) AN Ar—l X As—l
SO(2n —1,2) | Ba Bo:
Sp(2n,R) C, A1
SO(2n —2,9) | D, D1
SO*(2n) D, An_q

The indecomposable classic Hermitian Symmetric pairs

5.2. The case (A,_1,4;-1 X Ap_i_1)

In this section, we give an explicit product formula for the polynomials Ey, ,(q)
in the case of the pair (A,_1, A;_1 X Ap—i—1). We give two different formulations of
this result, one in terms of permutations and one in terms of partitions. Throughout
this section we fix n € P and ¢ € [n — 1], and we let W := S, s; := (4,1 + 1) for
i=1,...,n—1,8:={s1,...,8n-1}, and J := S\ {s; }.

We identify a partition A with its diagram,

{(i,j)) eP?: 1<i<k, 1<j< N}
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If we replace the dots (7,7) by juxtaposed squares, we obtain the Young diagram
of A, rotated counterclockwise by 7 radians with respect to the usual anglophone
convention, as in Chapter 1. So, for example, the diagram of (5,4, 2, 1) is illustrated
in Figure 1.

FIGURE 1

Given n € P and i € [n — 1] we let
P(n,i):={peP: nC(n-i}.

Let u, A € P, p € A. We then call A\ p a skew partition. Note that, in poset
theoretic language, partitions (respectively, skew-partitions) are the finite order
ideals (respectively, finite convex subsets) of P2, Given two skew partitions p, v C
P? we write p &~ v if p is a translate of v. Given a skew partition v C P? its
conjugate is

v i={(j,) € P* : (i,j) € v},
For symmetric groups, the parabolic subgroups of S, , are called Young sub-

groups. In the case of maximal parabolic subgroups (i.e. J = S\ {s;}) their
quotients take this particularly simple form:

W/ ={weW :w(l)<...<w (@) and w™(i4+1) < ... < w (n)}.

Given v € W7 we associate to v the partition

(5.2) Aw) = (v (@) —d4,...,v7H(2) = 2,07 (1) = 1).
The following is well known (see, [14, Proposition 2.8]).

PROPOSITION 5.2. The map A defined by (5.2) is a bijection between W7 and
P(n,i). Furthermore u < v in W7 if and only if A(u) C A(v), and £(v) = |A(v)]
for all u,v € W7.

We find it sometimes convenient to identify a partition A € P(n, ¢) with a lattice
path, with (1,1) and (1, —1) steps. This path is the union of the lower boundary
of the diagram of the skew-partition (n — i)® \ A and the upper boundary of the
partition A. Note that it starts at (0,0) and ends at (n, 2 — n) (equivalently, it has
n steps and exactly 7 are (1, 1)-steps). We call a (1, 1)-step (respectively, (1, —1)-
step) an up-step (respectively, down-step). Given j € [n — 1] we say that A has a
peak at j if the j-th step of A is up and its (j + 1)-th step is down.

For example, if we take the partition of Figure 1, A = (5,4, 2, 1) € P(9,4) then the
associated path is the one shown in Figure 2 and it has peaks at 1,3,6, and 8.

Note that this identification between partitions and paths depends on n and 1.
For example, the same partition (5,4, 2, 1) corresponds to the path in Figure 3 if
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VN

F1GURE 2. The lattice path corresponding to (5,4,2,1)if n = 9

and 1 =4

FIGURE 3. The lattice path corresponding to (5,4,2,1) if n = 12
and i =5

n = 12 and ¢ = 5. Since n and 7 are fixed throughout this section, this will cause
no confusion.
The following elementary lemma is known, (see, [14, Lemma 2.9]).

LEMMA 5.3. Letv e W7, and j € [n—1]. Then s; € Dg(v) if and only if A(v)
has a peak at n — j.

Note that the k-th step of A(v) is an up step if and only if
ke{n+l—vl@),n+1—v(i-1),...,n+1-v" (D}
Let u,v € W7, u < v. For j € [n] we let, following [14],
(63 a(we)=l{rew [{l): r< - Hrev (@) r< il
For example, if n = 9, i = 4, u = 123564789, and v = 516278394 then
(5.4) (a1(u,v),...,a9(u,v)) =(0,1,1,2,1,1,2,1,1).

Note that it follows easily from Proposition 5.2 that a;(u,v) > 0forj=1,...,n
if and only if u < v, and that a;(u,v) > 0if j € v ([¢]) \ v !([i]) and u < v. Also
note that, if u € W7 and j € [n], then

u(j) — if j eu (i
H{reu (i) :r <} :{ j(_f_)i_lu’(j), éj;u_lEH;’

This may be used to obtain a more explicit formula for a;(u, v), if desired.
We can now state and prove the main result of this section.

THEOREM 5.4. Let u,v € W7, u <wv. Then

(55) Eu,v(’}) = qZ(v)—Z(u) H (1 _ q—2aj(u,v)+1).
jev=H([ED\u= ([2])

Proor. Let, for brevity, D;(u,v) := v~1([i]) \ u=*([7]). We proceed by induc-
tion on £(wy) — £(u). If {(wy) — £(u) = 0, we have wy = v = u and the result is
trivially true. So suppose that £(wg) — £(u) > 0 and let s = (k, k + 1) be such that
s € Dgr(u) and us € W”. Note that, since u € W, this implies that k € u=1([1])
and k + 1 € u=1([{]). We have four cases to consider.

a) s & Dg(v), and vs € W7/
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Since v € W, this implies that k € v™([i]) and k + 1 € v~1([]), moreover
us,vs € W7 and so, D;(us,vs) = D;(u,v) and a;(us,vs) = a;(u,v) for all j € [n]
since (us)~!([i]) is obtained from u~1([7]) by replacing k by k + 1, and similarly for
v. Hence, by Theorem 5.1 and our induction hypothesis,

Eu,v(q) = Eus,vs
ql(vs)—l(us) (1 _ q—2aj(us,vs)+1)
JjE€ED(us,vs)
— ql(v)—ﬂ( ) —2(1] u, ’U)+1)
JEDl(uyv

as desired.
b) s € Dr(v), and us £ vs
Since v € W this implies that k£ ¢ v=1([i]), k+ 1 € v=1([z]), and vs € W’. So we
have that D;(us,v) = D;(u,v) \ {k + 1}, and
(5.6) a;(us,v) = a;j(u,v) = a;(us,vs)
for all j € [n]\ {k + 1}, and

(5.7) ag41(us, vs) = agy1(u,v) — 2.

