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Introduction

The present work might be pictured in several different perspectives, accord-
ing to which part of its is considered a target, which one a tool and which
an application. The results obtained are, in fact, linked to each other in
a quite surprisingly strict way. The best choice to introduce and motivate
them is thus probably to describe how everything has been worked through.

The starting point is the fundamental article [13] by Harvey and Lawson,
where the main results of Morse Theory on compact manifolds are retrieved
in a new perspective. In particular, they construct a chain homotopy de-
forming the deRham complex (of forms or of integral currents) into a finite
dimensional complex of currents “the S-complex”, isomorphic to the so-
called “Morse Complex”, giving a new, direct proof to the well-known fact
that the latter computes the singular homology of the underlying manifold.
The deformation of an object, e.g. a form α, is the asymptotic limit of the
pullbacks limt φ

∗
t (α) under the gradient flow of the function (convergence is

intended in the sense of currents).

A very important concept in [13] is the “finite volume technique”. This
technique works when one is able to bound the volume of a certain manifold
called the “graph of the flow”. In the case of the gradient flow of a Morse
function, Harvey and Lawson assumed a technical hypothesis called “tame-
ness” which allowed them to apply a blow up argument and desingularize
the graph of the flow, hence bounding its volume. The same hypothesis is
also assumed by Laudenbach in [17], dealing with the (a posteriori similar)
problem of bounding the volume of stable manifolds in the same framework.
Laudenbach too uses a blow up argument and describes the singularities of
the stable manifolds as “conical”, conjecturing that the volume bound might
be proved even without the “tameness” hypothesis, by “desingularizing the
cone construction”. We recollect these and other preliminaries (in particular
the Boundary Value theory for systems of ODE’s) in the first chapter.

The second chapter is devoted to find bounds for the volume of the flow
and of the stable manifolds of a certain class of flows with non-degenerate sin-
gularities. The tameness hypothesis is removed, and the concept of “horned
stratification” is introduced to describe the singularities arisen. This model
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turns out to be very useful and handy: horned stratified subsets define inte-
gral currents, can be used as cycles for a homology theory over the integers,
and at the same time have nice intersection properties. In the proofs, the
tool that replaces the blow up (or “cone”) construction is the Boundary
Value theory.

In chapter three we apply the local results of the second chapter to
obtain global informations. The finite volume technique is extended to a
non-compact setting (a certain “weakly proper” condition is assumed in
order to compensate lack of compactedness) leading to a “non compact”
Morse theory. The target is always to relate the analytic properties of a
Morse function to some topological invariant of the underlying manifold.
Though, of course, in a noncompact setting the results are different than
in the compact case, one might try to obtain them in somewhat the same
fashion. We use the dynamics of the flow to define an analogous of the
“Morse complex”, encoding the topological information. The “forward S-
complex” is thus introduced, and the invariants involved are described as
groups of cohomology with “forward supports”.

Finally, the standard trick of inverting the time leads to a “forward/ba-
ckward duality”, which restricts to Poincaré-deRham duality if the potential
function is bounded. Here the proofs involve some tools by functional anal-
ysis (in analogy with the proofs of deRham or Serre dualities), since the
spaces might be infinite dimensional.

Once constructed a noncompact Morse theory, one looks for interesting
examples to fit in such a frame. The observation that flows arising in Novikov
theory are weakly proper suggests the attempt to relate the theories. This
is done in chapter four.

In classical Novikov theory, cf. [22], one consider a closed 1-form with
nondegenerate critical points and looks for relations between the dynam-
ics of a gradient flow for the form and some topological invariant of the
underlying manifold and/or of the 1-form. Novikov, ref. cit, considered a
covering of the manifold where the form is pulled back to an exact func-
tion, which results of Morse type. He then introduced the “Novikov ring”
and the “Novikov Complex”. The latter is made up of finitely generated
modules over the Novikov ring, generators being in one-to-one correspon-
dence with the critical points of the 1-form. This is the key to obtain the
Novikov inequalities, in quite a similar way as in Morse theory one obtains
Morse inequalities. We construct a modified and arguably more natural
version of Morse-Novikov theory, where the Novikov Ring is replaced by a
new “Forward Laurent ring”. The theory results clarified in several ways.
Geometrically, the Novikov complex is described as a subcomplex of the
complex of currents, using the constructions in chapter three. Topologi-
cally, the invariants are described in a new and concise way as “compact
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forward cohomology”. A new duality called “Lambda duality” is provided
for the invariants obtained, as an application of the “forward-backward du-
ality” proved in chapter three.

In chapter five, the previous results are extended to the case of functions
and forms with “Bott” singularities (i.e. singularities uniformly distributed
along regular submanifolds). The case of functions with Bott singularities
on a compact manifold using the approach by finite volume technique had
been considered by Latschev in his PhD thesis [18], which we generalize
(and largely use!). Also, we construct a Novikov theory for forms with Bott
singularities in analogy with the approach in chapter four. Possible appli-
cations and perspectives are discussed in a last section.

Finally, two appendixes are added to recollect results about currents and
stratifications.
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Chapter 1

Preliminaries

In this chapter we present a brief review of the main framework we’ll work
within and the main tool used: Morse Theory and the Finite Volume tech-
nique.

A remark: we will usually don’t bother about the class of differentiability
of our objects and will just work in the C∞ category, but of course analogous
results might be stated for less regular conditions.

1.1 Morse Functions and The Morse Complex

In the sequel, X will be a smooth manifold of dimension m, not necessarily
compact. Let f : X → R be a smooth function. A point p ∈ X is called
critical for f if df |p = 0, i.e. all first partial derivatives of f vanish in
p. It then makes sense to consider the symmetric bilinear form Hp (f) :
TpM × TpM → R whose expression in a coordinate system x1, . . . , xn is

given by ∂2f
∂xi∂xj . This form is called the Hessian of f in p and the critical

point p is called nondegenerate if and only if Hpf is nondegenerate. In
this case, if the Hessian has signature (k, n − k), say, then k is called the
index of f in p and denoted by # (p). The Morse Lemma states that any
function with a non degenerate critical point of index k admits (locally near
p), an expression in suitable coordinates x1, . . . , xn as a quadratic form:

f (x) = f (p) + x2
1 + · · ·+ x2

k − x2
k+1 − · · · − x2

n

Definition 1.1.1 A function whose critical points are all nondegenerate is
called a Morse function.

It is well known that the set of Morse function is open and dense in the set
of C∞ functions on a manifold.

One might define nondegenerate singularities also for vector fields, but
it’s better to use a slightly less general concept. Suppose that a vector field

1



2 Chapter 1

V has an isolated singularity in a point p and that for coordinates x1, · · · , xn
near p, the expression

V (x) = Ax+ b (x)

holds, A being a constant n × n matrix (linearization matrix) and b a
smooth function, vanishing and singular in p. The isolated critical point p is
called hyperbolic if the matrix A has no purely imaginary eigenvalue (i.e.
all eigenvalues have nonvanishing real part, called characteristic exponent).
The number of negative characteristic exponents of the matrix A is called
the index of the critical point p for V . Of course, the singularities of a
vector field V which is the gradient of a Morse function f with respect to
any Riemannian metric are hyperbolic and the two notion of index agree for
V = −∇f .

If V is a complete vector field, (φt)t∈R is the corresponding flow and p is
a hyperbolic singular point of index k for V , one can introduce the Stable
Manifold Sp and the Unstable Manifold Up in p:

Sp = {x ∈ X| lim
t→+∞

φt (x) = p}
Up = {x ∈ X| lim

t→−∞
φt (x) = p}

Theorem 1.1.2 (Hadamard) The stable and unstable manifolds at p are
smooth immersed submanifolds of X of dim respectively k = # (p) and n−k,
transversal to each other.

The previous theorem is usually called “Stable manifold theorem”, and
a proof will be provided later in this chapter.

Definition 1.1.3 A complete vector field with isolated hyperbolic singular-
ities (and its flow) is said to be Smale if and only if for any two critical
points p and q, the Stable manifold at p and the Unstable manifold at q
intersect transversally (of course the intersection might be empty).

We next describe the Morse complex, firsts introduced by E. Witten in
[31].

Consider a compact oriented manifold X and a Morse function f : X →
R with a Smale gradient. The group of k-cycles Ck is the free abelian group
generated by the critical points of index k, i.e. Ck ≈ Zrk if there are rk
critical points of index k. The differentials δk : Ck → Ck−1 are defined as

δk (p) =

rk−1∑

i=1

ciqi

where ci are integers and the qi’s runs through the critical points of index
k−1. The constants ci are computed counting with orientations the number
of flow lines connecting p and qi (cf. [1] for details).
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Theorem 1.1.4 (Morse-. . .-Floer) The Morse Complex is a complex (i.e.
δ2 = 0) and has homology isomorphic to the singular homology of X.

We will prove this statement later. It’s interesting to point out that the
famous strong Morse inequalities (cf. for example [21]) are a direct algebraic
consequence of this fact but we will never use them, so we won’t describe
them explicitly.

1.2 Finite Volume Flows

The theory of finite volume flows was introduced by Harvey and Lawson in
[13]. It is fundamental for our presentation and hence we give a short and
intuitive account here, referring to the original paper for details.

Let X be a compact oriented manifold of dimension n and φt : X → X
the flow generated by a vector field V . For some t > 0, consider the following
subsets:

Pt = {(φt(x), x)|x ∈ X} and Tt = {(φs(x), x)|x ∈ X, 0 ≤ s ≤ t}

Of course the Pt is a smooth oriented submanifold, being the (inverted)
graph of the diffeomorphism φt, whereas Tt = Φ([0, t]×X) where Φ(x, t) =
(φt(x), x). The map Φ : R × X → X × X is an immersion exactly on
R × (X − Z), where Z is the set of critical points for V . Supposed fixed a
Riemannian metric on X:

Definition 1.2.1 The flow φ is called a finite volume flow if R+×X−Z
has finite volume with respect to the metric induce by the immersion Φ.

If X is not compact, φ is called a locally finite volume flow if for any
compact set K in X, the volume of R+ ×K −Z is finite with respect to the
metric induce by the restriction of Φ.

Note that this concept is independent by the choice of the metric and if there
are no periodic orbits it’s equivalent to ask that the immersed submanifold
Φ(R+×X −Z) has finite n+ 1-dimensional volume. In the case of periodic
orbits, one has to count the volume with “multiplicity” (but so far there is
no known flow of finite volume admitting a nontrivial periodic orbit on a
compact manifold).

Let’s see the applications in the case of a compact X.

Denoting by ∆ the diagonal in X × X, observe that ∆ and Pt define
currents by integration and that Tt = Φt ∗ ([0, t] ×X) defines a current by
pushforward, whose boundary is dTt = ∆− Pt. One then obtains:
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Theorem 1.2.2 If φ is a finite volume flow, then both the limits

P = lim
t→+∞

Pt and T = lim
t→+∞

Tt

exists as currents and by taking the boundary of T one obtains the following
equation of currents on X ×X:

dT = ∆− P (1.1)

Remark Since the current T = Φ∗((0,+∞)×X) and (φt(x), x) = (y, φt(y))
for y = φ−t(x), it follows that

T ∗ = Φ∗((−∞, 0)×X)

is also a well defined current corresponding to the pushforward of T under
the flip (x, y)→ (y, x) on X ×X.

