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Introduction

The phenomenology of elementary particle physics is described on the theoretical side, to a
high degree of accuracy, by the perturbative treatment of relativistic quantum field theories.
On the mathematical and conceptual side, however, the understanding of these theories is
far from being satisfactory, as illustrated, for instance, by the well known difficulties in the
very problem of providing them with a mathematically sound definition in d � 4 spacetime
dimensions. Another example, not unrelated to the previous one, even if more on the con-
ceptual level, is given by the problem of confinement. This issue arises in the theoretical
description of hadronic physics, which, according to the common belief, is provided by
quantum chromodynamics (QCD), a non-abelian gauge theory coupled to fermion fields,
and amounts to the fact that the asymptotic ultraviolet freedom of QCD, together with other
experimental and theoretical results such as the scaling of deep inelastic scattering cross sec-
tion, or hadron spectroscopy fitting with the quark model of Gell-Mann and Ne’eman, seem
to speak in favour of the existence of particle-like costituents of hadronic matter, quarks
and gluons, which do not appear as asymptotic states at large distances, and are hence per-
manently confined in hadrons, due to a force between them that grows with distance. The
conceptual problem with this notion of confinement arises when one notes that it ascribes a
physical reality to theoretical objects which are not observable, such as the gauge and Dirac
fields out of which the QCD lagrangian is constructed, while the observables are the only el-
ements of a quantum theory to which it is possible to attach a physical interpretation. From
what we know at present, we cannot exclude at all the possibility that there exists some
other lagrangian, with a totally different field content, and nevertheless such that the corre-
sponding quantum field theory, provided it can be constructed, yields the same observables
as QCD. On the contrary, several examples are known of such a situation. It is well known,
for instance, that a given S-matrix can be obtained from different systems of Wightman
fields, relatively local with respect to each other (a so-called Borchers class of Wightman
fields [Bor60]). Another classical, more relevant example is given by the Schwinger model,
i.e. QED in d � 2 spacetime dimensions with massless fermions, which has been consid-
ered as a simple illustration of QCD phenomenology, since in d � 2 the electric potential
is linearly rising with distance, so electrically charged fermions are expected to be confined
in this model, and only composite neutral objects can appear as asymptotic states. This
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2 INTRODUCTION

model is exactly solvable, and what one indeed finds, is that the algebra of observables is
isomorphic to the one generated by a massive free scalar field [LS71], so that actually the
model has no charged states. But the same set of observables is obtained starting from a free
field lagrangian, so it is unclear why one should speak of “confined electrons” described by
the theory. More recently, the discovery of a web of dualities between pairs of (supersym-
metric) Yang-Mills theories [Sei96] has given support to the possibility of existence, even
in 4 dimensions, of theories defined by different lagrangians, with different gauge groups
and matter content, but having the same infrared behaviour, and hence the same charges,
particles etc.

In view of the above considerations, D. Buchholz has advocated the following point of
view [Buc96b]: in order to decide if a given theory intrinsically describes at small scales
objects corresponding to the physical idea of confined particles and charges, one has to look
at the observables of the theory alone.

As a matter of fact, a conclusion of this kind should not have come as a surprise, since
the principle that a theory is fixed by the assignment of its algebras of local observables
has been at the heart of the algebraic approach to quantum field theory [Haa96] for more
than forty years. This axiomatic framework has been considerably successful in analysing
structural aspects of quantum field theory such as collision theory, gauge symmetry and
superselection structure in physical and low-dimensional spacetimes, quantum field the-
ory on curved spacetime, and thermal states. In particular superselection theory gives
a completely general procedure to recover, from the knowledge of the net of local ob-
servables, the set of charges (also called superselection sectors) described by the theory,
together with their composition rule, permutation statistic and charge-anticharge symme-
try [DHR71, DHR74, BF82], as well as a canonical system of charge carrying fields and a
global gauge group selecting the observables as the gauge invariant combinations of fields,
and labelling charges by its irreducible representations [DR90]. We can expect then that
this analysis should play a relevant role in an intrinsic understanding of confined charges
in the spirit put forward above. The other essential ingredient in this task is necessarily
a framework allowing a canonical analysis of the structure of local observables at small
spatio-temporal scales. This framework has been provided in [BV95], where an algebraic
version of the conventional renormalization group methods is established, and it is then used
to show that the small scales behaviour of the observables of a given theory is canonically
described by a new theory (or, more generally, by a family of theories), itself defined by a
net of local algebras, which is then regarded as the scaling (ultraviolet) limit of the given
theory. It is then possible to apply the superselection analysis to this new theory, and the
resulting sectors, which, in view of their construction, are canonically determined by the
observables of the underlying (i.e., finite scales) theory, can be naturally considered as the
charges described by the underlying theory at small scales. This has to be contrasted with
the unphysical degrees of freedom usually associated with the small scales behaviour of
gauge theories considered above. The superselection structure of the underlying theory and
of its scaling limit are in principle different. Suppose then that there is a canonical way to
recognize some charges of the scaling limit as suitable small scales limits of charges of the
underlying theory. Then, since the physical idea of confined charge is that of a charge that
cannot be created by operations at finite scales, one would get a natural and intrinsic defini-
tion of confined charge by declaring that a confined charge of a given theory is a charge of
its scaling limit that it is not obtained as a limit of charges of the underlying theory.
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In this thesis we study the relations between the scaling limit and the underlying the-
ory’s superselection structures, with the aim of establishing such a notion of charge scaling
limit. As the analysis of the phase space properties of renormalization group orbits carried
out in [BV95] makes clear (see also chapter 2), one cannot expect on general grounds this
limit to exist for an arbitrary sector of the underlying theory, since it may happen that lo-
calizing a charge in a sequence of regions shrinking to a point requires energies growing
too fast with the inverse radius of those regions, and the resulting charges of the scaling
limit theory, if they existed, would then require an infinite amount of energy to be created
in finite regions. What we will do then is to single out a class of sectors of the underlying
theory with “good” phase space properties, and show that the limit of these sectors can be
defined in a natural way. Also, we will consider both the cases of sectors which are finitely
localizable, the so called DHR charges, after [DHR71, DHR74], and of sectors which are
localizable in arbitrary spacelike cones, first studied in [BF82], the reason for this being
that the latters are expected to appear in non-abelian gauge theories, the cone representing a
roughened version of the Mandelstam string emanating from charged particles observed in
lattice approximations, and that, on the other hand, non-abelian gauge theories are precisely
the ones expected to exhibit the confinement phenomenon, so that a physically interesting
intrinsic confinement criterion should necessarily encompass cone-like localizable charges
in its range of application.

The organization of the thesis is as follows. In chapter 1, after having stated explicitly
the general assumptions of the algebraic approach to quantum field theory, we recall the
main results of the theory of superselection sectors both for localizable and for topological
(i.e. cone-like localizable) charges, including the results of [DR90] about the reconstrucion
of the field net and the compact gauge group. In chapter 2 we briefly review the algebraic
version of the renormalization group and the construction of the scaling limit, together with
some illustrative examples, taken from [BV98], among which there is the above mentioned
Schwinger model, which is the simplest case in which confined charges can be intrinsically
identified. New results on the scaling limit of charges are exposed in chapter 3. Here, we
first extend the scaling limit construction to the case of a net of field algebras with normal
(i.e. Bose-Fermi) commutation relations, and carrying an action of a compact gauge group
G, obtaining as a scaling limit a new net of field algebras, again with normal commutation
relations and an action of G. We show then that the DHR sectors of the underlying theory
which satisfy a condition of “ultraviolet stability” – physically motivated by the above phase
space considerations, and which is expressed in terms of the Hilbert spaces in the field net
implementing the considered sector – admit a natural notion of scaling limit, in the precise
sense that for any of such sectors it is possible to construct Hilbert spaces in the scaling
limit of the field net, which carry the gauge group representation associated to the given
ultraviolet stable sector, and inducing a DHR sector on the scaling limit theory.a) We then
expose the results on the extension of this analysis to quantum topological charges, as cone-
like localizable sectors are also known. In this case there remain some conceptual and
technical difficulties that will be discussed, but we feel that there are promising partial
results, and work is in progress in order to obtain a clear physical picture. In particular, we

a)Work of C. D’Antoni and R. Verch in this direction is also in progress [DV]
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consider sectors satisfying a condition of ultraviolet stability similar to the one employed
for localizable charges, together with some natural conditions of asymptotic localizability
(in bounded regions), which are suggested by the observed behaviour of these charges in
models. To these sectors we are able to associate in the scaling limit a normal net of field
algebras on bounded regions, and Hilbert spaces in these algebras carrying the relevant
representations of G. Adding a technical assumption on this net, the status of which still
needs to be clarified, we are also able to show that these Hilbert spaces induce DHR sectors
on the scaling limit theory. We remark that this is precisely what is expected to happen
in asymptotically free theories, where, due to vanishing of interactions at small scales, the
strings disappear in the scaling limit, leaving only finitely localized excitations. Finally, in
appendix A we collect some geometrical results on spacelike cones which are needed in the
above analysis, and in appendix B we exhibit an example of a theory (the Majorana free
field with

�
2 gauge group) whose localizable sectors comply with the ultraviolet stability

assumption referred to above.



CHAPTER 1

Superselection sectors and the
reconstruction of fields

The existence of a restriction to the superposition principle for pure states, represented by
vectors in the physical Hilbert space of quantum field theory, was discovered in [WWW52],
where it was shown that this Hilbert space is the direct sum of coherent subspaces, or su-
perselection sectors, for instance labelled by the electric charge, or by univalence, in such
a way that the phase relations between vectors belonging to different sectors are unobserv-
able. In [HK64] this was recognized as an aspect of the representation problem in quantum
field theory, i.e. the existence of several inequivalent irreducibile representations of the al-
gebra of observables for systems with an infinite number of degrees of freedom (in contrast
to the situation prevailing for non-relativistic finite systems): the algebra of observables of
quantum field theory is faithfully represented on each superselection sector, such represen-
tations being inequivalent, and the role of unobservable fields is that of transferring some
“superselection quantum number” from one sector to another. This shifts the attention from
the Hilbert space formulation of quantum field theory, central in the Wightman approach, to
the abstract net of algebras of local observables and its representations, which are the object
of study in the algebraic approach. In this framework it is taken as a fundamental postu-
late that all the information is encoded in the net of algebras of local observables, which
then characterizes a given theory completely; superselection theory is then the study of the
structure of the set of irreducible representations of such a net (or better of the subset of
them which are “relevant for particle physics”). Remarkably enough, one finds, as we will
see below, that it is possible to endow this set with structures, such as composition or con-
jugation of sectors, which reflect the corresponding physical operations with charges, and
also that sectors are in one-to-one correspondence with unitary equivalence classes of irre-
ducible representations of a global gauge group. This culminates in the Doplicher-Roberts
reconstruction theorem, also discussed below, which embeds the observable net as the gauge
invariant part of a canonical field net with Bose-Fermi commutation relations.

In this chapter we will state explicitly the main postulates of the algebraic approach
to quantum field theory, briefly discussing also some basic consequences needed in the
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following. Then we will review in section 1.2 the main results of superselection theory,
both for localizable and topological charges, and finally, in section 1.3, we will discuss the
above mentioned reconstruction of fields and global gauge group.

1.1 Basic assumptions of algebraic quantum field theory

For this work to be reasonably self-contained, and to fix a notation, in this section we will
briefly discuss the fundamental assumptions of the algebraic approach to quantum field
theory. We refer to the monograph [Haa96] for further details and references.

The arena of relativistic quantum field theory is Minkowski space, i.e. the (affine)
space

� 4 endowed with the pseudo-euclidean structure, called Minkowski metric, induced
by the symmetric matrix g ��� gµν � µ � ν � 0 � � � ��� 4 � diag � 1 �
	 1 �
	 1 �
	 1 � . For x � y � � 4 , we
will write x � y � gµνxµyν for this bilinear form (summation over repeated indices is un-
derstood), and x2 : � x � x. The symmetry group of Minkowski space is the Poincaré
group 
 : � O � 1 � 3 ��� � 4 , with O � 1 � 3 � the group of matrices Λ � M4

� � � leaving g in-
variant, Λt gΛ � g, acting in the natural way on

� 4 . We will only make use of the
connected subgroup SO � � 1 � 3 � of those Λ with detΛ � 1, Λ0

0 � 0, and correspondingly

we get a subgroup 
 �� of 
 . We will also need to consider the universal cover-
ing SL � 2 ��� � ��� A � M2

� � � : detA � 1 � of SO � � 1 � 3 � , with covering homomorphism de-
noted by A � Λ � A � (for its definition we refer to [BLOT90, 3.1.C]). Correspondingly

˜
 �� : � SL � 2 ��� ��� � 4 is the universal covering of 
 �� , and η : ˜
 �� ��
 �� will denote
the covering homomorphism. Generic elements of 
 �� and ˜
 �� will be denoted by s � t �������
and their action on x � � 4 by s � x. The metric g defines the standard causal structure, to
which the terms timelike, lightlike etc. will be referred. The open forward (backward)
lightcone V� is the set of points in

� 4 which are future (past) timelike to the origin. We set
V : � V��� V . For any set !#" � 4 , its spacelike complement !%$ is the set of points in

� 4

which are spacelike separated form all points in ! .
Throughout all this thesis, we shall use the symbol & to denote the generic element

of the family of open bounded subsets of
� 4 , which form an upward directed net under

inclusion. A frequently used subnet of causally complete regions is that of open double
cones & a � b : �'� a ( V �*) � b ( V� � , with a � b ( V� . This family is clearly upward directed
under inclusion, and the union of all its elements is all

� 4 . Moreover, any double cone is
Poincaré equivalent to a double cone of the form & r : � & re0 �  re0 , with e0

�'� 1 � 0 � , and they
form a basis for the standard topology of

� 4 .

Definition 1.1. A net of C + -algebras over Minkowski space is a net

&,�.- � & � (1.1)

of unital C + -algebras over the directed set of open bounded regions in
� 4 , all the algebras

having the same unit.

We can embed all the local algebras - � & � of a net as above in a quasi-local C + -algebra
- , defined as the C + -inductive limit of the inductive system - � & � of C + -algebras, i.e. as the
completion of the / -algebra - loc

�1032 - � & � in its unique C + -norm (as - � & 1 � "4- � & 2 � if
& 1 ",& 2, the C + -norms of - � & 1 � and - � & 2 � agree on - � & 1 � ). We will use the symbol - to
denote both the net and its quasi-local algebra. To unbounded regions !5" � 4 , we can then
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associate the C + -subalgebra of - generated by all the - � & � , & � ! . Given two nets - i,
i � 1 � 2, a net homomorphism is an homomorphism φ : - 1 � - 2 of the quasi-local algebras,
such that φ � - 1

� & ��� " - 2
� & � for each & . A net isomorphism is a net homomorphism which

is invertible as such. For a subset � of an algebra - , we denote its commutant as � $ .
Definition 1.2. A net of C + -algebras is said to be local if & 1 ",& $2 implies - � & 1 � " - � & 2 � $
in - .

We recall that for a unitary strongly continuous representation U of
� 4 on a Hilbert

space � , the spectrum of U , SpU , is the support of the spectral measure determined by U ,
or, equivalently, the joint spectrum of its generators Pµ, µ � 0 ������� � 3.

Definition 1.3. A Poincaré covariant net of C + -algebras is a pair � - � α � , where - is a net
of C + -algebras and α : 
 �� � Aut - is a group homomorphism (also called an automorphic
action of 
 �� on - ) such that for each & ,

αs
� - � & ��� � - � s � & � � s � 
 �� � (1.2)

A vacuum statea) on � - � α � is a state ω on - which is α-invariant, and such that, denoted
by � π ��� � Ω � its GNS representation, and by U the associated unitary strongly continuous
representation of 
 �� , the translations x � � 4 � U ��� � x � satisfy the spectrum condition
SpU ��� ��� � " V � .

An homomorphism of Poincaré covariant nets � - i � αi � , i � 1 � 2, is a net homomorphism
φ of the underlying nets - i which intertwines the actions of the Poincaré group

φ � α1
s

� α2
s � φ � s � 
 �� � (1.3)

Sometimes we will consider nets that are only translation covariant, and it is evident
how to adapt the above definitions.

As already mentioned above, the fundamental postulate of the algebraic approach to
quantum field theory is that all the physically relevant information on a given theory is
encoded in its algebra of observables. Together with the trivial observation that all mea-
surements on a physical system are performed in some bounded spacetime region, and with
Einstein causality, which implies that observations localized in spacelike separated regions
cannot interfere with each other, so that the associated quantum mechanical operators need
to commute, this implies that the algebra of observables has the structure of a local net of
C + -algebras, the algebras - � & � being interpreted as generated by observables measurable
in & .

Taking also into account that we are interested in applications to particle physics, i.e.
to describe localized excitations of the vacuum, we conclude that the data determining a
theory are given by a triple � - � α � ω � , constituted by a Poincaré covariant local net with a
pure vacuum state.

a)The traditional notation ω0 for the vacuum state will be used in this thesis with a different meaning, so that
we will here denote the vacuum state simply by ω. Correspondigly, its GNS representation will be denoted by�
π �
	�� Ω � instead of

�
π0 �
	 0 � Ω � .



8 CHAPTER 1 – SUPERSELECTION SECTORS

Usually, as a consequence of the observation that all known superselection rules (in-
cluding here not only charges in particle physics, but also thermodynamic quantities) are
determined by global aspects of the states, the hypotesis is also made that all physically
relevant states are locally normal states of the vacuum representation, i.e. for any such state
ϕ on - , and any & , ϕ

� - � & � is a normal state of the representation π
� - � & � . Then we are

locally in the same situation as in quantum mechanics of systems with a finite number of
degrees of freedom, as we have only to deal with a single quasi-equivalence class of repre-
sentations of each local algebra - � & � . Thus we can assume that the net is defined directly
in its vacuum representation. By B � � � we will denote the C + -algebra of bounded operators
on a Hilbert space � .

Definition 1.4. A local Poincaré covariant net of C + -algebras in vacuum representation
is a quadruple � �5� - � U � Ω � , with � a Hilbert space, - a local net of C + -subalgebras of
B � � � , U a strongly continuous unitary representation of 
 �� on � satisfying the spectrum
condition, and Ω � � a unit vector cyclic for - , such that, with αs : � AdU � s � , � - � α � is a
Poincaré covariant local net of C + -algebras, and Ω is the (up to a phase) unique unit vector
invariant under translations U ��� � x � .

The unicity condition on Ω implies that the vacuum state ω : � � Ω � � � � Ω � is pure on - ,
or, equivalently, - is irreducible on � , - $ � � ��� [Haa96, thm 3.2.6]. In the situation
described by the above definition, it is also customary to assume that the local algebras are
actually von Neumann algebras, as the von Neumann algebrab) � � & � : � - � & � $ $ has by
definition the same normal states as - � & � . In this context, an assumption that is frequently
made, but which we will use only occasionally, is weak additivity of the net � , i.e. that

�
x ��� 4

� � & ( x � � B � � � (1.4)

holds for each & . This is clearly suggested by the idea that the algebras are generated by an
underlying system of Wightman fields.

We now list a couple of basic results on the structure of local nets, essentially conse-
quences of positivity of the energy, which will be needed in the following. For the proofs
we refer to [D’A90].

Theorem 1.5 (Reeh-Schlieder). [RS61] Let � � � - � U � Ω � be a translation covariant net in
vacuum representation. Let ! " � 4 be such that there exists ! 0

� ! and a neighbourhood	
of zero in

� 4 for which ! 0 ( 	 " ! , and 
 x ��� 4 - � ! 0 ( x � $ $ � B � � � . Then Ω is cyclic
for - � ! � .

We remark explicitly that this result does not rely on locality of - . Examples of regions
satisfying the hypothesis of the above theorem are given by the spacelike complements & $
of any bounded & , or by wedges, i.e. Poincaré transforms of � 1 � � : � � x � � 4 : � x1 � � x0 � � .
Indeed, for any such region, one can find a translated region that contains any given bounded
open set. If the net � satisfies weak additivity, another example is given by bounded
regions, so that in this case, if the net is also local, the vacuum vector is cyclic and separating
for the algebras � � & � .

b)Throughout the thesis, we will use script capital letters to denote nets of von Neumann algebras.
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Theorem 1.6 (Borcher’s property B). [Bor67] Let � � � � � U � Ω � be a translation covari-
ant local net of von Neumann algebras satisfying weak additivity. Then for any non-zero
projection E � � � & � and for any & 1

� & , there exists an isometry V � � � & 1 � whose final
projection is E, E � VV + .

As we will see, this property finds an important application in superselection theory.
We will also have to deal with nets of algebras generated by unobservable fields, which

then need not be local. For future reference, we collect here the relevant definitions for this
case. As customary, we denote the commutator of operators by square brackets, and the
anticommutator by curly brackets.

Definition 1.7. (i) A normal net of C + -algebras with gauge symmetry is a triple��� � β � k � where � is a net of C + -algebras, β is an action of a compact group G on � (the gauge
group) by net automorphisms, and k � G is a central element, such that k2 � e (the identity
of G), and such that � obeys local

�
2-graded commutativity with respect to the grading de-

fined by γ : � βk, i.e. if for F � � we define its Bose and Fermi parts as F� : � 1
2
� F � γ � F ��� ,

we have that for any pair Fi � � � & i � , i � 1 � 2, with & 1
� & $2, there holds

�
F1 � � � F2 � ��� �

�
F1 � � � F2 �  � �

�
F1 �  � F2 � ��� � � F1 �  � F2 �  � � 0 � (1.5)

(ii) A normal Poincaré covariant net with gauge symmetry will be a quadruple��� � β � k � α � � , with ��� � β � k � a normal net with gauge symmetry, ��� � α � � a ˜
 �� -covariant net,
and such that α �s and βg commute for each s � ˜
 �� , g � G.

(iii) Given a Poincaré covariant local net � - � α � , a normal Poincaré covariant net with
gauge symmetry over � - � α � is a quintuple � π � � � � β � k � α � � , with ��� � β � k � α � � as in (ii), and
π � : - � � a net homomorphism, such that α �s � π �

� π � � αη � s � , and π �
� - � & ��� �	� � & � G,

the fixed points of � � & � under the action β of G.

It is also clear what will be the definition of a vacuum state ω over ��� � β � k � α � � . As in the
case of local nets, we have the following spatial version of the above definitions (actually,
below we give only the spatial version of definition 1.7(iii), it is however clear how the
spatial versions of the other two definitions should be formulated).

Definition 1.8. Let � �5� - � U � Ω � be a Poincaré covariant local net. A Poincaré covariant,
normal net with gauge symmetry in its physical representation over � �5� - � U � Ω � is a quin-
tuple � π � � � � V � k � U� � with π � a representation of - on a Hilbert space � � containing the
vacuum representation, � a net of C + -subalgebras of B � � � � , V a unitary strongly continu-
ous representation of a compact group G on � � , k � G a central element with k2 � e, and
U� a unitary strongly continuous representation of ˜
 �� on � � such that:

(i) with βg : � AdV � g � and α �s : � AdU�
� s � , � π � � � � β � k � α � � is a Poincaré covariant normal

net over � - � AdU � ;
(ii) the translations x � U �

��� � x � satisfy the spectrum condition;
(iii) Ω is gauge invariant, V � g � Ω � Ω, g � G, and is the unique translation invariant unit

vector in � � .

Remark. If � π � � � � V � k � U� � is as in the above definition, Reeh-Schlieder theorem and nor-
mal commutation relations imply that Ω is separating for the local von Neumann algebras
� � & �  (the bar denoting closure in the weak operator topology on B � � � � ): if F � � � & �  
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is such that FΩ � 0, then by gauge invariance of Ω, also F� Ω � 0, so that if F $ � � � & $ � ,
by normality FF $Ω � F $ F� Ω ( � F $� 	 F $ � F Ω � 0, and by the Reeh-Schlieder theorem
applied to � � & $ � , F � 0.

As we mentioned in the introduction, in the subsequent analysis we shall encounter
charges which are localizable (in a sense made precise in section 1.2) only in certain un-
bounded regions, called spacelike cones (see appendix A for their definition). Corrispond-
ingly, the fields carrying such charges will also only be localized in spacelike cones, so
that they will generate, instead of a net & � � � & � on bounded sets, a net

� � � � � � on
spacelike cones.c) It is then clear how to modify the above definitions in order to deal with
such situation, and we will call the resulting quadruple ��� � β � k � α � � , with � a net on space-
like cones, an extended normal Poincaré covariant (field) net with gauge symmetry. The
extended field net arising from topological sectors through the Doplicher-Roberts recon-
struction theorem (see section 1.3 below) has some additional features, so that it deserves a
formal definition.

Definition 1.9. Let � �5� � � U � Ω � be a Poincaré covariant local net of von Neumann al-
gebras. A Poincaré covariant, normal extended net with gauge symmetry in its physical
representation over � �5� � � U � Ω � is a quintuple � π � ��� � V � k � U� � with π � a representa-
tion of � on a Hilbert space ��� containing the vacuum representation, � an extended net
of C + -subalgebras of B � ��� � , V a unitary strongly continuous representation of a compact
group G on ��� , k � G a central element with k2 � e, and U� a unitary strongly continuous
representation of ˜
 �� on ��� such that:

(i) with βg : � AdV � g � and α �s : � AdU� � s � , � � � β � k � α � � is a Poincaré covariant normal
extended net of von Neumann algebras;

(ii) α �s � π � � π � � αη � s � and � � � � G � π � � � � � ���  ;
(iii) for each

�
, the union of all the algebras � � � ( x � , x � � 4 , is irreducible;

(iv) � is cyclic for each algebra � � � � ;
(v) the translations x � U � ��� � x � satisfy the spectrum condition;

(vi) Ω is gauge invariant and is the unique translation invariant unit vector in ��� .

1.2 Superselection theory

The states of interest in particle physics are characterized by the idealization that they de-
scribe a few localized excitations in empty space. The subject of superselection theory is
to formulate precise criteria selecting, among all states on the quasi-local algebras, those
that comply with this physical picture, and then to classify the (irreducible) representations
of the quasi-local algebra induced by such states, and to study the structure of the resulting
set of unitary equivalence classes, called superselection sectors. Here we will give a very
brief account of the results obtained for the two main known classes of sectors: localizable
– or DHR – sectors [DHR71, DHR74] (see also [Rob90] for a pedagogical overview), and
topological sectors [BF82], which are essentially distinguished by the kind of localization

c)Here the term net is slightly abused, since the set of spacelike cones is not directed, and stands for the
isotony property of the correspondence �
	�� � � � , i.e. � 1 � � 2 implies � � � 1 � � �

� � 2 � .
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regions of the corresponding charges, double cones for the former, and spacelike cones for
the latter (a unified treatment is however possible, and has been given in [Kun01]).