Since us £ vs by (5.7) and the note before the statement of this theorem, we
conclude that ag4+1(u,v) = 1. Hence, by Theorem 5.1 and the induction hypothesis,

Eu,v(q) — (q - I)Eus,v(q)
(g — 1)gt0)—t-1 (1 — =2 )+
JE€Di(u,u)\{k+1}

(q _ 1)(]2(1/)—2(11)—1
(1 _ q—2ak+1(u,v)+1)

—2a] u, ’U)+1)
JeDl(UV,U

L(v)—L(u) —2a] u, U)+1)

1
]EDz(UVU

as desired.
¢) s € Dr(v), and us < vs

Since v € W this implies that k£ ¢ v=!([i]), k+ 1 € v~1([z]), and vs € W7. So we
have that

D;(us,v) = Di(u,v) \ {k+ 1},

D;(us,vs) = (D;(u,v) \ {k+1}) U {k},
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a;(us,v) = a;j(us,vs) = a;(u,v) for all j € [n]\{k+1}, agy1(us,vs) = apy1(u,v)—2
and ag41(u, v) = ag(u,v)+1. Hence, by Theorem 5.1 and our induction hypothesis,
Bun(d) = (=47 ")Eusw(9) + Bus,us(q)

— (q _ q—l)ql(v)—l(u)—l H (1 _ q—Zaj(u.s,v)+1)
JeDi(u,v)\{k+1}

+ ql(v)—l(u)—Q H (1 _ q—2aj(us,vs)+1)
Je(Di(uv)\{k+1})u{k}
— (q _ q—l)qﬂ(v)—ﬂ(u)—l H (1 _ q—Zaj(u,v)+1)
Jj€Di(u,v)\{k+1}
+ qé(v)—z(u)—Z(l _ q—2ak(u,v)+1) H (1 _ q—Za](u,v)+1)
Jj€D(u,v)\{k+1}
2 —2ap(u,v)+1
= qZ(U)—Z(U)—Z (q — q2 (( ))+1) (1 — q—Zd](uva‘l)
(1 — g2t ) jebun)
— qZ(U)—Z(u) H (1 _ q—ZaJ u,v)+1 ’

JED(u,v)

and the result again follows.

d) vsg W’
Then s ¢ Dg(v) and we have two cases. In the first one, we have k, k+1 € v=1([])
and this implies that D;(us,v) = (D;(u,v) \{k+ 1}) U{k} and a;(us,v) = a;(u,v)
for j € [n]\ {k + 1}, ar41(u,v) = ag(us,v). Hence, by Theorem 5.1 and the
induction hypothesis,

Euyv(q) = uns,v(‘])
— qZ(U)—Z(U) H (1 _ q—Zaj(us,v)-}—l)
JE(D(u )\ k411 Uik}
(1 _ q—2ak(us,1/)+1)

_ L(v)—L(u —2a;(u,v)+1
= 4q (w)=4( )(1 _ q—2dk+1(U,U)+1) H (1 —q ( I+ )
’ jED,(U,U)

qZ(U)—Z(u) H (1 _ q—2aj(u,'u)+1).
JjE€ED(u,v)

In the second case we have, k,k + 1 ¢ v=1([4]), hence D;(us,v) = D;(u,v) and
a;j(us,v) = aj(u,v) for j € [n] \ {k + 1}. Hence, by Theorem 5.1 and induction
hypothesis,

Euv(e) = qEBuso(q)
— ql(v)—l(u) H —2(1] us, ’U)+1)
JED;(u,v)
— qZ(U)—Z(u) —2a] u, ’UJ+1)’
JEDl(u,v)

and the result again follows.
This completes the induction step and hence the proof. O
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Because W7 is isomorphic, as a poset, to a lower interval in Young’s lattice (by
Proposition 5.2), it is natural to rephrase Theorem 5.4 in the language of partitions
rather than in that of permutations.

Let pu, A € P(n, i), with 4 C A. Think of 1 and A as paths as explained above.
Then, by Proposition 5.2, the path A lies (weakly) above the path py. Let 1 <j <mn
and consider the j-th step of A (from the left). Following [14], we say that such
a step 1s allowable with respect to p if it is an up-step and the j-th step of p is a
down-step.

For example,if n = 9,1 =4, A = (5,4,2,1), and p = (2,0,0,0) then the j-th step
of A is allowable with respect to p exactly if j € {1,3,6} (see Figure 4).

Now let @;(p, A) be the vertical distance (divided by two, since it is always even)
between the (right end of the) j-th step of A and the (right end of the) j-th step of
p. We then have the following result, and we refer the reader to [14, Proposition
3.3] for its proof.

PROPOSITION 5.5. Let u,v € W7, u <wv. Then
a;j(u,v) = dny1-j(A(u), A(v))

forj=1,... ,n. Furthermore n+ 1 —j € v=1([i]) \ u=1([z]) if and only if the j-th
step of A(v) is allowable with respect to A(u).

We can now rephrase Theorem 5.4 in terms of partitions.

COROLLARY 5.6. Let u,v € W7, u <wv. Then

(5.8) E, — qlf\\ul H —2(1] , ,\)+1)

where ;1 = A(u), A = A(v) and j runs over all the allowable steps of A with respect
to . In particular, Ey ,(q) depends only on A(v) \ A(u). d

In the case of a lower interval, the formula (5.8) takes up a particularly simple
form. The proof of the next result is analogous to the one of [14, Corollary 3.5]
and we leave it to the reader.

COROLLARY 5.7. Let v e WY. Then

Feolq) = ¥ H 2+,

where pn = A(v) and d(p) is the length of the Durfee square of p. d

We close this section with an example, to illustrate Theorem 5.4 and Corollary

5.6. Let u = 123564789 and v = 516278394 in S5 ‘' **)} we have Dy(u,v) =
{4,7,9}. From (5.4) and (5.5), it follows that
(5.9) Euu() =" (1=¢7 (1 =q72) (1= ¢7).

Observe that we have A(v) = (5,4,2,1) = A and A(u) = (2,0,0,0) = p. The
diagram of the skew-partition A(v)\ A(u) is drawn in Figure 4. The allowable-steps
are indicated by arrows and @ (g, A) = 1, @s(p, A) = 2, as(p, A) = 2.
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FIGURE 4

5.3. The case (Cp, Ap_1)

A partition (A1, Ag, ..., Ag) is strict if Ay > A2 > ... > A;. We denote by P;
the set of all (integer) strict partitions. Let
Hi={(i,j) € P*:i < j)
with the ordering induced by the product ordering on P2. We call the finite order
ideals of H shifted partitions. Denote by Z the set of all finite order ideals of H.