Using the kernel calculus for currents (an account of which is presented
in the appendix), and denoting by bold letters the operators corresponding
to the kernels currents, one obtains:

Corollary 1.2.3 The following limits of operators hold:

T = lim
t→+∞

Tt and P = lim
t→+∞

Pt (1.2)

as well as the equation

d ◦T + T ◦ d = I−P (1.3)

Remark Note that T : Ek(X)→ D′k−1(X) and P : Ek(X)→ D′k(X); here
E denotes the smooth forms and D′ the currents.

By deRham theory, the operator I : Ek(X) → D′k(X) induces an iso-
morphism on real cohomology. Because of the chain homotopy 1.3, so does
P:

Corollary 1.2.4 The map induced in cohomology

P : Hk(X,R)→ Hk(X,R)

is an isomorphism.

Of course the finite volume technique gains interest and power when
there is an explicit description for the kernels T and P and a nice descrip-
tion for the corresponding operators.
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If X is not compact, the situation is more complicated and locally finite
volumes flows are not always so important as in the compact case. The
current equation 1.1 still makes sense, even if the condition on finite volume
is only required locally. The corresponding operator equation 1.3 continues
to hold, though it is not any longer true that I induces an isomorphism in
cohomology, in general.

To get additional informations out of the operator equations, we need
to find a setting where I is an interesting map. This will be the case in our
treatment of noncompact Morse theory, where the operators will be suitably
extended.

1.3 The Boundary Value Technique

We are interested in the local properties of solutions of ODE systems on
Rs × Ru of the form: {

ẋ = L−x+ f(x, y)

ẏ = L+y + g(x, y)
(1.4)

Setting
F = (f, g) : Rs × Ru → Rs × Ru

it is assumed that:

F (0, 0) = 0 and dF (0, 0) = 0

It is also assumed that L− (respectively L+) is a constant matrix whose
eigenvalues have strictly negative (respectively strictly positive) real parts
and that F is smooth.

According to the Grobman-Hartman theorem, the system is topologically
conjugated to the linear part, but no such description is available, in general,
in the smooth category. Nevertheless the behaviour is “dominated” by the
linearization: basically, the flow contracts the set of x directions and expands
the y’s.

The usual way by which one describes the geometry of a dynamical sys-
tem is the Initial Value problem (abridged I.V. problem): give an initial
datum, and look for solutions as curves starting at that point for a fixed
time. This approach is very intuitive, but does not work properly in terms
of stability: a slight modification of the datum can change the picture of
solutions dramatically. The phenomenum is critical in presence of singular-
ities; nevertheless, at least for hyperbolic singularities, one can describe the
geometry of the flow in a “stable” way using the Boundary Value technique.

We next give an account of this theory, quoting the book [27] and the
appendix in the paper [1] as references. For what we know, the BV tech-
nique was first introduced by Shilnikov in the late ’60 (cf. the introduction
in [27]). Nevertheless, Shilnikov is never mentioned in the paper [1], where
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the authors refer to Smale and Floer as implicit sources.

For reasons that will be clear later, it’s better to consider a slightly
more general dynamical system than (1.4). The non linear term are sup-
posed small near 0, instead of vanishing, the system non-autonomous and
depending on extra parameters:

{
ẋ = L−x+ f(t, x, y, θ)

ẏ = L+y + g(t, x, y, θ)
(1.5)

The matrices L− and L+ are assumed to be in Jordan form, the real
parts of the eigenvalues (i.e. the characteristic exponents) of L− to be
strictly negative, say −λs ≤ · · · ≤ −λ1 < 0, and those of L+ to be strictly
positive, say 0 < µ1 ≤ · · · ≤ µu. The Jordan form hypothesis implies that
for any fixed value 0 < α < λ1, µ1, the following estimates hold:

∥∥∥etL−
∥∥∥ ≤ e−αt ,

∥∥∥e−tL+
∥∥∥ ≤ e−αt for t ≥ 0

In the sequel the symbol |x, y| will always mean the max between |x| and
|y|. Now put:

F = (f, g) : R× Rs × Ru ×W → Rs × Ru

the set W (an open set in some Ri) being the domain of the parameters θ.
The “non linear term” F is supposed to vanish at the origin and its spatial
derivatives to be uniformly bounded. In other words, there exists constants
δk such that:

F (t, 0, 0, θ) = 0

δkε
def
= sup

|x,y|≤ε

∑

|m|≤k

∣∣∣∣
∂kF

∂(x, y)m

∣∣∣∣ ≤ δk < +∞ (1.6)

We will later ask the first derivatives to be bounded by a small constant,
i.e. δ1 to be small enough.

Lemma 1.3.1 In the previous hypotheses, the following inequality holds

|F (t, x, y, θ)| ≤ δ1
|x,y||x, y| (1.7)

Proof. By the mean value theorem:

|F (t, x, y, θ)| = |F (t, x, y, θ)− F (t, 0, 0, θ)| ≤ δ1
|x,y||x, y|¤

Definition 1.3.2 We say that the Boundary Value problem (abridged
B.V. problem) with data (x0, y1, τ) ∈ Rn× [0,+∞) is solvable for the system
(1.5) if there exists a solution (x∗(t), y∗(t)) defined on [0, τ ] and satisfying:

(x∗(0), y∗(τ)) = (x0, y1)
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y=y1

x=x0

t

t’

We can now state the following existence and uniqueness theorem:

Theorem 1.3.3 (Shilnikov) Suppose the estimate δ1 < α holds. Then
the Boundary Value problem for the system 1.5 is solvable for any data
(x0, y1, τ). The solution is unique, it depends smoothly on (t, x0, y1, τ, θ)
and satisfies:

|x∗ (t) , y∗ (t) | ≤ 2|x0, y1| for any t ∈ [0, τ ]

Notations In the same way as for an Initial Value problem, a BV problem
is denoted by: 




ẋ = L−x+ f (t, x, y, θ)

ẏ = L+y + g (t, x, y, θ)

x∗(0) = x0, y
∗(τ) = y1

(1.8)

The solution at time t to the Initial Value problem starting in (x0, y0) at
t = 0 will be denoted by

(x (t, x0, y0) , y (t, x0, y0))

whereas the solution at time t to the Boundary Value problem with data
(x0, y0, τ) will be denoted by

(x∗ (t, x0, y1, τ) , y
∗ (t, x0, y1, τ))

The “end point” (x∗1, y
∗
0) for the BV solution is defined as

x∗1 (x0, y1, τ) = x∗ (τ, x0, y1, τ) (1.9)

y∗0 (x0, y1, τ) = y∗ (0, x0, y1, τ) (1.10)
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The following relations hold, by definition:

x (t, x0, y0) = x∗ (t, x0, y(t, x0, y0), t)
y (t, x0, y0) = y∗ (t, x0, y (t, x0, y0) , t)

x∗ (t, x0, y1, τ) = x (t, x0, y
∗
0 (x0, y1, τ))

y∗ (t, x0, y1, τ) = y (t, x0, y
∗
0 (x0, y1, τ))

(1.11)

One of the major consequences of the previous theorem is that one can
“invert” the unstable variables y in describing the flow of solutions: for any
fixed time τ , one can define the two manifolds

W 1
τ = {(x0, y0, t, x (t, x0, y0) , y (t, x0, y0)) | (x0, y0) ∈ Rn, 0 ≤ t ≤ τ}

= {(x0, y
∗(t, x0, y1, τ), t, x

∗(t, x0, y1, τ), y1) | (x0, y1)∈Rn, 0≤ t≤τ}⊂R2n+1

W 2
τ = {(x0, y0, τ, x (τ, x0, y0) , y (τ, x0, y0)) | (x0, y0) ∈ Rn}

= {(x0, y
∗
0 (x0, y1, τ) , τ, x

∗
1 (τ, x0, y1, ) , y1) | (x0, y1) ∈ Rn} ⊂ R2n

The identities above express the fact that the submanifold W 1
τ can be

smoothly parametrized as a graph over both the variables (x0, y0, t) and
(x0, t, y1). Analogously, W 2

τ can be smoothly graphed over both (x0, y0) and
(x0, y1). As a consequence of the formula for the derivatives in the implicit
function theorem, then:

Corollary 1.3.4 The following matrices are invertible and

(
∂y∗

∂y1
|(t,x0,y1,τ)

)−1

=
∂y

∂y0
|(t,x0,y∗0(x0,y1,τ))

(
∂y∗0
∂y1
|(x0,y1,τ)

)−1

=
∂y

∂y0
|(τ,x0,y∗0(x0,y1,τ))

Proof of the theorem. We’ll first prove existence and uniqueness of B.V.
solutions, then their regular dependence on (t, x0, y1, θ). At this point corol-
lary 1.3.4 would also be proved, since it does not involve any regularity in
τ . Finally, we’ll use the corollary to prove the regular dependence on τ ,
completing the proof.

As it should not be surprising, the BV system can be translated in a
system of integral equations:

{
x(t) = etL

−
x0 +

∫ t
0 e

(t−s)L−
f(s, x(s), y(s), θ)ds

y(t) = e−(τ−t)L+
y1 −

∫ τ
t e

(t−s)L+
g(s, x(s), y(s), θ)ds

(1.12)
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Fact 1.1 Any continuous curve, solution of the equations (1.12) is neces-
sarily smooth in t and is a solution to the BV problem with data (x0, y1, τ).
The viceversa is also true.

The proof of the Fact above is the same as for the standard integral
formulation of an Initial Value problem. Solving the previous equations is
thus equivalent to solve the Boundary Value problem.

The right hand side of equations (1.12) defines an operator on the space
of continuous curves. Denote by Vτ the Banach space C0 ([0, τ ] ,Rn) endowed
with the sup norm ‖ ‖∞ , and define T : Vτ × Rn ×W → Vτ by:

(X(t), x0, y1, θ)→
{
T x (X) (t) = etL

−
x0 +

∫ t
0 e

(t−s)L−
f(s, x(s), y(s), θ)ds

T y (X) (t)=e−(τ−t)L+
y1−

∫ τ
t e

(t−s)L+
g(s, x(s), y(s), θ)ds

The operator T can be considered as a nonlinear operator on Vτ de-
pending on “spatial” parameters x0, y1 and on “nonspatial” parameters θ.
Sometimes we will just use the notations T (X) for T (X,x0, y1, θ) if the
parameters are understood fixed.

Claim 1.1 T is continuous (on Vτ × Rn ×W ).

This is quite obvious, and can be directly checked by estimating its varia-
tions.

Claim 1.2 T is C∞ in the Vτ arguments.