1.2.1 Localizable sectors

Throughout this section, & will denote a double cone in Minkowski space. Let� �5� - � U � Ω � be a Poincaré covariantd) local net of C + -algebras in its vacuum represen-
tation, that we denote by ι. We also assume that - satisfies property B, theorem 1.6, and
essential Haag duality

- d � & � � - d � & $ � $ � (1.6)

where & � - d � & � : � - � & $ � $ is the dual net of - . Equation (1.6) is equivalent to locality
of - d . If in particular - d � & � � - � & � $ $ (by locality of - , - � & � $ $ " - d � & � , so this can
be viewed as the requirement that - is maximal with respect to locality) then - is said to
satisfy Haag duality tout court. This last property, in terms of which DHR theory was orig-
inally formulated, is known to hold in free field theories [Ara63, Ara64], but is violated in
models with spontaneous symmetry breaking [Rob76]. Essential duality is however to be
considered as a generic property of local nets, as it is satisfied whenever the net is gener-
ated, in any reasonable sense, by Wightman fields [BW75, BW76]. The class of states (or,
equivalently, representations) which we will consider is specified by the following criterion,
where we use

�
� to denote unitary equivalence, and

�
to denote restriction.

Definition 1.10 (DHR selection criterion). [DHR71] A representation π of the quasi-local
algebra satisfies the DHR selection criterion (or is a DHR representation) if, for every dou-
ble cone & ,

π
� - � & $ � �� ι

� - � & $ � � (1.7)

The above criterion was suggested by the findings of [DHR69a], where an irreducible
field net with gauge symmetry � over - is considered, and it is then shown that the irre-
ducible representations of - appearing in � � are DHR.

For what concerns the physical interpretation of the DHR criterion, if ϕ is a normal state
of a DHR representation, then

lim2�� � 4

� � ϕ 	 ω � � - � & $ � � � 0 �

and this statement also admits a partial converse under some not really restrictive hypotesis
on the representation considered. Thus we see that the DHR criterion select states which
are close to the vacuum at spacelike infinity in a rather strong sense, and therefore excludes
states with nonvanishing total electric charge, since this can be measured, thanks to Gauss’
law, in the spacelike complement of any bounded region. This is clearly due to the vanishing
of the photon mass, implying that electromagnetic forces are long-range, but we will see
below that topological charges, which are not DHR, arise also in purely massive theories.

d)Most of the results of DHR theory of superselection sectors are independent of covariance of the theory,
which enters directly only when dealing with covariant sectors, but since in the application to the scaling limit
theory covariance is an essential ingredient, we include this hypotesis from the beginning.



12 CHAPTER 1 – SUPERSELECTION SECTORS

It follows from property B that the set DHR � - � of DHR representations of - is closed
under direct sums and subrepresentations. Actually, it has a much richer structure, which
can be uncovered by relating it to a set of endomorphisms of the quasi-local dual algebra
- d . This is accomplished as follows, using in an essential way notions from category theory,
for which we refer to [McL98, DR89b]. The set DHR � - � is, in a natural way, the set of
objects of a C + -category, whose space of morphisms � π1 : π2 � between objects πi, i � 1 � 2,
is given by the intertwiners between π1 and π2, i.e. operators T � B � � π1 ��� π2 � such that
Tπ1

� A � � π2
� A � T for each A � - . This C + -category is seen to be isomorphic to DHR � - d �

(with no risk of confusion, we denote by the same symbol a category and the set of its
objects) by associating to each π � DHR � - � its unique extension π̃ to - d , which is an
element of DHR � - d � [Rob90], and thanks to essential duality, this last category is in turn
equivalent to the C + -category ∆ of transportable localized endomorphisms of - d , defined as
follows.

Definition 1.11. Let - be a net of C + -algebras. An endomorphism ρ � End � - � is localized
in a double cone & if ρ � A � � A for each A � - � & $ � , and is transportable if for any double
cone & 1 there exists ρ1 localized in & 1 and a unitary U � - which intertwines ρ and ρ1.
The space of morphisms between localized transportable endomorphisms ρ and σ, denoted
by � ρ : σ � , is the subspace of intertwiners between ρ and σ which belong to - .

We denote by ∆ � & � the full subcategory of ∆ defined by endomorphisms local-
ized in & . The above mentioned equivalence is then the identity on morphisms, and
is given by ρ � ∆ � ι̃ � ρ � DHR � - d � on objects. What one gains in considering en-
domorphisms, is that they allow a simple and natural definition of composition of sec-
tors, since it is easy to show that ρσ � ∆ (composition of endomorphisms) for ρ � σ � ∆,
and that the semigroup structure thus defined on ∆, with the vacuum representation ι̃
as a unit, passes to the quotient ∆

� �
� . One can then define a corresponding product� T1 � T2 � � � ρ1 : σ1 ��� � ρ2 : σ2 � � T1 � T2 � � ρ1ρ2 : σ1σ2 � on morphisms, in such a way as

to equip ∆ with the structure of a tensor C + -category.
The composition law of sectors is just the first example of a structure of physical charges

which is encoded in the set of representations of the net - . Indeed, one can show [DHR71]
that, thanks to locality and to the fact that in d � 4 spacetime dimensions the spacelike
complement of a double cone is connected, exchange symmetry of identical charges is

described by unitary representations ε � n �ρ , n ��� , of the symmetric group of n objects Sn

on ρn � - d � $ , whose possible irreducible components are classified, for all integers n, by a
single dξ ��� � � ∞ � , the statistical dimension, and, if dξ � ∞, by a sign σξ, both depending
only on the class ξ : �

�
ρ � , the case 1 � dξ � ∞ being a generalization of ordinary Bose

(σξ
� ( ) or Fermi (σξ

� 	 ) statistics, called parastatistics of order dξ. Also, it is possible
to show [DHR74], that if dξ � ∞, in which case ρ is said to have finite statistics, there exists
a conjugate endomorphism ρ such that ρρ and ρρ both contain the vacuum representation
of - d , so that ξ : �

�
ρ � is interpreted as the anti-charge of ξ.

As we will not need directly these structures in the subsequent analysis, we will not
go here into details, and we just mention that the resulting structure on the full subcate-
gory ∆ f of ∆, determined by finite direct sums of irreducibles with finite statistics, is that
of a tensor symmetric C + -category with subobjects, direct sums and conjugates and with� ι̃ : ι̃ � � � � [DR89b], and that this is the central issue in the Doplicher-Roberts reconstruc-
tion theorem, discussed in the following section. In particular, since we will be concerned
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with covariant endomorphisms ρ, which are objects ρ � ∆ f for which there exists a unitary

strongly continuous representations Uρ of ˜
 �� on � , such that

Uρ
� s � ρ � A � Uρ

� s � + � ραη � s � � A � � A � - d � s � ˜
 �� � (1.8)

i.e. such that � ρ � Uρ � is a covariant representation of the C + -dynamical system � - d � αη � � � � ,
we remark that if ∆c is the full subcategory of ∆ f defined by covariant endomorphisms, then
∆c is a category of the same kind as ∆ f , and that moreover all the representations Uρ satisfy
the spectrum condition [DHR74].

1.2.2 Topological sectors

Let � - � α � be a translation covariant local net. We say that a covariant representation� πm � Um � of � - � α � , m � 0, is a massive single particle representation if πm is a facto-
rial representation of - , Um

� x � � πm
� - � $ $ for each x � � 4 , the positive mass hyperboloid

Ω
�
m : � � p � � 4 : p2 � m2 � p0 � 0 � is contained in the singular spectrum of Um, and

SpUm " Ω
�
m
� � p � � 4 : p2 �

M2 � p0 � 0 � , for some M � m, i.e. the set of single par-
ticle states is separated from the continuum by a gap in the spectrum.

Theorem 1.12. [BF82, thm. 3.5] Let � - � α � and � πm � Um � be as above. Then, there exists
an irreducible vacuum representation π of - such that, for any spacelike cone

�
,

πm
� - � � $ � �� π

� - � � $ � � (1.9)

Then, even in theories without massless particles, as for instance in non-abelian gauge
theories (according to the folklore), we may have superselection sectors not complying with
the DHR selection criterion. That such sectors really should arise in this kind of theories
is suggested by the fact that the cone can be viewed as a fattened version of the flux string
joining opposite gauge charges in non-abelian gauge theories (see, for instance, [KS75]),
once that a member of a charge-anticharge pair has been shifted to spacelike infinity to give
a charged state.

Then, given a net - in vacuum representation ι on � , one is led to consider representa-
tions π of - satisfying the weaker selection criterion obtained by replacing the double cone
& by a spacelike cone

�
in (1.7),

π
� - � � $ � �� ι

� - � � $ � � (1.10)

Assuming then also the analogous property of Haag duality with respect to spacelike cones,

- � � $ � $ � - � � �  � (1.11)

and property B’: for any non-zero projection E � - � � $ � $ , and any spacelike cone
�

1
� � ,

there is an isometry W � - � � $1 � $ with E as final projection – which is also a consequence of
weak additivity and the spectrum condition –, it is possible to develop a superselection the-
ory for topological sectors which is similar to the one for localizable sectors. In particular, in
this case also it is convenient to shift from representations complying with (1.10) to the set ∆
of transportable localized homomorphisms ρ � Hom � - � B � � ��� , defined in the evident way.
Here, one does not obtain endomorphisms of - , since by (1.11) a ρ � ∆ � � � is only such that
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ρ � - � � 1 ��� " - � � 1 �  for each
�

1
� �

. The composition law of sectors cannot therefore be
directly defined in terms of composition of morphisms. Nevertheless it can be established
in a natural way, and most of the results discussed for localizable charges hold in this case
as well, as the classification of statistics, and the existence of conjugates [BF82, DR90]. In
particular, if D is a double cone at spacelike infinity (see appendix A for the definition), and
if ∆ f

� D � is the set of all ρ � ∆ which are localized in a cone
�

with base D � � � " D, then
∆ f
� D � is the set of objects of a symmetric tensor C + -category with direct sums, subobjects

and conjugates and with irreducible unit, and this allows the reconstruction of an extended
field net in this case too.

1.3 Reconstruction of fields and gauge group

According to the above discussion, the main properties of charges appearing in quantum
field theories are directly encoded in the algebraic structure of the observables of the theory,
and in particular in the family of their representations. In view of the picture of superse-
lection sectors as coherent subspaces of a “universal” Hilbert space on which unobservable
fields act, recalled at the beginning of the present chapter, it is therefore tempting to con-
jecture that the algebraic structure of charge carrying fields itself, and in particular their
commutation relations, with the Bose-Fermi alternative, can be directly read off the net
of local observables and its superselection structure. This was indeed established already
in [DHR69b] if the superselection sectors are all given by localizable automorphisms of - :
in this case it is possible to construct a field net containing - as the fixed point subnet under
the action of an abelian gauge group, whose Pontrjagin dual is in 1-1 correspondence with
the sectors. That this should hold as well in the general case is also suggested by the math-
ematical structure of the set of sectors, the most prominent example of a tensor C + -category
as the ones arising in superselection theory being the category U � G � of finite-dimensional
continuous unitary representations of a compact group G: the tensor structure is given by
the tensor product of representations and intertwiners, the symmetry by the operator flip-
ping the factors in a tensor product, and the conjugate by the conjugate representation. As
was shown in [DR72] this is no accident: if � is a normal field net with gauge group G over
- , then the full subcategory of ∆ f determined by the sectors of - appearing in � � is equiv-
alent to U � G � , and the equivalence is given by a symmetric tensor functor. One is thus led to
the conjecture, related to the one above about the existence of a field net describing supers-
election structure, that for any symmetric tensor C + -category with direct sums, subobjects,
conjugates and irreducible unit, there exist a unique compact group G and a symmetric ten-
sor equivalence from the given category to U � G � . Were this the case, the gauge group of the
theory would be uniquely determined by ∆ f .

Both these conjectures were solved affirmatively in [DR90] and [DR89b] respectively,
the main technical tool used in these analyses being a crossed product construction of a C + -
algebra - by a subsemigroup ∆ " End � - � , satisfying certain hypoteses which are verified
in the applications to quantum field theory [DR89a]. Here we will briefly review the main
results on the reconstruction of the field net, which will be needed in the following.

We begin by recalling the notion of Hilbert space inside a unital C + -algebra � . This is a
closed subspace H � � such that, for each ψ � ϕ � H , ψ + ϕ � � ��� , and then a scalar product
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� � � � � on H is defined by
ψ + ϕ � � ψ �ϕ � ��� �

and the associated norm agrees on H with the norm of � . We will only consider finite-
dimensional Hilbert spaces H . In this case, if ψ j, j � 1 �������
� d, is an orthonormal basis of H ,
the projection

�
H : �

d

∑
j � 1

ψ jψ + j � (1.12)

is independent of the chosen orthonormal basis, and is called the support of H .

Theorem 1.13. [DR90] Let � �5� � � U � Ω � be a local, Poincaré covariant net of von Neu-
mann algebras in its vacuum representation, and assume that � is separable, and that
Haag duality and property B hold for � . There exists then a unique (up to unitary equiva-
lence) normal Poincaré covariant field net � π � ��� � V � k � U � � over � � � � � U � Ω � such that
� is cyclic for each � � & � , and any equivalence class of Poincaré covariant finite statistics
DHR representations of � is realized as a subrepresentation of π � . Moreover

(i) π � � � � $ ) � � � � ;
(ii) π � � � � $ � G $ $ and

π � �

�

ξ

dξπξ � (1.13)

where ξ runs over the set of localizable covariant sectors of � and πξ is an irreducible
covariant finite statistics DHR representation of class ξ on � ξ

� � ;
(iii) there is a 1-1 correspondence between covariant sectors ξ of � and classes of irre-

ducible subrepresentations of V defined by the fact that, correspondingly to (1.13),

V �

�

ξ
uξ � ���

ξ � (1.14)

is the factorial decomposition of V , being then uξ an irreducible representation of G of
dimension dξ;

(iv) the grading of � defined by V � k � corresponds to the alternative between para-Bose
and para-Fermi statistics, i.e. if Φ � � ξ, then V � k � Φ � � Φ according as πξ has
para-Bose or para-Fermi statistics;

(v) for each ρ � ∆c
� & � ,
Hρ : ��� ψ � � � & � : ψπ � � A � � π � ρ � A � ψ � A � � � (1.15)

is a d � ρ � -dimensional β-invariant Hilbert space in � � & � with support � , and � � & � is
generated as a von Neumann algebra by Hρ, ρ � ∆c

� & � ;
(vi) for irreducible ρ, the representation uρ of G induced by β on Hρ is equivalent to u � ρ � .

It is evident that this is a remarkable result in several respects: in particular, we may
note that the starting point is the algebra of local observables, which are gauge invariant by
definition, and which contain no element that anticommutes with its spacelike translates,
and we end up with a gauge group and with fields satisfying normal commutation and
anticommutation relations.

Clearly, we have also the corresponding result for topological sectors, the main differ-
ence being that now the field algebras will be indexed by spacelike cones rather than double
cones.
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Theorem 1.14. [DR90] Let � �5� � � U � Ω � be a local, Poincaré covariant net of von Neu-
mann algebras in its vacuum representation, and assume that � is separable, and
that (1.11) and property B’ hold for � . There exists then a unique (up to unitary equiva-
lence) normal Poincaré covariant extended field net � π � ��� � V � k � U� � over � �5� � � U � Ω �
such that any equivalence class of Poincaré covariant finite statistics representations of �
satisfying (1.10) is realized as a subrepresentation of π � . Moreover

(i) π � � � � $ ) � D
� � � where D is a double cone at spacelike infinity, and � D is the

C + -algebra generated by � � � � , D � � � " D;
(ii) π � � � � $ � G $ $ and

π � �

�

ξ

dξπξ � (1.16)

where ξ runs over the set of topological covariant sectors of � and πξ is an irreducible
covariant finite statistics representation fulfilling (1.10) of class ξ on � ξ

� � ;
(iii) there is a 1-1 correspondence between covariant topological sectors ξ of � and

classes of irreducible subrepresentations of V defined by the fact that, correspondingly
to (1.16),

V �

�

ξ
uξ � ���

ξ � (1.17)

is the factorial decomposition of V , being then uξ an irreducible representation of G of
dimension dξ;

(iv) the grading of � defined by V � k � corresponds to the alternative between para-Bose
and para-Fermi statistics, i.e. if Φ � � ξ, then V � k � Φ � � Φ according as πξ has
para-Bose or para-Fermi statistics;

(v) for each ρ � ∆c
� � � ,
Hρ : �1� ψ � � � � � : ψπ � � A � � π � ρ � A � ψ � A � � � (1.18)

is a d � ρ � -dimensional β-invariant Hilbert space in � � � � with support � , and � � � � is
generated as a von Neumann algebra by Hρ , ρ � ∆c

� � � ;
(vi) for irreducible ρ, the representation uρ of G induced by β on Hρ is equivalent to u � ρ � .



CHAPTER 2

Scaling algebras and
ultraviolet limit

In the conventional, lagrangian and perturbative, approach to quantum field theory, the ul-
traviolet (i.e. small scale or high energy) properties of a given model are uncovered, in
favourable cases, with the help of renormalization group methods, which allow to control
the short distance limit of correlation functions of fields. Since fields play such a central
role in this kind of analysis, providing a set of operators with a fixed physical interpretation
at all scales, it is not straightforward to translate these methods in the algebraic framework,
in which the physical information is encoded only in the net structure of the observables.
Such a translation has been however performed in [BV95], and is based, as we shall see
below, on the observation that what really matters in the conventional framework are only
the phase space properties of renormalization group orbits.

In this chapter we will review the work of Buchholz and Verch on this subject, on
which our analysis of superselection sectors in the ultraviolet, which will be exposed in
chapter 3, is based. In section 2.1 we will see how the analysis of the above mentioned phase
space properties of renormalization group orbits leads to the introduction of the concept of
scaling algebras, as a net of algebras subsuming the action of all possible renormalization
group transformations on the given theory. In section 2.2 we will employ the net of scaling
algebras to define, in a canonical, model independent fashion, the (ultraviolet) scaling limit
of the theory under consideration, which turns out to be again a theory described by a net of
local algebras, and we will classify the various possibilities for the structure of such a net.
Finally, in section 2.3 we will discuss some simple examples of this construction, which
illustrate some of these possibilities.

2.1 Scaling algebras as an algebraic version of the
renormalization group

If we denote generically by ϕ � x � an observable Wightman field, as for instance a component
of a current or of a field strength, the conventional renormalization group � Rλ � λ � 0 is defined

17



18 CHAPTER 2 – SCALING ALGEBRAS AND ULTRAVIOLET LIMIT

essentially by
Rλ : ϕ � x � � ϕλ

� x � : � Zλϕ � λx � (2.1)

where the renormalization constants Zλ are fixed e.g. by requiring that for some fixed test-
function f , � Ω �ϕλ

� f � ϕλ
� f � Ω � � const for λ � 0 � (2.2)

or by some other condition of this kind, in such a way that the ϕλ correlation functions have
the same order of magnitude at all scales. The transformation Rλ can then be considered to
map the given theory at scale λ � 1 – from now on referred to as the underlying theory –
to the theory at scale λ which is generated by the fields ϕλ, leaving fundamental constants,
such as the speed of light c or Planck’s h, unaffected. In order to calculate the scaling
(ultraviolet) limit of the underlying theory one has then to calculate the limit, for λ � 0,
of the ϕλ correlation functions. The main technical problem that has to be overcome in
performing such a calculation, is that, due to the singular behaviour of Wightman fields at
neighbouring spacetime points, in general Zλ will go to zero in this limit, and quite precise
information on the way it approaches zero will be needed in order to control the correlation
functions’ limit. Renormalization group equations provide this information in “good” cases,
i.e. essentially only if the theory exhibits a perturbatively small ultraviolet fixed point, while
leaving the problem open in all other cases.

Nevertheless, the following general properties of the transformations Rλ follow at once
from their definition.

(i) Rλ maps observables localized in the bounded spacetime region & to observables
localized in the scaled region λ & ,

Rλ : - � & � � - � λ & � � (2.3)

and this reflects the fact that the value of c remains constant.
(ii) the fact that also the value of h has to be left fixed by Rλ implies that these trans-

formations map observables which transfer to physical states 4-momentum contained in a
compact regiona) ∆ � � 4 to observables which transfer 4-momentum in λ  1∆, in symbols

Rλ : ˆ- � ∆ � � ˆ- � λ  1∆ � (2.4)

ˆ- � ∆ � denoting the subspace of observabes which transfer 4-momentum in ∆.
(iii) When acting on bounded functions of the fields, due to the above definition of Zλ,

the transformations Rλ are bounded in norm, uniformly for λ � 0.
We will refer to the above properties (i)-(iii) as “phase space” properties of renormal-

ization group transformations, since they state that renormalization group orbits λ � Rλ
� A � ,

A � - , should occupy essentially the same phase space volume at all scales. All possible
transformations Rλ complying with these conditions identify the same net - λ

� & � � - � λ & �
at the scale λ, and then, if one sticks to the principle that all the physical information on
the theory is given by the net structure of observables, they should be regarded as being all
physically equivalent, and there is no need to use fields to single out a particular choice of
these maps.

a)See below for precise definitions.
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We shall therefore construct the scaling algebra associated to a given underlying theory
in such a way that it contains the orbits of local observables under all possible choices of
renormalization group transformations as above. Before doing this, we shall state explicitly
the assumptions under which such a construction can be performed, and we shall elaborate
a little further on properties (i)-(iii).

Throughout the present chapter, � � � - � U � Ω � will denote a Poincaré covariant local net
of C + -algebras in vacuum representation, which satisfies the following

Hypothesis 2.1. For each A � - � & � the function s � 
 �� � αs
� A � is continuous in the

norm topology of - , and the local algebras - � & � are maximal with respect to this property,
i.e. if A � - � & �  is such that s � αs

� A � is norm continuous, then A � - � & � .
This hypotesis is not really restrictive, as given any net � and defined - � & � as the

C + -subalgebra of � � & �  of those A � � � & �  for which s � αs
� A � is norm continuous,

the net - complies with hypotesis 2.1, and for any & and & 1
� & , - � & 1 �  � � � & � ,b) so

that the two nets - and � have the same locally normal states, and they can be considered
as physically equivalent.

Our conventions about Fourier transform on Minkowski space are as follows: the
Fourier transform of f will be defined as

f̂ � p � : �

�
� 4

d4x e
 ip � x f � x � � (2.5)

and correspondingly the inverse transform will be

f̌ � x � : �

�
� 4

d4 p� 2π � 4 eip � x f � p � � (2.6)

The following elementary lemma, in which E denotes the spectral measure associated
with translations αx : � α ��� � x � , is at the basis of the definition of the spaces of momentum
transfer ˆ- � ∆ � considered above.

Lemma 2.2. Let Φ1 � Φ2 � � , and ∆1 � ∆2
� � 4 be compact sets. The function

x � � 4 � � E � ∆2 � Φ2 �αx
� A � E � ∆1 � Φ1 � has (distributional) Fourier transform with support

in ∆2 	 ∆1.

Proof. Let µ be the complex measure on
� 4 �

� 4 , determined by µ � Γ2 � Γ1 � : �

� E � Γ2 � E � ∆2 � Φ2 �AE � Γ1 � E � ∆1 � Φ1 � � � E � Γ2 ) ∆2 � Φ2 �AE � Γ1 ) ∆1 � Φ1 � . Then µ has support
in ∆2 � ∆1. Thus since, for f � ! � � 4 � ,

�
� 4

d4x f � x � � E � ∆2 � Φ2 �αx
� A � E � ∆1 � Φ1 � �

�
∆2 � ∆1

dµ � p2 � p1 � f̂ � p2 	 p1 � �

we get the statement.

b)For the proof see also below, equation (3.13)
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It follows from the above lemma that, if we define, for A � - and f � L1 � � 4 � ,
α f
� A � : �

�
� 4

d4x f � x � αx
� A � � (2.7)

where the integral is defined in weak sense, i.e. by its associated bounded sesquilin-
ear form on � , and if Φi � � has compact spectral supportc) ∆i

� � 4 , i � 1 � 2, then� Φ2 �α f
� A � Φ1 � � 0 if � ∆1 ( supp f̂ � ) ∆2

� /0, i.e. α f
� A � transfers to states 4-momentum

contained in supp f̂ . Taking into account that A � αg
� A � for each g with ĝ � 1 on ∆ if and

only if α f
� A � � 0 whenever supp f̂ ) ∆ � /0, this motivates the following

Definition 2.3. The 4-momentum support of A � - is the smallest closed set ∆ " � 4 such
that α f

� A � � 0 for each f � L1 � � 4 � with supp f̂ " � 4 �
∆. We shall denote by ˆ- � ∆ � the

subspace of - of the elements with 4-momentum support contained in ∆.

Let then A � - � & � and � Rλ � λ � 0 be a family of renormalization group transformations.
Then by (i) above, Rλ

� A � � - � λ & � . Moreover, it can be shown [BV95, lemma 2.2] that,
thanks to hypotesis 2.1, A can be approximated in norm by operators in ˆ- � ∆ � for ∆ suffi-
ciently big, so that, by conditions (ii) and (iii), we deduce that for each ε � 0 there exists a
compact ∆ such that

Rλ
� A � � ˆ- � λ  1∆ � ( εB � � λ � 0 � (2.8)

having denoted by B � the unit ball in - .
This last condition can be reformulated as a more manageable condition of continuity

with respect to translations, uniform in λ, as in [BV95, lemma 3.1] it is shown that (2.8),
together with boundedness in norm of λ � Rλ

� A � , which follows again from (iii), is equiv-
alent to

lim
x � 0

sup
λ � 0

�� αλx � Rλ
� A ��� 	 Rλ

� A �
�� � 0 � (2.9)

Similarly, since angular momentum has the dimensions of an action, and since Planck’s
constant is not rescaled by renormalization group transformations, it can be shown that the
orbits λ � Rλ

� A � have also to satisfy

lim
Λ � � sup

λ � 0

�� αΛ � Rλ
� A ��� 	 Rλ

� A �
�� � 0 � (2.10)

where αΛ : � α � Λ � 0 � .
These remarks suggest the following definition of scaling algebra. We consider the

C + -algebra B � � �� � - � of bounded - -valued functions on the positive reals, where algebraic
operations are defined pointwise,

� aA ( bB � � λ � : � aA � λ � ( bB � λ � �� AB � � λ � : � A � λ � B � λ � �� A + � � λ � : � A � λ � + �
A � B � B � � �� � - � �
a � b � � � (2.11)

and with C + -norm �
A
�

: � sup
λ � 0

�
A � λ � � � (2.12)

c)The spectral support of a Φ � 	 is the support of the vector valued Borel measure ∆ 	 E
�
∆ � Φ.
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We can lift the action of the Poincaré group to this algebra by defining

αs
� A � � λ � : � αsλ

� A � λ ��� � λ � 0 � s � 
 �� (2.13)

where � Λ � x � λ : � � Λ � λx � , which is an endomorphism of 
 �� , so that we obtain again an

action of 
 �� by automorphisms of B � � �� � - � .
Definition 2.4. Let & � � 4 be open and bounded. The local scaling algebra associated
to & is the C + -subalgebra - � & � of B � � �� � - � of those A such that A � λ � � - � λ & � for each
λ � 0, and

lim
s � e

�
αs
� A � 	 A

�
� 0 � (2.14)

The (quasi-local) scaling algebra - is the C + -inductive limit of the algebras - � & � .
It is clear that � - � α � is a local Poincaré covariant net of C + -algebras, which moreover

is non trivial, i.e. not reduced to scalar functions A � λ � � cλ
� , since functions A with the

desired properties can be constructed quite easily using results in [BV95, sec. 2], where it
is shown that, thanks to hypotesis 2.1, for each fixed pair of regions & 0 � ∆0 there exists a
“large” set � λ

� - � λ & 0 � such that each Aλ � � λ has
�
Aλ

�
� 1, and for each ε � 0, Aλ �

ˆ- � λ  1∆ � ( εB � with ∆ � ε  1∆0. Then if A � λ � : �

���
dΛαΛ

� Aλ � , where
	 " SO � � 1 � 3 � is

a neighbourhood of the identity, A � - � & � for & � 	 & 0.
Renormalization group transformations are then implemented on the scaling algebra as

geometrical symmetries, given by an automorphic action σ of the multiplicative group
� ��

of positive reals on - , defined by

σµ
� A � � λ � : � A � µλ � � λ � µ � 0 � (2.15)

The geometrical character of this automorphisms group is seen by noting that

σµ
� - � & ��� � - � µ & � � (2.16)

σµ � αs
� αsµ

� σµ � s � 
 �� � (2.17)

so that σ defines an action of the dilatations on the scaling algebra.