Note that Z is partially ordered by set inclusion. It is well known that this makes
7 into a distributive lattice. We identify a shifted partition with its diagram

{(,j) eP?:1<i<hk,i<j<A—1+i},

and we draw it rotated counterclockwise by % radians. So for example the diagram
of (7,6,5,4,2) is illustrated in Figure 5.

FIGURE 5

Let
P={AeP:A 2N M}
Note that there are inclusion preserving bijections between strict partitions, shifted
partitions and partitions in P, given by:
(Ala)‘Za"' ;Ak‘) H{(Z,])lslgk,lstAz—l—i—l} H(AlﬂAZ—i_la"' 7Ak‘+k_1)
For this reason, we will freely identify these objects. Note, however, that only the
bijection between strict partitions and shifted partitions preserves size. In fact, if

A B, € Pandve P, with g C v C A, then it does not necessarily follow that v € P.
Therefore the subposet

veP pCrCi}
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of P is not isomorphic to the subposet
veZ:pCrCa}
of T.

Our purpose in this section is to obtain an explicit product formula for the
E-polynomials in the case of the pair (Cy, A,_1). For the rest of this section, we
fix n € P and we let W := B, s; := (t,i+ 1)(—i—1,—¢) fori = 1,...,n — 1,
so = (1,—1) =s2 S :={sg,51,...,8,_1} and J := S\ {so}.

From Proposition 2.19 we have that

W/ ={vew: v (1) <v 1 (2)<...< v }(n)}.

Therefore, given v # ¢, v € W7, there is a unique k € [n] (in fact, k = Ny (v)) such
that

(5.10) vTHk) <0< vk +1)

and we associate to v the shifted partition

(5.11) Ap(v) == (v (1), —v1(2),..., —v (k).
Let

i(n) ={A€Z: AXC(n,n—1,...,2,1)},
the following is known:

PRoPOSITION 5.8. The map Ap defined by (5.11) is a bijection between W
and Z(n). Furthermore u < v in W7 if and only if Ag(u) C Ap(v) and £(v) =
|[Ag(v)| for all u,v € WY.

As before it is convenient to identify a shifted partition A € f(n) with a lattice
path with (1,1) and (1,—1) steps starting at (0,0) and having n steps. We have
the obvious bijection between the peaks of A as a path and the upper peaks of A as
a partition. Note that, as in Proposition 5.2, this bijection depends on n, but for us
n is fixed and so there is no confusion. For example, the partition A = (7,6,5, 4, 2)
corresponds to the path in Figure 6.

FIGURE 6

LEMMA 5.9. Let v € W7, and j € [n — 1]. Then s; € Dgr(v) if and only if
Ap(v) has a peak at n — j. Furthermore, s, € Dr(v) if and only if the last step of
Ap(v) is up.

This result can be proved in a way similar to Lemma 5.3 (see also Lemma 5.16)
and is due to Brenti [15]. Note that i-th step of Ap(v) is an up step if and only if

(5.12) ie{n+1l4+v (1), n+14+v712),...,n+1+v 1 (k)}.
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ProprosiTiON 5.10. Let v € WY, and i € [n]. Then the i-th step (from the left)
of Ap(v) (seen as a path) is an up-step if and only if v(n + 1 —3) < 0.

Proor. We know that the i-th step of v € W is an up step if and only if
(5.13) n+l—ie{—v1(1),—v12),...,—v" (k)}.

But this, by the definition of k, happens if and only if v(n+1—14) < 0, as desired. O

We are now ready to prove the main theorem of this section, which gives an
explicit product formula for the polynomials E, ,(q) in the case of the symmetric
pair (Cp, An_1). As in the preceding section we give two different formulations
of this result, one in terms of signed permutations and one in terms of shifted
partitions.

Let u,v € W7, u < v. For j € [n] let, following [15],

(5.14) bi(u,v) :=|{r>j: v(r) <0} —|{r>j: u(r) <0}
For example, if u = [4,5,-3,-2,6,7,—1] and v = [6,—5,7,—4,—3,—2, —1], then
(5.15) (b1(u,v), ... br(u,v)) =(2,2,1,2,2,1,0).

Note that it follows from Proposition 5.8 that b;(u,v) > 0 for j = 1,... n if and
only if u < w. Also, if u < v, then b;(u,v) > 0 when v(j) < 0 < u(j). We let

(5.16) N(u,v) :={r € [n]: u(r)v(r) <0},
and
(5.17) D(u,v) := {r € N(u,v) : (—1)r®¥) <0},

THEOREM 5.11. Let u,v € W7, u < wv. Then

(518) Eu,v(q) — qZ(U)—Z(u) H (1 _ q—bj(u,v))’
jE€D(u,v)
where
P ) 2bj(u,v) =1 ifu(jf) >0,
(5.19) bi(u,v) ._{ ) 41 ful) <0

Proor. We proceed by induction on £(wy) — £(u). If £(w]) — £(u) = 0, we
have wy = v = u and the result is trivially true. So suppose that £(wg) — £(u) > 0
and let s be such that s ¢ Dp(u) and us € W.

Suppose first that s = (—i—1, —)(¢,i+ 1) for some i € [n— 1], then u(i) < u(i+1);
note that, since u € W, this implies that u(i) < 0 < u(i + 1). We have four cases
to consider.

a) s & Dgr(v), and vs € W7/
Since v € W7, this implies that v(i) < 0 < v(i + 1). Moreover us,vs € W and so,
N(us,vs) = N(u,v) and b;(us,vs) = b;(u,v) for all j € [n], so D(us, vs) = D(u,v)
and b;(us,vs) = b;(u,v) for all j € [n]\ {¢,7+ 1}. Hence, by Theorem 5.1 and our
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induction hypothesis,

Eu,v(q) = Eus,vs(q)
— ql(vs)—l(us) (1 _ q—bj(us,vs))
jED(us,vs)
= O (1 g b)),
J€D(u,v)

as desired.
b) s € D(v), and us £ vs

Then v(:) > 0 > v(i + 1), therefore N(us,v) = N(u,v)\ {i,7 + 1}, b;(us,v) =
bi(u,v) = b;(us,vs) for all j € [n]\ {7 + 1}, and

(5.20) bi(u, v) = bigp1(u,v) — 1.