Proof. The differentials dkT in the Vτ arguments are the linear operators

dkTX
(
X ′

1, . . . , X
′
k

)
(t) =





∫ t
0 e

(t−s)L−
dkf |(s,X(s),θ) (X ′

1 (s) , . . . , X ′
k (s)) ds

∫ τ
t e

(t−s)L+
dkg|(s,X(s),θ) (X ′

1 (s) , . . . , X ′
k (s)) ds

where X,X ′
i ∈ Vτ , and dkf, dkg denote the differentials in the spatial direc-

tions. This can be proved by induction on k, for shortness we just prove the
Taylor formula.
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∣∣∣
(
T (X +X ′)− T (X)− dTXX ′ − . . .− dkTX

(
X ′, . . . , X ′)) (t)

∣∣∣

≤sup





∣∣∣
∫ t
0 e

(t−s)L−
f(s,X+X ′)−f(s,X)−∑k

i=1d
if |(s,X(s),θ)(X

′, . . . ,X ′)ds
∣∣∣

∣∣∣
∫ τ
t e

(t−s)L+
g(s,X+X ′)−g(s,X)−∑k

i=1d
ig|(s,X(s),θ)(X

′, . . . ,X ′)ds
∣∣∣

≤ sup





∫ t
0 e

−α(t−s)|dk+1f |(s,Y (s),θ) (X ′, . . . , X ′) |ds
∫ τ
t e

α(t−s)|dk+1g|(s,Y (s),θ) (X ′, . . . , X ′) |ds

≤ sup





∫ t
0 e

−α(t−s)δk+1
‖X‖+‖X′‖

‖X′‖k+1

k+1! ds

∫ τ
t e

α(t−s)δk+1
‖X‖+‖X′‖

‖X′‖k+1

k+1! ds

≤
δk+1
‖X‖+‖X′‖

α(k + 1!)
‖X ′‖k+1

which provides a uniform estimate. We point out that the rate of con-
vergence does not depend on τ ¤

Claim 1.3 T is a contraction on Vτ . In fact ‖dT‖ < δ1

α
(< 1 by hypothesis).

Proof. We can easily check dT to be a contraction:

∥∥dTXX ′ (t)
∥∥ = sup

[0,τ ]





∣∣∣
∫ t
0 e

(t−s)L−
df |(s,X(s),θ) (X ′(s)) ds

∣∣∣
∣∣∣
∫ τ
t e

(t−s)L+
dg|(s,X(s),θ) (X ′(s)) ds

∣∣∣

sup
[0,τ ]





∫ t
0 e

−α(t−s)δ1‖X‖ |X ′(s)|ds
∫ τ
t e

(t−s)αδ1‖X‖ |X ′(s)|ds
≤
δ1‖X‖

α

∥∥X ′∥∥

and therefore ‖dTX‖ ≤
δ

α
¤

By claim 1 and 2, according to the contraction lemma in Banach spaces,
for any choice of spatial data (x0, y1), there exists a unique fixed point of the
operator T . This solves the existence and uniqueness issue for the boundary
value problem with data (x0, y1, τ).

Claim 1.4 For any fixed (x0, y1, θ), if ‖X‖∞ ≤ 2|x0, y1|, then ‖T (X)‖ ≤
2|x0, y1| too.
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Proof. Suppose X(t) = (x(t), y(t)) satisfies |x(t), y(t)| ≤ 2 |x0, y1|. Then,
recalling that T x and T y denote the components of T , and putting, for
brevity, δ = δ1

|x0,y1|, the estimate 1.7 implies:

|T x (X) , T y (X) (t)| = sup




|T x (x (t) , y (t))|

|T y (x (t) , y (t))|

≤ max





e−αt|x0|+
∫ t
0 e

−α(t−s)|f(s, x(s), y(s))|ds

e−α(τ−t)|y1|+
∫ τ
t e

α(t−s)|g(s, x(s), y(s))|ds

≤ max




|x0|+ δ

∫ t
0 e

−α(t−s) |x (s) , y (s)| ds

≤ |y1|+ δ
∫ τ
t e

α(t−s)|x(s), y(s)|ds

≤ max




|x0|+ |x0, y1| δ 1

α

|y1|+ |x0, y1| δ 1
α

≤ |x0, y1|

since δ1 ≤ α by hypothesis ¤

Claim 4 proves the estimate on the size of the solution in the statement
of the theorem, because of the successive approximations principle (recall
that the solutions are the fixed points of the contraction T ).

Claim 1.5 The operator T : Vτ × Rn ×W → Vτ is C∞ regular.

Proof. T is affine in the spatial data (x0, y1) and so it depends smoothly on
them, together with its derivatives (which do not even depend on x0 nor on
y1). As for the θ parameters, one can proceed as in claim 2, differentiating
under the integral sign both T and its derivatives to get smoothness of the
mixed derivatives by induction. The theorem about differentiability after
regularity of partial derivatives proves the claim.

We can now prove the smooth dependence of the solutions of the BV
problem on the parameters (x0, y1, θ), as a consequence of the implicit func-
tion theorem in Banach spaces. In fact, claim 3 implies that the derivative
of T − idVτ : Vτ × Rn ×W → Vτ in the Vτ variable is an isomorphism and
therefore the zeros of T − idVτ (i.e. the fixed points of T ) can be smoothly
parametrized over (x0, y1, θ). By the Fact 1 above, this means that the so-
lutions to the BV problem depend smoothly on (x0, y1, θ), completing the
proof of the theorem, but for the statement about regularity in τ . We ex-
plicitly remark that corollary 1.3.4 is now proven too (cf. what said on the
beginning of the present proof).
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Claim 1.6 The solution to the BV problem depends smoothly on τ .

Proof. A formal problem arises for studying variations of τ in the previous
setting, since the Banach space on which T acts changes. It’s simpler to
check differentiability directly. Recalling the identities 1.3.2 the issue reduces
to show that y∗ (0, x0, y1, τ) is regular in τ . By the relation:

y1 = y (τ, x0, y
∗
0 (x0, y1, τ))

and using corollary 1.3.4 and the implicit function theorem, one gets the
desired regularity of y∗0 (x0, y1, τ) on τ (using the well-known regularity of
solutions for Initial Value problems). This completes the proof of the last
claim and of theorem 1.3.3 ¤

The previous theorem insured the regularity of solutions to a BV problem
with respect to any of its arguments. We will next look for the derivatives.
Certainly they solve the “variational” systems of differential equation ob-
tained by formal differentiation of system 1.5. It’s then enough to prove
uniqueness of the solution to the variational system to identify these deriva-
tives.

Let’s consider again the system 1.5 :

{
ẋ = L−x+ f(t, x, y, θ)

ẏ = L+y + g(t, x, y, θ)
(1.13)

with the same hypothesis on the nonlinear terms as in theorem 1.3.3, and
let

(x∗(t, x0, y1, τ), y
∗(t, x0, y1, τ))

be the solution of the BV problem with data (x0, y1, τ). For any v among
∂
∂x0

, ∂
∂y1

, ∂∂θ , substituting x∗, y∗ to x, y in 1.5 and differentiating with respect
to v:





∂
∂t

(
∂x∗
∂v

)
= L− ∂x∗

∂v + ∂f
∂x

∂x∗
∂v + ∂f

∂y
∂y∗
∂v

(
+∂f
∂θ

)

∂
∂t

(
∂y∗
∂v

)
= L+ ∂y∗

∂v + ∂g
∂x

∂x∗
∂v + ∂g

∂y
∂y∗
∂v

(
+∂f
∂θ

) (1.14)

where the derivatives of the nonlinear terms are understood evaluated in
(t, x∗(t), y∗(t)) and the last terms appear only if v is a nonspatial parameter.
Denoting x∗, y∗ by X,Y , one gets the variational system:





∂
∂tX = L−X + ∂f

∂xX + ∂f
∂yY

(
+∂f
∂θ

)
def
= L−X + F (X,Y )

∂
∂tY = L+Y + ∂g

∂xX + ∂g
∂yY

(
+∂f
∂θ

)
def
= L+Y +G(X,Y )

(1.15)
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Observe that 1.15 has the same form as 1.5. Moreover, the estimates on
the first derivatives needed for the existence and uniqueness theorem 1.3.3

are exactly the same for the two systems, since
∂F,G

∂X, Y
=
∂f, g

∂x, y
. This means

that for any BV data (X0, Y1, τ), there exists a unique solution to the cor-
responding BV problem for the system 1.15 . But we already know that
∂x∗y∗

∂x0, y1, θ
solve 1.15, thus it just remains to guess the values of

∂x∗

∂v
in 0 and

of
∂y∗

∂v
in τ . Differentiating the equations 1.12 with respect to x0, y0 and θ

in 0 and τ gives:

∂x∗y∗

∂x0, y1, θ
|0 =

(
I 0 0

0 0 0

)

and
∂x∗y∗

∂x0, y1, θ
|τ =

(
0 0 0

0 I 0

)

In particular, for the derivatives along “non spatial” parameters θ, the
BV data to choose will just be all 0.

For the successive derivatives, one can proceed by iteration. For exam-
ple, to find a certain k + 1th derivative of x∗, y∗, one writes the variational
system of the system obtained for the kth derivatives. The “nonlinear terms”
are sums of terms of two kinds: either linear in the unknowns (having as
coefficients the first derivatives of the nonlinear terms of the original system
f, g) or not involving the unknowns at all.

Therefore, the estimate on the first derivatives needed in the existence
and uniqueness theorem is always fulfilled, as in the above case of first
derivatives. This means that any BV problem of a variational system of
order k+1 has a unique solution. Also, for derivatives of order k+1 ≥ 2, the
variables x0, y1 enter the picture as “nonspatial” parameters (the “spatial”
ones being the derivatives of order k). Therefore, the desired derivatives
are solutions of the BV problem of variational equations with vanishing BV
data. Referring to [28] for a more detailed discussion, we just summarize
the results in the following:

Corollary 1.3.5 Under the hypothesis of the existence and uniqueness theo-
rem 1.3.3, the derivatives to the solutions to the BV problem 1.8 with respect
to the spatial BV data x0, y1 and parameters θ can be found as solutions to
the BV problem whose equations are the variational equations and the BV
data are given by formal differentiation of the old ones. In particular the
BV data are zero for the derivatives in θ or anyway for derivatives of order
higher than two.
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Of course the derivatives in t for the solutions are described by the
differential equations themselves (of the original system or of the variational
ones), so we are left to look for the derivatives in τ . The implicit function
theorem allows us to derive them by those in t and in the other variables.
Recalling the relation between solutions to the I.V. problem and to the B.V.
problem:

x (t, x0, y0) = x∗ (t, x0, y (τ, x0, y0) , τ) (1.16)

y (t, x0, y0) = y∗ (t, x0, y (τ, x0, y0) , τ)

and differentiating the previous w.r.to τ :

0 =
∂x∗

∂y1
|(t,x0,y(τ,x0,y0),τ)

∂y

∂t
|(τ,x0,y0) +

∂x∗

∂τ
|(t,x0,y(τ,x0,y0),τ)

0 =
∂y∗

∂y1
|(t,x0,y(τ,x0,y0),τ)

∂y

∂t
|(τ,x0,y0) +

∂y∗

∂τ
|(t,x0,y(τ,x0,y0),τ)