2.2 Construction of the scaling limit

Let ϕ be a locally normal state of - . We associate to it the family � ϕλ � λ � 0 of states over the
scaling algebra - , defined by

ϕλ
� A � : � ϕ � A � λ ��� � A � - � λ � 0 � (2.18)

Considering � ϕλ � λ � 0 as a net for λ � 0, the set of its weak* limit points will be non-empty,
thanks to the Banach-Bourbaki-Alaoglu theorem.

Definition 2.5. Every weak* limit point of the net � ϕλ � λ � 0 will be called a scaling limit
state of the state ϕ. The set of all scaling limit states of ϕ will be denoted by SL � � ϕ � .

Actually, SL � � ϕ � is independent of the locally normal state ϕ.
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Proposition 2.6. Let ϕ1, ϕ2 be locally normal states of - . Then, for each open bounded & ,

lim
λ � 0

�� � ϕ
1 � λ 	 ϕ

2 � λ �
� - � & �

�� � 0 � (2.19)

thus, in particular, SL � � ϕ1 � � SL � � ϕ2 � .
For the proof, we refer to [Rob74, BV95] (see also proposition 3.6, where the slightly

more general case of normal, instead of local, commutation relations is considered). We
will then talk simply of the scaling limit states of - , without reference to any particular
locally normal state on - , and we will denote this set as SL � .

Let ω0 � SL � and denote by � π0 ��� 0 � Ω0 � the corresponding GNS representation. On
� 0 we can then consider the local net of C + -algebras defined by

& �.- 0
� & � : � π0

� - � & ��� � (2.20)

with the state ω0 : � � Ω0 � � � � Ω0 � , and, since ω0 can be obtained as a weak* limit of a net� ωλι � ι � I , ω being the vacuum state on - , it is α-invariant, and we get a corresponding

unitary representation U0 of 
 �� on � 0. We set α0
s : � AdU0

� s � , s � 
 �� .

Theorem 2.7. With the above notations, � � 0 � - 0 � U0 � Ω0 � is a Poincaré covariant, local net
of C + -algebras in vacuum representation.

Again, for the proof see [BV95, prop. 4.4] or theorem 3.7 below, where this is general-
ized to the scaling limit of a field net.

Remark. The above result holds for a number of spacetime dimensions d
�

3. For d � 2
one still gets that � - 0 � α0 � is a Poincaré covariant local net, and ω0 is a vacuum state on it,
but ω0 needs not be pure in general.

Definition 2.8. Every net � - 0 � α0 � obtained as above from a scaling limit state ω0 � SL �
will be called a scaling limit net of the underlying net � - � α � .

The fact that in general we get several in principle different scaling limit theories, one
for each choice of a scaling limit state on the scaling algebra, can be traced back to the
already mentioned fact that - is constructed from the orbits of all possible choices of renor-
malization group transformations complying with the very general phase space properties
discussed in the previous section, so that, loosely speaking, any scaling limit net can be
attributed to a particular such choice. But since the particular renormalization group trans-
formation chosen should not matter for the physical interpretation of the theory at small
scales, we can expect that, in generic cases, all the scaling limit nets should describe the
same physics. The following definition formalizes this favourable scenario.

Definition 2.9. The underlying theory � - � α � is said to have a unique scaling limit if all the
scaling limit nets � - 0 � α0 � are isomorphic. If, moreover, there exist net isomorphisms that
connect the respective vacuum states, the theory is said to have a unique vacuum structure
in the scaling limit.

There is the possibility that the various isomorphic nets - 0 are all trivial, i.e. reduced
to the multiples of the identity. In this case we speak of a classical scaling limit, due to
the fact that correlations between observables vanish in every state on - 0. This situation
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may arise if observables in - exhibit an exceptional quantum behaviour at small scales, the
4-momentum transfer of observables localized in - � λ & � being of the order of λ  q for some
q � 1, so that do not exist renormalization group orbits occupying a finite volume of phase
space at all scales, apart from multiples of the identity.d) We may expect a situation of this
kind to be realized in non-renormalizable theories. The only alternative to this scenario is
the much more interesting case in which the isomorphic nets - 0 are all infinite dimensional
and non-abelian [Buc96a], and we say in this case that the unique scaling limit is a quantum
one. This situation should correspond to theories that in the conventional setting have an
ultraviolet fixed point of the renormalization group. We will see some simple examples of
this case in the following section.

Of course, it could happen that not all the scaling limit nets are isomoprhic, since the
structure of the theory at small scales is continually varying as λ � 0, and we speak then of
a degenerate scaling limit.

As can be expected, in the physically relevant case of unique (quantum) scaling limit,
the dilatations are geometrical symmetries of the scaling limit theories.

Definition 2.10. A local Poincaré covariant net � - � α � is dilatation covariant if for each
µ � 0 there exists δµ � Aut - such that

δµ
� - � & ��� � - � µ & � � µ � 0 � & � � 4 � (2.21)

δµ � αs
� αsµ � δµ � µ � 0 � s � 
 �� � (2.22)

A vacuum state ω on � - � α � is dilatation invariant if ω � δµ
� ω, µ � 0.

Proposition 2.11. [BV95, prop. 4.4] If the underlying theory has unique scaling limit,
then each scaling limit theory is dilatation covariant. If, moreover, the underlying theory
has a unique vacuum structure in the scaling limit, then the scaling limit vacuum states are
dilatation invariant.

The automorphisms δ0
µ � Aut - 0 implementing dilatations in the scaling limit are in-

duced by the scaling transformations σµ through the fact that if ω0 � SL � , then also
ω0 � σµ � SL � , and it induces a scaling limit net isomorphic to the one induced by ω0 .

We close this section by discussing results which allow us to analyse the superselection
structure in the scaling limit.

We denote by Λ �
1 � � � t � � SO � � 1 � 3 � , t � � , the one-parameter group of Lorentz boosts

in the x1 direction, with speed β � tanh t, explicitly

Λ �
1 � � � t � �

���
�

cosh t sinh t
sinh t cosh t

0

0
1

1

����
	 � (2.23)

These transformations leave the wedge � 1 � � (and hence also � 1 �  � � $1 � � ) invariant,
since if e � : � e1 � e0, eµ, µ � 0 ������� � 3, being the canonical basis in

� 4 , then x � � 1 � �

d)Such a connection between phase space properties of the underlying theory and the structure of its scaling
limit is further clarified in [Buc96a].
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if and only if x � e � � 0, and Λ �
1 � � � t � e � � e � te � . For any other wedge � � s ��� 1 � � ,

s � 
 �� , the corresponding one-parameter group in 
 �� leaving � invariant is given by
Λ � � t � : � sΛ �

1 � � � t � s  1, t � � . Also, we consider the non-orthocronous Lorentz transfor-
mation j : � diag � 	 1 �
	 1 � 1 � 1 � , which is such that j2 ��� and j � 1 � � � � 1 �  . In generic
cases, these Lorentz transformations represent the geometric action of the modular objects
associated through Tomita-Takesaki theory (cfr. [BR79a, KR86]) to the algebra of � 1 � � ,
with the vacuum as cyclic and separating vector.

Definition 2.12. Let � � � - � U � Ω � be a Poincaré covariant local net in vacuum represen-
tation, and let � ∆ � J � be the modular objects associated to � - � � 1 � � �  � Ω � . We say that� �5� - � U � Ω � satisfies the condition of geometric modular action if

J - � & �  J � - � j & �  & � � 4 � (2.24)

JU � Λ � x � J � U � jΛ j � jx � � � Λ � x � � 
 �� � (2.25)

∆it � U � Λ �
1 � � � 2πt ��� � t � � � (2.26)

This condition holds for nets generated by underlying Wightman fields [BW76], and it
has been proven at a purely algebraic level in two spacetime dimensions [Bor92], and in
physical dimension under fairly general assumptions [BGL93, Mun01], so that it can be
considered as holding in generic cases. An immediate consequence is wedge duality:

- � � � $ � - � � $ �  � (2.27)

which follows from (2.24) through - � � 1 �  �  � - � j � 1 � � �  � J - � � 1 � � �  J � - � � 1 � � � $ and
Poincaré covariance, and which implies essential duality, thanks to the fact that, as is easy
to see, - d � & � �

� ��� 2 - � � �  for each double cone & . As this last property is, as we have
seen, a basic hypotesis needed to apply superselection theory to a given net, the following
result is quite welcome.

Proposition 2.13. [BV95, prop. 6.3] If the underlying theory complies with the condition
of geometric modular action, then any scaling limit theory does the same.

2.3 Examples of scaling limit calculation

As can be expected from the geometrical significance of the renormalization group, a class
of theories for which the scaling limit theory should be identified rather easily is that of
dilatation covariant theories. This is indeed true, at least for theories which satisfy the
following mild phase space condition.

Definition 2.14. [HS65] Let � �5� - � U � Ω � be a translation covariant local net, and define,
for each β � 0 and & � � 4 , the operator Θβ � 2 : - � & � � � by

Θβ � 2 � A � : � e
 βH AΩ � A � - � & � � (2.28)

where H is the generator of time translations. Then the theory is said to satisfy the Haag-
Swieca compactness condition if all the operators Θβ � 2 are compact.
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This condition was initially proposed in [HS65] (to which we refer for its motivations)
in order to characterize theories with a complete asymptotic particle interpretation. It has
been verified in several models, such as the free massive [HS65] and massless [BJ87] scalar
field, or in locally Fock interacting theories in two dimensions, as the P � ϕ � 2 [Dri79] and
Y2 [Sum82] models.

Proposition 2.15. [BV95, prop. 5.1] If the underlying net � � � - � U � Ω � is dilatation co-
variant, satisfies the Haag-Swieca compactness condition, and the vacuum ω is dilatation
invariant, then the theory has unique scaling limit and vacuum structure in this limit. In
particular, each scaling limit net � - 0 � α0 � is isomorphic to � - � α � , and the isomorphism
connects the respective vacuum states ω0 and ω.

In [Buc96a] it is also shown that if the underlying theory complies with a strengthened
version of the compacteness condition, then all scaling limit theories satisfy the compact-
ness condition, so that, in view also of proposition 2.11, the scaling limit of such theories,
if it’s unique, can be considered as a fixed point of the renormalization group.

Another example in which the scaling limit theory turns out to be unique, and can be
explicitly calculated, is provided by the free scalar field in d � 3 � 4 spacetime dimensions.

Theorem 2.16. [BV98, thm. 3.1] The theory of the free scalar field of mass m
�

0 in d �

3 � 4 dimensional Minkowski space has unique quantum scaling limit and unique vacuum
structure in this limit, as each of its scaling limit theories is isomorphic with the theory of
the free scalar field of mass m � 0 in the same spacetime dimension, and the isomorphisms
connect the respective vacuum states.

This example, though rather simple, illustrates several aspects of the algebraic approach
to renormalization group reviewed here. In particular, it shows that, in contrast to the con-
ventional approach, it is not necessary to single out a particular choice of renormalization
group transformations, with a corresponding gain in flexibility and generality, but still en-
abling one to perform explicit calculations. Also, it shows that the apparent ambiguities
inherent to the existence of a multiplicity of scaling limit theories disappear after identify-
ing isomorphic nets.

It is however in the example of the massive free scalar field in d � 2 spacetime di-
mensions, where the application of the conventional methods is complicated by infrared
divergences, that the use of local algebras appears to be more effective. Though the ex-
plicit calculation of the scaling limit theories remains an open problem in this case, it can
be shown that each of them contain a central extension of the net generated by the massless
free field in Weyl form as a subnet, and this is sufficient to show that, in contrast to the
situation at finite scales, the scaling limit theories describe charged states.

Theorem 2.17. [BV98, thm. 4.1] Let ω0 be any scaling limit state of the theory of the
free scalar field of mass m � 0 in d � 2 dimensional Minkowski space, and let � - 0 � α0 � the
corresponding scaling limit theory. Then - 0 has a non-trivial centre, and there exist states
ωq, q � � , on - 0, locally normal to ω0, such that

(i) for each sufficiently large double cone & , ωq
� - 0
� & � � � ω0

� - 0
� & � � , where & � �  �

is the right (left) component of &�$ ;
(ii) for all double cones & , ωq

� - 0
� & $ � is disjoint from ω0

� - 0
� & $ � if q

�
� 0;
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(iii) in the GNS-representation induced by ωq the translations x � � 2 � α0
x are imple-

mented by a unitary strongly continuous representation satisfying the spectrum condi-
tion.

Then the states ωq describe topological charges, and, in view of the fact that the massive
scalar field has no non-trivial superselection sector, this illustrates the fact that the supers-
election structures of the underlying theory and of its scaling limit are in general different.
Taking into account the fact that the net generated by the free massive scalar field in two
dimensions coincides with the net of observables defined by the Schwinger model, as re-
called in the introduction, the existence of such charged states in the scaling limit can be
interpreted as the appearence of “confined” charges intrinsically described by the Schwinger
model, in agreement with the folklore, and this feature is established without the need to
attach a physical interpretation to unobservable fields. The dynamical justification usu-
ally given of this phenomenon remains however questionable, as it can be interpreted as a
purely quantum feature of a free theory [Buc96b, sec. 4]. Also, if we denote by G and
G0 the canonical gauge groups determined respectively by the underlying theory and by a
fixed scaling limit theory according to the Doplicher-Roberts reconstruction theorem, we
have in this case G

�
G0 (G is trivial in this example). This is the situation expected in

asymptotically free theories, where symmetries possibly concealed by interactions at finite
scales show up in the scaling limit. The opposite situation, G0

� G, is also possible. An
example of theory with classical scaling limit has been constructed [Lut97]: it is a theory
which satisfies standard conditions, such as essential duality and compactness, but which
contains only operators with a very singular short distance behaviour, as the ones expected
to appear in non-renormalizable theories (provided they can be defined at all). For theories
with a classical scaling limit G0 is clearly trivial, thus the charges they describe disappear
in the scaling limit. In the general case both phenomena – underlying charges disappearing
and new ones appearing – may happen, so that G and G0 have at best some subgroup in
common.



CHAPTER 3

Ultraviolet stability
and scaling limit of charges

The intuitive physical picture of a confined charge is that of a charge which appears only
in the limit of small spatio-temporal scales, but which cannot be created by physical oper-
ations performed at finite scales. In order to obtain from this vague statement an intrinsic
understanding of the confinement phenomenon, in the framework we have discussed up to
now, the following idea presents almost by itself to mind: confined charges are described
by superselection sectors of the scaling limit theory, which do not appear as sectors of the
underlying theory. Since, as we have seen, both the scaling limit construction and the super-
selection structure are canonically determined by the assignement of the (underlying) net
of algebras of local observables, such a notion of confinement does not present the draw-
backs of the conventional one, recalled in the introduction, and then it is possible to regard
at confined charges as theoretical objects intrinsically described by the theory, and not as
artifacts of the particular way chosen to represent it. When applied to the already consid-
ered example of the Schwinger model (sect. 2.3), the above confinement criterion yields
the existence of (at least) a continuum of confined charges, carried by the states ωq: these
charges appear in the scaling limit theory, but they cannot be described by the underlying
theory, which has no non-trivial superselection sectors (it is the theory of the massive free
scalar field). However it is apparent that, in order for the criterion to be applicable to more
complicated models, in which both the underlying theory and the scaling limit one have
non-trivial superselection structures, a way to compare the two superselection structures is
needed. In particular, it is sufficient to have a natural notion of charges of the underlying
theory “surviving” the scaling limit, giving an identification of (a subset of) sectors of the
underlying theory with a subset of the ones in the scaling limit, regarded as scaling limits
of the formers. Then these sectors can be interpreted, in a natural way, as described by the
theory both at finite scales and in the scaling limit, and the scaling limit sectors which do
not arise in this way from those of the underlying theory will be the confined ones.

In this chapter we will discuss such a notion of scaling limit of charges, which we call
ultraviolet stability, after a suggestion of Detlev Buchholz. Recalling the remarks about the

27
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phase space properties of renormalization group orbits made in sect. 2.1, and the ensuing
definition of scaling algebras, as well as the comments in section 2.3 about the possible
disappearing of charges in the scaling limit, for instance in the case of classical scaling
limit, it is to be expected that not all underlying charges will survive the limit, and that
the “good” charges will be singled out by some phase space property of the fields carrying
them: if the fields carrying a charge ξ require too much energy to be localized in smaller
and smaller regions, then ξ will not appear in the scaling limit. It is also to be remarked
that, to obtain a physically meaningful criterion, it is necessary in this setting to consider
the scaling limit of both double cone and cone-like localizable charges, since, as already
recalled, in non-abelian gauge theories, which are the candidate ones to exhibit confinement,
the latter charges are naturally expected to appear, cfr. the introduction of [BF82] and
references quoted there. This adds some conceptual (as well as technical) difficulties, since
it is not a priori clear in what sense cone-like fields can be localized in vanishingly small
regions, as space-like cones are unaffected by scaling trasformations. For this reason, we
shall consider first the simpler case of double cone localizable charges. In the first section
we shall generalize the scaling limit construction to the case of a normal field net with
compact gauge group describing the superselection structure of the underlying theory. Then,
in section 3.2, we shall show that double cone localizable charges satisfying an energetic
condition of the above stated kind actually survive the scaling limit, in the sense that there
is a Hilbert space of isometries in any field net scaling limit, carrying the associated gauge
group representation and inducing a localizable sector on the corresponding scaling limit
theory. In section 3.3 finally, we shall extend the discussion to quantum topological charges.
In this case the results obtained up to now are not yet of a completely general character, as
the above mentioned identification of topological charges surviving the scaling limit can be
achieved only under some technical assumptions on the structure of the scaling limit, whose
status we plan to clarify in our future work. However, we feel it worthwile to present here
our investigations on this subject, as they seem promising.

3.1 Scaling limit for field nets

To begin with, in this section we extend the scaling limit construction of chapter 2 to the
case of a field net with normal commutation relations on which a compact gauge group
acts. Throughout this section, unless otherwise stated, � �5� - � U � Ω � will denote a Poincaré
covariant local net of C + -algebras in vacuum representation, and � π � � � � V � k � U� � a corre-
sponding Poincaré covariant normal field net, acting on a universal Hilbert space � � (def-
initions 1.4 and 1.8). As usual, we shall indicate by α and α � the action of the (universal
covering of the) Poincaré group induced by U and U � on the nets - and � respectively, by
β the action of the gauge group G induced by V on � , and by γ : � βk the automorphism
inducing the Bose-Fermi grading of � . In order to perform the scaling limit construction, in
analogy with the case of observable nets, we shall add the following hypotesis on the field
net.

Hypothesis 3.1. (i) For any F � � � & � , the functions s � ˜
 �� � α �s � F � , g � G � βg
� F �

are continuous in the norm topology of � , and � � & � is maximal with respect to this property,
i.e. any F � � � & �  for which these functions are norm continuous is already contained in
� � & � .
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(ii) For each λ � 0 there exists a unitary, strongly continuous representation V � λ � of the
gauge group G on � � leaving the vacuum invariant, still inducing a representation β � λ � of G
by automorphisms of the underlying net � which commute with Poincaré transformations,
and such that γ � λ � : � β � λ �k defines the

�
2-grading of � , and π �

� - � & ��� � � � & � β
�
λ �

for every
& and every λ � 0.

The first of the above hypoteses is a natural extension to the field net of the analogous
assumption of continuity of the observable net with respect to Poincaré transformations,
hypotesis 2.1 (and in fact implies it, as we will see shortly, proposition 3.2), supplemented
by a similar requirement concerning the action of the gauge group. The second hypotesis is
not restrictive at all: a simple example of a family of representations � V � λ � � λ � 0 complying
with such assumption is given by V � λ � � g � : � V � gλ � for some family of continuous homo-
morphisms g � G � gλ � G (this is also essentially the unique possibility [DR90, thm 3.6]).
In particular, we could take gλ

� g for each λ � 0, so any field net with gauge symmetry
complies with this assumption. However, we add this statement here because we consider
the family of representations � V � λ � � λ � 0 as part of the data determining the field net scaling
limit construction, the choice of different families giving rise to a priori different field net
scaling limits. The reason for this being that in general charges may carry a dimension, as
for instance the electric charge in the Schwinger model, which has dimensions of a mass,
and then exhibit a non trivial running under renormalization group. So, allowing for a λ
dependence of the gauge group representation, and restricting accordingly in an appropriate
way the set of renormalization group orbits under consideraton, one may expect that the
resulting scaling limit describes those charges whose scaling behaviour is given by the λ
dependence of the spectra of V � λ � .

Proposition 3.2. The observable net � - � U � Ω � satisfies hypotesis 2.1.

Before proving the proposition, we state and prove a preliminary result.

Lemma 3.3. The representation π �
� - � & � extends to a strongly continuous isomorphism

π � : - � & �  � π �
� - � & ���  .

Proof. Identifying � with a subspace of � � as customary, define π � by

π �
� A � FΩ : � FAΩ � A � - � & �  � F � � � & $ � �

This defines π �
� A � on the dense set � � & $ � Ω. We show that π �

� A � is bounded and belongs to
π �
� - � & ���  : by Kaplansky’s theorem, there is a net � Aι � ι � I "4- � & � , such that

�
π �
� Aι � � �

�
Aι
��� �

A
�
, and s– limι � I Aι

� A; then, using normal commutation relations,

π �
� A � FΩ � FAΩ � lim

ι � I
FAιΩ � lim

ι � I
π �
� Aι � FΩ �

so that, being � π � � Aι ��� ι � I boundend in norm, π �
� A � � s– limι � I π �

� Aι � belongs to
π �
� - � & ���  , and π � extends π � and is strongly continuous. This also implies that π �

� A � �
� � A, so that π � is injective. To show that it is also surjective, we note that from
π �
� - � & ��� � � � - � & � , π �

� - � & ���  � � " - � & �  follows, and if A � π �
� - � & ���  , by

definition π �
� A � � � � A.
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Remark. We should use the more precise notation π � � 2 for the isomorphisms just defined,
but since, as evident, π � � 2 2

� - � & 1 � � π� � 2 1 if & 1 " & 2, π� � 2 � A � is independent of the region
of localization of A, so that the simpler notation used above will not cause any confusion.

Proof of proposition 3.2. Since � π � � U� � is a covariant representation of � - � α � η � (η :
˜
 �� � 
 �� the covering homomorpishm), it follows, by strong continuity of π � , α �s , αs,

α �s � π � � A ��� � π �
� αη � s � � A ��� � A � - � & �  � s � ˜
 �� �

and then if s � αs
� A � , A � - � & �  is norm continuous, so is s � α �s � π � � A ��� , which, being

π �
� A � � � � & �  and gauge invariant (still by strong continuity), implies, by hypotesis (i)

above, that π �
� A � belongs to � � & � and then, again by gauge invariance, to π �

� - � & ��� , so
that A � - � & � . On the other hand, if A � - � & � , t � α �t � π � � A ��� is norm continuous, and

�
αs
� A � 	 A

�
�

�
α �t � π � � A ��� 	 π �

� A � � � s � η � t � �
so that, as η � 	 � is a neighbourhood of the identity in 
 �� for any such neighbourhood

	
in ˜
 �� , s � αs

� A � is continuous, and hypotesis 2.1 is satisfied.

It is then possible to apply the construction of the scaling algebra and of the scaling
limit to the observable net - . We now want to extend this construction to the field net. We
will proceed along the lines of the discussion in chapter 2, taken from [BV95].

We recall then that the starting point for the definition of the scaling observable algebra
is the usual, field theoretical approach to renormalization group, based on the choice of a
family � Rλ � λ � 0 of (uniformly bounded) transformations of - into itself, which have specific
phase-space properties: namely, they have to rescale space-time coordinates by a factor λ,
and momentum coordinates by a factor λ  1, so to leave the velocity of light and Planck’s
constant unaffected. However, in the usual approach to renormalization group, the action
of the transformations Rλ is by no means restricted to the observables: on the contrary,
usually one considers the scaling of all the correlation functions of the theory, which in
general involve unobservable fields, as Dirac or gauge fields, as well. This implies that we
can assume that the Rλ’s are transformations of � in itself, retaining the above mentioned
phase space properties. Then, all the considerations about these transformations in 2.1 apply
verbatim to the present setting, if we replace the observable net - by the field net � , and we
conclude that RG orbits λ � Rλ

� F � of fields F � � will enjoy properties of continuity with
respect to the action of the Poincaré group analogous to the ones found to hold for orbits of
observables. In addition, a similar spectral analysis of RG orbits with respect to the action of
the gauge group shows that the functions complying with the physically prescribed running
of charges, encoded in the λ-dependence of SpV � λ � , are those for which

lim
g � e

sup
λ � 0

�
β � λ �g
� Rλ
� F ��� 	 Rλ

� F � � � 0

holds.
We will therefore consider the C + -algebra B � � �� � � � of functions F :

� �� � � , such that

�
F
�

: � sup
λ � 0

�
F � λ � � � ( ∞ � (3.1)
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and where the algebraic structure is defined pointwise:

� aF ( bG � � λ � : � aF � λ � ( bG � λ � �� FG � � λ � : � F � λ � G � λ � �� F + � � λ � : � F � λ � + �
(3.2)

where F � G � B � � �� � � � and a � b � � . On this algebra we can define actions α � of ˜
 �� and
β of G by automorphisms as

α �s � F � � λ � : � α �sλ
� F � λ ��� � s � ˜
 �� �

βg
� F � � λ � : � β � λ �g

� F � λ ��� � g � G � (3.3)

where as usual � a � x � λ : �'� a � λx � for any � a � x � � ˜
 �� .