Since us £ ws, it follows from the note before the statement of the theorem that
bip1(u,v) > 0 > biy1(us,vs). Also biy1(u,v) — biy1(us,vs) = 2, so b1 (u,v) =
1. This and (5.20) imply that ¢ € D(u,v) and ¢ + 1 € D(u,v). It follows that
D(us,v) = D(u,v) \ {i + 1}, bj(us,v) = b;(u,v) for all j € [n]\ {i,i+ 1}, and
that 1~)i+1(u,v) = 2b;41(u,v) — 1 = 1. Hence, by Theorem 5.1 and the induction
hypothesis,

Eyu(q)

(¢ = 1) Eus,v(q)
= (¢— 1)q2(v)—2(u)—1 (1- q—éj(us,v))
JeD(u,v)\{i+1}
(q _ 1)qZ(U)—Z(u)—1 -

_ 1 — —bj(u,v)
(1= gD () Il (-4 )

jeD(uw)

= g T (1 - g B,

J€D(u)

¢) s € Dr(v), and us < vs

Then, as above, v(¢) > 0 > v(i + 1), N(us,v) = N(u,v) \ {i,i+ 1}, b;(us,v) =
bj(u,v) for all j € [n]\ {i+ 1}, and

(5.21) bi(u,v) = bjg1(u,v) — 1.

It follows that D(us,v) = D(u,v) \ {¢,74 1} and Ej(us,v) = I;j(u,v), for all j €
[n]\ {¢,i+ 1}. On the other hand we have: N(us,vs) = N(u,v) and b;(us, vs) =
bj(u,v) for all j € [n]\ {7+ 1}, and b;41(us, vs) = b;y1(u,v) — 2. It follows that
D(us,vs) = D(u,v) and bj(us,vs) = bj(u,v) for all j € [n]\ {¢,7+ 1}. Hence, by
Theorem 5.1 and the induction hypothesis,

Euw(9) = (40— ¢ ") Eus (@) + Eusws(q) )

= (q _ q—l)ql(v)—l(u)—l H (1 _ q—bj(us,v))
j€D(u,v)\{7,i+1}

(522) + qﬁ(v)—ﬁ(u)—Z H (1 _ q—gj(us,vs)).
JjE€ED(u,v)
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From (5.21) we have that ¢ € D(u, v) if and only if +1¢ D(u,v), so we have two
cases. If i € D(y, v), then D(us,v) = D(u,v)\{i} and b;(us, vs) = 2b;(us,vs)—1 =
2b;(u,v) — 1 = b;(u, v) — 2 because u(i) < 0 < u(i + 1). Hence, by (5.22),

Bup(a) = (¢* = Dg"070=2 T (1= g7 0)
JED(u,v)\{i}
+ qZ(U)—Z(U)—Z(l _ q—éi(us,vs)) H (1 _ q—aj(u,v))
JED(u,v)\{i}

2 —bi(us,vs -
— ql(v)—l(u)—Z (q —q ~( )) H (1 _ q—bj(u,v))
(1 _ —b,(u,v)) )
q j€D(u,v)
= Ot ] (1 ),

€D (u)

If i+1 € D(u,v), then D(us,v) :ND(u,v) \ {i + 1} and Ei+1(us,vs) =
2b;41(us,vs) + 1 = (2bj41(u,v) — 1) — 2 = biy1(u,v) — 2. Hence, by (5.22),
Euule) = (@ —1g@~@=2 [  (1-q¢ @)
JED(u,v)\{i+1}
gt =)= _ g=bita(us v0)) 11 (1 gPatem))
JED(u,w)\{i+1}
EH_l(us,vs)) -

H (1 _ q—bj(u,v))

Ji€D(u)

¢t T (1= g ),

Ji€D(uw)

£(v)—L(u)—2 (" —q~ i}
(1 — q_bl+1(u7v))

= 49

and the result follows also in this case.

d) vs g W’
Then s ¢ Dg(v) and we have two cases. In the first one, we have v(i) < v(i+1) <0
and this implies that N(us,v) = (N(u,v) \ {7+ 1}) U {:}, b;(us,v) = b;(u,v) for
all j € [n]\ {i+ 1}, bi(us,v) = b;y1(u,v). It follows that

D(us, ) \ 17} = D(w, ) \ {i+ 1},

i € D(us,v) ifand only if i+1 € D(u,v), Ej(us,v) = Ej(u, v) forall j € [n]\{¢,i+1}
and I;i(us,v) = l~),-+1(u, v). Hence, by Theorem 5.1 and the induction hypothesis,
if i ¢ D(us,v), D(us,v) = D(u,v) and the thesis easily follows; otherwise if i €
D(us,v) we have,

Euw(q) = qBusw(q)
qql(v)—l(u)—l (1 _ q—bj(us,v))
j€D(us,v)
_ —bi(us,v) -
_ -t L) 1 g=biw)
q gy AL )
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because I;i(us, v) = EZ'_H(U, v).

In the second, we have 0 < v(#) < v(i + 1) and this implies that N (us,v) =
(N(u,v) \ {e}) U{i + 1}, bj(us,v) = b;(u,v) for all j € [n]\ {i + 1}, biy1(us,v) =
bi(u,v). It follows that

D(us,v) \ {i + 1} = D(u,v) \ {7},

i+1 € D(us,v) ifand only if i € D(u,v), i)j(us, v) = Bj(u, v) forall j € [n]\{¢,i+1}
and l~)i+1(us,v) = Bz(u, v). Hence, by Theorem 5.1 and the induction hypothesis,
if i+ 1 ¢ D(us,v), D(us,v) = D(u,v) and the thesis easily follows; otherwise if
i+ 1 € D(us,v) we have,

Eun(q) = qFusn(q)

(1 _ q—l;j(u.s,v))
)

jE€ED(us,v

—El+1(us,v)) -

H (l_q—bj(u,v))’

Ji€D(u)

tw)—e(u) (L= 47
(1 —gtw)

= 49

since EZ'_H(US, v) = El(u, v), the result again follows.

Suppose now that s = (—1,1) = sg. Then u(1l) > 0, and we observe that
us,vs € W7. We therefore have three cases to consider.

1) s & Dr(v)
Then vs € W7 and v(1) > 0. Hence N (us,vs) = N(u,v), b;(us,vs) = b;(u,v) for
all j € [n] and so D(us,vs) = D(u,v) , 1 € D(u,v), b;j(us,vs) = b;(u,v), for all
J € [n]\ {1} and the result follows from Theorem 5.1 and the induction hypothesis.