On the other hand, differentiating equations 1.16 in t one obtains:

∂x

∂t
|(t,x0,y0) =

∂x∗

∂t
|(t,x0,y(τ,x0,y0),τ)

∂y

∂t
|(t,x0,y0) =

∂y∗

∂t
|(t,x0,y(τ,x0,y0),τ)

Combining those and using y1 instead of y0 as a parameter (replacing
the evaluations in a coherent way), one gets the following:

Corollary 1.3.6 The derivatives of the BV solutions in τ satisfy:

∂x∗

∂τ
|(t,x0,y1,τ) = −∂x

∗

∂y1
|(t,x0,y1,τ)

∂y∗

∂t
|(τ,x0,y1,τ) (1.17)

∂y∗

∂τ
|(t,x0,y1,τ) = −∂y

∗

∂y1
|(t,x0,y1,τ)

∂y∗

∂t
|(τ,x0,y1,τ)

Recalling the relations 1.9 and differentiating:

Theorem 1.3.7 The first derivatives of the endpoint map satisfy:

∂x∗1
∂x0, y1, θ

|(x0,y1,τ) =
∂x∗

∂x0, y1, θ
|(τ,x0,y1,τ) (1.18)

∂y∗0
∂x0, y1, θ

|(x0,y1,τ) =
∂y∗

∂x0, y1, θ
|(0,x0,y1,τ) (1.19)

∂x∗1
∂τ
|(x0,y1,τ) =

∂x∗

∂t
|(τ,x0,y1,τ) −

∂x∗

∂y1
|(τ,x0,y1,τ)

∂y∗

∂t
|(τ,x0,y1,τ) (1.20)

∂y∗0
∂τ
|(x0,y1,τ) =

∂y∗

∂τ
|(0,x0,y1,τ) (1.21)



Preliminaries 15

The kth derivatives of the endpoint map are linear combinations of terms

of the form
∂hx∗

∂ht, x0, y1, θ
|τ,x0,y1,τ and

∂hy∗

∂ht, x0, y1, θ
|0,x0,y1,τ with h ≤ k, the

coefficients being products of other derivatives of x∗ and y∗.

Remark The previous statement will be relevant in the sequel, since we’ll
prove some exponential estimates on the distinguished terms above, together
with uniform bounds for their “coefficients”.

We are now ready to prove an important consequence of the BV tech-
nique: the stable manifold theorem. We will restrict the discussion to the
case we need, even if similar arguments might be worked out in the general
case as well.

Hypothesis From now on, the system 1.5 is supposed to be autonomous
(i.e. induced by a vector field).

We start extending the previous results to the case when τ = ∞. Con-
sider in fact the Banach space V of bounded continuous curves defined on
the half line, endowed with the sup norm. For τ = ∞ the equations 1.12
become: {

x(t) = etL
−
x0 +

∫ t
0 e

(t−s)L−
f(x(s), y(s))ds

y(t) = −
∫ +∞
t e(t−s)L

+
g(x(s), y(s))ds

(1.22)

and make still sense because of the sign of the exponentials and the estimates
on the nonlinear terms. The analogous of the integral operator T introduced
in the proof of theorem 1.3.3 is well defined on V and the Fact and claims
in that proof are still valid (but claim 6, which deals with regularity in
τ). There is basically nothing new to prove, since all the estimates are
already done. As a consequence, for any x0 (this time this is the only
spatial parameter involved), there exists a solution x∗(t), y∗(t) which stays
bounded in the ball of radius 2|x0| for all times t ≥ 0. The map x0 → y∗(0)
is smooth, and thus its graph S is a smooth submanifold of dimension s.

Lemma 1.3.8 The manifold S in invariant, i.e. the generating vector field
is tangent to S.

Equivalently, if m ∈ S then the trajectory starting on m is contained in
S.

Proof. Let (x(t), y(t)) be the trajectory trough m: by definition, it solves
the integral equations 1.22 with datum x0. If now q = (x(t0), y(t0)) is a point
on the trajectory, a simple computation proves that (x(t−t0), y(t−t0)) solves
the equations 1.22 with datum x(t0). That is to say, q ∈ S ¤
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Lemma 1.3.9 The integral curve of any solution which stays bounded for
any t ≥ 0 is contained in S.

Proof. Let (x(t), y(t))t∈R+ be such a solution. For any τ ≥ 0, the restriction
(x(t), y(t))t∈[0,τ ] solves the BV problem with data (x(0), y(τ), τ) and hence
satisfies the BV equations 1.12:

{
x(t) = etL

−
x(0) +

∫ t
0 e

(t−s)L−
f(s, x(s), y(s), θ)ds

y(t) = e−(τ−t)L+
y(τ)−

∫ τ
t e

(t−s)L+
g(s, x(s), y(s), θ)ds

for any t ≤ τ . The previous equations clearly converge to 1.22 for τ →∞.
This proves that (x(0), y(0)) ∈ S and the previous lemma permits to con-
clude ¤

Referring to the definition in section 1, the previous lemmata prove:

Proposition 1.3.10 The manifold S is the stable manifold at the origin for
system 1.14. It is a smooth graph over y = 0 and is invariant.

A refined version will be given later.

We now turn back to the initial (“local”) system of equations 1.4. In
this case, all the information on the size of the nonlinear terms is contained
in the fact that their differential vanishes at the origin. The global behavior
of solutions might be arbitrarily wild, but since we are interested in local
questions, one can use the standard trick of cutting off the vector field away
from the origin. This is meaningful provide the solutions under considera-
tion do not leave the region where the system is unmodified. Translating
theorem 1.3.3 gives the following.

Theorem 1.3.11 Suppose ε > 0 is such that the estimate δ1
2ε < α holds.

Then the BV problem for the system 1.4 is solvable for any data (x0, y1, τ)
provide |x0, y1| < ε. The solution (x∗(t, x0, y1, τ), y

∗(t, x0, y1, τ)) is unique, it
depends smoothly on all its arguments and satisfies |x∗(t), y∗(t)| < 2|x0, y1|.

The next refines proposition 1.3.10 (cf. definition in section 1).

Theorem 1.3.12 (Stable Manifold) Let Ω be a small enough neighbor-
hood of the origin in Rn. Then the stable manifold S at 0 in Ω for system
1.4 is a smooth graph over y = 0 (hence a submanifold of dimension s).
The unstable manifold is a smooth graph over x = 0 and the intersection
S ∩ U = {0} is transversal.

Proof. We start with the thesis of proposition 1.3.10, which is still valid
provide we restrict ourselves to an Ω contained in the ball of radius ε (suf-
ficiently small for the hypotheses of theorem 1.3.11 to hold). We want to
show that S is tangent to y = 0 in the origin. This is a particular case of
the slightly more general fact:
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Lemma 1.3.13 Let R be an invariant submanifold through the origin, which
is a smooth graph over y = 0. Then R is tangent to y = 0 at the origin.

Proof. Suppose that R = {(x, r(x))} for a smooth function r : Rs → Ru.
Consider than the change of variables

{
x −→ x
y −→ y − r(x)

which of course transforms R into the plane y = 0. Conjugating the
system 1.4 by this diffeomorphism (denoting the new variables by u and v),
gives the new system

{
u̇ = L−u+ . . .

v̇ = dr|0L−u+ L+v + . . .
(1.23)

where the dots denote terms which vanishes to the second order at the ori-
gin. We already remarked that the plane v = 0 is the stable manifold, which
is invariant. Imposing v̇ = 0 on y = 0 proves that dr|0 = 0 since otherwise
the term −dr|0L−u cannot be killed by terms vanishing at the second order.
But dr|0 = 0 just means that R is tangent to y = 0 in the origin. This
proves that the stable manifold is tangent to y = 0 in 0; analogously the
unstable manifold is proven tangent to x = 0 at 0, completing the proof of
the stable manifold theorem ¤

A first, direct consequence of the previous theorem is that one can choose
coordinates such that locally near the origin the stable and unstable manifold
are the coordinate planes. The invariance of these submanifolds implies the
following.

Corollary 1.3.14 (Straighten Coordinates) After a smooth change of
coordinates, the system 1.4 can be written as

{
ẋ = L−x+ f(x, y)x
ẏ = L+y + g(x, y)y

(1.24)

where f and g are square matrices of smooth functions vanishing in the ori-
gin and x, y are column vectors. The new coordinates are called straighten
coordinates since the local stable and unstable manifolds are given by y = 0
and x = 0 respectively.

Straighten coordinates are very useful. For example we can prove es-
timates on the behavior of solutions in a rather simple way. Let’s start
recalling the famous Gronwall lemma.
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Lemma 1.3.15 (Gronwall) Suppose that φ : [0,+∞) → R is continuous
and satisfies

φ(t) ≤ a+ b

∫ t

0
φ(s)ds

for a, b ∈ R, b ≥ 0. Then the following estimate holds

φ(t) ≤ aebt

Consider the system 1.24 in straighten coordinates, and suppose the
estimate δ1

2ε < α holds, where δ1
2ε = nmax|x,y|≤ε{|f(x, y)|, |g(x, y)|} (this is

just the hypothesis of theorem 1.3.3). Let

(x∗(t), y∗(t)) = (x∗(t, x0, y1, τ), y
∗(t, x0, y1, τ))

denote the solution to the BV problem with data (x0, y1, τ) and put δ = δ1
2ε.

Theorem 1.3.16 Suppose |x0, y1| ≤ ε. Then for any τ ∈ [0,+∞) the
following inequalities hold:

{
|x∗(t, x0, y1, τ)| ≤ |x0|e−(α−δ)t

|y∗(t, x0, y1, τ)| ≤ |y1|e(α−δ)(t−τ)
(1.25)

{
|x∗1(x0, y1, τ)| ≤ |x0|e−(α−δ)τ

|y∗0(x0, y1, τ)| ≤ |y1|e−(α−δ)τ (1.26)

Remark The BV formalism allows us not to mind about checking that the
solution does not leave a fixed neighborhood of the origin. In fact this is
already granted by the existence and uniqueness theorem 1.3.3. Of course
similar estimates hold for solutions to I.V. problems, but they are valid as
far as the trajectories stay close to the origin.

The previous corollary can be read in a coordinate free way as estimating
the distance of trajectories from the stable and unstable manifolds.

Proof. Let’s put v(s) = y∗(τ − s) and rewrite equations 1.12 in our setting:

{
x(t) = etL

−
x0 +

∫ t
0 e

(t−s)L−
f(x(s), v(τ − s))x(s)ds

v(t) = e−tL
+
y1 −

∫ τ
t e

(t−s)L+
g(x(s), v(τ − s))v(τ − s)ds

Rescale the second integral to get:

{
x(t) = etL

−
x0 +

∫ t
0 e

(t−s)L−
f(x(s), v(τ − s))x(s)ds

v(t) = e−tL
+
y1 −

∫ t
0 e

−(t−s)L+
g(x(τ − s), v(s))v(s)ds

(1.27)

The two equations are formally identical, so we’ll just work on the first.