Definition 3.4. The local field scaling algebra associated to the bounded open region &
of Minkowskij space-time is the C + -subalgebra � � & � of B � � �� � � � of those F such that
F � λ � � � � λ & � and

lim
s � e

�
α �s � F � 	 F

�
� 0 � lim

g � e

�
βg
� F � 	 F

�
� 0 � (3.4)

The (quasi-local) field scaling algebra � is the C + -inductive limit of the algebras � � & � .
It is then evident that & � � � & � is a net of C + -algebras over Minkowski space – which

we will denote, as usual, still by � – and since the actions α � and β clearly commute, they

restrict to actions of ˜
 �� and G on � , with respect to which the net is covariant. Likewise, it
is evident that � satisfies local

�
2-graded commutativity with respect to the grading defined

by γ : � βk, as follows immediately from

F � � λ � �

1
2

�
F � λ � � γ � λ � � F � λ ����� � F � λ � � �

Finally, it is clear that

π �
� A � � λ � : � π �

� A � λ ��� � A � - � & � (3.5)

defines, by continuity, an homomorphism of nets π � of - in � , such that α �s � π �
� π � � αη � s � ,

and π �
� - � & ��� is contained in � � & � G, fixed-point subalgebra of � � & � under the action of

β. On the converse, if F � � � & � G, then β � λ �g
� F � λ ��� � F � λ � for every λ � 0, i.e. F � λ � �

� � λ & � β
�
λ �

� π �
� - � λ & ��� , and then F � π �

� - � & ��� (the continuity of s � αs
� A � follows

easily from that of s � α �s � π � � A ��� , as in the proof of proposition 3.2), so that - � & � and
� � & � G really coincide. In summary, we have proven:

Proposition 3.5. The quintuple � π � � � � β � k � α � � is a Poincaré covariant normal field net
over � - � α � .

Given a locally normal state ϕ on � we can define its lift to � as the family of states� ϕλ � λ � 0 such that
ϕλ
� F � : � ϕ � F � λ ��� � F � � � λ � 0 � (3.6)

and we can consider the set SL �
� ϕ � of its weak* limit points, which is non-void by Banach-

Bourbaki-Alaoglu theorem. As for the case of the observable scaling algebra, we have the
following.
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Proposition 3.6. SL �
� ϕ � is independent of the locally normal state ϕ on � .

Proof. Arguing as in [BV95, corollary 4.2], it follows that it is sufficient to show that, for
any couple of locally normal states ϕ1, ϕ2 on � , it holds

lim
λ � 0 � � � ϕ1 	 ϕ2 � � � � λ & � � � 0 �

Furthermore, since the second half of the proof of [BV95, lemma 4.1] can be repeated
verbatim in the present case (only the net structure of � is involved, and not commutation
relations), we need only to show that

�
2��

0

� � & �  � � � �

To show this, we follow the first half of the proof of [BV95, lemma 4.1]. Since any
Z � � 2�� 0

� � & �  is a sum of a bosonic and a fermionic part, we can assume that Z is purely
bosonic or purely fermionic. Then Z + has the same Bose-Fermi parity as Z and is also “lo-
calized at 0”. Thus, by locality, for x2 � 0 we have

�
Z + � α �x � Z � � � 0 (resp. � Z + � α �x � Z � � � 0)

if Z is bosonic (resp. fermionic) and, being x � α �x � Z � weakly continuous, this holds also
for x2 � 0. Then, if e is a lightlike vector, we have

� ZΩ �U� � te � ZΩ � �'� Ω � Z + α �te � Z � Ω �
� � � Ω �α �te � Z � Z + Ω � � � � Z + Ω �U� � 	 te � Z + Ω � �

thus, by the spectrum condition, the function t � � ZΩ �U �
� te � ZΩ � has Fourier transform

whose support is � 0 � and hence, being bounded, is constant. This implies
�
U�
� te � ZΩ 	 ZΩ

� 2 � 2 	 2Re � ZΩ �U�
� te � ZΩ � � 0

for any lightlike vector e, and then U �
� x � ZΩ � ZΩ for any x � � 4 , and finally, by unique-

ness of the vacuum, and its separating property with respect to the algebras � � & �  ,
Z �'� Ω � ZΩ � � .

It is then meaningful to talk about the set of scaling limit states of � , SL � , without
reference to any particular (locally normal) state of � . We remark also that SL � � π �

� SL �
(scaling limit states of - ), since both can be calculated through the lifting of the vacuum
states ω and ω � : � ω � π � : if ω0 � SL �

� ω � it is clear that ω0 � π � � SL � � ω � � , and on the
converse, if ω �

0 � SL � � ω � � is a weak* limit of a net � ω �
λι � ι � I , by compactness one can find

a subnet of � ωλι � ι � I convergent to a state ω0 � SL �
� ω � , and ω0 � π �

� ω �
0 .

Now, fix a scaling limit state ω0 � SL � , and denote by � π0 ��� 0 � Ω0 � its GNS represen-
tation. One can then define a net of C + -algebras over Minkowskij space, acting on � 0,
by � 0 � & � : � π0 ��� � & ��� . Since ω0 can be obtained as a weak* limit point of the lifting of
the vacuum state ω on � , we have ω0 � α �s � ω0 and ω0 � βg

� ω0, so that we get unitary

representations V� 0 and U� 0 , of G and ˜
 �� respectively, on � 0, leaving Ω0 invariant. Let
also � π0 ��� 0 � Ω0 � be the GNS representation associated to ω0 � π � � SL � � ω � (we drop the
notational distinction between the vacuum states on - and � ), and - 0 the associated scaling
limit net. By unicity of the GNS representation, we have that � 0 is identified, through a
unitary equivalence, with a subspace of � 0, in such a way that the respective cyclic vectors
agree (and that is why we have used the same symbol Ω0 for them from the beginning), and
that π0 is the restriction to � 0 of π0 � π � .
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Theorem 3.7. The representation π � 0 of - 0 on � 0 given by

π � 0
� π0
� A ��� : � π0 � π �

� A � A � - � (3.7)

is well defined, and the quintuple � π � 0 � � 0 � V� 0 � k � U� 0 � is a Poincaré covariant, normal field
net with gauge symmetry over � � 0 � - 0 � U0 � Ω0 � .

We introduce the following notation: for a tempered distribution f � ! � � 4 � $ , such that
f̂ is a measure with supp f̂ " V � � V  , its positive (negative) frequency part is f � : �,� χV � f̂ � .̌
Then the following lemma, useful for the proof of the theorem, can be extracted from the
calculations in [AHR62].

Lemma 3.8. Let h � C∞
b
� � 4 � be such that

(i) h � x � � 0 for x � & $r ( & r double cone generated by the 3-sphere of radius r centered at
0 in the x0 � 0 plane);

(ii) pαdĥ � p � is a bounded complex measure for every multiindex α � � 4
0 ;

(iii) supp ĥ " V � � V  .
Then there exists a constant A � 0, independent of h, such that, for � x � � r,

� h � � 0 � x � � � Ar3

� � x � 	 r � 2
�
�
�
�

�
� 4

p0dĥ � p �
�
�
�
� � (3.8)

The proof is based on an application of the Jost-Lehmann-Dyson representation.

Proof of theorem 3.7. Since the function g � ω0
� Gβg

� F ��� is continuous for every F � G � � ,
the representation V� 0 is weakly, and hence strongly, continuous. Analogously for U � 0 .

By the definition of V� 0 , it is immediate to verify that β � 0

g : � AdV� 0
� g � , g � G, is such

that, for F � � , β � 0

g
� π0 � F ��� � π0 � βg

� F ��� , so that β � 0
defines an action of G on � 0 by net

automorphisms, and γ � 0
: � β � 0

k defines a
�

2-grading of � 0 such that π0 � F � � � π0 � F � � , and

then � 0 satisfies local
�

2-graded commutativity with respect to γ � 0
.

We show that π � 0
� - 0 � is the fixed point subnet of � 0 under the action of G (we will

prove below that π � 0 is well defined). To this end, consider the conditional expectation m
on � defined by

m � F � : �

�
G

dgβg
� F � �

where dg is the left invariant Haar measure on G, and the integral exists in Bochner
sense [Yos68] since the integrand is a bounded, norm continuous function on a compact
space, and hence its range, being metrizable, is separable. Let also m be the analogous
mean on � 0. We have then m ��� � & ��� � � � & � G: the inclusion � � & � G " m ��� � & ��� is evident,
as m � F � � F for F � � � & � G, the reverse one also follows immediately from invariance
of dg, which implies G-invariance of m. For the same reasons, m ��� 0 � & ��� � � 0 � & � G. By
continuity of π0, we have m � π0 � π0 � m, and then

π � 0
� - 0
� & ��� � π0 � π �

� - � & ��� � π0 ��� � & � G �
� π0 � m ��� � & ����� � m ��� 0 � & ��� � � 0 � & � G �
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For what concerns covariance, if α � 0

s : � AdU� 0
� s � , we have α � 0

s � π0 � π0 � α �s , so that
� 0 is covariant with respect to the action of ˜
 �� defined by α � 0

, and s � α � 0

s
� F � is norm

continuous for every F � � 0 � & � . Furthermore, it is clear that α � 0
and β � 0

commute.
Let us show that U � 0 fulfills the spectrum condition. For this, it is sufficient to show

that, for every f � L1 � � 4 � whose Fourier transform has support in
� 4 �

V � , and for every
F � G � � , �

� 4
dx f � x � � π0 � G � Ω0 �U� 0

� x � π0 � F � Ω0 � �

�
� 4

dx f � x � ω0
� G + α �x � F ���

� ω0
� G + α � f � F ��� � 0 �

where we have also used the continuity of the action of α � on � . But, making again use of
this fact, it is easy to see that

ωλ
� G + α � f � F ��� � ω � G � λ � + α � fλ

� F � λ ����� �
where fλ

� x � : � λ  4 f � λ  1x � , so that supp f̂λ
� λ  1 supp f̂ " � 4 �

V � , and ωλ
� G + α � f � F ��� � 0

for every λ � 0. Furthermore, by definition Ω0 is cyclic for � 0, and is Poincaré and gauge
invariant.

To complete the proof, it remains then only to show that Ω0 is the unique translation
invariant unit vector. In fact, if this is true, � 0 is irreducible, and Ω0 is separating for
the local von Neumann algebras � 0 � & �  (Reeh-Schlieder theorem 1.5 and remark after
definition 1.8), and this implies that π � 0 is well defined: if π0

� A � � 0, A � - � & � , then
�
π0 � π �

� A � Ω0
�

� lim
n � � ∞

�
π �
� A � λn ��� Ω �

�

�
π0
� A � Ω0

�
� 0 �

for a suitable sequence � λn � n � � converging to zero, and then π0 � π �
� A � � 0, so that π � 0 is a

well defined representation of - 0 � loc, which then extends to the inductive limit, giving a net
homomorphism from - 0 to � 0.

To show that Ω0 is the unique translation invariant unit vector, it is sufficient [Haa96,
lemma 3.2.5] to verify that the state ω0 : � � Ω0 � � � � Ω0 � is clustering, i.e. that for every
F � G � � 0,

lim�
x

� � � ∞
ω0
� Fα � 0

x
� G ��� � ω0

� F � ω0
� G � � (3.9)

Furthermore, since the operators F� α � 0

x
� G � � are odd under γ � 0

, and therefore
ω0
� F� α � 0

x
� G � ��� � 0 � ω0

� F� � ω0
� G � � , it suffices to show that (3.9) holds for F � G both

purely bosonic or purely fermionic. Any purely bosonic (resp. fermionic) F � � 0 is of
the form F � π0 � F � with F � � purely bosonic (resp. fermionic), so we pick, to begin
with, F � G � � � & r � purely bosonic, and such that x � α �x � F � , x � α �x � G � are infinitely
continuously differentiable in norm. The set of such operators, for all r � 0 is norm
dense in � � , as can be seen considering operators of the form α � f � F � , with f � C∞

c
� � 4 �

and F � � � & � � (it is easy to see that x � α �x � α � f � F ��� is differentiable in norm with

∂µα �x � α � f � F ��� � 	 α �x � α �∂µ f
� F ��� , and, if � δn � n � � " C∞

c
� � 4 � , is an approximate identity,

α �δn

� F � � F in norm, thanks to norm continuity of x � α �x � F � ). Consider, for 0 � λ
�

1,
the functions

h � λ �F �G � x � : �'� Ω �F � λ � α �λx
� G � λ ��� Ω � 	 � Ω �F � λ � Ω � � Ω �G � λ � Ω �

� ωλ
� Fα �x � G ��� 	 ωλ

� F � ωλ
� G � �
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and
h � λ � � x � : � h � λ �F �G � x � 	 h � λ �G � F � 	 x � � � Ω � �F � λ � � α �λx

� G � λ ��� � Ω � �
We have h � λ � � C∞

b
� � 4 � and, due to the fact that F � λ � , G � λ � are purely bosonic for every λ,

h � λ � � x � � 0 for x � & $2r. If we denote by E the spectral measure determined by the translation
group, we have

dĥ � λ � � p � �'� 2π � 4
�
d � Ω �F � λ � E � λ  1 p � G � λ � Ω � 	 d � Ω �G � λ � E � 	 λ  1 p � F � λ � Ω ��� �

so that, by the spectrum condition, supp ĥ � λ � " V � � V  . From the fact that x � α �x � F � λ ��� ,
x � α �x � G � λ ��� are C∞, it follows that F � λ � Ω, G � λ � Ω are in the domain of all monomials in
the generators of the translations Pµ, and then, from the above formula, we have that, for
any α � � 4

0 ,

pαdĥ � λ � � p � �'� 2π � 4 � λ �
α

�

d � Ω �F � λ � E � λ  1 p � PαG � λ � Ω �
	 � 	 λ �

�
α

�

d � Ω �G � λ � E � 	 λ  1 p � PαF � λ � Ω ��� (3.10)

is a bounded measure. So, if we observe that, due to the fact that Ω is the unique translation
invariant vector,

h � λ �� � x � �
1� 2π � 4

�
V � eipxdĥ � λ � � p �

�'� Ω �F � λ � U� � λx � G � λ � Ω � 	 � Ω �G � λ � E � � 0 � � F � λ � Ω � � h � λ �F �G � x � �
applying lemma 3.8 and (3.10), we have, for some (universal) constant C � 0, independent
of λ, F and G, and for � x � � 2r,

�
� ωλ
� Fα �x � G ��� 	 ωλ

� F � ωλ
� G �

�
�
�

� Cr3

� � x � 	 2r � 2
�
� λ � Ω �F � λ � P0G � λ � Ω � ( λ � Ω �G � λ � P0F � λ � Ω �

�
�

� Cr3

� � x � 	 2r � 2 � � F � λ � � � Ġ � λ � � ( �
G � λ � � � Ḟ � λ � � �

� Cr3

� � x � 	 2r � 2 � � F � �
Ġ
� ( �

G
� �

Ḟ
� �

where Ḟ is the derivative of t � α �t � F � at t � 0, and we have used the fact that, due to norm
differentiability, Ḟ � λ � � d

dt α �λt
� F � λ ��� � t � 0 (and the same for G). Since the above estimate is

uniform in λ, we conclude that (3.9) holds for any pair π0 � F � , π0 � G � of the form considered,
and since such operators are norm dense in the bosonic part of � 0, we have that ω0 is
clustering for any bosonic F and G. For F and G purely fermionic, one has ωλ

� F � � 0 �

ωλ
� G � , and the result is obtained by applying the above argument to the function h � λ �F �G � x � (

h � λ �G � F � 	 x � �'� Ω � � F � λ � � α �λx
� G � λ ��� � Ω � .

This result shows therefore that the scaling limit construction can then be applied, with-
out essential modifications, to a net of localized fields.
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Definition 3.9. Every net � π � 0 � � 0 � V� 0 � k � U� 0 � arising, as above, from a scaling limit state
ω0 � SL � , will be called a scaling limit field net over the associated scaling limit observable
net � α � 0 � U0 � Ω0 � .

The various possibilities for the structure of the scaling limit, considered for the case of
the observable net in section 2.2, arise also in the case at hand, and the analysis made there
of their different physical meanings applies as well. We remark, however, that it can happen
that different, non isomorphic scaling limit field nets are associated to the same scaling limit
observable net, or to isomorphic ones. For instance, it may happen that for two different
scaling limit states ω0 on � , the corresponding states ω0 � π � , determining - 0, coincide. In
particular, the situation can be realized in which there is a unique quantum scaling limit in
the sense of definition 2.9, but the various scaling limit field net are not isomorphic to each
other, and then describe different set of charges of the scaling limit theory. Sticking to the
general principles of the algebraic approach to quantum field theory, according to which
the theory is identified by its net of local observables, in such a case we will still talk of a
unique scaling limit.

3.2 Ultraviolet stable localizable charges

The superselection structure of a theory is described by a net of charge carrying fields with
a compact gauge group acting on it, and then it is natural to try and define a scaling limit
procedure for sectors of the underlying theory through the scaling limit field net defined in
the previous section. However, as already remarked at the beginning of this chapter, one
cannot expect that, in general, all (localizable) sectors of the underlying theory possess a
sensibile scaling limit, giving rise to corresponding (localizable) sectors of the scaling limit
theory, and this is due to the specific phase space properties of renormalization group orbits,
encoded in the (field or observable) scaling algebra: if a charge sistematically requires,
in order to be created from the vacuum in a region of diameter λ, energy of order λ  q,
with q � 1, then the fields carrying it cannot be expected to give rise to elements of the
field scaling algebra possesing a non trivial scaling limit, and the corresponding sector will
vanish in the limit, or, in more physical terms, it cannot appear in the scaling limit since its
creation would require an infinite amount of energya) . For this reason, we shall now single
out a subclass of sectors which are energetically “well behaved” in the above sense, and
then we shall apply the scaling limit procedure of the previous section to the subnet of the
canonical field net of a given theory constructed out of fields carrying such charges.

We shall then assume to be given a Poincaré covariant observable net � � � - � U � Ω �
in vacuum representation satisfying hypotesis 2.1, and such that the corresponding net of
von Neumann algebras � � & � : � - � & �  satisfies Haag duality and property B. Let then� π � ��� � V � k � U � � be the corresponding unique complete normal Poincaré covariant field
net with gauge symmetry determined by the superselection structure of � , theorem 1.13.
To simplify the notation, from now on, unless where confusion can arise, we shall drop

a)On the other hand, it may be possible that such charges give rise to some kind of non-localizable sector
in the scaling limit, since, if one insists in not spending energies bigger than λ � 1, then the charge can only be
localized in regions of diameter much bigger than λ, which in the limit become the whole space-time
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the superscripts from the action of the Poincaré and gauge groups on the various nets, un-
derlying or scaling limit ones, we shall consider, and we shall only distinguish the actions
in the scaling limit by denoting them by α0 and β0. As usual, we shall indicate by ∆ the
semigroup of transportable localized endomorphisms of � , ∆ � & � being the subsemigroup
of those localized in the double cone & , and Hρ will be the finite dimensional Hilbert space
in � � & � implementing a ρ � ∆ � & � .
Definition 3.10. A localizable covariant sector ξ of the underlying theory will be called
ultraviolet stable if for every double cone & there exists a family � ρλ � λ � 0 of covariant
transportable localized endomorphisms of � of class ξ, ρλ localized in λ & , such that for
every bounded function λ � ψ � λ � � Hρλ there holds

lim
s � e

sup
λ � � 0 � 1 �

� �
αsλ
� ψ � λ ��� 	 ψ � λ � � Ω �

� 0 � lim
s � e

sup
λ � � 0 � 1 �

� �
αsλ
� ψ � λ � + � 	 ψ � λ � + � Ω � � (3.11)

Any such function will be called a (renormalization group) quasi-orbit. By a slight abuse,
we shall also say that an endomorphism ρ � ξ is ultraviolet stable.

Remarks. (i) That these charges do not exhibit the pathological phase space behaviour
discussed above can be easily seen using methods completely analogous to those employed
in the analysis of chapter 2. For instance, a particular case of (3.11) is

lim
x � 0

sup
λ � � 0 � 1 �

� �
αλx
� ψ � λ ��� 	 ψ � λ � � Ω �

� 0 �

and, repeating the proof of lemma 3.1 in [BV95] with trivial modifications, we get that this
is equivalent to demanding that for any ε � 0, there exists a compact set ∆ " � 4 such that

sup
λ � � 0 � 1 �

� �
E � λ  1∆ � 	 � � ψ � λ � Ω �

� ε �

and then, as required, ψ � λ � Ω is (essentially) localized in a region of radius λ, and has 4-
momentum scaling as λ  1. As we consider a Poincaré covariant scaling limit, we have to
require also similar continuity with respect to Lorentz transformations, which is equivalent
to the fact that the charged states ψ � λ � Ω carry angular momentum independent of λ.

(ii) The choice of the interval � 0 � 1 � in (3.11) is clearly arbitrary, and, for what concerns
the analysis of the short distance behaviour of charges, it could have been replaced by any
interval � 0 � δ � with δ � 0. It may be too strong a requirement, however, to ask (3.11) to hold
with such interval replaced by � 0 � ( ∞ � , as it is conceivable that charges exist which cannot
be localized in a region of radius, say, λ � 1 without being localized also in a region of
radius λ � 1, and it would then be unreasonable to require that arbitrarily small energies are
needed to create such a charge in larger regions (cfr. the previous remark).

(iii) In appendix B it is shown there is at least a free field model in which all sectors are
ultraviolet stable.

We are going to show in this section that ultraviolet stable sectors survive the scaling
limit.

From field operators carrying ultraviolet stable charges we construct a field net, to which
we will then apply the scaling limit procedure, in the following way. Let � s

� & � be the
von Neumann subalgebra of � � & � , generated by π � � � � & ��� and by the Hilbert spaces
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Hρ, where the sector determined by ρ is ultraviolet stable. Then we define � � & � as the
C + -subalgebra of � s

� & � consisting of those elements F � � s
� & � such that the functions

s � αs
� F � , g � βg

� F � are norm continuous, and denote by � � the closure of � Ω. Using
the fact that Ω is separating for � � & � , it is then easy to see that � is net isomorphic with
its restriction to � � , and we will then identify the two nets.

Proposition 3.11. With the notations above � � is Poincaré and gauge invariant, and with
π � : � π � � � � � � � , U� : � U � � � � � � � , and still denoting by V the restriction to � � of the
gauge group representation, � π � � � � V � k � U� � is a Poincaré covariant, normal field net with
gauge symmetry satisfying hypotesis 3.1(i) over � - � U � Ω � .
Proof. The auxiliary net � s is Poincaré and gauge covariant: αs � π � � � � & ��� � �

π � � � � s � & ��� and αs
� Hρ � � Hαsραs � 1 and, being ρ covariant, αsραs � 1 is in its same ultravi-

olet stable sector, so that αs
� � s
� & ��� � � s

� s � & � . Similarly βg
� π � � � � & ����� � π � � � � & ���

and βg
� Hρ � � Hρ, giving βg

� � s
� & ��� � � s

� & � . It follows then immediately, using com-
mutativity of α and β, that � is also Poincaré and gauge covariant, and that � � is globally
Poincaré and gauge invariant. Normality of commutation relations is also immediate, as
� � & � "�� � & � and the action of k is the same on the two nets. That the vacuum is cyclic
for � , thought as a net over � � , and that it is the unique translation invariant vector is true
by definition, as the fact that hypotesis 3.1(i) holds. Finally as π � � - � " � , � , cyclically
generated by - on Ω, is a subspace of � � , and π � restricted to it is the vacuum representa-
tion of - , and if F � � � & � G " � � & � G then F � π � � A � , A � � � & � , but then, by the usual
argument, s � αs

� A � is norm continuous, and, by maximality, A � - � & � so that, restricting
to � � , � � & � G � π �

� - � & ��� .
Hypotesis 3.1(ii) is trivially satisfied if we assume V � λ � � V , λ � 0, which is the scaling

behaviour expected for conserved (Nöther) charges from perturbative quantum field the-
ory [IZ80, chp. 13].

Consider then the scaling field net � , and fix a scaling limit state ω0 � SL � , with
corresponding scaling limit field net � π � 0 � � 0 � V0 � k � U0 � and scaling limit observable net� � 0 � - 0 � U0 � Ω0 � . In general, a quasi-orbit λ � ψ � λ � will not be an element of � � & � ,
as (3.11) does not imply norm continuity, uniform in λ, of s � αsλ

� ψ � λ ��� . We proceed
then to a smeared quasi-orbitb)

αhψ � λ � : �

�
˜���� ds h � s � αsλ

� ψ � λ ��� � λ � 0 � (3.12)

where h � L1 � ˜
 �� � , ds denotes left Haar measure on ˜
 �� , and the integral is understood in
the weak sense.