2) s € Dgr(v), and us £ vs

Then v(1) < 0 so N(us,v) = N(u,v)\ {1}, b;(us,v) = b;(u,v) for all j € [n]\ {1}.
Therefore D(us,v) = D(u,v) \ {1} and b;(us,v) = b;(u,v) for all j € [n]\ {1}.
Also, u < v and us £ vs, so by the remark before the statement of the theorem,
b1(u,v) = 1 and hence l~)1(u, v) = 1. Hence,

Eu,U(‘])

(1= 1) Eus o(9) _

— (q _ 1)q£(v)—£(u)—1 H (1 _ q—bj(u,v))
je€D(u,v)\{1}

= -t H (1— q—éj(u,u)).
JjE€D(u,v)
3) s € Dgr(v), and us < vs

Then v(1) < 0, N(us,vs) = N(u,v), N(us,v) = N(u,v)\ {1}, b;(us,vs) =
bi(u,v) = bj(us,v) for all j € [n]\ {1}, and b1 (us, vs) = b1(u,v) —2 = b1 (us,v) — 1.
It follows that

D(us,v) = D(u,v) \ {1} = D(us,vs) \ {1}



76 5. HERMITIAN SYMMETRIC PAIRS
and b;(us, vs) = b;(u, v) = b;(us,v) for all j € [n]\ {1}. Hence,

Euw(q) = (41— 4 ") Busw(q) + Buss(q)
(q - q—1)qz(v)—e(u)—1 H (1- q—éj(us,v))
€D (u,v)\{1}

(523) + qZ(U)—Z(U)—Q H (1 _ q—l;j(us,vs)).
jED(us,vs)

Now we have two cases. If 1 € D(u,v), then 1 € D(us,vs) and i)l(us,vs) =
by (u,v) — 2, so from (5.23),
Euu(q) = (q2 . 1)qz(v)—z(u)—z H (1- q—éj(u,v))
JED(u,w)\{1}

+ qz(v)—z(u)—z(l _ q—61(us,vs)) H (1- q—éj(u,v))
JeD(u,v)\{1}
Bl(us,vs)—Z) .

H (1 — g b0y,

j€D(uw)

tw)—e(u) (L= 470
(1 _ q—bl(u,v))

= 9

If 1 € D(u,v), then 1 ¢ D(us,vs) and from (5.23) we have that

Eu,v(q) = (q2 — 1)qZ(U)—Z(u)—2 H (1 _ q—bj(u,v))
JE€ED(u,v)
+ ql(v)—l(u)—Z H (1 _ q—bj(u,v))
jE€ED(u,v)
= ql(v)—l(u) H (1 _ q—l;j(u,u))
jE€D(u,v)

and the result follows. This completes the induction step and hence the proof. O

As in the previous section it is natural to rephrase Theorem 5.11 in the language
of shifted partitions. Let p, A € i(n), with g C A. We think of g and A as paths
as explained at the beginning of this section. Then, by Proposition 5.8, the path A
lies (weakly) above the path p. Let j € [n] and consider the j-th step of A (from
the left). Following [15] we say that such a step is B-allowable with respect to p if
the j-th step of u is not parallel to it and a;(p, A) is odd.

For example, if y = (7,4,3,0,0,0,0), and A = (7,6,5,4,2,0,0) then the j-th step
of A is B-allowable with respect to u exactly if j € {2,5} (see Figure 7).

PROPOSITION 5.12. Let u,v € WY, u <w. Then
bj(u,v) = ang1-j(Ap(u), Ap(v))

fori=1,...,n. Furthermore n+ 1 — j € D(u,v) if and only if the j-th step of
Ap(v) is B-allowable with respect to Ap(u).

This result can be proved in a way similar to Proposition 5.5 and is due Brenti
[15].
We can now rephrase Theorem 5.11 in terms of shifted partitions.
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COROLLARY 5.13. Let u,v € W7/, u <v. Then
(5.24) Euo(q) = g\l H(l _ q—a](u,x))
J

where p = A (u), A= Ap(v), j runs over all the B-allowable steps of A with respect
to p, and

a5 (0, \) = 2a;(p, A) — 1 if the j-th step of p is down,
J\A) = 2a;(p, A) + 1 if the j-th step of p is up.

In particular, E, ,(q) depends only on Ag(v) \ Ap(u). d

In the case of a lower interval, the formulas (5.18) and (5.24) take up a parti-
cularly simple form.

COROLLARY 5.14. Let v € WY. Then

I.Nl (—;)+1J I-l A2+1J
P =0 1 (g = T -0,
i=1 i

where A = Ap(v).

Proor. We know from Theorem 5.11 that
(5.25) Eeu(g) =" J[ (1—q7%Y).
JED(e)
Clearly, N(e,v) = {r € [n] : v(r) < 0}, Ej(e,v) = 2bj(e,v) — 1 for all j € [n].
But, bj(e,v) = [{r > j : v(r) < 0}] for j € [n], and D(e,v) = {r € N(e,v) :
by(e,v) is odd}. Hence,

LNI (;’)+1J
Eoo(q) = ¢ ] (1-g¢7%%9),
j=1
as desired. From the definition we have that ¢(Ag(v)) = Ni(v), so the second
equation follows. O

We close this section with an example. Let n = 7, u = [4,5,-3,-2,6,7, —1],
v=1[6,-5,T7,—-4,-3,—2,—1] € BJ. We have N(u,v) = {2,3,5,6} and D(u,v) =
{3,6}. Since u(3) < 0 and u(6) > 0, from (5.19) and (5.18) it follows that

Eup(g) =" (1= q7?)(1—q7").

Observe that Ap(u) = (7,4,3,0,0,0,0) = g and Ap(v) = (7,6,5,4,2,0,0) = A.
The paths corresponding to Ag(v) and Ag(u) are drawn in Figure 7, and the B-
allowable steps are indicated by arrows. We have that as(p, A) = 1 and as(p, A) = 3.

FIGURE 7
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5.4. The case (D,, Ap,_1)

In this section we study the E-polynomials in the case of the pair (D,, Ap—1).
For the rest of this section, we fix n € P and we let W := D,, s; := (¢,i +
N(—i—1,—d)fori=1,...,n—=1,s0:=(1,-2)(—1,2), S := {s0,81,...,8n—1} and
J =S5\ {so}.

We have that W7 = {v € W :v71(1) < v7}(2) < ... < v~!(n)} and for every
v € W7 v #e, there is a unique k € [n] such that

(5.26) vTHk) <0< vk +1)
and we associate to v the shifted partition
(5.27) Ap(v) == (—v 1) =1, —v71(2) = 1,...,—v" (k) — 1).

It’s not so hard to see that,

PROPOSITION 5.15. The map Ap defined by (5.27) is a bijection between W7
and Z(n — 1). Furthermore u < v in WY if and only if Ap(u) C Ap(v) and
L(v) = |[Ap(v)| for all u,v e WY. d

Let A be the subset of Z(n) consisting of all the shifted partition with an even

number of entries different to zero. More precisely,
A={A= (A1, x2,..., Ag) € f(n) . kiseven},

we call this set the even shifted partitions. Observe that Ag(W?7) = A. Since, for
u,v €W’ u <wvin B if and only if u < v in D], we have an inclusion preserving
bijection between shifted partition in Z(n — 1) and even shifted partitions in Z(n).
Thanks to this bijection we can identify A € Z(n—1) with the lattice path associated
to A € Z(n) as explained after Proposition 5.8. We observe that this lattice path

starts at (0,0), ends after n steps, and has an even number of up steps.
For example, let v = [~4,5,—3,6, -2, —1] € DY, then Ap(v) = (5,4,2,0), Ap(v) =
(6,5,3,1) and the lattice path associate to v is drawn in Figure 8.