Recalling that
∥∥∥etL−

∥∥∥ ≤ e−tα:
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|x(t)| ≤ e−αt|x(0)|+
∫ t

0
e−(t−s)αδ|x(s)|ds

Gronwall’s lemma applied to eαt|x(s)| gives the desired estimate ¤

Similar estimates also hold for the derivatives of the solution to the
BV problem. It has already been observed that these derivatives can be
found as solutions to BV problems of the appropriate variational systems.
Unfortunately, the variational system are not any longer “straighten” with
respect to their own coordinates (and not even autonomous) and so we
cannot just repeat the same argument. Still, there is a common form for
all the variational systems we need. In particular any system computing
the (k)th derivatives either in t or in the spatial variables x0, y1 will have
variables Xk, Y k and an expression like:

{
Ẋk = L−Xk + f(x∗, y∗)Xk + (· · · )Xk−1 + . . .+ (· · · )x
˙Y k = L+Y k + g(x∗, y∗)Y k + (· · · )Y k−1 + . . .+ (· · · )y

(1.28)

where the symbols X i stand for terms which are ith derivatives of entries
of x and similarly for Y . In this case the coefficients of each addendum X i

is a sum of k-i derivatives of the non linear terms f and g, and therefore
they can be estimated using the global bounds δh. This permits to use an
induction argument in order to estimate Xk and Y k. There is a warning.
The estimates are not any longer valid within the same ball as before but
on smaller ones, depending on the order of derivative; quite surprisingly,
though, the size of the neighborhood depends only on estimates on the first
derivatives of f and g. Before stating the theorem, we need a refined version
of the Gronwall lemma.

Lemma 1.3.17 Suppose that φ, a, b : [0,+∞) → R are three continuous
functions; a is nondecreasing, b nonnegative, and:

φ(t) ≤ a(t) +

∫ t

0
b(s)φ(s)ds

Then the following holds:

φ(t) ≤ a(t)e
R t
0 b(s)ds

With same notations as in the previous theorem 1.3.16 we can state:

Theorem 1.3.18 Suppose ε > 0 is such that kδ1 < α. Let X∗(t), Y ∗(t) be
some kth-order derivatives of (x∗, y∗) in the spatial variables x0, y1 and/or
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in the time variables t, τ . The following inequalities hold, for some constant
Ck > 0:

|X∗(t)| ≤ Cke−(α−kδ)t

|Y ∗(t)| ≤ Cke(α−kδ)(t−τ)

Proof. By corollary 1.3.6, it’s enough to mind about the case of derivatives
in the spatial or t variables. We can then use the expressions 1.28. As in
the proof of theorem 1.3.16 let’s put V (s) = Y (τ − s), so that the integral
equations corresponding to 1.28 become:

{
X(t) = etL

−
X(0) +

∫ t
0 e

(t−s)L−
(f(x(s), v(τ − s))X(s) + . . .) ds

V (t) = e−tL
+
V (0)−

∫ t
0 e

−(t−s)L+
(g(x(τ − s), v(s))V (s) + . . .) ds

(1.29)
where we’ve already rescaled the second integral and the dots mean terms
factoring through less order derivatives of the solutions. Since the two equa-
tions are of the same kind, we just give the proof for the first one. By
induction, supposing the thesis true for 1, . . . , k − 1, one can find a Dk s.t.

|X(t)| ≤ e−αt|X(0)|+
∫ t

0
e−(t−s)α

(
δ|X(s)|+Dke

−(α−(k−1)δ)s
)
ds

≤ e−αt|X(0)|+Dk/((k − 1)δ)e−α+(k−1)δt +

∫ t

0
e−(t−s)αδ|X(s)|ds

By Gronwall lemma applied to eαt|X(t)| then:

eαt|X(t)| ≤
(
|X(0)|+ Dk

(k − 1)δ
e(k−1)δt

)
eδt

from which the thesis follows readily ¤

By theorem 1.3.7, in the same hypothesis of the previous theorem, it
then follows:

Theorem 1.3.19 Let V ∗(τ) denote some derivative among
∂kx∗1

∂kx0,y1,τ
|(x0,y1,τ)

or among
∂ky∗0

∂x0, y1, τ
|(x0,y1,τ). Then the following inequality holds, for some

constant Ck > 0 not depending on x0, y1, τ :

|V ∗(τ)| ≤ Cke−(α−kδ)τ (1.30)

Conclusions We finally draw out the two consequence which will be used
in the sequel of the present work. For the sake of clearness we repeat all the
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hypothesis here.

Consider a vector field on Rn having the origin as an isolated hyperbolic
singularity (cf. definition 1.1) and let φ = (φt)t∈R be the flow of solutions.
Then there exist “straighten coordinates” x, y near the origin for which the
local stable manifold S is given by y = 0, the local unstable manifold U
by x = 0. Moreover, consider the unit ball B = {(x, y)| |x, y| < 1} and
decompose its boundary in the two pieces

∂+B = {|x| = 1, |y| ≤ 1} ∂−B = {|x| ≤ 1, |y| = 1}

We can suppose that ∂−B and ∂+B are transversal to the vector field and
that if a point m ∈ ∂+B does not belong to the stable manifold U, then
the trajectory starting from m will touch ∂B again in ∂−B. This is granted
by corollary 1.3.14 and the estimates in theorem 1.3.16. The construction
defines a “first escape” map

ϕ : ∂+B\S → ∂−B\U

which is clearly bijective. Since the vector field is not tangent to ∂±B and
the flow of solutions is a smooth map, an application of the implicit function
theorem proves

Theorem 1.3.20 The first escape map

ϕ : ∂+B\S → ∂−B\U

is a diffeomorphism.

Consider now the submanifold

W = {
(
φ t

1−t
(m),m, t

)
|m ∈ Rn, t ∈ (0, 1)} ∩B ×B × (0, 1) ⊂ R2n+1

Theorem 1.3.21 The closure W = (W,∂W ) inside B×B×R is a smooth,
closed submanifold inside with boundary:

∂W = U × S × {1} ∪∆× {0}

where ∆ denotes the diagonal in B ×B.

Proof. Using the starred notation for the solution to the BV problem, by
the existence and uniqueness theorem one can reinterpret W as:

W =
{(
φ t

1−t
(x0, y0), x0, y0, t

) ∣∣ |x0, y0|<1, |φ t
1−t

(x0, y0)|<1, t∈(0, 1)
}

=
{(
x∗1

(
x0, y1, τ

1−τ

)
, y1, x0, y

∗
0

(
x0, y1, τ

1−τ

)
, τ
) ∣∣ |x0, y1| < 1, τ ∈ (0, 1)

}
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The estimates in theorem 1.3.19 now partially prove the statement. In fact
so far we just proved that W is Ck for arbitrarily large k on a neighborhood
which depends on k. But W is invariant under the map

ρ(r,s) =
(
m′,m, t

)
−→

(
φr(m

′), φs(m), σr,s(t)
)

for any r < 0 < s, provide r + t
1−t = s+ σ

1−σ .

The value σr,s(t) solving this condition is
(1− t)(s− r)− t

(1− t)(s− r − 1)− t and ρ is

hence a diffeomorphism near t = 1.
Therefore, if we fix (m′,m, 1) ∈ ∂W , the (local near t = 1) diffeomor-

phism ρ(r, s) maps a neighborhood of W near (m′,m, 1) to a neighborhood
of W near a point which we can suppose arbitrarily close to (0, 0, 1) by
choosing the right r, s. Since we know that W is arbitrarily smooth near
(0, 0, 1), this concludes the proof ¤



Chapter 2

Horned Stratifications and
Volume Bounds

We here introduce the problem of bounding the volume of the image of
a submanifold under a flow. Some pathologies are described as well as the
hypotheses (Smale and Weakly Proper) needed to avoid them, and the model
for the expected singularities, i.e. the horned stratifications, is studied in
detail. The main theorem 2.3.1 is then proved and applied to show that a
Weakly Proper, Smale flow has locally finite volume.

2.1 Problem and Counterexamples

Given a flow φ on X and a regular submanifold M ⊂ X of dimension m,
we want to study the subset N ⊂ X obtained by moving M under the flow,
i.e. the union of trajectories of φ starting on points in M . We then state
the following:

Problem To look for conditions on the flow φ and on the submanifold M so
that N has locally finite (m+1)-volume and there is a reasonable description
for the boundary of N , in the sense of geometric measure theory.

One soon realizes that it’s reasonable to suppose that M contains no
fixed point and that the flow has no periodic nor dense orbits in X. It is
also clear that singularities appear when N “meets” some fixed point for the
flow, and the more involved the fixed point is, the more involved N might
result. We thus assume that φ is:

- not tangent to M ;
- gradient-like with respect to a function on X;
- with isolated hyperbolic singularities.

23
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Still this is not enough, in general. In fact, we will next present two
(counter)examples of possible bad behaviors, pointing out what is missed in
each case.

Example 1

Let’s consider the linear flow on R3 given, in cylindric coordinates, by:

(ρ, θ, z)
φt7−→

(
e−tρ, θ, etz

)

The stable manifold at 0 is obviously S = {z = 0} and the unstable is given
by U = {ρ = 0}. Consider a curve γ parametrized by

{(ρ, θ, z) | ρ = 1, z = f (θ)}

Certainly γ is contained in the cylinder |θ| = 1 and hence never tangent to
the flow. We consider the image of γ under the flow, i.e

Γ =
⋃

r>0

φr (γ)

The origin 0 is in Γ̄ if and only if γ ∩ S 6= ∅, and Γ is smooth (with no
boundary) otherwise. It will be proved later that if the intersection γ ∩S is
transversal and nonempty, then Γ̄ has finite area (this is the motivation to
introduce the Smale hypothesis). We now show that there exists a C1 curve
γ whose image under the flow has unbounded area near the origin.

To find a parametrization f for γ, we’ll use Whitney extension theorem.
Put zn = 1

nlog2(n)
, bn = log(log(n)) and θn =

∑
i≤n aibi and observe that∑

zn and
∑
znbn converge but

∑
znlog(zn) doesn’t.
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γ
nz

z bn n

z

z    b n+1n+1

n+1

Since the “candidate slopes”

zn − 0

θn − θn−1
=

1

bn
→ 0

Whitney’s theorem implies that there exists a C1 function f(θ) such that
f(θn) = zn and f(1

2(θn+1−θn)) = 0. The area of the surface generated by the
corresponding curve γ is then bigger than the diverging sum

∑
zn|log(zn)|,

which is the area of the image under the flow of the vertical middle segments.

Example 2

Here the problem is compactedness. Too much mass from distant points
accumulates in a small region. The flow is the gradient of the height func-
tion on a tubular surface with some wiggles. The manifold M is a discrete
sequence of points and N is hence a family of flow lines. Since they accu-
mulate in the lowest point, the volume of N necessarily blows up, as the
picture shows.

To avoid the pathological behaviour shown in this example, we’ll next in-
troduce the Weakly Proper hypothesis.