Lemma 3.12. If λ � ψ � λ � � Hρλ is bounded, ρλ � ∆c
� λ & 1 � ultraviolet stable, and h �

Cc
� ˜
 �� � (continuous functions of compact support), then αhψ is in � � & � for any & con-

taining supp h � & 1 : � 0
s � supph s � & 1.

b)The relevance of these objects was pointed out to me by R. Verch. See also [DV], where they are called
lifted scaled multiplets.
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Proof. It is clear that αhψ � λ � is a well defined bounded operator, with�
αhψ � λ � � � �

h
�

1
�
ψ � λ � � , so that, being λ � ψ � λ � bounded, the same is true for

λ � αhψ � λ � . Let B � � s
� λ & � $ and Φ � ��� . Then

� Φ �αhψ � λ � BΦ � �

�
ds h � s � � Φ �αsλ

� ψ � λ ��� BΦ �
�

�
ds h � s � � Φ �Bαsλ

� ψ � λ ��� Φ � �'� Φ �Bαhψ � λ � Φ � �

where the one but to last equality follows from the fact that αsλ
� ψ � λ ��� � � s � λ � s � & 1 ��� , and

s � & 1 " & . Then αhψ � λ � � � s
� λ & � . With sh � t � : � h � s  1t � , we have

�
αsλ
� αhψ � λ ��� 	 αhψ � λ � � �

�
α

shψ � λ � 	 αhψ � λ � ��� �
sh 	 h

�
1
�
ψ � λ � � �

which, as left translations are continuous on L1 [Loo53] and λ � ψ � λ � is bounded, implies�
αs
� αhψ � 	 αhψ

� � 0 for s � e. Finally, let uρλ be the representation of G induced by β
on Hρλ . Then, since

βg
� αhψ � λ ��� �

�
ds h � s � αsλ � βg

� ψ � λ ��� � �

�
ds h � s � αsλ � uρλ

� g � ψ � λ � � �
we have

�
βg
� αhψ � � λ � 	 αhψ � λ � � � �

h
�

1
�
uρλ
� g � 	 1

�
B � Hρλ �

�
ψ � λ � �

�

�
h
�

1
�
uρ1
� g � 	 1

�
B � Hρ1 �

�
ψ � λ � �

the last equality holding by unitary equivalence of uρλ for different λ. Being these represen-
tations continuous, we have continuity of g � βg

� αhψ � and αhψ � � � & � .
We are going to see that actually the smearing function h can be removed in the scaling

limit. We think of the space Iδ of non-negative functions h � Cc
� ˜
 �� � such that

�
˜� �� h � 1

and e � supp h, as a net ordered by h1
�

h2 if supph1 " supp h2, and we will write h � δ
to denote limit along this net. By [Loo53, thm 31E] it follows that, for any f � L1 � ˜
 �� � ,
f / h � f and h / f � f in L1 as h � δ. We have also, for any Φ � ��� ,

�
αhψ � λ � Φ 	 ψ � λ � Φ � � �

˜� �� ds h � s � � αsλ
� ψ � λ ��� Φ 	 ψ � λ � Φ �

�
sup

s � supph

�
αsλ
� ψ � λ ��� Φ 	 ψ � λ � Φ � � (3.13)

and the analogous estimate with ψ � λ � + replacing ψ � λ � , from which, by strong continuity of

s � αs
� F � , F � � , we get αhψ � λ �

�
s� ψ � λ � for any fixed λ � 0. Also note that, since ˜
 �� is

a Lie group, and hence in particular a metric space, there exist sequences � hn � n � � which are
subnets of this net, since it is sufficient to take supp hn " 	

n, with � 	 n � n � � a monotonically
decreasing basis of neighbourhoods of e in ˜
 �� . We will write hn � δ in this case.

Lemma 3.13. With the notations above, there exists the *strong limit

ψ0 : � + s–lim
h � δ

π0 � αhψ � � � 0 � & �  
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Proof. As there exist sequences � hn � n � � such that hn � δ, Ω0 is separating for � 0 � & �  and
the norms

�
π0 � αhψ � � are uniformly bounded for h � Iδ, it is sufficient to show that for any

ε � 0 there exists hε � Iδ such that for any h � g �
hε,

�
π0 � αhψ � Ω0 	 π0 � αgψ � Ω0

�
� ε � �

π0 � αhψ � + Ω0 	 π0 � αgψ � + Ω0
�
� ε �

Clearly, it is enough to prove the first inequality, the second one being proven in a
completely analogus way. For any λ � � 0 � 1 � we have, using

�
˜� �� h �

�
˜� �� g � 1,

� �
αhψ � λ � 	 αgψ � λ � � Ω � �

� �
˜� �� ds h � s � � �αsλ

� ψ � λ ��� 	 ψ � λ � � Ω � (
�

˜� �� ds g � s � � �αsλ
� ψ � λ ��� 	 ψ � λ � � Ω �

�
sup

s � supph
sup

λ � � 0 � 1 �
� �

αsλ
� ψ � λ ��� 	 ψ � λ � � Ω � ( sup

s � suppg
sup

λ � � 0 � 1 �
� �

αsλ
� ψ � λ ��� 	 ψ � λ � � Ω � �

and then, for a suitable sequence � λk � k � � converging to zero,

�
π0 � αhψ � Ω0 	 π0 � αgψ � Ω0

�
� lim

k � � ∞

� �
αhψ � λk � 	 αgψ � λk � � Ω �

�
sup

s � supph
sup

λ � � 0 � 1 �
� �

αsλ
� ψ � λ ��� 	 ψ � λ � � Ω � ( sup

s � supp g
sup

λ � � 0 � 1 �
� �

αsλ
� ψ � λ ��� 	 ψ � λ � � Ω � �

and since, thanks to (3.11), we can find a neighbourhood
	

ε of the identity in ˜
 �� such
that supλ � � 0 � 1 �

� �
αsλ
� ψ � λ ��� 	 ψ � λ � � Ω �

� ε
2 for any s � 	

ε, we conclude by taking supphε "	
ε.

We shall use the notations �
0
� & � : � - 0

� & �  , � 0 � & � : � � 0 � & �  and π � 0 : � π � 0

will be the extension of π � 0 to �
0 given by lemma 3.3. It is easy to verify that� π � 0 ��� 0 � V0 � k � U0 � is still a Poincaré covariant normal field net over � � 0 � � 0 � U0 � Ω0 � : the

only thing that really needs a check is that � 0 � & � G " π � 0
� �

0
� & ��� (the reverse inclusion

being trivial); let F �
� 0 � & � G and � Fι � ι � I be a norm bounded net in � 0 � & � converging
strongly to F , which exists by Kaplanski theorem. Then by

�
m � Fι � Ω0 	 FΩ0

�
�

���
�

G
dg β0

g
� Fι 	 F � Ω0

��� � � � Fι 	 F � Ω0
� �

m � Fι � � π � 0
� - 0
� & ��� , being bounded, converges strongly to F , and then F � π � 0

� �
0
� & ��� .

Theorem 3.14. Let ξ be an ultraviolet stable covariant sector. For any double cone & there
is a finite dimensional Hilbert space Hρ in � 0 � & � of support � carrying a G representation
of class ξ, and implementing a transportable irreducible endomorphism ρ of � 0 localized
in & , which is covariant with positive energy.

Proof. Fix a double cone & 1 whose closure is contained in & , let ρλ � ∆c
� λ & 1 � , λ � 0, be

as in definition 3.10, and choose, for each λ � 0, an orthonormal basis ψ j
� λ � , j � 1 ������� � d : �

d � ξ � , of Hρλ , transforming under a fixed, λ-independent, irreducible matrix representation
uξ of G of class ξ,

ψ j
� λ � + ψi

� λ � � δ ji
� �

d

∑
j � 1

ψ j
� λ � ψ j

� λ � + � � � βg
� ψ j
� λ ��� �

d

∑
i � 1

uξ
� g � i jψi

� λ �
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(e.g., it could be ψ j
� λ � � π � � Vλ � ψ � 1 � , for a unitary Vλ � � ρλ : ρ1 � ). If ψ0

j is as in
lemma 3.13, we show that ψ0

j , j � 1 �������
� d is a multiplet of class ξ of orthogonal isome-
tries of support � in � 0 � & � (and then in particular ψ0

j is not a multiple of � ). To this end, it
is clearly sufficient, by cyclicity of the vacuum for � 0 � & $ � , to show that, for any F � � � & $ � ,

ω0
� π0 � F � ψ0 +j ψ0

i � � δ jiω0
� π0 � F ��� � (3.14)

d

∑
j � 1

ω0
� π0 � F � ψ0

j ψ
0 +j � � ω0

� π0 � F ��� � (3.15)

We begin by proving (3.14). We can assume that F is a bosonic element, for if it is
fermionic, since ψ0

j has a defined Bose-Fermi parity (it has the same parity as ψ j
� λ � , and

then as ξ, as is easily verified), and ω0 is even, both sides of (3.14) are zero, and the equality
is trivially satisfied. Then we have, for hn � δ, and for sufficiently big n, using normal
commutation relations,

�
� � Ω �

� F � λ � αhn
ψ + j � λ � αhn

ψi
� λ � Ω � 	 δ ji

� Ω �F � λ � Ω �
�
�

�

�
�
�

�
˜� �� ds

�
˜� �� dt hn

� s � hn
� t �

� � Ω �
� αsλ
� ψ j
� λ � + � F � λ � αtλ

� ψi
� λ ��� Ω �

	 � Ω �
� ψ j
� λ � + F � λ � ψi

� λ � Ω � � �
�
�

�
sup

s � t � supphn

�
� � αsλ

� ψ j
� λ ��� Ω

�
� F � λ � αtλ

� ψi
� λ ��� Ω � 	 � ψ j

� λ � Ω
�
� F � λ � ψi

� λ � Ω � �
�

� �
F
�

sup
s � supp hn

sup
λ � � 0 � 1 �

� �
αsλ
� ψi
� λ ��� Ω 	 ψi

� λ � Ω � ( �
αsλ
� ψ j
� λ ��� Ω 	 ψ j

� λ � Ω ��� �

so that, in view of (3.11), if � λι � ι � I is a net such that ωλι
� ω0, the limit

lim
n � � ∞ � Ω �

� F � λι � αhn
ψ + j � λι � αhn

ψi
� λι � Ω � � δ ji

� Ω �F � λι � Ω � �

following from αhn
ψ j
� λι �

�
s� ψ j

� λι � , is uniform in ι, and then it is possible to interchange
the limits and get

ω0
� π0
� F � ψ0 +j ψ0

i � � lim
n � � ∞

lim
ι � I

� Ω �
� F � λι � αhn

ψ + j � λι � αhn
ψi
� λι � Ω �

� lim
ι � I

lim
n � � ∞ � Ω �

� F � λι � αhn
ψ + j � λι � αhn

ψi
� λι � Ω �

� lim
ι � I

δ ji
� Ω �F � λι � Ω � � δ jiω0

� π0
� F ��� �

The proof of (3.15) is completely analogous.
Then the linear span of ψ0

j , j � 1 ������� � d is a d-dimensional Hilbert space Hρ of support
� in � 0 � & � , and by

β0
g
� ψ0

j � � + s–lim
n � � ∞

π0 � βg
� αhn

ψ j � � � + s–lim
n � � ∞

d

∑
i � 1

uξ
� g � i jπ0 � αhn

ψi � �

d

∑
i � 1

uξ
� g � i jψ0

i �

it carries a unitary representation of G of class ξ. The endomorphism ρ of � 0 implemented
by Hρ is given, as usual, by

π � 0ρ � A � �

d

∑
j � 1

ψ0
j π � 0

� A � ψ0 +j � A � �
0
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which is well defined, since the left hand side is gauge invariant (ψ0 +j transforms with uξ)
and π � 0 is an isomorphism. Clearly ρ is localized in & . If

�
is another double cone, let

Hσ " � 0 � � � and σ � End � � 0 � be constructed as Hρ and ρ above, and ϕ0
j , j � 1 �������
� d, be

an orthonormal basis of Hσ. Then the operator W � �
0 defined by π � 0

�W � � ∑d
j � 1 ϕ0

jψ0 +j
is isometric,

π � 0
�W + W � �

1 � d
∑
i � j

ψ0
i ϕ0 +i ϕ0

jψ
0 +j �

d

∑
j � 1

ψ0
j ψ

0 +j � � �

and hence, interchanging the roles of the ψ0
j ’s and ϕ0

j ’s, unitary, and it intertwines ρ and σ

π � 0
�W ρ � A � W + � �

1 � d
∑
i � j � k

ϕ0
i ψ0 +i ψ0

j π � 0
� A � ψ0 +j ψ0

kϕ0 +k

�

d

∑
j � 1

ϕ0
jπ � 0

� A � ϕ0 +j � π � 0 σ � A � �

so that ρ is transportable. Covariance of ρ is proved as follows. Define Wρ
� s � � � 0, s � ˜
 �� ,

by π � 0
�Wρ
� s ��� � ∑d

j � 1 α0
s
� ψ0

j � ψ0 +j ; then since, as is easily seen, α0
s
� Hρ � is a Hilbert space

implementing α0
s ρα0

s � 1 , Wρ
� s � � � ρ : α0

s ρα0
s � 1 � is unitary, as above. Furthermore, Wρ is a

strongly continuous α0-cocycle:

π � 0 � α0
s1 � Wρ

� s2 � � Wρ
� s1 � � � α0

s1

� d

∑
j � 1

α0
s2
� ψ0

j � ψ0 +j � d

∑
i � 1

α0
s1
� ψ0

i � ψ0 +i

�

d

∑
i � 1

α0
s1

� d

∑
j � 1

α0
s2
� ψ0

j � ψ0 +j ψ0
i � ψ0 +i

�

d

∑
i � 1

α0
s1s2
� ψ0

i � ψ0 +i � π � 0
�Wρ
� s1s2 ��� �

Define then Uρ
� s � : � Wρ

� s � + U0
� s � . That Uρ is a strongly continuous representation of ˜
 ��

follows easily from strong continuity and the cocycle property of Wρ, while the intertwining
property of Wρ implies

Uρ
� s � ρ � A � Uρ

� s � + � Wρ
� s � + α0

s ρ � A � Wρ
� s � � ρα0

s
� A � �

and ρ is covariant. Finally translations x � Uρ
� x � satisfy the spectrum condition thanks to

Uρ
� x � � Wρ

� x � + U0
� x � �

d

∑
j � 1

ψ0
jU0
� x � ψ0 +j � � 0 �

It remains only to show that ρ is irreducible. We adapt standard arguments
from [DHR69a, section 3]. These imply that, thanks to norm and σ-weak continuity of m,
from π � 0

� �
0
� & ��� � m � � 0 � & ��� � � 0 � & � ) V0

� G � $ it follows π � 0
� �

0 �  � � 0  ) V0
� G � $

� V0
� G � $ , where the last equality uses irreducibility of � 0, theorem 3.7. Consider now the

closed subspace � ξ of � 0 generated by the vectors ψ0 +j Φ, j � 1 ������� � d, Φ � � 0. This

subspace is isomorphic to � d � � 0, for

� ψ0 +j Φ1 �ψ0 +i Φ2 � � � Φ1 � β0
g
� ψ0

j ψ
0 +i � Φ2 � �

1 � d
∑
h � k

uξ
� g � jk

� ψ0 +k Φ1 �ψ0 +h Φ2 � uξ
� g � hi
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implies, by irreducibility of uξ and Schur’s lemma, � ψ0 +j Φ1 �ψ0 +i Φ2 � �
δ ji

d
� Φ1 �Φ2 � , so that

the above isomorphism is defined by sending ψ0 +j Φ � � ξ to e j�
d � Φ � � d � � 0, e j,

j � 1 ������� � d, being the canonical basis. We have also V0
� g � � � ξ

�
� uξ

� g � � ���
0 , i.e. uξ

is a subrepresentation of V0 with multiplicity at least dim � 0, and let then Eξ be the central
support, in V0

� G � $ $ , of the projector on the subspace of one of the subrepresentations uξ
of V0. As in [DHR69a], from π � 0

� �
0 � $ $ � V0

� G � $ we have V0
� g � � Eξ � 0 �� uξ

� g � � � ���
ξ
,

π � 0
� A � � Eξ � 0 �� ���

d � πξ
� A � , for some multiplicity space � $

ξ
containing � 0 as a sub-

space and carrying an irreducibile representation πξ of � 0. But for Φ � � 0,

e j�
d

� πξ
� A � Φ �

� π � 0
� A � ψ0 +j Φ � ψ0 +j ρ � A � Φ �

�

e j�
d

� ρ � A � Φ �

and ρ is a subrepresentation of πξ, but this last one is irreducible, so that it coincides with
ρ, which is irreducible as well.

From the proof of the above theorem, we see that the unitary equivalence class of the
endomorphism ρ depends only on the considered sector ξ, and not on the choices made, as,
e.g., the family ρλ of endomorphisms of � . We have then a well defined mapping from
ultraviolet stable sectors to sectors in the scaling limit theory fixed by the chosen scaling
limit state ω0 � SL � , and, as discussed at the beginning of this chapter, it is then natural
to regard as non-confined the sectors of the scaling limit theory which are obtained in this
way. We obtain thus, for a theory having only localizable sectors, an intrinsic notion of
confinement, by declaring a sector of the scaling limit theory confined if it is not in the
range of the map just defined.

3.3 Ultraviolet stable topological charges

According to the understanding gained through the perturbatrive treatment of quantum field
models, the main class of theories which are expected to exhibit the confinement phe-
nomenon, at least in certain regimes, is the class of asymptotically free theories, for which
the coupling constant is seen to raise with energy in the perturbative region. Therefore a con-
finement criterion, in order to be really useful as mean to decide if a given model describes
confined charges or not, has to encompass this kind of theories. On the other hand, as was
discussed in section 1.2.2, the charges described by non abelian gauge theories, which are
the only ones that can be asymptotically free, will not in general be localizable in bounded
spacelike regions. Rather, if these theories are purely massive (which is expected to be the
case precisely if the massless coloured glouns are confined) such charges can be localized
in spacelike cones. Because of these facts, a confinement criterion based on a notion of
stability of localizable charges as the one established in the previous section, is certainly
not suitable for application to these theories: it can well be that some charge, which is cone-
like localizable at finite scales, becomes finitely localizable in the scaling limit (and this is
exactly what is expected to happen, see below). Thus one should not be allowed to call
confined such a charge, but this is what the mentioned criterion would suggest, since this
charge could not be created by localizable field operator at finite scales. We see then that,
in order to have a sufficiently general confinement criterion, a notion of ultraviolet stability
is needed for cone-like localizable charges as well.
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A moment’s thought shows, however, that one cannot trivially generalize the construc-
tions of the previous section, since those where based essentially on the phase space proper-
ties of renormalization group orbits of field operators, and in particular on the requirement
that the considered charged states occupy a fixed volume of phase space in the limit of small
scales. Thus, since spacelike cones have infinite volume, and, what’s worse, are invariant
under scaling trasformations (at least the ones with apex at the origin), it is not immedi-
ately clear how to implement the above mentioned phase space requirements on orbits of
cone-like localizable fields. In this respect, the key observation that allows to generalize, at
least to a certain extent, the previous discussion, is the following one: what emerges from
the analysis of models, in particular in the lattice approximation (cfr., for instance, [FM83]
and reference quoted there), is that, at least in asymptotically free theories, the Mandelstam
string attached to a gauge charges becomes weaker and weaker at smaller scales, leaving a
compactly localizable charge in the scaling limit. Then, a notion of phase space occupation
can be recovered, at least in an asymptotic sense.

In the following, we will therefore consider a class of topological sectors whose be-
haviour at small scales is, in a sense that we will make precise, of the kind just discussed,
and we will show that these sectors give rise, in a natural way, to a net of localizable fields
in the scaling limit. At the present stage of our work, we are then able to prove that this net
induces localizable charges of the scaling limit theory - 0 only if a technical assumption,
which will be discussed below, is added. Work is in progress, however, to extend this result
to the general setting.

As in the previous section, we consider a Poincaré covariant observable net� �5� - � U � Ω � , satisfying hypotesis 2.1 and such that the associated net of von Neu-
mann algebras � satisfies (1.11) and property B’. Correspondingly, we consider the
unique complete normal Poincaré covariant extended field system with gauge symmetry� π � ��� � V � k � U � � determined by the cone-like localizable sectors of � , theorem 1.14. We
will also make essential use of the assumption that the field net � satisfies the condition of
geometric modular action,c) where, as usual, for every wedge � , � � � � is the C + -algebra
generated by � � � � , � � � . That the vacuum Ω is cyclic and separating for � � � �  , so
that this last assumption is meaningful, comes as usual from the Reeh-Schlieder theorem,
thanks to irreducibility of 
 x ��� 4 � � � ( x � , and from locality. The notations introduced in
section 1.3 will be employed throughout.

We will say that a bounded function λ � � �� � F � λ � � � is asymptotically localized
in a bounded open region & if

lim
λ � 0

sup
A � � � 2 � � 1

� �
F � λ � � π � � A � λ ��� � � � 0 � (3.16)

Definition 3.15. A covariant sector ξ of the underlying theory will be called ultraviolet
stable if
(i) for every spacelike cone

�
and every double cone & � � there exists a family

ρλ � ∆c
� λ � � , ρλ of class ξ, λ � 0, such that every bounded function λ � ψ � λ � � Hρλ

c)It is clear how to adapt definition 2.12 to the present context, but actually we will only make use of the
adaptation of relation (2.26), in which the lift of Λ � 1 � � to ˜���� (which exists, cfr. [BW76]) appears.
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is asymptotically localized in & and

lim
s � e

sup
λ � � 0 � 1 �

� �
αsλ
� ψ � λ ��� 	 ψ � λ � � Ω �

� 0 � lim
s � e

sup
λ � � 0 � 1 �

� �
αsλ
� ψ � λ � + � 	 ψ � λ � + � Ω �

;

(ii) for every choice of
�

, & and λ � ψ � λ � � Hρλ as in (i), and for every other spacelike
cone ˜� containing & there is a choice of σλ � ∆c

� λ ˜� � of class ξ as in (i) and a quasi
orbit λ � ϕ � λ � � Hσλ asymptotically localized in & such that

lim
λ � 0

� �
ψ � λ � 	 ϕ � λ � � Ω �

� 0 � (3.17)

We will say that any function λ � ψ � λ � � Hρλ as in (i) is a renormalization group topologi-
cal quasi-orbit localized in

�
and asymptotically localized in & .

Some remarks about this definition are in order. Condition (i) expresses two require-
ments on the considered class of sectors. The first is a formalization of the physical be-
havoiur of the gauge strings in the scaling limit pointed out before: if the string becomes
weak at small scales, its effect on measurements performed in the spacelike complement of
a bounded region roughly around the tip of the cone should vanish in the limit, so that field
operators carrying such charges should asymptotically commute with observables localized
in the part of the cone outside some bounded region. These charges can then be associated,
in this weak sense, to a family of bounded region shrinking to a point. The second require-
ment is then the phase space condition on the states created by the selected fields, which
is familiar from the discussion in the previous section. For what concerns condition (ii),
it formalizes the fact that the direction in which the string emanates is irrelevant, and then
that for any choice of an orbit of fields with strings in a fixed direction, one can find an
equivalent orbit with its string in any other fixed direction, such that the two create form the
vacuum the same state in the scaling limit.

We note that if λ � ψ � λ � is asymptotically localized in & 1 and if h � L1 � ˜
 �� � has
compact support, so that supp h � & 1 is bounded, we have, for & �

supph � & 1 and for any
A � - � & $ � 1,

� �
αhψ � λ � � π � � A � λ ��� � � �

�
˜���� ds � h � s � � � �ψ � λ � � π � � αs � 1

� A � � λ ��� � �
� �

h
�

1 sup
B � � � 2 �1 � 1

� �
ψ � λ � � π � � B � λ ��� � � �

so that αhψ is asymptotically localized in & , and if ψ � λ � � � � λ � 1 � for some spacelike
cone

�
1 containing & 1, supp h may be chosen so small that there is a spacelike cone

� � &
such that αhψ � λ � � � � λ � � , proposition A.6 in appendix A. Furthermore it is immediate
that if (3.17) is satisfied, then for any h � L1 � ˜
 �� � ,

lim
λ � 0

� �
αhψ � λ � 	 αhϕ � λ � � Ω �

� 0 �
Analogously to section 3.1, we can consider on the C + -algebra B � � �� ��� � of bounded

functions of
� �� in � , and automorphic actions α and β of ˜
 �� and G respectively, de-

fined as in (3.3), where we again assume β � λ � � β for each λ � 0. Furthermore we get an
homomorphism π ˜� : - � B � � �� ��� � by π ˜�

� A � � λ � : � π � � A � λ ��� , A � - , λ � 0. Then we
start by considering an auxiliary scaling algebra of conelike localized fields, associated to
ultraviolet stable charges.
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Definition 3.16. The extended field scaling algebra associated to the spacelike cone
�

is
the C + -subalgebra ˜� � � � of B � � �� ��� � generated by the algebras π ˜�

� - � & ��� with & � � and
by all the functions αhψ such that

(i) λ � ψ � λ � is a topological quasi-orbit localized in some
�

1 and asymptotically local-
ized in a & 1

� �
1, associated to some ultraviolet stable sector ξ of � ;

(ii) h � L1 � ˜
 �� � ;
(iii) αhψ � λ � � � � λ � � for each λ � 0 and αhψ is asymptotically localized in some & � � .
Every αhψ satisfying conditions (i)-(iii) will be called a (topological) lifted quasi-orbit
localized in

�
and asymptotically localized in & .

Proposition 3.17. The actions α and β of ˜
 �� and G restrict to 0 � ˜� � � � , and � ˜� � β � k � α � is
a normal, Poincaré covariant extended field net, such that for any F � ˜� � � � , the functions
s � αs

� F � , g � βg
� F � are norm continuous.

Proof. It’s an easy verification. As usual αsπ ˜�
� π ˜� αη � s � , so that αs

� π ˜�
� - � & ����� �

π ˜�
� - � s � & ��� , and, if αhψ is a lifted quasi-orbit localized in

�
, αs

� αhψ � � α
shψ is a

lifted quasi-orbit localized in s � � , so that αs
� ˜� � � ��� � ˜� � s � � � , s � ˜
 �� . Likewise,

βg
� αhψ � � αhψg, where ψg

� λ � : � uρλ
� g � ψ � λ � � Hρλ is still a topological quasi-orbit,

and βg
� αhψ � λ ��� � � � λ � � , � �

βg
� αhψ � λ ��� � π � � A � λ ��� � � �

� �
αhψ � λ � � π � � A � λ ��� � � , so that

βg
� αhψ � is a lifted quasi-orbit localized in

�
and βg

� ˜� � � ��� � ˜� � � � . Furthermore, the
arguments in the proof of lemma 3.12 apply here as well to show that s � αs

� αhψ � ,
g � βg

� αhψ � are norm continuous functions, and then this extends to any F � ˜� � � � . It
remains to show that normal commutation relations hold. To this end, let ˜� � � � 0 denote the
dense / -subalgebra of ˜� � � � generated by π ˜�

� - � & ��� , & � � , and by lifted quasi-orbits lo-

calized in
�

. It is immediate to verify that ˜� � � � � is the norm closure of ˜� � � � 0 � � (grading
defined by γ), and it is then sufficient to show that normal commutation relations hold for� � ˜� � � � 0. Since all generators have a definite parity (elements of π ˜�

� - � & ��� are bosonic,

and αhψ and its adjoint have the same parity as the associated sector), all elements of ˜� � � � 0
are finite sums of monomials in the generators, each of which has a definite parity, the prod-
uct of the parities of the factors, and furthermore any F � ˜� � � � 0 � � can be written as a sum
of monomials with the same parity as F itself, for if F � ∑i Mi, γ � Mi � � � 	 1 � σi Mi, then
also

F �
1
2 � F � γ � F ��� � ∑

i

1
2
� 1 � � 	 1 � σi � Mi

� ∑
i : �  1 � σi � � 1

Mi �

In order to conclude it is then sufficient to show that any two such monomials M i � ˜� � � i � ,
i � 1 � 2 with

�
1 and

�
2 spacelike separated, obey normal commutation relations, M1M2

�

� 	 1 � σ1σ2M2M1, but this is easily established by direct computation of the required permu-
tations of generators.