/\/\/

FIGURE 8

LEMMA 5.16. Let v € WY, and j € [n — 1]. Then s; € Dg(v) if and only if
Ap(v) has a peak at n — j. Furthermore, s, € Dgr(v) if and only if the last two
steps of Ap(v) are up.

PRrOOF. Let k defined by (5.26) and j € [n—1], we have that s; € Dg(v) if and
only if v(j) > v(j+1). Since v € W this happens if and only if v(j) > 0 > v(j+1).
Equivalently, this happens if and only if j € v=!([n]) and j + 1 & v=%([n]). But
Ap(v) (as a path) has a peak at n — j if and only if its (n — j)-th step is up and its
(n — j + 1)-th step is down. But the i-th step of Ap(v) is an up step if and only if
(5.28) ic{n+14+v (1),n+14+v712),... ,n+14+v71(k)}.

Therefore Ap(v) has a peak at n — j if and only if
(5.29) —j=v (i) +1
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for some 7 € [k], and
(5.30) i)

for alli € [k]. Equivalently, if and only if j & v=!([—k, —1]) and j+1 € v~ ([-k, —1]),
but by the definition of k, i € v=1([—k, —1]) if and only if i & v=1([—n, —1]), which

is if and only if i € v=1([n]), for all i € [n]. The result follows.

Now let s, € Dr(v), this happens if and only if v(1) + v(2) < 0, this implies that

v(1) < v(2) < 0. Follows that v=1(k) = —1 and v~ (k — 1) = —2 and so that the

n-th and the n — 1-th steps of Ap(v) are up. O

The following is exactly the analogue of Proposition 5.10 for permutation in
D

PrOPOSITION 5.17. Let v € W, and i € [n]. Then the i-th step (from the left)
of Ap(v) (seen as a path) is an up-step if and only if v(n + 1 —14) < 0. d

Now we are ready to prove the analogue of Theorem 5.11 for the permutations
in (SP)7. The formula is exactly the same but observe that the polynomials are
not always the same in fact the function length is different.

THEOREM 5.18. Let u,v € W7, u < wv. Then

(531) Eu,v(q) — ql(v)—ﬁ(u) H (1 _ q—bj(u,v))’
j€D(u,v)

where Bj(u, v) is defined as in Theorem 5.11.

ProoF. We proceed by induction on £(wg ) —£(u). If £(wy) —£(u) = 0, we have

w§ = v = u and the result is trivially true. So suppose that £(wg) — £(u) > 0 and

let s be such that s € Dp(u) and us € W7, If s = (—i — 1, —i)(i,i + 1) for some
i € [n—1], then the proof is exactly the same as for Theorem 5.11. So suppose that
s = (—1,2)(1,-2) = sg, then we have u(1) + u(2) > 0. We observe that us € W~/
implies that 0 < u(1) < u(2). Moreover we have that by (u,v) is even for every
u,v € W’ and so 1 € D(u,v) . We have four cases to consider.
a) s ¢ Dg(v), and vs € W7

We have 0 < v(1) < v(2), then N(us,vs) = N(u,v) and b;(us,vs) = b;(u,v) for all
J € [n] and so D(us,vs) = D(u,v) and b;(us,vs) = bj(u,v) for all j € [n]\ {1, 2}.
Hence, by Theorem 5.1 and our induction hypothesis,

Eu,v(q) = Eus,vs(Q)

= Wt ] (1 - g ),
jeD(uw)

b) s € Dgr(v), and us £ vs
Hence v(1) + v(2) < 0, and v(1) < v(2) < 0. We have that N(us,v) = N(u,v)\
{1,2}, bj(us,v) = bj(u,v) for all j € [n]\ {1,2}. Reasoning as in Theorem 5.11 b),
by(u,v) > ba(u,v) > 0, so by(u,v) > 2; ba(us,vs) > by(us,vs) so by(us,vs) < —2
and by(u,v) — b1(us,vs) = 4 so by(u,v) = 2 and ba(u,v) = 1. So D(us,v) =
D(u,v)\ {2} and b;(us,v) = b;(u,v) for all j € [n]\ {1,2} and by(u,v) = 1. Hence,
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by Theorem 5.1 and the induction hypothesis,
Eu,v(q) (q - I)Eus,v(Q)

— ((] _ l)ql(v)—l(u)—l H (1 _ q—bj(u,v))
je€D(u,v)\{2}

= gt ] (1 - g ),
jeD(u)

¢) s € Dr(v), and us < vs
We have v(1) +v(2) < 0, and v(1) < v(2) < 0. So N(us,vs) = N(u,v), N(us,v) =
N(u,v) \ {1,2}, b;(us,vs) = bj(u,v) = bj(us,v) for all j € [n]\ {1,2}, and
ba(us, vs) = ba(u,v) — 2. It follows that
D(us,v) = D(u,v) \ {2}, D(us,vs) = D(u,v),
(;j(us,vs) = I;j(u, v) = I;j(us, v) for all j € [n]\ {1, 2}, and I;g(us, vs) = Eg(u,v) —2.
Hence, by Theorem 5.1 and our induction hypothesis,
Euul) = (1= 47" Busu(@) + Bus,us(g)
= (g—q h)gtw)-Hw)-1 H (1- q—éj(u,v)) +
J€D(u,w)\{2}
+ qZ(U)—Z(u)—Z(l _ q—gz(us,vs)) H (1 _ q—éj(u,v))
JED(u,v)\{2}

H (1_q—l~)j(u,v))’

J€D(u,)

o) —2(w) (1 _ q—I;Q(us,vs)—Z)

(1 _ q—gz(u,v))

= 49

and the result follows.
d) vsg W’
We have two cases. Suppose that v(1) > 0 and v(2) < 0. We have N(us,v) =
(N(u,v) U{1})\ {2}, bj(u,v) = bj(us,v) for all j € [n] \ {1,2} and,
(5.32) b1(u, v) = ba(u,v),

(5.33) by (us,v) = bi(u,v) — 2.

Since b1(u,v) is even, (5.32) implies that 2 ¢ D(u,v), and (5.33
1 ¢ D(us,v). Tt follows that D(u,v) = D(us,v) and l;j(us,v) =
J € [n]\ {1, 2}, so the thesis follows immediately by induction.