Let φ be the flow of a complete vector field V on a manifold X. By
a broken flow line of φ we mean a piecewise smooth curve whose pieces
parametrize flow lines. For points x, y ∈ X we’ll write x 4 y if there is a
broken flow line connecting x and y (and x ≺ y if in addition x 6= y).

Definition 2.1.1 Let A,B ⊂ X. The set of points lying on a broken flow
line starting at a point in A and ending on a point in B is called the shadow
of A into B and denoted by LAB ⊂ X. In particular, the shadow of A,
denoted by LA = LA∅ is the set-union of broken flow lines starting at a point
in A; similarly one defines LB, the shadow into B.
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Recall now that the vector field V is said to be gradient-like with
respect to a function f : X → R if and only if V (f) < 0 away from the
critical points of f . Of course, any gradient vector field is gradient like1

with respect to his potential function (by analogy, if V is gradient-like with
respect to f we also say that f is a weak potential for V ). We can now
introduce the following:

Definition 2.1.2 A vector field V is said Weakly Proper with respect to
f if

• V is gradient-like with respect to f

• For any compact set K contained in a slab F = f−1[a, b] then the
shadows LKF and LFK are compact.

Actually, for some vector fields it’s enough to restrict the test to the case
when K is a point, in fact:

Proposition 2.1.3 Suppose V is gradient like for f and has isolated sin-
gularities. If each broken flow line contained in a slab is relatively compact,
then V is weakly proper with respect to f .

Proof. For any vector field, the closure of an invariant set is an invariant set.
If the vector field has isolated singularities, this implies that if a sequence
of broken flow lines has a common accumulation point, then it contains a
broken flow line in its closure.¤

In the general case, sequences of flow lines might accumulate inside crit-
ical sets (and so not converge to broken flow lines), and the previous state-
ment doesn’t hold. Nevertheless, being isolated is not a necessary condition:
a counterexample is provided by Bott singularities (cf. chapter 5), where
again the set of broken flow lines is “weakly compact” in the sense of the
previous proof.

2.2 Horned Stratifications

We introduce the model of horned stratifications for the submanifold arising
in the problem discussed in the previous section and have a digression on
their features. A review about stratified spaces is provided in the Appendix
B.

Definition 2.2.1 A compact stratified set Y of dimension k will be called
compact horned-stratified (or compact h-stratified) set if:

1We use this convention to be consistent with later choices.
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• The stratification of Y is AB Whitney regular

• There exists a submersive map π : M → Y from a k-dimensional
compact manifold with corners M to Y .

The manifold M will be called a desingularization for Y and the map π a
h-projection. A locally h-stratified set Y ⊂ X is a stratified set which
locally coincide with a compact horned stratified set.

The word “horn” comes from the typical picture of a horned stratified
set near the zero dimensional strata. Note that M and Y have same dimen-
sion.

Remark. The A-regularity requirement in the previous definition is redun-
dant, being a consequence of the existence of the desingularization. It is not
so for B regularity, though.

The horned stratified sets have very nice geometric properties. Let’s start
with a topological one: it helps understanding the structure of a h-stratified
set, but we’ll never use it and thus omit the (not difficult) proof.

Lemma 2.2.2 Let M
f→ Y be a surjective map between two compact Haus-

dorff spaces. Suppose that
◦
M is connected, f−1(

◦
Y ) =

◦
M and f | ◦

M
:

◦
M →

◦
Y

is a local homeomorphism. Then f | ◦
M

:
◦
M →

◦
Y is a finite covering (in

particular all fibers over interior points have same cardinality).

The compactdness hypothesis was fundamental in the previous lemma,
a proof of which can be found via the open-close trick.

Proposition 2.2.3 Let M
f→ Y be a desingularization of a compact h-

stratification and fij : Mi → Yj the restrictions to the strata. If the dimen-
sion of Mi and Yj coincide, then fij is a finite covering.

We next analyze the behavior under intersections.

Proposition 2.2.4 Let Y ⊂ X be a h-stratified set and Z ⊂ X a closed
submanifold. Suppose that each stratum of Y is transversal to Z. Then the
family of all intersections of strata makes up a h-stratification for Z ∩ Y .

Proof. By proposition B.0.6, it remains to prove the desingularization part.
Let f : M ⊂ N → X be a local desingularization for Y . By hypothesis, the
restriction of f to any stratum of M is transversal to Z and thus M∩f−1(Z)
is a compact manifold with boundary. The latter h-projects onto Y ∩Z via
f , because of the following linear-algebraic lemma ¤
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Lemma 2.2.5 Let V 1 ⊂ V 2 and W 1 ⊂ W 2 be finite dimensional vector
spaces and let L : V 2 → W 2 be a linear map. Suppose L(V 1) +W 1 = W 2

(i.e. the restriction of L to V 1 is transversal to W 1). Then V 1+L−1(W 1) =
V 2 and L : V 1 ∩ L−1(W 1)→ V 1 ∩W 1 is surjective.

Corollary 2.2.6 The previous proposition holds if Z is replaced by a closed
submanifold with corners, provide all possible intersection are transversal.

Actually, Z can be replaced by a horned stratified set too, as we next
show.

Lemma 2.2.7 Let f : X1 → X2 be a smooth map and M
π→ Y be a h-

stratified subset of X1. Then the graph G of the restriction f |Y , i.e.

G(f) = {(y, f(y)) |y ∈ Y } ⊂ X1 ×X2

is naturally a h-stratified set, the desingularization of G(f) being the graph
of the map f ◦ π.

Proof. The graph G(f) is the intersection of the graph of f with Y ×X2;
apply proposition 2.2.4 ¤

Proposition 2.2.8 Let f : X1 → X2 be a smooth proper map, and Y ⊂ X2

a h-stratified space. If f is transversal to Y , then f−1(Y ) is h-stratified as
well.

Proof. Let g : M ⊂ N → Y ⊂ X2 be a local the desingularization of Y and
let GM ⊂ (X2 × N) be the (inverted) graph of the restriction of g to M .
Consider now, inside X1×X2×N , the closed submanifold graph(f)×N and
the submanifold with corners X1×GM . The transversality hypothesis forces
those to be transversal, while the proper assumption makes the intersection
compact when M is. The projection onto X1 is then a h-projection onto
f−1(Y ) ¤

The previous proposition, combined with corollary 2.2.6 and lemma 2.2.5
yields:

Corollary 2.2.9 Let f : X1 → X2 be a smooth map, Y ⊂ X2 a h-stratified
space and Z a compact manifold with corners. If f restricted to any stratum
of Z is transversal to Y , then f−1(Y ) ∩ Z is horned-stratified too.

The intersection of transversal horned stratified sets is a horned stratified
set:

Proposition 2.2.10 Let Y1, Y2 ⊂ X be h-stratified sets and suppose that all
possible intersections of strata of Y1 and Y2 are transversal. Then the family
of these intersections is a h-stratification for the set Y = Y1 ∩ Y2.
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Proof. Since the intersection of regular stratified sets is regular (cf. propo-
sition B.0.6), it’s enough to find a desingularization for Y ; we also assume
everything to be compact. Let f, g : Mi ⊂ Ni → Yi ⊂ X for i = 1, 2
be desingularizations (the domains are compact manifold with corners). A
manifold with boundary M which desingularizes Y = Y1 ∩ Y2 is the pull-
back intersection: M = {(p, f(p) = g(q), q)|p ∈ M1, q ∈ M2}. Observe that
M1 ∩ f−1(Y2) is a h-stratified space inside N1 (and the same property holds
with indexes interchanged), then apply the trick of the graph as in the proof
of proposition 2.2.8 ¤

Corollary 2.2.11 Let Y1, Y2 ⊂ X be h-stratified sets and y ∈ Y1 ∩ Y2. If
the two strata containing y intersect transversally, then all the strata near
y intersect transversally and hence, near y, the intersection Y1 ∩ Y2 is a
h-stratified set.

Let’s now look at the metric properties of h-stratified sets.

Proposition 2.2.12 A (locally) h-Stratified set of dimension m has (lo-
cally) finite m-dimensional measure.

In the previous statement, one can take as “m-measure” the Hausdorff
measure of any Riemannian metric on the ambient space; this equals the
m-dimensional volume of the (union of the) top strata, which is a locally
closed submanifold. The volume of the stratification is in fact bounded by a
constant times the volume of the desingularization. The constant depends
on an upper bound for the first derivatives of the h-projection, as a conse-
quence of the Area formula (cf. [10], theorem 1.2.1).

Remark Suppose that for a compact h-stratified set M ⊂ N f→ Y ⊂ X, the
desingularizing manifold with corners M is oriented, i.e. its top stratum is
oriented, so defining orientations on the codimension 1 strata (the “faces”).
In this case, M defines a current of integration [M ] on N and there is a
well defined pushforward current f∗[M ] on X which is obviously supported
on Y . Because of possible multiplicities, this might not coincide with the
current of integration on Y (assuming Y is oriented) whose existence would
be granted by the previous proposition.

Definition 2.2.13 A current T of dimension k on a manifold X is a fi-
nite h-chain (current), or finite horned chain, if there exists a finite

number of compact h-stratifications Mi
πi→ Yi (with all Mi oriented) such

that T =
∑

i πi ∗([Mi]). A (local) h-chain (current) is a current which
locally coincides with a finite h-chain.

Remark The support of a h-chain does not need to be a h-stratified set, but
it is a locally finite union of compact h-stratified sets. This extra structure
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of the support is relevant when dealing with intersections, as we shall see
later.

We recall that a finite chain (current) is a finite sum of currents de-
fined as pushforward of standard simplexes ∆k under smooth maps, whereas
a local chain (current) is a current which locally coincides with a finite
chain. This terminology was introduced by deRham in [7]. Clearly the
h-chain currents are chain currents and in particular integral currents (i.e.
rectifiable with rectifiable boundary, cf. [8] def. 4.1.24), in fact:

Proposition-Definition 2.2.14 The current boundary dT of a (horned)
chain T is again a (horned) chain current. The spaces C∗ of chain currents
and H∗ of h-chains are therefore subcomplexes of the complex of integral
currents.

Proof. The proof is trivial for chain currents. As for horned chains, if the
desingularization T = π∗M holds on a open set U (note that π(M) is not
supposed contained in U), then the boundary dT = π∗(dM). We know that
dM is a sum of faces (since M is a manifold with corners), and each face
does contribute (after the pushforward) to the boundary dT only if the di-
mension does not decrease via the projection. The restriction of π to these
faces are again h-projections and so dT is a local h-chain ¤

Observed that the pushforward of a chain current under a smooth proper
map is again a chain current, the following is a consequence of corollary 2.2.9
and proposition 2.2.10.

Proposition 2.2.15 Let [T ] be a k-dimensional horned chain current in Rn
and [S] a chain current of dimension l. Suppose that the maps which locally
define [S] are transversal to any stratum of the stratified sets on which T is
supported. Then [S] and [T ] can be “intersected” and [S] ∧ [T ] = [S ∩ T ] is
a chain current of dimension h+k−n. In particular if [S] is a h-chain too,
then [T ∩ S] is a h-chain.