Remark. In general, it is not true that ˜� � � � G coincides with the C + -algebra generated by
π ˜�
� - � & ��� , & � � . We will comment later on a possible physical interpretation of this fact.

We now consider the lift � ωλ � λ � 0 of the vacuum state ω to the C + -algebra ˜� generated by
all the ˜� � � � , and denote as usual by SL � the set of its weak* limit points. As in section 3.1,
we have SL � � π ˜�

� SL � . Let then � π0 ��� 0 � Ω0 � be the GNS representation determined by

a fixed scaling limit state ω0 � SL � , and define ˜� 0 � � � : � π0 � ˜� � � ��� for any spacelike cone
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�
. As usual, by Poincaré and gauge invariance of ω0 we get unitary strongly continuous

representations U0, V0 of ˜
 �� and G on � 0. Then, the relevant parts of the proof of the-
orem 3.7 can be easily adapted to the present context to show that � ˜� 0 � V0 � k � U0 � Ω0 � is a
Poincaré covariant, normal extended field net with gauge symmetry. In particular, Poincaré
invariance of Ω0 and the spectrum condition are satisfied, though in general Ω0 is not the
only translation invariant unit vector, i.e. ˜� 0 need not be irreducible. For a given wedge
� , we will denote by ˜� � � � , ˜� 0 � � � the C + -algebras generated by the respective algebras
˜� � � � , ˜� 0 � � � , with

� � � . It is evident that ˜� 0 � � � � π0 � ˜� � � ��� .
The following weak version of the Reeh-Schlieder theorem, which uses in an essential

way analyticity of both translations and Lorentz boosts, consequence of geometric modular
action and Tomita-Takesaki theory, will be central in the following. Similar results can be
found in [BB99, DSW86].

Theorem 3.18. The vacuum Ω0 is a cyclic and separating vector for the algebras ˜� 0 � � �  .

We need some preparations before proving the theorem. We recall that we denote by
Λ � � t � � 
 �� , t � � , the one parameter group of Poincaré transformations leaving the wedge
� invariant, Λ � � t � � sΛ �

1 � � � t � s  1 if � � s � � 1 � � . By abuse of notation, we will identify

Λ � � t � with its unique smooth lift to ˜
 �� which is the identity for t � 0. Also, we will

identify Λ � SL � 2 ��� � with � Λ � 0 � � ˜
 �� .

Lemma 3.19. Let U0 be a strongly continuous unitary representation of ˜
 �� , and
	 " ˜
 ��

an open neighbourhood of the identity. Then U0
� ˜
 �� � is the strong closure of the group U

�

generated by the elements U0
� sΛ � � t � s  1 � , t � � , s � 	

.

Proof. Thanks to Poincaré invariance of the problem, we can assume that � � � 1 � � .
Also, we can assume that

	
�

	
1 �

	
2 " SL � 2 ��� � � � 4 is a rectangular open neigh-

bourhood of the identity. Then by [BB99, lemma 2.1] U0
� SL � 2 ��� ��� is the strong closure

of the subgroup of U
�

generated by U0
� ΛΛ �

1 � � � t � Λ  1 � , t � � , Λ � 	
1,d) so that, since

U0
� Λ � x � � U0

� x � U0
� Λ � , Λ � SL � 2 ��� � , x � � 4 , it is sufficient to show that U0

� x � � U
 �

. Fur-
thermore, as U0

��� Λ � x � Λ �
1 � � � t � � Λ � x �  1 � U0

� ΛΛ �
1 � � � t � Λ  1 � + � U0

� Λ ��� 	 Λ �
1 � � � t ��� Λ  1x � ,

and U0
� x � � U0

� x � n � n, x � � 4 , n � � , we reduce the problem to showing that the set
�

: � � ∑i Λi
��� 	 Λ �

1 � � � ti ��� Λ  1
i xi : � Λi � xi � � 	 � ti � � � is a neighbourhood of zero in

� 4 .
Then with eµ, µ � 0 ������� � 3 the canonical basis of

� 4 and e � : � e1 � e0, ��� 	 Λ �
1 � � � t ��� e � �

� 1 	 e � t � e � so that there is an ε � 0 such that se � � �
for � s � � ε. Also, if Rϕ denotes the

rotation around the e3 axis of an angle ϕ, and ξ : � � 1 	 et � Rϕe  ( � 1 	 e  t � Rϕe � , then

Rϕ
��� 	 Λ �

1 � � � t ��� R  1
ϕ ξ � 4 � 1 	 cosh t � � cos ϕe1 	 sinϕe2 � �

so that, for u � � ,

Rϕ
��� 	 Λ �

1 � � � t ��� R  1
ϕ
� uξ � ( R  ϕ

��� 	 Λ �
1 � � � t ��� R  1 ϕ

� 	 uξ � � 	 8u � 1 	 cosh t � sin ϕe2

and then, since � Rϕ � uξ � � 	
for � u � , �ϕ � sufficiently small, se2 � �

for � s � � ε. Anal-
ogously we show that se3 � �

, � s � � ε, and since � e � � e  � e2 � e3 � is a basis of
� 4 ,� ∑α � � � 2 � 3 sαeα : � sα � � ε � is a neighbourhood of 0 contained in

�
.

d)the cited results refers actually to representations of SO
� � 1 � 3 � , but since the proof uses only properties of

its Lie algebra, it can be also applied to the present case
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Lemma 3.20. The state ω0
� � Ω0 � � � � Ω0 � is a 2π-KMS state for the C + -dynamical system� ˜� 0 � � � � α0

Λ � � .
Proof. As above, we may assume � � � 1 � � . By geometric modular action and Tomita-
Takesaki theory, the underlying vacuum state ω is 2π-KMS for the C + -dynamical system� � � � � � αΛ � � . This implies that any of the scaled vacuum states ωλ , λ � 0, is 2π-KMS for� ˜� � � � � αΛ � � : for F � G � ˜� � � � let Fλ

� t � : � ωλ
� FαΛ � � t � � G ��� � ω � F � λ � αΛ � � t � � G � λ ��� � ,

t � � , then, being F � λ � � G � λ � � � � � � , Fλ is analytic in the open strip � 0 � Im z � 2π � and
continuous and bounded in the closed strip, and Fλ

� t ( 2πi � � ω � αΛ � � t � � G � λ ��� F � λ ��� �

ωλ
� αΛ � � t � � G � F � , so that ωλ is KMS. Then being the set of KMS states *weakly

closed [BR79b, thm. 5.3.30], ω0 is 2π-KMS for � ˜� � � � � αΛ � � , and finally, consider-
ing the function F0

� t � : � ω0 � π0 � F � α0
Λ � � t � � π0 � G ����� � ω0

� FαΛ � � t � � G ��� , we conclude the
proof.

For any two spacetime regions
�

1,
�

2, we will use the notation
�

1 �
�

2 to mean
that there exists a neighbourhood

	
of the identity in 
 �� such that

	 � � 1 " � 2. For
any finite set of spacelike cones

�
1 �������
� � n, we introduce the C + -algebra ˜� 0 � �

1 �������
� � n �
as the one generated by the algebras ˜� 0 � �

1 � ������� � ˜� 0 � �
n � . We also define � 0 � �

1 �������
� � n �
to be the set of operators G � ˜� 0 � �

1 �������
� � n � for which there exists a neighbourhood
	

of the identity in ˜
 �� such that α0
s
� G � � ˜� 0 � �

1 �������
� � n � for any s � 	
. It is clear that

� 0 � �
1 �������
� � n � is a / -algebra and that for any n-tuple ˜� 1 �������
� ˜� n with ˜� i �

�
i, i � 1 ������� � n,

˜� 0 � ˜� 1 ������� � ˜� n � "�� 0 � �
1 �������
� � n � .

Lemma 3.21. Let � be a wedge in Minkowski space and let
�

i � � , i � 1 ������� � n be
spacelike cones. If Φ � � � 0 � �

1 �������
� � n � Ω0 �
�

, then

� Φ �α0
s1
� G1 � ����� α0

sm
� Gm � Ω0 � � 0 (3.18)

for any si � ˜
 �� , Gi ��� 0 � �
1 ������� � � n � , i � 1 ������� � m.

Proof. We begin by showing that Φ � � � 0 � �
1 ������� � � n � Ω0 � � implies U0

� s � Φ �� � 0 � �
1 �������
� � n � Ω0 �

�
for any s � ˜
 �� . Let

	
be a neighbourhood of the identity in ˜
 ��

such that
	  1 � � i

� � , i � 1 �������
� n, and let G ��� 0 � �
1 �������
� � n � . Then G � ˜� 0 � s � � �

for any s � 	
. By continuity of t � sΛ � � t � s  1 there exists ε � 0, depending on s � 	

,
such that α0

sΛ � � t � s � 1
� G � ��� 0 � �

1 ������� � � n � for � t � � ε, and then � Φ �α0
sΛ � � t � s � 1

� G � Ω0 � � 0 for

� t � � ε. But sΛ � � t � s  1 � Λs
� � t � , and the fact that ω0

�'� Ω0 � � � � Ω0 � is a 2π-KMS state for� ˜� 0 � s � � � � α0
Λs
� � implies that [KR86]

α0
Λs
� � t � � G � Ω0

� σω0 t 	 2π
� G � Ω0

� ∆
 it

2π
ω0 GΩ0 �

where ∆ω0 is the modular operator associated by Tomita-Takesaki theory to the restriction
of ˜� 0 � s � � �  to the cyclic subspace generated by its action on Ω0. From this last equation
it follows that t � α0

sΛ � � t � s � 1
� G � Ω0 has an analytic continuation to a function on the strip

� 0 � Imz � π � , and then

� U0
� sΛ � � t � s  1 � Φ �GΩ0 � �'� Φ �α0

sΛ � �  t � s � 1
� G � Ω0 � � 0 � t � � � s � 	 �
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i.e. U0
� sΛ � � t � s  1 � Φ � � � 0 � �

1 �������
� � n � Ω0 � � for any t � � , s � 	
. Then, iterating the

argument,

U0
� s1Λ � � t1 � s  1

1 � ����� U0
� smΛ � � tm � s  1

m � Φ � � � 0 � �
1 ������� � � n � Ω0 �

�

for every choice of si � 	
, ti � � , i � 1 ������� � m, and since, by lemma 3.19, U0

� s � Φ,
s � ˜
 �� , is a limit of vectors as the one in the left hand side of the last equation and� � 0 � �

1 �������
� � n � Ω0 � � is closed, U0
� s � Φ � � � 0 � �

1 ������� � � n � Ω0 � � .
If we now show that, for any Gi � � 0 � �

1 �������
� � n � , si � ˜
 �� , i � 1 ������� � m,
α0

s1
� G1 � ����� α0

sm
� Gm � Φ � � � 0 � �

1 ������� � � n � Ω0 �
�

, since � 0 � �
1 �������
� � n � is a / -algebra con-

taining the identity operator, the conclusion of the lemma will follow. We prove this
by induction on m. For m � 1 we have, by what we have just seen and by the fact
that � 0 � �

1 �������
� � n � is a / -algebra, G1U0
� s1 � + Φ � � � 0 � �

1 ������� � � n � Ω0 � � and then, ap-
plying again the first part of the proof, α0

s1
� G1 � Φ � � � 0 � �

1 �������
� � n � Ω0 �
�

. Then, if
α0

s2
� G1 � ����� α0

sm
� Gm � Φ � � � 0 � �

1 ������� � � n � Ω0 � � the argument just made leads to the conclu-
sion.

Proof of theorem 3.18. It is sufficient to show that Ω0 is cyclic for ˜� 0 � � � , i.e.� ˜� 0 � � � Ω0 �
�

�1� 0 � : if this is true, the fact that Ω0 is separating for ˜� 0 � � �  follows from
the fact that the interior of �%$ is again a wedge and by normal commutation relations, as in
the usual Reeh-Schlieder theorem. Let then Φ � � ˜� 0 � � � Ω0 �

�
and Fi � ˜� 0 � ˜�

i � , i � 1 ������� � n,
be arbitrary operators. For any i � 1 ������� � n there exists si � ˜
 �� and a spacelike cone

�
i

such that s
 1
i � ˜�

i �
�

i � � . Then α0
s
� 1
i

� Fi � � ˜� 0 � s  1
i � ˜�

i � " � 0 � �
1 ������� � � n � and, being

� ˜� 0 � � � Ω0 � � " � � 0 � �
1 ������� � � n � Ω0 � � ,

� Φ �F1 ����� FnΩ0 � �'� Φ �α0
s1
� α0

s
� 1
1

� F1 ��� ����� α0
sn
� α0

s
� 1
n

� Fn ��� Ω0 � � 0

by lemma 3.21, thus Φ is orthogonal to a total set of vectors in � 0, and then vanishes.

We now introduce a new net of C + -algebras on the scaling limit Hilbert space � 0,
which will be associated to bounded regions instead of cones, and which we are willing to
regard as the “true” field net determined by the scaling limit of ultraviolet stable topological
charges.

Definition 3.22. The localized scaling limit field algebra associated to the double cone
& � � 4 is the C + -algebra � 0

� & � generated by π0 � π �
� - � & ��� and by all elements π0 � αhψ �

such that αhψ is a lifted quasi-orbit aysmptotically localized in & and localized in some
spacelike cone

� � & .

At first sight, the adjective “localized” used in the above definition may seem inade-
quate, since a priori � 0

� & � " 0 � � 2 ˜� 0 � � � , which is highly non-local, as the union of all
such cones covers a complete spacelike hyperplane. We are going to see however, that,
thanks to the physically motivated requirements imposed on the considered class of topo-
logical charges, the net � 0 enjoys much better localization properties.

Lemma 3.23. With the above notations, we have

�
0
� & � "

�
� � 2 ˜� 0 � � � �
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Proof. It is evident that π0 � - � & ��� is contained in the intersection of the algebras ˜� 0 � � � ,� � & . It is then sufficient to show that this is the case for any π0 � αhψ � with αhψ asymp-
totically localized in & , irrespective of its spacelike cone of localization. Let then αh ψ be
localized in some spacelike cone

�
containing & and of class ξ, and pick another spacelike

cone ˜� � & such that there exist a wedge � which is spacelike to both
�

and ˜� . Cor-
respondingly we can find, thanks to definition 3.15(ii) and the following remarks, another
lifted quasi-orbit π0 � αhϕ � associated to the same charge, asymptotically localized in & and
localized in ˜� . Thus, for a suitable sequence � λk � k � � � � �� ,

� �
π0 � αhψ � 	 π0 � αhϕ � � Ω0

� 2 � ω0 � � π0 � αhψ � 	 π0 � αhϕ ��� + � π0 � αhψ � 	 π0 � αhϕ �����
� lim

k � � ∞
ω � � αhψ � λk � 	 αhϕ � λk ��� + � αhψ � λk � 	 αhϕ � λk ��� �

� lim
k � � ∞

� �
αhψ � λk � 	 αhϕ � λk � � Ω � 2 � 0 �

and then, for any F � ˜� 0 � � � of Bose-Fermi parity � 	 1 � σ � F � ,
π0 � αhψ � FΩ0

� � 	 1 � σ � F � σ � ξ � Fπ0 � αhψ � Ω0

� � 	 1 � σ � F � σ � ξ � Fπ0 � αhϕ � Ω0
� π0 � αhϕ � FΩ0 �

where σ � ξ � is the parity of the sector ξ. This implies, by theorem 3.18, that π0 � αhψ � �

π0 � αhϕ � � ˜� 0 � ˜� � for any spacelike cone ˜� satisfying the above conditions. For a general
spacelike cone ˜� containing & , we can find cones

�
1 ������� � � n containing & and such that�

1
�

�
,
�

n
� ˜� , and cones ˆ� 1 �������
� ˆ�

n  1 such that
�

j
� �

j
�

1 " ˆ�
j, j � 1 ������� � n 	 1 (propo-

sition A.9), and for any j � 1 �������
� n 	 1 there exists a wedge � j " ˆ� $j , so that, iterating the

argument above, π0 � αhψ � � ˜� 0 � ˜� � .
We denote by � � 0 � - 0 � U0 � Ω0 � the scaling limit observable net determined by ω0 � π � �

SL � .

Theorem 3.24. The quadruple ��� 0 � V0 � k � U0 � is a normal, Poincaré covariant field net with
gauge symmetry, Ω0 is a cyclic vacuum for it, and the formula

π � 0
� π0
� A ��� : � π0 � π �

� A � � A � - � (3.19)

defines a representation π � 0 of - 0 on � 0 containing the identical representation of - 0 and
such that π � 0

� - 0
� & ��� " � 0

� & � G.

Proof. Poincaré and gauge covariance of the net � 0 are easily established, using arguments
analogous to the ones in the proof of proposition 3.17. Normality of commutation rela-
tions for � 0 follows at once from the same property for the extended net ˜� 0, the previous
lemma and the fact that for any two spacelike separated double cones & i, i � 1 � 2, there
exist spacelike separated spacelike cones

�
i, such that & i

� �
i, i � 1 � 2, proposition A.10

in appendix A. We have already seen that translations satisfy the spectrum condition, and
Ω0 is Poincaré invariant. Cyclicity of � 0 on the vacuum follows from the fact that � 0

� ˜� 0

(equality of the respective quasi-local algebras): since every generator of � 0
� & � is in some

˜� 0 � � � , we have � 0
� & � " ˜� 0 for any double cone & , and then � 0 " ˜� 0; the reverse inclusion

is analogously proven. We can then apply Reeh-Schlieder theorem to conclude that Ω0 is
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cyclic also for the C + -algebras � 0
� & $ � and then separating for local von Neumann algebras

�
0
� & �  . Then, by the argument employed in the proof of theorem 3.7, π � 0 is a well defined

representation of - 0 and, by GNS unicity, it contains the defining representation of - 0 on
the subspace π0 � π �

� - � Ω0
�
� � 0 of � 0. Finally, it is evident that π � 0

� A � is gauge invariant
for any A � - 0.

We see then that ultraviolet stable topological charges give rise, in the scaling limit, to
a net of finitely localizable charge carrying fields. We would like then to show that among
the charges carried by these fields, there are charges which we can regard as scaling limits
of the cone-like localizable charges which we started with, in a sense similar to the one that
was empolyed in the localizable case, i.e. we would like to construct Hilbert spaces in � 0

carrying appropriate representations of G and implementing localizable endomorphisms of
- 0. However, at the present stage of our work, this can be achieved only at the price of
some additional technical assumption on the net � 0 (see theorem 3.27 below), the status of
which has yet to be clarified.

Before stating explicitly these assumptions, and therefore sticking, for the time being,
to the level of generality used up to now, we can at any rate show that the fields in � 0 give
rise, in a sense made precise in the following theorem, to positive energy representations
of - 0, so that we get at least charges which are localizable in this weak sense. As in the
previous section, we let � 0

� & � : � �
0
� & �  .

Theorem 3.25. Let ξ be an ultraviolet stable topological sector, and let & be a double cone
and ρλ � ∆c

� λ � 1 � , � ρλ � � ξ, λ � 0, a family as in definition 3.15(i), where
�

1 is a spacelike
cone such that

�
1 �
�

for some
� � & . There is then a finite dimensional Hilbert space

Hρ in � 0
� & � of support � , carrying a G representation of class ξ, and for any such Hilbert

space the state ωρ on - 0 defined by

ωρ
� A � : �

d � ξ �
∑
j � 1

� Ω0 �ψ0
j π � 0

� A � ψ0 +j Ω0 � � A � - 0 � (3.20)

where ψ0
j , j � 1 �������
� d � ξ � , is an orthonormal basis of Hρ, is such that ωρ

� - 0
� & $ � �

ω0
� - 0
� & $ � , and induces, via the GNS construction, a representation πρ of - 0 which is

translation covariant with positive energy.

During the proof of the above theorem, we shall need a result on the existence of covari-
ant representations of C + -dynamical systems due to Borchers [Bor96, thm. II.6.6], which
we state here (without proof) for the reader convenience and for later reference.

Theorem 3.26. Let - be a C + -algebra, α :
� 4 � Aut � - � a group homomorphism, and let

- + � V� � be the norm closure of the linear space of those φ � - + such that
(i) for any A � B � - , x � φ � Aαx

� B ��� is a continuous function on
� 4 ;

(ii) x � φ � Aαx
� B ��� is the boundary value of a function z � W � z � analytic in the future

tube
� � V� � : ��� z � � 4 : Imz � V� � ;

(iii) there exists a constant m � 0 such that, for z � � � V � � ,
�W � z � � � �

φ
� �

A
� �

B
�
em

�
Im z

� �
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Let π be a representation of - . Then there exists a unitary, strongly continuous representa-
tion U of

� 4 on � with spectrum in V � and such that � π � U � is a covariant representation
of � - � α � if and only if every vector state of π belongs to -3+ � V� � .
Proof of theorem 3.25. Let & ,

�
,
�

1 and ρλ be as in the statement. There is then a double
cone & 1

� �
1 such that if ψ j

� λ � , j � 1 ������� � d : � d � ξ � , is an orthonormal basis of Hρλ , then
any function λ � ψ j

� λ � is a topological quasi-orbit asymptotically localized in & 1. We
can also assume that the ψ j

� λ � ’s transform according to a λ-independent G representation
uξ. We can then repeat, mutatis mutandis, the proof of lemma 3.13 and the first part of
the proof of theorem 3.14 to conclude that, as in the case of localizable charges, the limit
ψ0

j : � + s–limh � δ αhψ j exists and defines a multiplet of class ξ of orthogonal isometries
with support � in � 0

� & � , and the linear span of these operators is therefore a d dimensional
Hilbert space Hρ of support � in � 0

� & � carrying a unitary matrix representation of G of
class ξ. This Hilbert space is independent of the choice of the basis ψ j

� λ � : let ϕ j
� λ � � Hρλ

be another such choice, then we have

αhϕ j
� λ � �

d

∑
k � 1

ck j
� λ � αhψk

� λ � � λ � 0 � j � 1 �������
� d �

where ck j
� λ � � ψk

� λ � + ϕ j
� λ � is the unitary basis change matrix. The functions λ � ck j

� λ �
are therefore bounded, and then, again as in the proof of theorem 3.14, we have that for any
F � ˜� � � � , � � � $ , the limit

lim
h � δ

d

∑
k � 1

ck j
� λι � � F � λι � Ω �αhψl

� λι � + αhψk
� λι � Ω � � cl j

� λι � � F � λι � Ω �Ω �

is uniform in ι, so that

lim
ι � I

cl j
� λι � � F � λι � Ω �Ω � � lim

h � δ
lim
ι � I

d

∑
k � 1

ck j
� λι � � F � λι � Ω �αhψl

� λι � + αhψk
� λι � Ω �

� lim
h � δ
� π0 � F � Ω0 � π0 � αhψl � + π0 � αhϕ j � Ω0 � �'� π0 � F � Ω0 �ψ0 +l ϕ0

jΩ0 � �

Putting F ��� in this last equation, we get that there exists the limit c0
l j

� limι cl j
� λι � �

� Ω0 �ψ0 +l ϕ0
jΩ0 � , which is again a unitary matrix, and then

c0
l j
� π0 � F � Ω0 �Ω0 � � � π0 � F � Ω0 �ψ0 +l ϕ0

jΩ0 � �
so that we conclude, by cyclicity of Ω0 for � 0

� � � , that ψ0 +l ϕ0
j

� c0
l j
� , and the linear span

of ϕ0
j , j � 1 ������� � d, coincides with Hρ.
Let then � πρ ��� ρ � Ωρ � be the GNS representation induced by the state ωρ in (3.20). To

show that this is translation covariant with positive energy, take ∆n " � 4 to be the closed
double cone in momentum space with vertices 0 and � n � 0 � , and let C � ˆ- 0

� ∆ � for some com-
pact set ∆ (e.g. C � α0

f
� C1 � with supp f̂ " ∆). Then the vectors ΦC � n

j : � π � 0
� C � E � ∆n � ψ0 +j Ω0,

j � 1 ������� � d, have momentum support in ∆ ( ∆n, and if we define φC � n � - +0 by

φC � n � A � : �

d

∑
j � 1

� Ω0 �ψ0
j E
� ∆n � π � 0

� C + AC � E � ∆n � ψ0 +j Ω0 � �
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we get that

φC � n � Aα0
x
� B ��� �

d

∑
j � 1

� π � 0
� A � + ΦC � n

j �U0
� x � π � 0

� B � U0
� x � + E � ∆ ( ∆n � ΦC � n

j �

is obviously continuous in x, and has (distributional) Fourier transform with support in
	 � ∆ ( ∆n � ( V � , lemma 2.2, so that, if p � � 	 m � 0 � is such that 	 � ∆ ( ∆n � ( V � �

p ( V � ,
according to [Bor96, thm. II.1.7], x � φC � n � Aα0

x
� B ��� is the boundary value of a function

z � W � z � analytic in
� � V� � and satisfying, for suitable constants M � N � 0, the bound

�W � z � � � k � 1 ( � x � � N � 1 ( dist � y � ∂V� �  1 � Mem
�
y

� � z � x ( iy � � � V� � �
and since �W � x � � � �

φC � n � � A � � B � for real x, a Phragmén-Lindelöf type argument (see the
proof of lemma II.3.4 in [Bor96]) gives the desired estimate �W � z � � � �

φC � n � � A � � B � em
�
Im z

�
,

z � � � V� � , and φC � n � - +0 � V� � . If φC
� A � : � ωρ

� C + AC � , A � - 0, we have

� φC
� A � 	 φC � n � A � � �

d

∑
j � 1

2
�
C
� �

A
� � �

E � ∆n � 	 � � ψ0 +j Ω0
� �

so that φC � n � φC in norm as n � ( ∞ and, being - +0 � V� � norm closed, φC � - +0 � V� � . Fi-
nally, since the Fourier transforms of continuous functions of compact support are dense
in L1 � � 4 � e) and translations act norm continuously on - 0, the operators of the form
C � α0

f
� C1 � with compact supp f̂ lie norm dense in - 0, which implies that the set of vector

states of πρ is contained in the norm closure of the set of corresponding functionals φC,
so that any such state belongs to -�+0 � V� � , and we can apply theorem 3.26 to get a unitary,
strongly continuous representation Uρ of the translations group on � ρ with spectrum in V �
and such that � πρ � Uρ � is a covariant representation of � - 0 � α0 � .

The representation πρ thus constructed, will not be, in general, a DHR representation of
- 0, since the fact that ωρ

� - 0
� & $ � � ω0

� - 0
� & $ � , together with translation covariance of

πρ, and the fact that, as is easily verified, ωρ � α0
x is the state determined as in theorem 3.25

by the family αλxρλα  λx, λ � 0, implies only that πρ
� - 0
� & $ ( x � has a subrepresentation

that is equivalent to ι
� - 0

� & $ ( x � , ι being the defining representation of - 0. Thus, in
order to have DHR property at least for the class of translates of the given double cone &
(which is sufficient to perform the superselection analysis), it would be sufficient to know
that property B holds in the representation πρ (cfr. the appendix of [DHR71]), which in turn
would follow from irreducibility and local normality of πρ, as well as weak additivity of the
net - 0, which is quite natural to expect to hold in relevant cases. However, a proof of this
properties is lacking at present.