Suppose now that v(1) < 0 and v(2) > 0. Then N (us,v) = (N (u,v)U{2})\{1},
b;i(u,v) = b;(us,v) for all [n] \ {1,2} and

(5.34) by (u,v) = ba(us,v) + 2.

Since bl(u,v)Nis even, (5;34) implies that 2 ¢ D(us,v). It follows that D(u,v) =
D(us,v) and bj(us,v) = bj(u,v) for all j € [n]\ {1,2}, so the thesis follows imme-
diately by induction. This completes the proof.

) implies that
b;(u,v) for all

O

As in the previous cases it is natural to rephrase Theorem 5.18 in the language
of shifted partitions. Let A, pu € A, with A C u. We think g and A as paths as
explained in previous section. So using Proposition 5.12 we have that
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COROLLARY 5.19. Let u,v € WJ, u < v, then
(5.35) E,. = ¢\l H g~ @A)

where p = Ap(u), A\ = Ap(v), j runs over all the B-allowable steps of \ with
respect to p, and a@;(u,v) is defined as in Corollary 5.13. In particular, Ey ,(q)
depends only on Ap(v) \ Ap(u). d

For lower intervals we obtain the following

COROLLARY 5.20. Let v € W7. Then

Ny (v)

Eey(q) =¢"" J] (1= ¢4+ = ¢ H g~ Ht3),

where A = Ap (v).

Proo¥. The results follows immediately from Corollary 5.14 | observing that
Ni(v) is even for every v € WY. O

5.5. The cases (B, B,_1) and (D,, D,,_1)

In this section we analyze the E-polynomials in the cases (B, B,_1) and
(Dn, Dp—1). We start with the first one. Hence W = B, but now we let J :=
S\ {sn_1} so that W; = B,,_;. It follows that the quotient W is a totally ordered
set, more precisely is the chain

w’ = {€,Sn1,-+ Sn—15n—2-..5180,Sn—1 - -518081, -, Sn—1Sn—2 - - - S18051 - - - Sp—1}-
PrOPOSITION 5.21. Let (W,S) be a Coxeter system, J C S and u,v € W’
such that uw < v. If [u,v]” is a chain, then
Euu(q) = ¢"7 (1= ¢7).

Proor. We proceed by induction on £(wy) — £(u). If £(w]) — £(u) =
result is trivially true. So suppose that £(wJ) — £(u) > 0 and let s € Dg(u
us € W7. We have four cases to consider.

a) s ¢ Dgr(v), and vs € W7/
Then the result follows immediately by induction.
b) s € Dr(v), and us £ vs
We know that [u,v]7 is a chain, so us £ vs implies that us = v. It follows that
Euu(g) = (= 1) Eusplg) = g(1=q7").
¢) s € Dr(v), and us < vs
We have

Eu,v(Q) — ((] _ q—l)qﬂ(v)—l(u)—l(l _ q—l) + qﬁ(v)—l(u)—Q(l _ q—l)

— qﬁ(v)—l(u)—Q(l _ (]_1)(]2 — qZ(v)—Z(u)(l _ (]_1).

and

0 the
)

d) vs g W’
Then the result follows immediately by induction. O
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By the comment preceding the proposition this settles the case (Bp, By_1).

Let’s examine the case (D, Dp_1). Hence W = D,,, S = {so,...,5n,—-1} and
so = (—1,2)(1,-2). Now we let J := S\ {sn—1}. The quotient can be written in
this form

W/ ={weWw w(-2)<w (l)<...<w (n-1)},

and its Bruhat order is drawn in Figure 9.

?

FIGURE 9

Moreover we know the unique reduced expression of each w € W7, in fact the
n — 1 elements in the chain on the bottom are e,s,_1,...,8,_1 89, the n — 1
elements in the chain on the top are s,_1 -+ $98081,...,85_1" 82808182 " *Sp_1,
and the remaining two elements are exactly s,_1---s3s0 and s,_1 -+ - $351. So every
i € [2,n — 1] identifies two elements in the quotient, u; := s,_1---s; in the chain
on the bottom, and v; := s,_1 - 895081 -+ +s; in the chain on the top. Moreover
we define u,, :=e.
Note that for all ¢ € [2,n] and and for all j € [1,n — 1] we have £(u;) = n — i, and
Lvj)=n+j—1

We call (u,v) a equidistant pair if there exists ¢ € [2,n] such that u = u; and
V=v;_1.
The verification of the following observation is left to the reader.

LEMMA 5.22. Let u,v € WY. If (u,v) is an equidistant pair then u='(j) =
v71(j) forall j € [2,n—1]. d

PROPOSITION 5.23. Let u,v € W7. Then

(") =) — )(1 = ¢=Y)  if (u,v) is equidistant
Euo(4) =9 bw)—t(u) 1 :
q (I—q™h otherwise.
ProOF. We have three cases to consider.
1) (u,v) = (u;,v;), with i € [2,n],and j € [1,n — 1]\ {1 — 1}
If j >4, then w; = sp_1---s; and vj = sp_1 - s25051 - -+ s;. Hence s;_1 ¢ Dg(u;)
and u;si—1 = u;—1 € W7, while vjs;_1 ¢ W7 so we have Euiv;(0) = qEBu,_, 0,(q).
We have i — 2 steps like this to do, and one more step for s = sg, so at the end we
have

(5.36) Euio;(4) = 47 Euy;(9) = ¢ Bugsow; (4).
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Now [u2s0,v;]7 is a chain with j steps and so by Proposition 5.21 it follows
Eugsow; (9) = ¢"~1(q— 1) and so from (5.36) we are done.
If j < i—1, after (¢ — j — 2) steps in the diagram we have

(537) EUMUJ (q) = qi_j_zEui-F?vUJ (q)

The next step is for s = s;41; sj41 € Dr(uj42) and sj11 € Dgr(v;), so by the first
part of the proof we have
Euyya0,(4) = By v,00(0) = 92j+1(1 - q_l).

and the result follows from (5.37).

2) (u,v) is an equidistant pair
We proceed by inductionon i. If i = 2, then us = s,,_1---ss and vy = s,_1 - - - $25051.
Hence sg € Dr(u2), so € Dr(v1) and usso £ v150,50 Eu, v, (9) = (§—1) Eugse,vq (¢)-
In the second step, s := s1 we have ussp51 £ v151 50 Euy v, () = (¢—1)* Fussesy,oi (9)
= (g — 1)?, since v1 = uasgsy.
So suppose i > 2. Then s;_1 & Dp(u;), uisi_1 =u;—1 € W/ and v;_15,_1 = v;_» €
W so since u;_1 < v;_o we have

EU:,U1—1(Q) = (q - q_l)Euz—lyvi—l(q) + EUi—l,Uz—z(q)'
By case 1), Eu‘l_lyyl_l(q) = qz(v"l)_z(u’_l)(l—q_l) and by induction, Ey,_, v,_,(q) =

qe(”'”)_z(“'—l)(l — q~1). The result follows.