The thesis means that for any test forms γn converging to [S] (as cur-
rents), and for any β of the correct degree, the numbers T (γn∧β) converge,
and the limit is [S ∩ T ](β).

Remark We will later prove, as a corollary of Morse theory, that h-chains
can be used to compute the integral cohomology of a manifold. This is
difficult to prove directly since problems arise with the “Poincaré lemma”.

We instead sketch a direct proof of how the local chain currents can be
used to compute the integral cohomology of a manifold. This fact is implicit
in the work of deRham (cf. [7]).
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Proposition-Definition 2.2.16 The map U → Ck(U) associating to each
open set U in Xn the abelian group of k-dimensional chain currents on U ,
with obvious restriction homomorphisms, defines a sheaf, called the sheaf of
(germs of) chains of dimension k (or degree n−k). This is a subsheaf
of the sheaf of germs of currents.

The only thing to prove is the restriction axiom of a presheaf. If one
likes to restrict an elementary chain (i.e. a simplex) ∆ on an open set U , he
can simply present the restriction T |U (which is a current) as a locally finite
sum of elementary chains in U , by triangulating the simplex in smaller and
smaller pieces. Since chains are defined to be currents with an extra local
property, the other axioms are simple (being true for the family of currents).

The following is a trivial case of the so called “constancy theorem”, cf.
[10].

Proposition 2.2.17 Let T be a 0-degree d-closed chain on the open and
connected set U . Then there exists an integer c ∈ Z such that T = c[U ].

Let’s now prove the “Poincaré lemma” for chains.

Proposition 2.2.18 Let T be a d-closed chain of degree k > 0 (i.e. dimen-
sion n − k < n) on the n-dimensional manifold X. Then, for any p ∈ X
there is a neighborhood U of p and a h-chain S on U of dimension k − 1
such that T |U = dS.

Proof (Cone construction). We can suppose U to be a ball in Rn. Let

M = ∪∆i ⊂ Rn′ f→ T be a (local) desingularization, with M a compact
manifold with corners (the desingularization is not assumed to be submersive
as for h-chains but it just is a sum of smooth simplexes). Consider a point
x in U and a point y close to x which is not in the support of T . For any
simplex f : ∆ → X belonging to M , let C(∆) = {(t, θ)| t ∈ [0, 1], θ ∈ ∆}
and put

f̃ : C(∆)→ X (t, θ)→ ty − (1− t)f(θ)

Clearly the cones f̃ define chain currents by pushforward; by f∗(dM) =
dT = 0 it then follows that f̃∗(C(dM)) = 0. Near any fixed x there exists a
y and a small enough neighborhood V of x and y such that for any of the
simplexes ∆i partially supported on V , the cone over C(∆i) is not identically
zero. Summing over all the simplexes ∆i, one then gets:

df̃∗C(M) = f̃∗(dC(M)) = f̃∗(M − C(dM)) = T

the relation dC(∆) = ∆−C(d∆) holding because the dimension of the ∆’s
is not zero ¤



32 Chapter 2

The sheaves of chain currents are acyclic, in fact they are soft sheaves.
Recalling that a germ T of chain current on a closed set A is the equivalence
class of h-chains defined on a neighborhood of A under the equivalence class
determined by coincidence on a (smaller) neighborhood of A:

Lemma 2.2.19 Let A ⊂ X be a closed set and T a germ of h-chain current
on A. Then there exists a “global” h-chain current R on X which extends
T . The sheaf of germs of h-chains of dimension k is hence soft.

Proof (Slicing). Let U be an open neighborhood of A, and R0 a chain cur-
rent on U which extends T . There exist “tubular” neighborhoods V b U of
A with C∞ boundary ∂V transversal to the simplexes of R0. Transversality
can be attained by a generic perturbation of any given regular neighborhood
of A. The intersection R = R0 ∩ V is again a chain, providing an extension
of T to all of X ¤

The previous propositions, together with a basic theorem in sheaf coho-
mology proves:

Theorem 2.2.20 The sequence of sheaf maps

Z→ C0 d→ C1 d→ · · · d→ Cn−1 d→ Cn → 0

is an exact resolution of the locally constant sheaf Z, and the sheaves Ck are
acyclic. Hence the cohomology groups of the sheaf Z can be computed as
“deRham” groups

Hk(X,Z) =
{T ∈ Ck | dT = 0}
{dR |R ∈ Ck−1}

2.3 Movements of Submanifolds

All over the section (X,φ, f) will be a Weakly Proper, Smale (abridged
WPS) dynamical system.

Recall that “Weakly Proper with respect to f” means that the values of
the “potential-like” function f strictly decrease along nontrivial trajectories
of the flow and that the shadows of compact sets are compact within each
slab f−1([a, b]). “Smale” means that the system has isolated hyperbolic sin-
gularities whose stable and unstable manifolds intersect transversally.

For each critical point, say p, we’ll assumed fixed charts Ωp in “straighten
coordinates” (cf. section 1.3) such that

Ωp = {(x, y) ∈ Rs ×Ru| ‖x, y‖ ≤ ε}

and the stable and unstable manifold are given by

Sp = {‖x‖ ≤ ε, ‖y‖ = 0} Up = {‖x‖ = 0, ‖y‖ ≤ ε}
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The boundary of Ωp decomposes as ∂Ωp = ∂+Ωp ∪ ∂−Ωp where

∂+Ωp = {‖x‖ = ε, ‖y‖ ≤ ε} ∂−Ωp = {‖x‖ ≤ ε, ‖y‖ = ε}

Introducing the “link” of the stable and unstable manifold:

S+
p = {‖x‖ = ε, ‖y‖ = 0} = Sp ∩ ∂+Ωp

U−
p = {‖x‖ = 0, ‖y‖ = ε} = Up ∩ ∂−Ωp

the “first escape map” provides a diffeomorphism

Θp
p : ∂+Ωp\S+

p → ∂−Ωp\U−
p

We can now state the main theorem of the chapter:

Theorem 2.3.1 Let (X,φ, f) be a Weakly Proper Smale dynamical system,
c ∈ R a regular value for f and M ⊂ f−1(c) a smooth (embedded) submani-
fold of dimension m. Suppose M is transversal to every stable manifold and
let N =

⋃
t>0

φt(M). Then the closure N coincides with the shadow LM and

is a horned stratified subset whose singular strata are unstable manifolds.

The proof of the theorem is postponed to the end of the section, but we
draw out an important consequence:

Corollary 2.3.2 The unstable manifolds of a WPS dynamical system are
horned stratified subsets whose singular strata are unstable manifolds. The
same is true for stable manifolds (singular strata being other stable mani-
folds).

Proof of the corollary For any critical point p, the unstable manifold Up
is smooth near p, and its intersection with a level set f = f(p) − ε is a
smooth compact submanifold, thus the theorem applies. The standard trick
of reversing time proves the dual statement for stable manifolds ¤

We next prove three local results which will be the bricks in the proof
of theorem 2.3.1. They describe what happens during the movement of a
submanifold respectively away from the critical points, near the first one,
and near the successive ones.

The first result is just a particular case of the existence of linearizing
charts for a nonvanishing vector field and we’ll omit the proof:

Proposition 2.3.3 Let A− ⊂ f−1(b) be a closed subset and suppose LA
−

f−1(a)
contains no critical point, for some a < b. Then, there exist neighborhoods
U of A− in f−1(b) and V of LA

−
in f−1([a, b]) and a diffeomorphism ρ :

V → U × [0, 1] which maps flow lines to “vertical” segments. In particular
ρ maps A− to A− × {0} and LA

−
f−1(a) to A− × [0, 1], providing an isotopy

between A− and A+ = ρ−1(A− × {1}).
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For the second “brick”, let p be a critical point and Ω ⊂ Rn a straighten
chart centered in p (notations as above).

Proposition 2.3.4 Suppose A+ ⊂ ∂+Ω is a compact manifold with corners
such that all strata have transversal intersection with Sp. Put

A = {φt(x)|x ∈ A+, t > 0} ∩ Ω

Then the closure A in Ω coincides with the shadow LA
+

Ω = A ∪ Up and is a
compact horned stratified set. The singular strata of A are the shadows of
the strata in A+ and the unstable manifold Up.

The closure of A− def
= A ∩ ∂−Ω is compact h-stratified too and contains

the link U+
p as singular stratum.

Proof. Suppose first A+ ⊂ ∂+Ω to be a smooth, compact submanifold,
transverse to Sp. Since the flow is not tangent to A+:

Fact 2.1 The parametrization

(t,m) ∈ [0,+∞)×A+ σ7−→ φt(m) ∈ A

is regular, i.e. it is a diffeomorphism.

Consider now the following submanifold of Rn × Rn × R:

W =

{
(x1, y1, x0, y0, t) |

0 < t < 1, |x0, y0, x1, y1| < ε
(x1, y1) = φ t

1−t
(x0, y0)

}

By the BV technique (cf. theorem 1.3.21), the manifold W is smooth in
Ω× Ω× R with boundary

∂W = {(0, y1, x0, 0, 1)| |x0, y1| < ε} ∪ {(m,m, 0)|m ∈ Ω}

Define two subsets of Rn × Rn × R by:

Z
def
= Rn ×A+ × R

(A1, ∂A1)
def
= Z ∩ (W,∂W ) =

{
(m′,m, t)| 0 ≤ t≤ 1,m∈A+,m′ = φ t

1−t
(m)

}

It clearly is
∂A1 = Up × (A+ ∩ Sp)× {1} ∪ ∆A+ × {0}

The submanifold Z is transverse to ∂W since A+ is transverse to Sp.
Away from ∂W , any intersection of the form W ∩Rn × pt is transversal, in
particular W ∩Z. Therefore, (A1, ∂A1) is a smooth compact manifold with
boundary and, projecting onto the first factor via

π : Rn × Rn × R→ Rn
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it’s π
(
A1

)
= A and the topological boundary of A is hence Up = π

(
∂A1

)
.

The restriction of π is clearly a submersion on the singular stratum ∂A1.
On the other hand, the open top stratum of A1 can be regularly parametrized
by the map σ by Fact 2.1. Also, σ factors trough π|A1 , by the definition
of W as a graph and so the restriction of π to the top stratum in A1 is a
diffeomorphism too. Summarizing, the restriction

π|(A1,∂A1) : (A1, ∂A1)→ (A,Up)

is a h-projection over the stratified space A = A ∪ Up. To show that A
is horned we are left to prove the AB Whitney regularity conditions for a
stratification. It’s actually enough to prove B, thanks to the remark after
definition 2.2.1. But B-regularity is equivalent to prove that the normal
spheres in any small C1 tubular neighborhood of the singular stratum Up
are transversal to A (see theorem B.0.5 in the appendix). This is trivially
true because A is a union of flow lines, which are already transversal to those
spheres.

Finally, the intersection (A−, U−
p ) = (A,Up) ∩ ∂−Ωp is transversal, and

so the closure A− is h-stratified too, by proposition 2.2.4.