At the technical level, the main obstruction is represented by the fact that, in general,
π � 0
� �

0
� & ��� � � 0

� & � G, as it is easy to construct gauge invariant combinations of the
αhψ’s, which need not belong to some scaling algebra - � & � , as they are only localized

e)C∞
c
��� 4 � is dense in the Schwartz topology in � ��� 4 � , which in turn is norm dense in L1 ��� 4 � , and being

the � topology stonger than the L1 topology,
�
C∞

c
��� 4 � � � ���	� �

1 
 �
C∞

c
��� 4 � � � ����
 �

C∞
c
��� 4 � ��� � � 
 � ��� 4 � .
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in spacelike cones. However, thanks to the fact that these functions are asymptotically lo-
calizable in & , it may well happen that, at least in some models, their scaling limits do
belong to - 0

� & � . Adding the simple hypotesis that this is indeed the case, yields a quite
satisfactory picture of the scaling limit of ultraviolet stable topological charges.

Theorem 3.27. Assume that π � 0
� �

0
� & ��� � � 0

� & � G, and that � 0 acts irreducibly on � 0.
Then for any covariant, ultraviolet stable, topological sector ξ, any double cone & , and
any family ρλ � ∆c

� λ � 1 � , � ρλ � � ξ, λ � 0, as in the previous theorem, there is a finite
dimensional Hilbert space Hρ in � 0

� & � of support � , carrying a G representation of class
ξ, and implementing an irreducibile transportable endomorphism ρ of - 0 localized in & ,
covariant with positive energy. Moreover, any two such endomorphisms ρ and σ, obtained
as above from familes ρλ, σλ, λ � 0, ρλ

�
� σλ, are unitarily equivalent.

Proof. It’s an easy adaptation of the proof of theorem 3.14 to the present setting.

Thus we obtain, as in the case of localizable charges, a well defined mapping from the
subset of ultraviolet stable charges to the set of charges of the fixed scaling limit theory.

As a final comment, we would like to remark that the condition π � 0
� �

0
� & ��� �

� 0
� & � G, introduced here as a technical assumption in order to get a well defined scal-

ing limit of topological charges, may turn out to have a sensibile physical interpretation.
By the above remarks, we see that � 0

� & � G contains, apart from the scaling limit observ-
ables localized in & , the scaling limit of functions λ � A � λ � � - � λ � � , for every spacelike
cone

� � & , i.e. there are gauge invariant families of operators, with localization regions
extending to spacelike infinity, which give rise to objects in the scaling limit which are
charged with respect to the intrinsic gauge group of - 0, so that new charges appear at small
scales. This situation, which does not have to be confused with the confinement one, in
which the fields carrying the new charges cannot be approximated at all at finite scales, is
instead reminiscent of the phenomenon of charge screening,f ) much discussed in the phys-
ical literature (cfr. for instance [Swi76, RRS79] and references quoted). In this scenario,
a charge which is described by an asymptotically free theory at small scales, disappears
at finite scales because, due to nonvanishing interactions, it is always accompanied by a
cloud, extending to spacelike infinity, of charge-anticharge pairs, so that one can expect that
the corresponding “charge carrying fields” are neutral and non-compactly localized at finite
scales, and become instead charged and localized in the scaling limit. Then the condition
π � 0
� �

0
� & ��� � � 0

� & � G could be interpreted as the requirement that in the theory under
consideration, no charges are screened. Work is currently in progress in order to clarify
further these matters.

f )This connection was pointed out to me by Detlev Buchholz.



Conclusions and outlook

In this thesis we addressed the conceptual problem of formulating a notion of confined
charge in quantum field theory free of the ambiguities of the one generally adopted, which
relies heavily on the description of the theory in terms of unobservable gauge degrees of
freedom. This was done in the algebraic framework of quantum field theory, which is the
most suitable one to this task, since it disregards completely the existence of unobservable
fields – which, as we saw, comes out as a consequence of the structure of the observable
net and its representations, rather than being assumed from the outset – and focuses on the
information encoded in the net of local observables. In particular, superselection theory
on one hand, and scaling algebras on the other, allow a natural and intrinsic identification
of the charges described by a theory at small spatio-temporal scales with the superselection
sectors of the scaling limit theory (supposed for simplicity to be unique) canonically defined
by the given theory, so that the required definition of confined charge is obtained through a
comparison of the superselection structure of the given theory with that of its scaling limit.

In order to establish such a comparison, we studied the scaling behaviour of sectors,
and singled out a class of sectors, both finitely and cone-like localizable, for which a nat-
ural notion of scaling limit exists, so that they can be identified with sectors in the scaling
limit theory, which are then naturally regarded as non-confined. In the DHR case, such
an ultraviolet stable sector ξ has been defined by requiring essentially that for fields ψ � λ � ,
carrying charge ξ and localized in scaled regions λ & , the charged states ψ � λ � Ω have energy
and momentum growing not faster than λ  1 for λ � 0, which, in view of the construction
of the scaling limit, is a natural phase space restriction. Then we showed that to any such
sector we can associate a system of Hilbert spaces in the scaling limit field net � 0, which
are generated essentially by the limits, for λ � 0, of the just mentioned operators ψ � λ � ,
and which carry a gauge group representation of class ξ. Finally, these Hilbert spaces im-
plement localized endomorphisms on the scaling limit observable net � 0, whose sector is
then identified with the (scaling limit of the) starting sector ξ. Then, we tried to generalize
these results to topological sectors. In this case, an ultraviolet stable sector ξ is defined first
of all by requiring that, according to the physical picture of this kind of charges emerging
from non-abelian gauge theories, the effect in the scaling limit of the operators ψ � λ � outside
some bounded region λ & becomes negligible, and that, still in the limit, the states ψ � λ � Ω
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become independent on the direction of the string emanating to spacelike infinity, so that it
is meaningful to impose on these states a phase space requirement analogous to the one for
DHR charges. A first non trivial result is then that these operators, though being localized in
spacelike cones at each scale λ � 0, generate, in the scaling limit, a net & � � 0

� & � of field
algebras associated to bounded regions & and satisfying normal commutation relations,
and that they also generate, as above, Hilbert spaces with gauge group representations in
this net. Adding then the technical hypotesis that the fixed point net of � 0 under the action
of the gauge group coincide with �

0, together with the irreducibility of � 0, gives scaling
limit sectors as in the DHR case. We have also seen, in appendix B, that the charged sector
of the free Majorana field with

�
2 gauge group is ultraviolet stable.

There are several directions along which this work could be improved and extended.
First of all, clearly, we are trying to get a better understanding of the conditions under
which ultraviolet stable topological sectors admit a scaling limit along the lines discussed
in the thesis. In particular, as suggested at the end of section 3.3, the condition � 0

� & � G �

�
0
� & � may be replaced with a physically more transparent condition formulated in terms

of the underlying theory and expressing the absence of screening, and, eventually, discarded
altogether, as there are indications that ultraviolet stability alone is a sufficient condition for
the existence of the charge scaling limit.

Another natural issue to be investigated is the structure of the set of ultraviolet stable
sectors with respect to the standard operations of composition, direct sums and conjugation
defined by superselection theory. In particular, it seems likely, on physical grounds, that the
irreducible components appearing in the direct sum decomposition of a product of ultravio-
let stable sectors are again ultraviolet stable, as, due to additivity of the spectrum [DHR74],
the energy momentum transfer of fields carrying the product charge cannot be substantially
higher at small scales than that of the component fields.

To complete the analysis of scaling properties of charges, it would be desirable to under-
stand better the fate, in the scaling limit, of non-ultraviolet stable charges, and in particular
if there is a natural way to associate with them some class of non-localizable states on - 0.
Also, it would be interesting to construct examples of this kind of charges. In connection
to this we just recall that examples of theories having classical scaling limit have been con-
structed in [Lut97], and similar ideas and techniques could be useful in this task.

Still on the examples side, it would be interesting to have at one’s disposal other models
exhibiting ultraviolet stable sectors, apart from the very simple one treated in appendix B.
The particular features of the latter, namely the existence of a single charged sector, with
the basic field itself interpolating between this sector and the vacuum, made the establish-
ing of the ultraviolet stability condition straightforward in this case. In more complicated
examples, possibly with non-abelian gauge groups, the charge multiplets are in general
non-linear combinations of the fields, (or, rather, of the isometries appearing in their polar
decompositions if the fields are unbounded), which, moreover, are not explicitly known, ex-
cept that for G abelian. The direct method used in appendix B is thus unlikely to be useful
for non-abelian examples.

Finally, some more insight on the status of the asymptotic localizability conditions em-
ployed to treat the scaling limit of topological charge could come from the rigorous analysis
of lattice models of gauge theories, as the essentially unique continuum example of such
charges is provided by the already considered theory of the free massless scalar field in
d � 2 spacetime dimensions.



APPENDIX A

Some geometrical results
about spacelike cones

In this appendix we shall collect several geometrical definitions and results, mostly concern-
ing spacelike cones in 4-dimensional Minkowski space, which are needed for the analysis
in section 3.3. The basic definitions will be taken from the appendix of [DR90].

The spacelike hyperboloid
�

: � � n � � 4 : n2 � 	 1 � will be called spacelike infinity,
since we identify n � � with the “point at infinity” in the spacelike direction λn, λ � � � .
We endow

�
with the causal structure induced by the one in Minkowksi space, i.e. two

points n � n $ � � will be called timelike (resp. lightlike, spacelike) if they are timelike (resp.
lightlike, spacelike) when considered as points in

� 4 , and in the first two cases, n will be
said to be future (resp. past) to n $ if n0 	 n $ 0 � 0 (resp. � 0).

Given n � � n  � � , n � future timelike to n  , the (open) double cone in
�

with vertices
n � , n  will be the set Dn � � n � of points n � � which are past timelike to n � and future
timelike to n  , i.e. Dn � � n � � & n � � n � ) � , where & n � � n � is the double cone in Minkowski
space with vertices n � , n  , which also shows that Dn � � n � is open in the relative topology
of
�

. We remark explicitly that & n � � n � is spacelike to the origin, for if there would be an
x � & n � � n � such that, for instance, x � V � , then also n � � � n � 	 x � ( x � V � , which is not
true.

Definition A.1. Let D be a double cone in
�

. The spacelike cone
�

�

�
a �D with apex

a � � 4 and base D is the set

�
a �D : �1� a ( λn : n � D � λ � 0 � �

If
�

is a spacelike cone, we shall denote by D � � � the double cone in
�

which is the base
of
�

.

We have also the following expressions for
�

a �D:

�
a �D ��� a ( x : x2 � 0 � x

� 	 x2
� D � � a (��

λ � 0

λ & D � (A.1)
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where & D is the double cone in
� 4 with the same vertices as D. The first of these equalities

is evident by putting x � λn in the definition of
�

a �D. For what concerns the second, it is
sufficient to prove that for any x � & D, we have x

� � 	 x2 � D (x2 � 0 by the remark above),
the inclusion

�
a �D " a ( 0 λ � 0 λ & D being trivial. It is clear that x

� � 	 x2 � � , and we can
then assume, by an appropriate choice of the Lorentz frame, that x0 � 0. Then, if n � are the
vertices of D, from � n � 	 x � 2 � 0 it follows that 2n � � x � � x � 2 ( 1, and then�

n � 	 x
� 	 x2 � 2

� 	 2 ( 2n � � x
� x � � 	 2 ( � x � 2 ( 1

� x �
�

0 �

being 2 the minimum of the fuction t � � t2 ( 1 � � t for t � 0. Analogously one sees that
x
� � 	 x2 is future timelike to n  .

From the last expression, it follows immediately that any spacelike cone
�

D : �

�
0 �D (i.e.

with apex at the origin of Minkowski space) is a convex cone, in the sense that x � y � � D

and λ � 0 imply λx � x ( y � � D: λx � � D is evident, while if x � λξ, y � µη with ξ � η � & D,
being & D convex,

x ( y � � λ ( µ �
�

λ
λ ( µ

ξ ( µ
λ ( µ

η � � � D �
The following three results are also taken from the appendix of [DR90], and we include

for completeness the easy proofs.

Lemma A.2. Let
�

be a spacelike cone, and x � � 4 , n � � . Then
(i) if n � D � � � then x ( λn � � for λ � 0 sufficiently large;

(ii) if x ( λn � � for λ � 0 sufficiently large, then n � D � � � (closure in the relative topology
of
�

).

Proof. (i) Since x is arbitrary, we can clearly assume that the apex a of
�

is the origin. We
have � x ( λn � 2 � 0 for λ sufficiently big and since

lim
λ � � ∞

x ( λn
� 	 � x ( λn � 2

� n � D � � � � (A.2)

and D � � � is open in
�

, � x ( λn � �
� 	 � x ( λn � 2 � D � � � for λ sufficiently big, i.e., being

a � 0, x ( λn � � .
(ii) Again we assume a � 0. Then by hypotesis � x ( λn � �

� 	 � x ( λn � 2 � D � � � for λ
sufficiently big and by (A.2), n � D � � � .
Corollary A.3. If

�
1 " � 2 then D � � 1 � " D � � 2 � .

Proof. Let a1 be the apex of
�

1. If n � D � � 1 � then a1 ( λn � � 2 for each λ � 0, and by the
above lemma n � D � � 2 � , and we conclude by noting that the two sets are open.

Corollary A.4. If D is a double cone in
�

, and
�

1 �������
� � r are spacelike cones such that
D � � i � " D, i � 1 �������
� r, then there exists a spacelike cone

�
with D � � � � D, and

�
i " � ,

i � 1 ������� � r.

Proof. Let ai be the apex of
�

i, i � 1 ������� � r, and let n � D. Then for λ � 0 sufficiently large,
ai ( λn � � D for any i � 1 ������� � r. Then, being

�
D a convex cone,

�
: �

�  λn �D.
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The following lemma is also completely straightforward.

Lemma A.5. If & is a double cone in
� 4 and D is a double cone in

�
, there exists a

spacelike cone
�

, with D � � � � D and &�" � .

Proof. There are c � � 4 , b � V� such that & D
� c ( & b �  b, and since 0 λ � 0 λ & b �  b

�

� 4 , by
compactness there is λ � 0 such that &�" λ & b �  b, and then & " �  λc �D.

The following easy result is used in the construction of the lifted topological quasi-orbits
of section 3.3.

Proposition A.6. For any spacelike cone
�

1 there exists a neighbourhood of the identity	 "1
 �� and a spacelike cone
�

2 such that
	 � � 1 " � 2.

We shall give the proof after having proven two elementary lemmas, which we single
out for reference’s sake.

Lemma A.7. Let
�

1 " � 2 be spacelike cones such that, for the apex a1 of
�

1 there holds
a1 ( Bε " � 2, Bε being the open ball of radius ε around the origin. Then

�
1 ( Bε " � 2.

Proof. We can clearly assume that the apex of
�

2 is the origin. Then
�

2 is a convex cone.
Furthermore, by corollary A.3,

�
D � �

1 � "
�

2, and then
�

1 ( Bε
� � a1 ( Bε � ( � D � �

1 � "
�

2.

Lemma A.8. Let
�

1 " � 2 be spacelike cones with the same apex and such that D � � 1 � �
D � � 2 � . Then there exists a neighbourhood of the identity

	 ",
 �� such that
	 � � 1 " � 2.

Proof. Assume first that the apex of the two cones coincide with the origin. Thanks to
the continuity of the function Λ � SO � � 1 � 3 � � Λn � � , we can find, for any n � D � � 1 � , a
neighbourhood of the identity ˜	

n " SO � � 1 � 3 � such that ˜	
nn " D � � 2 � , and, being SO � � 1 � 3 �

a topological group, we can also find neighbourhoods of the identity
	

n " ˜	
n such that	 2

n " ˜	
n. By compactness of D � � 1 � there exist then n1 ������� � nr � D � � 1 � such that

	
nini,

i � 1 ������� � r, is an open covering of D � � 1 � . Then if
	

: �

� r
i � 1

	
ni , for any n � D � � 1 � there

is i such that
	

n " ˜	
ni ni " D � � 2 � , i.e.

	 � D � � 1 � " D � � 2 � , which immediately implies	 � � 1 " � 2. For the general case, if a is the common apex of
�

1,
�

2, by what we have just
seen there exists

	 " 
 �� such that
	 � � � 1 	 a � " � 2 	 a and if

	
a : �'��� � a � 	 ��� �
	 a �

then
	

a � � 1 " � 2.

Proof of proposition A.6. Given a double cone D " � containing D � � 1 � and n � D � � 1 � , the
spacelike cone

�
2 : �

�
a1  δn �D, where a1 is the apex of

�
1 and δ � 0, is such that a1 � � 2,

and then a1 ( Bε " � 2 for some ε � 0. Then if ˜� 1 : �

�
a1 �D, by the last lemma there exists

a neighbourhood of the identity ˜	
in 
 �� such that ˜	 � � 1 " ˜� 1, and by lemma A.7,

˜� 1 ( Bε " � 2, so that the proposition is proven with
	

: �'� � � � � Bε � � ˜	
.

The next proposition gives the justification of the homotopy argument used at the end
of the proof of lemma 3.23.

Proposition A.9. If & is a double cone, and
�

, ˜� are spacelike cones containing & , there
exist spacelike cones

�
1 �������
� � r and ˆ� 1 �������
� ˆ�

r  1, such that
�

1
�

�
,
�

r
� ˜� , and & � �

i,�
i
� �

i
�

1 " ˆ� i, i � 1 ������� � r 	 1.
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Proof. By combining lemma A.5 and corollary A.4, it is clear that it is sufficient to show
the existence of double cones D1 ������� � Dr and D̂1 ������� � D̂r  1 in

�
, such that D1

� D � � � ,
Dr

� D � ˜� � and Di
� Di

�
1 " D̂i, i � 1 �������
� r 	 1. To this end we fix a Lorentz frame eµ,

µ � 0 ������� � 3, and we endow
�

with the metric induced by the metric d on
� 4 given by

d � x � y � : � � x0 	 y0 �
( � x 	 y � . We denote by Kr
� n � " � the open ball of radius r � 0 and

centered at n � � defined by this metric. Clearly there holds Kr
� n � �

�
r
� n � ) � , where�

r
� n � is the corresponding ball in

� 4 , i.e. the “upright” double cone & n
�

re0 � n  re0 , but
in general Kr

� n � is not a double cone in
�

. However any Kr
� n � contains a double cone

D " � (it is sufficient to take n � � Kr
� n � with n � future to n  , then & n � � n � " �

r
� n � and

Dn � � n � " Kr
� n � ), and if r � � n � 	 � n0 � , i.e. if the vertices � n0 � r� n � of

�
r
� n � are spacelike

to the origin, then Kr
� n � is contained in some double cone in

�
: it is in fact easy to check

that the points

n � : � � n0 � r� n � ( s �
�

ω � � n
� n � � � s � : � � r � 2n0 � r �

2 � � n �
	 ω � � n0 � r ��� �

where ω � � sgn � 2n0 � r � , are such that n � � � and n � � n � re0 ( ∂V� (since r � � n � 	 � n0 � ,
the denominator of s � is positive, and then s � ω � � 0), so that Kr

� n � " Dn � � n � .
Having established that, we fix n � D � � � , ñ � D � ˜� � and a continuous curve

t � � 0 � 1 � � z � t � � � joining n to ñ. Given ε � mint � � 0 � 1 � � � z � t � � 	 � z0 � t � � � , ε � 0, we can
find, by uniform continuity of z, a δ � 0 such that if � t 	 t $ � � δ, then d � z � t � � z � t $ ��� � ε. Fix
then 0 � t̂0 � t̂1 � ����� � t̂r � 1 such that � t̂i 	 t̂i  1 � � δ, and ti � � t̂i  1 � t̂i � , i � 1 ������� � r. This im-
plies z � ti � � z � ti � 1 � � Kε

� z � t̂i ��� and then, by what we have just seen, there exist double cones
Di � z � ti � and D̂i such that Di

� Di
�

1 " Kε
� z � t̂i ��� " D̂i, which concludes the proof.

Finally we turn to the proof of a result concerning the existence of “sufficiently many”
spacelike separated spacelike cones, which is needed to prove that the scaling limit field net
constructed in section 3.3 has normal commutation relations.

We introduce the following notation: given a double cone & a � b we denote by Ma � b
the spacelike (affine) hyperplane of those x � � 4 such that � x 	 c � � � a 	 b � � 0, where
c � Ma � b is the midpoint between a and b (the centre of & a � b). We also denote by M̃a � b
the subset of Ma � b which is spacelike to & a � b. As an example, chosen a Lorentz frame
eµ, Mre0 �  re0 is the time zero hyperplane � 0 � � � 3 and M̃re0 �  re0

� � 0 � � � x : � x � � r � . It
will be important in the following that for a � M̃a � � a � , � a 	 a � � 2 � � a 	 a  � 2, so that, if
n � : � � a � 	 a � �

� 	 � a � 	 a � 2 � � , then & a � � a � 	 a � λDn � � n � with λ : �

� 	 � a � 	 a � 2,
and then & a � � a � � �

a �Dn � � n � .

Proposition A.10. Given spacelike separated double cones & 1, & 2, there exist spacelike
separated spacelike cones

�
1,
�

2, such that & i
� �

i, i � 1 � 2.

Proof. Let & i
� & ai � � � ai � � , ci

�%� ai � � ( ai �  � � 2, i � 1 � 2. Assume first that a1 � � 	 a1 �  and
a2 � � 	 a2 �  are not proportional. Then Ma1 � � � a1 � � ) Ma2 � � � a2 � � is a 2-dimensional spacelike
affine subspace of

� 4 . Furthermore, assume that a1 � � 	 a2 � � is not a linear combination of
a1 � � 	 a1 �  and a2 � � 	 a2 �  . Then if N is the hyperplane

N ��� a � � 4 : a � � a1 � � 	 a2 � � � �
1
2
� a2

1 � � 	 a2
2 � � ��� �
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Ma1 � � � a1 � � ) Ma2 � � � a2 � � ) N is a spacelike line. There exists then an a on this line which is
spacelike to both & 1 and & 2, and since a � N if and only if � a 	 a1 � � � 2 � � a 	 a2 � � � 2, we
put λ : �

� 	 � a1 � � 	 a � 2 �

� 	 � a2 � � 	 a � 2 and ni � � : � � ai � � 	 a � � λ � � . It is then clear
that the double cones Di : � Dni � � � ni � � , i � 1 � 2 are spacelike separated, because such are their
vertices (for instance, � n1 � � 	 n2 �  � 2 � λ  2 � a1 � � 	 a2 �  � 2 � 0), and then so are also the
spacelike cones

�
i : �

�
a �Di : if � n1 	 n2 � 2 � 	 2 � 1 ( n1 � n2 � � 0 then n1 � n2 � 	 1, so that,

for any λ1 � λ2 � 0, � λ1n1 	 λ2n2 � 2 � 	 λ2
1 	 λ2

2 ( 2λ1λ2
� 	 � λ1 	 λ2 � 2 � 0. But, by the

remark above, & i " � i and we have the statement in this case.
If a1 � � 	 a1 �  and a2 � � 	 a2 �  are proportional, we can find a Lorentz frame in which

ai � � 	 ai �  � 2rie0, ri � 0, and c1
� c0e0 	 � r1 ( δ � e1, c2

� 	 c0e0 ( � r2 ( δ � e1, and, if the
two double cones are not tangent, i.e. if δ � 0, it is clear that

�
ai �Dni � � � ni � � , where a1

� c1 (
� r1 ( ε � e1 � M̃a1 � � � a1 � � , a2

� c2 	 � r2 ( ε � e1 � M̃a2 � � � a2 � � , ni � � : � � ai � � 	 ai � �
� 	 � ai � � 	 ai � 2,

are spacelike separated for ε � 0 sufficiently small, and contain & ai � � � ai � � . If the two double
cones are tangent, c0 � 0 and the hyperplanes Ma1 � � � a1 � � and Ma2 � � � a2 � � really coincide, so
that we can still apply the argument of the first part of the proof, because a1 � � 	 a2 � � , being
lightlike, cannot be proportional to the timelike vector a1 � � 	 a1 �  .

Finally, the case in which a1 � � 	 a2 � � is a linear combination of a1 � � 	 a1 �  and a2 � � 	
a2 �  (not proportional to each other) can again be reduced to a 2 dimensional situation (in
the plane defined by a1 � � 	 a1 �  and a2 � � 	 a2 �  ) and it is then similar to the last one.





APPENDIX B

An example of
ultraviolet stable charge

In this appendix we shall consider the simple free field model defined by the Majorana field
in d � 1 ( 3 spacetime dimensions with

�
2 gauge group, and after having discussed at some

extent its superselection structure, we shall show that the localizable
�

2 charge described
by this model indeed satisfies the condition of ultraviolet stability, definition 3.10.

The free spin 1
�
2 field and its associated local algebras are discussed in many references

(see, for instance, [BLOT90], [Del68]). However, since the conventions may vary consid-
erably form one source to another, here, for the convenience of the reader, we will give a
brief outline of the construction. We will mainly follow [Fre], where also a discussion of
the superselection structure is given.

We begin with some notational conventions. Let γ µ � M4
� � � , µ � 0 ������� � 3, be the Dirac

matrices, satisfying the anticommutation relations

� γµ � γν � � 2gµν � (B.1)

g being as usual the Minkowski metric. A consequence is � γ µ � † � γ0γµγ0, A† being the
adjoint matrix of A. A possible solution to these relations, to which we will stick in the
following, is the so called chiral representation:

γ0 �

�
0 �
� 0 � � γ j �

�
0 σ j

	 σ j 0 � � j � 1 � 2 � 3 � (B.2)

where σ j are the Pauli matrices. A vector u � � 4 (also called a spinor) will be thought as a
column matrix

u �

���
�

u1

u2

u3

u4

����
	 �

and correspondingly its adjoint u† � � u1 u2 u3 u4 � will be a row matrix, so that the
standard scalar product on � 4 is given by � u � v � � u†v (rows by columns product of ma-
trices). A very useful notation is

�
v : � vµγµ for any (covariant) vector v � � 4 , and one has

63
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�
v 2 � vµvνγµγν � 1

�
2vµvν

� γµ � γν � � v2, where in the one but to last equality the symmetry
of the tensor vµvν was used. By Ω �m we shall indicate the upper and lower mass m � 0
hyperboloid, Ω �m : �1� p � � 4 : p2 � m2 � � p0 � 0 � .