3) [u,v]” is a chain

The result follows by Proposition 5.21. This completes the proof. O

5.6. Consequences and further remarks

In this section we derive some consequences of our results. We start by proving
that the FE-polynomials are combinatorial invariants, i.e. that they depend only
on the poset [u,v]/. To do this we need a purely order theoretic result on skew
partitions, that was first proved in [14, Lemma 5.5].

LEMMA 5.24. Let p,v be two connected skew partitions that are isomorphic as
posets. Then either p =~ v or p = v

We can now prove the main result of this section.

COROLLARY 5.25. Let J C S, asin §5.2, §5.3, §5.4, and u,v € W7, z,y € W’/
be such that [u,v]? = [x,y]”. Then

Euu(9) = Bz ylg)-

Proor. Now we prove this result in the case when W = S,,. By Proposition
5.2 we have that [u,v]? is isomorphic, as a poset, to the interval [A(u), A(v)] in
Young’s lattice. But it follows immediately from the definitions and well known
results in the theory of partially ordered sets (see, e.g., [51, §3.4]) that the subposet
of join-irreducibles of [A(u), A(v)] is isomorphic to A(v) \ A(u), where the skew par-
tition A(v) \ A(u) is seen as a poset. Therefore, since [u, v]? = [z,y]/, we conclude
that A(v) \ A(u) = A(y) \ A(z) (as poset), and the result follows from Lemma 5.24
and Corollary 5.6.
Similarly, we can prove the result for the other cases, but we need to replace Pro-
position 5.2, Corollary 5.6 and A for (Cy,, A,—1) with Proposition 5.8, Corollary
5.13 and Ap, and for (D,,A,_1) with Proposition 5.15, Corollary 5.19 and Ap,
respectively. O
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Note that in the case when W = S, the proof of Corollary 5.25 applies whenever
[u,v]X = [z, y]7 with K, HC S, |K|=|H|=|S|-1.

We conclude this section by discussing the connections mentioned at the end of
the introduction. In [36], Gabber and Joseph define for every u, v € W a polynomial

i

Ry, (q) = Y _ (=) =007,k dim(Ext® (M, M,))
E>0

and they conjectured (although this is not explicitly stated) that

Ry, ,(q) = Ruu(q).

This conjecture is not true (see [12]), but the R’ and the R-polynomials are not
so different. In fact, Carlin shows that the Rl—polynomials are monic of degree
£(v) — £(u) (see [19, Theorem 3.8]) as are the R-polynomials, and proves that the
conjecture is true in two cases: when £(v) — £(u) < 3 (see [19, Proposition 3.13])
and when (u,v) is a Coxeter pair ([19, Proposition 3.11]). The E-polynomials
play the same role as the Rl—polynomials in the generalized case, so it is natural
to wonder about the analogous question, i.e. if By ,(g) = Riyv(q), where Ri,u(Q)
are the parabolic R-polynomials (see e.g., [27]). This question also has a negative

answer. In fact, for example, let v = [3,4,1,2,5] € Sg\{(z,:’,)}, then we have that

R, (¢) = ¢* (1= ¢7") (L = ¢7?), while Eeo(q) = ¢* (1 —¢7")(1 - ¢7?).

However, we can prove the analoguous results of Carlin, for generalized Verma
modules. The first two results are very simple, and their proofs are immediate
from Theorems 5.4, 5.11 and 5.18.

COROLLARY 5.26. Let u,v € W’, u <v. Then Ey ,(q) 1s a monic polynomial
of degree £(v) — £(u). d

COROLLARY 5.27. Let u,v € W7, If u < v then
dim (Ext®™~* (N, Ny)) = 1.
O

In [14] Brenti finds explicit formulas for the maximal parabolic R-polynomials
of the symmetric group and, in [15] for the group of signed permutations, when
J =S\ {so}. He proves the following

THEOREM 5.28. Let u,v € S7, u < v. Then
RY,(g) = NI (1 = g~ B AAMD)
J

where j runs over the allowable steps of A(v) with respect to A(u).

THEOREM 5.29. Let u,v € (S2), u <v. Then

Ri J(q) = q|AB(U)\AB(U)| H(l _ q—bj(AB(u),AB(U)))
J

where j runs over the B-allowable steps of Ag(v) with respect to Ap(u) and

. | a;(Ap(u),Ap(v)) if the j-th step of Ap(u) is down,
bj(Ap(u), Ap(v)) := { CNL; (Ai(u),Ai(v)) + 1 if the j-th step ofAi(u) s up.
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It’s not hard to see that the formula in Theorem 5.29 can be extended to the
case W = D, replacing Ag by Ap.

Our and Brenti’s formulas are very similar, and it is easy to see that the fol-
lowing results hold. The statements and proofs are given for W = S,, but the
results are also true for B, and D,,. We simply need to replace A by Ap and Ap,
respectively.

We say that a skew partition is a border strip (also called a ribbon), if it contains
no 2 x 2 square of cells.

ProprosITION 5.30. Let u,v € WY be such that the skew partition A(v) \ A(u)
ts a border strip. Then

Euo(g) = Ry o (q)-

O
So, in particular, we obtain the analog of Proposition 3.13 of [19].
COROLLARY 5.31. Let u,v € WY. If £(v) — £(u) < 3 then
dim(Ext® (Ny, Ny)) = r{ (u, v)
where 7 (u,v) is the absolute value of the coefficient of ¢ in Riv(q). d

Let u,v € WY, we call (u, v) a generalized Cozeter pairif r{ (u, v) = £(v) —£(u).
The next result is the analogous of Proposition 3.11 of [19].

PROPOSITION 5.32. Let u,v € WY. If (u,v) is a generalized Coxeter pair then
dim(Extk (Nuy Ny)) = 7 (u,v) = <Z>,

fork=0,... ,n, where n = £(v) — £(u).
Proor. If (u,v) is a generalized Coxeter pair then the only possibility is that

Ri,v(‘]) = ¢"(1 —q¢~1)". This means that the skew partition A(v)\ A(u) is a border
strip, and so the result follows by Proposition 5.30. O

It seems that the situation is exactly analogous, hence we are led to think that,
as for the generalized Verma modules, there should exist a recursion formula also
for the ordinary ones.
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