For a given mass m � 0, the Dirac operator is D : � γ µ∂µ ( im, and, denoting as usual by� � � 4 ; � 4 � the space of spinor valued, compactly supported smooth functions on Minkowski
space, we endow the space H0 �m : �

� � � 4 ; � 4 � � ImD with the scalar product

�
f � g � m : �

�
� 3

d3p ∑� f̂ � � ωm
� p � � p � †P� � p � ĝ � � ωm

� p � � p � � (B.3)

where

P� � p � � � γ0 � �p ( m �
2ωm

� p �
�
�
�
�
p0 � � ωm � p �

� ωm
� p � ��� � p � 2 ( m2 � (B.4)

and where we made no notational distinction between elements in H0 �m and their represen-
tatives in

� � � 4 ; � 4 � .
We have, for p0

� � ωm
� p � , �

pγ0�
p � � �

p � γ0 � �
p 	 γ0�

p 2 � � 2ωm
� p � �

p 	 m2γ0, and then

P� � p � 2 �
1

4ωm
� p � 2 γ0 � �p ( m � γ0 � �p ( m �

�
1

4ωm
� p � 2 γ0 � � 2ωm

� p � � � �p ( m � � P� � p � �

and moreover, it is clear that P� � p � † � P� � p � , i.e. P� � p � are orthogonal projections on � 4 ,
for which it also holds P� � p � ( P � p � � � , P� � p � P � p � � 0. Furthermore � �

p ( m � � �
p 	 m � �

p2 	 m2, so that P� � p � � � p 	 m � � p0 � � ωm � p � � 0 and then, taking into account that �D f � p � �

	 i � �p 	 m � f̂ � p � , we find that
� � ����� m is well defined and positive semidefinite on H0 �m. To see

that it is really strictly positive, and hence a scalar product, note that if � �
p ( m � f̂ � p � � 0 for

each p � Ω �m , then for q � Ω �m , ∂µ � � �p ( m � f̂ � p ��� � p � q is normal in q to Ω �m (with respect to
Minkowski metric), i.e. is proportional to q, so that

� �p ( m � f̂ � p � � α � 2q � � � p 	 q � ( O � � p 	 q � 2 �
� α � � q ( p � ( � q 	 p � � � � p 	 q � ( O � � p 	 q � 2 � � α � p2 	 m2 � ( O � � p 	 q � 2 � �

and hence, by a straightforward application of the Paley-Wiener theorem (cfr. [RS75], the-
orem IX.11), the function

ĝ � p � : �
i � �p ( m � f̂ � p �

p2 	 m2

is the Fourier transform of a function g � � � � 4 ; � 4 � and f � Dg, so that f � 0 in H0 �m. We
will then denote by Hm the completion of H0 �m in this scalar product.

We shall need to consider the action of the universal covering of the Poincaré group on
Hm, defined, for � A � a � � ˜
 �� , by

� u � A � a � f � � x � : � S � A � f � Λ � A �  1 � x 	 a � � � S � A � : �

�
A 0
0 � A† �  1 � � (B.5)

A � SL � 2 ��� � � Λ � A � � SO � � 1 � 3 � being the covering homomorphism. The basic identity
satisfied by S � A � is

S � A � γµS � A �  1 � � Λ � A �  1 � µνγν � (B.6)
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and using this it is easy to verify that u � A � a � D � Du � A � a � , so that u � A � a � is well defined
as an operator on H0 �m. Equation (B.6) also implies

�
pS � A � � S � A � �

p $ , with p $ � Λ � A �  1 p
(recall that p, being covariant, transforms under Λ as � Λp � µ � pν

� Λ  1 � νµ
� � � Λ  1 � t � ν

µ pν),

which, together with � u � A � a � f �
� � p � � eip � aS � A � f̂ � Λ � A �  1 p � , the Lorentz invariance of the

measure d3p
�
2ωm

� p � [RS75, appendix to IX.8], and S � A � †γ0S � A � � γ0, entails unitarity of
u � A � a � on Hm. The strong continuity of the unitary representation u of ˜
 �� thus defined,
is a consequence of an argument, based on the dominated convergence theorem, that is
essentially a particular case of the argument used below to show that the charge carried by
the Majorana field is ultraviolet stable, so we don’t repeat it here and refer the reader to the
proof of proposition B.5.

The last piece of structure that we have to introduce on the single particle space Hm

is charge conjugation: define the antilinear operator C on � 4 by Cu : � iγ2u, where the
bar denotes complex conjugation.a) Since iγ2 � � iγ2 � † � � iγ2 � t , it is readily verfied that
C2 � � and C† � C, where, being C antilinear, C† is defined by

�
C†u � v � �

�
Cv� u � , and,

using Dirac matrices anticommutation relations, Cγ µC � 	 γµ. We then define an antilinear
involution Γ on H0 �m by � Γ f � � x � : � C f � x � , which is well defined, since it anticommutes
with D. Furthermore, using some γ-gymnastic, one verifies that iγ 2P� � p � iγ2 � P�

� 	 p � t ,
which implies that Γ is antiunitary,

�
Γ f � Γg � m �

�
g � f � m, and it extends then to Hm. One

also has iγ2S � A � iγ2 � S � A � , so that Γ commutes with the action of the Poincaré group on
Hm.

We consider then the CAR algebra - � Hm � over Hm [BR79b], generated as a C + -algebra
by elements a � f � , f � Hm, such that f � a � f � is antilinear, and

� a � f � � a � g � + � �

�
f � g � m � � � a � f � � a � g � � � 0 ��� a � f � + � a � g � + � � (B.7)

By unicity of the CAR algebra, the representation u of ˜
 �� on Hm induces an automorphic
action α of ˜
 �� on - � Hm � , defined by

α � A � a � � a � f ��� : � a � u � A � a � f � � � A � a � � ˜
 �� � f � Hm �
and, by the fact that

�
a � f � � �

�
f
�

m and strong continuity of u, it follows that this action is
strongly continuous, i.e. � A � a � � α � A � a � � B � is norm continuous for each B � - � Hm � .

We restrict our attention to the elements B � f � � - � Hm � given by

B � f � : �
1
�

2

�
a � Γ f � ( a � f � + � � f � Hm � (B.8)

and to the sub-C + -algebra � � Hm � of - � Hm � they generate, and we consider on this algebra
the state ω defined by

ω � B � f1 � ����� B � f2n
�

1 � � : � 0 �
ω � B � f1 � ����� B � f2n � � : �'� 	 1 � n

�
n � 1 �
2 ∑

σ � P2n

sgnσ
n

∏
i � 1

�
Γ fσ � i � � fσ � i � n � � m � � � (B.9)

a)The appearing of γ2 in the definition of C depends on the chosen representation of the Dirac matrices.
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where P2n
�

S2n is the set of pairings of � 1 ������� � 2n � , i.e. permutations σ � S2n such that
σ � 1 � � ����� � σ � n � , and σ � i � � σ � i ( n � , i � 1 ������� � n, and where

� � ����� m � � is the positive
energy part of

� � ����� m, obtained from it by dropping the term containing P .
Since α � A � a � � B � f ��� � B � u � A � a � f � , the action α of ˜
 �� restricts to � � Hm � , and ω

is left invariant by α, because, by the same calculation showing that u � A � a � is uni-
tary,

�
Γu � A � a � f � u � A � a � g � m � � �

�
Γ f � g � m � � . If we then consider the GNS representation� π ��� � Ω � induced by ω, we get on � a unitary strongly continuous representation U of

˜
 �� leaving Ω invariant and such that � π � U � is a covariant representation of � � � Hm � � α � .
Definition B.1. The free Majorana field of mass m � 0 is the operator valued distribution
f � � � � 4 ; � 4 � � ψ � f � � � � � � given by ψ � f � : � π � B � f � � , f � � � � 4 ; � 4 � , where on the
left hand side f is identified with its image in Hm.

If we introduce a formal column matrix of fields of operators ψ � x � , x � � 4 , such that

ψ � f � �

�
� 4

d4x � ψ � x � + � t γ0 f � x � �

from ψ � Γ f � � ψ � f � + we find Cψ � x � � iγ2ψ � x � + � 	 ψ � x � , i.e. ψ � x � is neutral (the overall
phase 	 1 being irrelevant).

As customary, ∆m : �'� 2π � 4i � dΩ
�
m 	 dΩ  m �

�
, will be the commutator distribution for the

Klein-Gordon field of mass m, where dΩ �m are the positive Radon measures on
� 4 defined

by �
� 4

dΩ �m � p � f � p � �

�
� 3

d3p
2ωm

� p � f � � ωm
� p � � p � � f � Cc

� � 4 � �
We shall indicate by

� � ����� the canonical pairing between ! � � 4 � and ! $ � � 4 � . We then
summarize in the following proposition the main properties of the Majorana field.

Proposition B.2. With the above notations, there holds:
(i) ψ is covariant with respect to U,

U � A � a � ψ � f � U � A � a � + � ψ � u � A � a � f � �
the spectrum of the representation of the translation group a � U ��� � a � is contained in
the forward light cone, and Ω is the unique (up to a phase) translation invariant unit
vector in � ;

(ii) � ψ � f � � ψ � g � + � �

�
fβ /

� � γ0 � i �
∂ ( m � � αβ∆m � � gα � � �

and in particular � ψ � f � � ψ � g � + � � 0 if the supports of f and g are spacelike separated;
(iii) for any f � � � � 4 ��� 4 � , ψ ��� �∂ ( im � f � � 0, i.e. ψ is a distributional solution of the

Dirac equation.

Introducing the 4 � 4 matrix of tempered distributions Sm : �'� i �
∂ ( m � ∆m, the anticom-

mutation relations in (ii) can be formally written as

� ψ � f � � ψ � g � + � �

�
� 4

d4x
�
� 4

d4y g � x � †γ0Sm
� x 	 y � f � y �

which is frequently found in physics texts.
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Proof of proposition B.2. It is standard, so we can be brief. (i) Covariance of ψ is immediate
from the definitions. To show that the translations satisfy the spectrum condition, we first
note that for any choice of f1 �������
� fn, g1 �������
� gn in

� � � 4 ��� 4 � and h in L1 � � 4 � with supp ĥ
disjoint from V � , we have, using the shorthand notation p � �'� ωm

� p � � p � ,
�
� 4

d4a h � a �
n

∏
i � 1

�
fi � u ��� � a � gi � m � �

�

�
� 3n

n

∏
i � 1

d3pi ĥ � p1
� ( �����
( pn

� �
n

∏
i � 1

f̂i
� pi
� � †P� � pi � ĝi

� pi
� � � 0 �

since, being pi
� � Ω

�
m , p1

� ( �����
( pn
� � V � . Then, by the defintion of ω this implies

�
� 4

d4a h � a � � ψ � f1 � ����� ψ � fn � Ω
�
� U ��� � a � ψ � g1 � ����� ψ � gm � Ω �

�

�
� 4

d4a h � a � ω � B � Γ f1 � ����� B � Γ fn � B � u ��� � a � g1 � ����� B � u ��� � a � gm ��� � 0 �

for any choice of the functions fi, g j and h as above, and, as Ω is cyclic for π � � � Hm ��� ,
this is sufficent to conclude that SpU ��� ��� � " V � . To show that Ω is the unique translation
invariant vector, it is sufficient to show that clustering holds, and in particular that

lim�
a

� � � ∞
� Ω �

� ψ � f1 � ����� ψ � fn � αa � ψ � g1 � ����� ψ � gm ��� Ω �
� � Ω �

� ψ � f1 � ����� ψ � fn � Ω � � Ω �
� ψ � g1 � ����� ψ � gm � Ω � �

for any choice of the functions fi, g j in
� � � 4 ��� 4 � , but this is a consequence of the vanishing

of the truncated n-point functions and of the fact that, due to the smoothness of f and g,

lim�
a

� � � ∞

�
f � u ��� � a � g � m � � � lim�

a
� � � ∞

�
� 3

d3p eip � a f̂ � p � � †P� � p � ĝ � p � � � 0 �

(ii) From the definitions, we have � ψ � f � � ψ � g � + � � π � � B � f � � B � Γg � � � �

�
g � f � m � and a

calculation using (B.3) shows that the formula in the statement holds. In particular, since
supp ∆m " V [RS75, thm. IX.48], � ψ � f � � ψ � g � + � � 0 if supp f is spacelike separated from
supp g.

(iii) Immediate.

We now turn to the consideration of the net of local von Neumann algebras associated
to the free Majorana field, and defined by

� � & � : ��� ψ � f � : supp f " &3� $ $ � (B.10)

for & � � 4 open and bounded. On this net the group
�

2 acts by an automorphism βk induced
by the automorphism of � � Hm � defined by B � f � � 	 B � f � (which is in turn the restriction
to � � Hm � of the automorphism of - � Hm � defined, through CAR unicity, by a � f � � 	 a � f � ),
which leaves the vacuum state ω invariant. This also implies that βk is implemented by a
unitary operator V � k � on � such that V � k � 2 � V � k2 � � � . V � k � then induces a direct sum
decompostion � � � � � �  according to its eigenspaces, i.e. V � k � � � � � � ��� � , which
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is clearly preserved by the operators F � � � & � which are
�

2-invariant, βk
� F � � F , as well

as by U � A � a � for each � A � a � � ˜
 �� , since α and β clearly commute, so that we can define
U � � A � a � : � U � A � a � � � � , and the net of observable von Neumann algebras associated to
the free Majorana field as � � & � : � � � & �

�
2
� � � � (B.11)

That in this way we get an example satisfying the assumptions made in section 3.2 is the
content of the following proposition.

Proposition B.3. With the above notations, let π � be the representation of the quasi-local
algebra � defined by π � � A � � � � : � A. Then π � is well defined, � � � � � � U � � Ω � is a
Poincaré covariant observable net, and � π � ��� � V � k � U � is a Poincaré covariant, normal
field net with gauge symmetry over � � � � � � U � � Ω � . Furthermore

π � � � � & ��� � � ψ � f � ψ � g � : supp f � suppg " &3� $ $ � (B.12)

and if we denote by - � & � the sub-C + -algebra of � � & � of those A � � � & � such that
s � ˜
 �� � αs

� A � is norm continuous, then � � & � � - � & �  .

Proof. As usual, the fact that π � is well defined will be a consequence of the Reeh-
Schlieder theorem, once we will have shown that � is a covariant normal field net. Isotony
and Poincaré covariance of & � � � & � and of & � � � & � are evident from the defini-
tions, since supp u � A � a � f � Λ � A � supp f ( a. We also note that U � factors through 
 �� ,
since from u � 	 � � 0 � f � 	 f (S � 	 � � � 	 � ), U � 	 � � 0 � � V � k � follows. In order to prove
normality, we first show that

� � & � � � � � & �
�

2 �1� ψ � f � ψ � g � : supp f � suppg " &3� $ $ �
Provided that π � is well defined, we have π � � � � & ��� � � � & �

�
2, so that from the above

formula we will get (B.12). The inclusion � ψ � f � ψ � g � : supp f � supp g "�&3� $ $ "�� � & �
�

2

is evident. To prove the converse one, note that � � & �
�

2 � m � � � & ��� , with m � � ι (
βk � � 2 the invariant mean over

�
2 (ι being the identity automorphism of

� � � � ). Then
since � � & � is the weak closure of the span of elements ψ � f1 � ����� ψ � fn � , supp fi "�& , and
m � ψ � f1 � ����� ψ � f2n ��� � ψ � f1 � ����� ψ � f2n � , m � ψ � f1 � ����� ψ � f2n

�
1 ��� � 0, we get that � � & �

�
2 is

the weak closure of the span of elements ψ � f1 � ����� ψ � f2n � , supp fi "%& , which coincides
with the von Neumann algebra generated by ψ � f � ψ � g � , supp f , supp g "�& . Analogously
one finds that � � & �  is the weakly closed span of products of an odd number of ψ � f � ,
supp f "'& . Then if supp fi "�& 1, i � 1 ������� � n, supp g j "'& 2, j � 1 �������
� m, and & 1 "'& $2,
we have, from proposition B.2(ii), ψ � fi � ψ � g j � � 	 ψ � g j � ψ � fi � , and then

ψ � f1 � ����� ψ � fn � ψ � g1 � ����� ψ � gm � �'� 	 1 � nmψ � g1 � ����� ψ � gm � ψ � f1 � ����� ψ � fn � �
which implies normality of commutation relations for � , and spacelike commutativity for� . Positivity of the energy for U , and hence for U � , as well as uniqueness of the vacuum,
have been proven in proposition B.2, thus the quasi-local algebras � , � are irreducible on
the respective Hilbert spaces. It remains only to show that � � & � � - � & �  , but this is an
immediate consequence of the strong continuity of the action of ˜
 �� on π � � � Hm ��� , pointed
out before, and of formula (B.12).
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In the next proposition, the very simple superselection structure of � described by the
field net � is analysed.

Proposition B.4. The representation π  of � given by π  : � π � � � � � �, is irreducibile
and satisfies the DHR criterion, and any irreducible representation of � appearing in �
is equivalent either to ι, the identity representation, or to π  . Moreover, if ρ f is the auto-
morphism of � induced by the 1-dimensional Hilbert space H f

� � ψ � f � , with supp f ",& ,
Γ f � f and

�
f
�

m
�

�
2, then ρ f is localized in & and transportable, and ρ f

�
� π  .

Proof. The irreducibility of π  follows from the arguments in [DHR69a], since from
π � � � � & ��� � � � & �

�
2 and irreducibility of � , π � � � � $ $ � V � �

2 � $ follows, and �  is
the subspace associated to the irreducible representation k � 	 1 of

�
2 in the factorial de-

composition of V . This also implies that any other irreducible representation of � in � is
equivalent to ι or π  . To show that π  satisfies the DHR criterion, fix a double cone & and
an f � � � & ; � 4 � with Γ f � f and

�
f
�

m
�

�
2. Then

ψ � f � ψ � f � + � ψ � f � + ψ � f � � ψ � f � 2 �
1
2
� ψ � f � � ψ � f � � �

1
2

�
f
� 2

m
� � � �

i.e. ψ � f � is unitary, and, since � � is spanned by products of an even (odd) number of
field operators applied to the vacuum, ψ � f � � � � � � . Let then V f : � ψ � f � � �, , and
g � h � � � & $ ��� 4 � . We have

Vf π  � ψ � g � ψ � h ��� � ψ � f � ψ � g � ψ � h � � �, � ψ � g � ψ � h � ψ � f � � �, � ψ � g � ψ � h � V f �
so that V f intertwines between π  � � � & $ � and ι

� � � & $ � . Finally this also shows that if
π � ρ f

� A � � ψ � f � π � � A � ψ � f � + then ρ f is localized in & , and V f intertwines between π  and
ρ f , and if supp f1 " & 1, V : � ψ � f � ψ � f1 � + � � � intertwines between ρ f1 and ρ f , which is
therefore transportable.

Finally we come to the proof of the fact that the charge ξ : �

�
π  � in the above proposition

is ultraviolet stable, in the sense of definition 3.10. To this end, since the Hilbert spaces
inducing the various ρ f are 1-dimensional, it is sufficient to find, for every double cone
& , a family � fλ � λ � � 0 � 1 � of functions such that supp fλ " λ & ,

�
fλ
�

m
�

�
2, and such that

condition (3.11) is satisfied with ψ � λ � � ψ � fλ � .
Proposition B.5. For every double cone & , there exists f � � � & ; � 4 � such that, if
fλ � � � λ & ; � 4 � is defined by

fλ
� x � : � λ

3
2
 4 f � λ  1x � � λ � � 0 � 1 � �

then
�

fλ
�

m
�

�
2 and Γ fλ

� fλ for λ � � 0 � 1 � , and

lim� A � a � � ��� � 0 � sup
λ � � 0 � 1 �

�� �
α � A � λa � � ψ � fλ � � 	 ψ � fλ � � Ω �� � 0 � (B.13)

In the course of the proof of this proposition, we will need the following simple result
concerning the action of the Lorentz group on Minkowski space.

Lemma B.6. Fix a mass m � 0. For any sufficiently large R � 0, there exists a neighbour-
hood of the identity

	
in SO � � 1 � 3 � such that, for any p � V � with 0

�
p2 � m2 and � p � � R,

and for any Λ � 	
, it holds, for p $ : � Λp, � p $ � � � p � � � 2.
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Proof. To simplify the notation, we will write Λ � p for the spatial part, in a given Lorentz
frame, of the 4-vector Λp, Λ � SO � � 1 � 3 � , p � � 4 . One should always keep in mind, how-
ever, that Λ � p depends on the time component p0 of p as well. Let Λ1

� s � , s � � , denote the
1-parameter group of boosts in the p1 direction.

If p � � 4 is such that � p1 � 2
� � p2 � 2 ( � p3 � 2, since Λ1

� s � leaves the components p2, p3

unaffected, we have, for any s � � , �Λ1
� s � � p � 2 � � p2 � 2 ( � p3 � 2 � � p � 2 � 2.

Assume now that � p1 � 2 � � p2 � 2 ( � p3 � 2. This implies � p1 � � � p � �
�

2 and, since for any
sufficiently large R � 0,

inf
0

�
p2 �

m2
�
p

� � R

� p �
� p0 �

�
inf�
p

� � R

� p �
�

� p � 2 ( m2 � 0 �

we can find a δ � 0 such that, if � s � � δ,

� � Λ1
� s � p � 1 � � � sinh s p0 ( cosh s p1 � � � p1 � 	 � sinh s � p0

� � p1 ��
2
�

for any p � V � with 0
�

p2 � m2 and � p � � R, so that

�Λ1
� s � � p � 2 � p2

1

2
( p2

2 ( p2
3

� � p � 2
2
�

Then, if we identify in the canonical way SO � 3 � with a subgroup of SO � � 1 � 3 � , since �R � p � �

� p � for any R � SO � 3 � , we conclude with
	

: �,� R1Λ1
� s � R2 : � s � � δ � R1 � R2 � SO � 3 � � .

Proof of proposition B.5. In order to shorten formulae, we will use the notation pλ � � : �

� � ωλm
� p � � p � , as well as the notation Λ � p introduced in the proof of the above lemma.

Also, � � � will denote the norm of a vector both in
� 3 and in � 4 . A calculation shows

�
fλ
� 2

m
�

�
f
� 2

λm
�

�
� 3

d3p
4ωλm

� p � 2 ∑�
�
� γ0 � �pλ � � ( λm � f̂ � pλ � � �

�
� 2 �

and then, in order to show that there is an f � � � & ��� 4 � such that
�

fλ
�

m
�

�
2 and Γ fλ

� fλ
for each λ � � 0 � 1 � , it is sufficient to exhibit an f � � � &3��� 4 � such that Γ f � f , and for which� � p ( µ � f̂ � p � is not identically zero on each hyperboloid Ωµ : � Ω

�
µ
� Ω  µ , µ � 0. A direct

check shows that these conditions are met by f � x � : � g � x � ��� ( iγ 2 � � 1 0 0 0 � t
where

g � � � & ;
� � .

We show then that for any f satisfying the stated conditions, (B.13) holds. Since�
γµ � 2 �

� � γµ � †γµ � �

�
γ0γµγ0γµ � � 1 (norm in M4

� � � ), we have
�
γ0 � � pλ � � ( λm � � �

ωλm
� p � ( 3 � p � ( λm

�
5ωλm

� p � , and then, being u � A � λa � fλ
� � u � A � a � f � λ, we have, writing

pλ : � pλ � � ,

�� �
α � A � λa � � ψ � fλ � � 	 ψ � fλ � � Ω

�� 2
�

�
u � A � a � f 	 f

� 2
λm � �

�

�
� 3

d3p
4ωλm

� p � 2
�
�
� γ0 � �pλ ( λm �

�
eipλ

� aS � A � f̂ � Λ � A �  1 pλ � 	 f̂ � pλ � � �
�
�

2

� 5
4

�
� 3

d3p
� p �

�
� eipλ

� aS � A � f̂ � Λ � A �  1 pλ � 	 f̂ � pλ �
�
� 2 �
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where we also used ωλm
� p � � � p � . Then denoting

� � � 2 the standard norm in
L2 � � 3 � d3p

� � p � � � � 4 , and using repeatedly the triangle inequality,

�
u � A � a � f 	 f

�
λm � � �

�
5
4
� � S � A � � � �� f̂ � Λ � A �  1 pλ � 	 f̂ � pλ �

��
2

( �� � eipλ
� a 	 1 � f̂ � pλ �

��
2 �

( � S � A � 	 � � � f̂ � pλ � � 2 � �
(B.14)

where, for more clarity, we indicated explicitly the variable of integration inside the norms.
The last term in this equation can be estimated uniformly in λ by the fact that, being
f̂ � ! � � 4 ; � 4 � , there are constants C � 0, n � 1, such that

�
� 3

d3p
� p �

�
� f̂ � pλ �

�
� 2
�

C
�
� 3

d3p
� p �

1� 1 ( ωλm
� p � 2 ( � p � 2 � n

�
C

�
� 3

d3p
� p �

1� 1 ( 2 � p � 2 � n �

so that it can be made arbitrarily small, as A � � , uniformly in λ � � 0 � 1 � . For the second
term in square brackets in (B.14), we have, by an application of Lagrange theorem to the
exponential, and using ωλm

� p � � ωm
� p � for λ � � 0 � 1 � ,

�
� 3

d3p
� p �

�
� � eipλ

� a 	 1 � f̂ � pλ �
�
� 2
�

C � � a0 � 2 ( � a � 2 �
�
� 3

d3p
� p �

�ωm
� p � � 2 ( � p � 2� 1 ( 2 � p � 2 � n �

and then, if n � 2, this term is also uniformly small in the relevant limit. Finally, we use the
above lemma to estimate the first term in square bracket in (B.14). For each sufficiently large
R � 0 let

	
R be a neighbourhood of the identity in SL � 2 ��� � , such that Λ � 	 R � " SO � � 1 � 3 �

is as in the lemma. Then, for � p � � R, A � 	
R,

�
� f̂ � Λ � A �  1 pλ � 	 f̂ � pλ �

�
�
�

C � 1� 1 ( 2 �Λ � A �  1 � pλ � 2 � n (
1� 1 ( 2 � pλ � 2 � n �

�
C � 1� 1 ( � p � 2 � n (

1� 1 ( 2 � p � 2 � n � �
Thus, again by Lagrange theorem, we have, for A � 	

R,

�
� 3

d3p
� p �

�
� f̂ � Λ � A �  1 pλ � 	 f̂ � pλ �

�
� 2
�

C
�

�
p

� � R

d3p
� p � � 1� 1 ( � p � 2 � n (

1� 1 ( 2 � p � 2 � n � 2

( �
∂ f̂

� 2
∞
�
Λ � A �  1 	 � � 2

�
�
p

� �
R

d3p
� p �
� �ωm

� p � � 2 ( � p � 2 � �

and the λ independent right hand side can be made arbitrarily small by taking R sufficiently
large, and A in a corresponding neighbourhood ˜	

R " 	
R.
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