All the previous arguments still hold with obvious modifications if A− is
replaced by a manifold with corners transversal to the stable manifold (in
the sense that any stratum is transversal to the stable manifold). The only
really “singular” stratum is now the unstable manifold Up: the other strata
are just the shadows of the strata in A+, and their singularities are those
of a manifold with corners, as one can prove locally using proposition 2.3.3 ¤

We can now state and prove the third “brick”:

Proposition 2.3.5 The previous proposition 2.3.4 holds word for word by
replacing “compact manifold with corners” with “compact h-stratified set”.

Proof. Let A+ be a compact submanifold with boundary which desingular-
izes the h-stratified space A+. It is not restrictive to suppose A+ ⊂ Rj×∂+Ω
and the h-projection to be the restriction of the projection onto the second
factor.

Introduce now the auxiliary flow ψ on Rj×Rn by extending φ via a linear
contraction in the Rj components. In other words, ψt(x

′, x) = (e−tx′, φt(x))
and the following diagram commutes

Rj × Rn ψt−→ Rj × Rn
↓ π ↓ π
Rn φt−→ Rn

(2.1)
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The origin is a hyperbolic isolated singularity for the flow ψ; its stable
manifold is Rj×Sp and the unstable manifold is {0}×Up. Clearly the stable
manifold “upstairs” is transversal to the desingularization A+ ⊂ Rj × ∂+Ω,
which is a compact manifold with corners. The hypothesis of proposition
2.3.4 are fulfilled for the flow ψ by the “incoming link” A+ and therefore,
putting

A =
⋃

t>0

ψt(A+)

the closure A (which is the shadow of A+) is a compact h-stratified set
containing the unstable manifold Up × {0} as singular stratum.

Let’s now look to the closure A “downstairs”. Since the diagram 2.1
commutes, it follows that A = π(A) and hence A = LA

+

Ω = A ∪ Up. The
restriction of π on the singular stratum {0} ×Up is a trivial projection over
Up. Besides those, the other strata in A and A are respectively the shadows
of the strata in A+ and A+. It readily comes out that the projection π
restricts to be a submersion on any stratum.

To conclude that the A is h-stratified, we are left to check B-regularity
(A-regularity following by the existence of the h-projection). Besides the
stratum Up, the regularity conditions for the other strata can be checked
locally by applying proposition 2.3.3. On the other hand, condition B for
Up is a trivial consequence of the invariance of A (cf. the analogous argument
in the proof of proposition 2.3.4).

Finally, the intersection (A,Up) ∩ ∂−Ω is transversal and hence a com-
pact h-stratified set too ¤

We are now ready to prove theorem 2.3.1. Let’s describe its idea, which
consists of two steps.

First, given any broken flow line γ starting on M , we’ll show that γ
belongs to N and that there is a subset Ω(γ) ⊂ N containing γ which is a
h-stratified space and satisfies the thesis of the theorem.

Second, we’ll show that N can be stratified arranging a locally finite
family of these h-stratified subsets in such a way that the top strata don’t
overlap. This would complete the proof.

More precisely, in the first step we define Ω(γ) by cutting the shadow
LM along γ into “pipes” and “pants”. The pipes are parts not containing
any critical point, and can be described using proposition 2.3.3. The pants
are parts containing a single critical point and propositions 2.3.4 and 2.3.5
will be invoked.

Each pipe and pant has two distinguished components in the boundary:
the “incoming link” and the “outgoing link”. For example, in the nota-
tions of proposition 2.3.3, the shadow LA

− ∩ f−1[a, b] is a pipe, its incoming
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link is A− ≈ A− × 0 and its outgoing link is LA
− ∩ f−1(a) ≈ A− × 1. On

the other hand, in the terminology of proposition 2.3.4, the set A is a pant,
A+ is its incoming link and A− ∪ U− its outgoing link. Note that new sin-
gularities arise only within pants.

Proof of the theorem. Step 1.

Choose a broken flow line γ starting on M and let p1, . . . , pr be the
critical points on γ so that the flow line can be decomposed in

γ = (γ0, γ1, ..., γk) pi
γi→ pi+1

connecting the points x0 ∈M , p1, ..., pk (x0 is not critical but the pi’s are);
observe that each γi is contained in Spi+1 (and in Upi if i 6= 0). For each pi it
is assumed chosen a chart Ωpi in straighten coordinates and the intersections
of its boundary with the flow line γ are denoted by:

xi = γ ∩ ∂+Ωpi yi = γ ∩ ∂−Ωpi

We next show how to cut off the pipes along the flow lines γi and the pants
near the critical points pi.

Let’s start with the first pipe, along γ0, recalling that M is a closed sub-
manifold of the regular level set f−1(c), and any stable manifold is transver-
sal to M .

Choose a closed ball B inside f−1(c), centered in x0 and small enough
so that B “flows” inside Ωp1 , i.e. so that the all the flow lines starting on
B meet Ωp1 without breaks. Since the stable manifold Sp1 is closed near
x0 (the flow line γ not being broken up to p1), Sp1 intersect transversally
M ∩ ∂B, provide B is small enough.

Moreover, since the flow has no fixed points on the shadow LM∩B
∂−Ωp1

,

proposition 2.3.3 provides a diffeomorphism LM∩B
∂−Ωp1

≈M∩B×[0, 1] obtained

by trivializing the trajectories.
This shadow is the first pipe: it is a smooth manifold with corners,

the incoming link is M ∩ B and the outgoing link A+
1 (corresponding to

M ∩ B × {1} via the trivializing diffeomorphism) is a submanifold with
boundary contained in ∂+Ωp1 and transversal to Sp1 .

The outgoing link A+
1 of the pipe above coincides with the incoming link

of the next pant, near p1, which we denote by A1. This pant is just the

shadow of A+
1 into Ωp1 , i.e. A1 = L

A+
1

Ωp1
.

Since A+
1 is a submanifold with boundary transversal to Sp1 , we can ap-

ply proposition 2.3.4 to desingularize the pant A1 and to find its outgoing
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link: it follows that A1 is a h-stratified set containing Up1 as singular stra-
tum. The outgoing link A−

1 = A1 ∩ ∂−Ωp1 is h-stratified too and contains
the link U−

p1 of the unstable manifold as singular stratum.
Differing from the connection pipe-pant, the incoming link for the successive
pipe will not be all the outgoing link A−

1 of the present pant, but just a small
portion of it, cut near γ.

We now proceed by finite induction to construct the pipes and pants
along γ. Suppose constructed the pipes along γ1, . . . , γi−2 and the pants
near p1, . . . , pi−1 (this implies that the shadow of M has been desingular-
ized near γ up to pi−1). The only inductive hypothesis we need to keep track
of is that the outgoing link A−

i−1 of the last pant is a h-stratified set con-
taining the link of the unstable manifold U−

pi−1
= Upi−1 ∩ ∂−Ωp1 as singular

stratum.

The next critical point is pi, joined to pi−1 by the unbroken flow line γi−1.
The stable manifold Spi contains γi−1 and is closed near xi−1 = γ∩∂−Ωpi−1 .
If B is a small ball in ∂−Ωpi−1 centered in xi−1, then (B, ∂B) and A−

i−1

intersect transversally; in particular their intersection is a h-stratification
and contains a neighborhood of xi−1 inside U−

pi−1
. This last fact and corollary

2.2.11 imply that, if B is small enough, then all the strata in (B, ∂B)∩A−
i−1

are transversal to Spi , since U−
pi−1

is. Finally, by possibly further shrinking

B, we can also assume that B∩A−
i−1 “flows” into Ωpi without meeting other

critical points.

Choosing such a ball B, the next pipe can be defined as the shadow

L
B∩A−

i−1

∂+Ωpi
, which is h-stratified as a trivial consequence of proposition 2.3.3.

The outgoing link A+
i = L

B∩A−
i−1

∂+Ωpi
∩ ∂+Ωpi is a h-stratified space transversal

to the stable manifold Spi . Note that A+
i will be the incoming link for the

next pant, as always at the connection pipe-pant.

The pipe near pi, denoted by Ai, is the shadow L
A+

i
Ωpi

. To complete step

one, we apply proposition 2.3.5 to the incoming link A+
i . It comes out that

the pant Ai is h-stratified and contains the unstable manifold Upi as singular
stratum. Moreover, the intersection with ∂−Ωpi is transversal and hence the
outgoing link of the pant Ai is a h-stratified space containing the link U−

pi

of the unstable manifold as singular stratum. This completes the inductive
step and proves Step 1.

Step 2.

So far, we desingularized the shadow LM along each compact broken flow
line γ; it remains to prove that these desingularizations can be arranged into
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a locally finite family without overlappings on the top dimensional strata.

Fix any compact set K and any b < c (recall M ⊂ f−1(c)). Because of
the Weakly Proper hypothesis, the shadow LKf−1(b) is compact, and hence it
contains a finite number of critical points.

The set K can be covered by a finite family of small balls Bj in M whose
top dimensional strata do not overlap (these balls are compact manifold with
corners of the same dimension of M). Also, for any j we can assume that
either Bj is disjoint by all the stable manifolds of the critical points in LKf−1(b)

or there is one of these critical points, say p, such that Bi flows into ∂+Ωp

without meeting any other critical point.
In the first case, the shadow LBf−1(b) is a pipe. In the second case, the

shadow LB can be decomposed in a pipe up to Ωp, a pant near p and there-
after we can decompose the outgoing link (which is a compact stratified set
contained in ∂−Ωpi) cutting it by a finite number of balls, as done for M
near K. Proceeding by finite induction using Step 1, one constructs the
desired stratification, completing the proof of Step 2.

Summarizing, we proved that the closure of N =
⋃
t>0

φt(M) is just the

shadow LM , it is a stratified set whose singular strata are unstable manifolds
and we showed, by passing to a refinement, that the stratification is horned;
the proof of the theorem is complete ¤

As a byproduct of the previous proof, we can describe the current bound-
ary on N .

Suppose X is oriented. For any critical point p choose an arbitrary
orientation to the stable manifold Up so that an orientation is induced on
Sp by requiring that < X >=< Up > + < Sp >. Suppose finally M is
oriented too and orient N by < N >=< M > + < L >, where < L > is
the direction of the flow. Observe that Up, Sp, M and N all define horned
chain currents. In particular, if M has dimension k, then the current [N ] has
dimension k + 1 and, since the singular strata of N are unstable manifolds,
d[N ] is a sum with integer coefficients of unstable manifolds of critical points
of index n− k (by dimension restrictions). We now sketch how to compute
this coefficients, referring to [13] for more details.

The Smale and Weakly Proper hypothesis imply that the set of points
in M joined to a critical point p of index n − k is finite, the intersection
Sp ∩M being discrete and compact. Hence, for any p of index n − k there
is a finite number of flow lines γ from M to p.

For each of these γ, the previous proof implies that the h-projection
desingularizing dN is a diffeomorphism onto the stratum Up. This means
that the contribution of “γ” to the boundary of N is just ±[Up], the correct
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sign being determined by the orientations.

Corollary 2.3.6 In the notations of the previous theorem, suppose X, M
and all the stable and unstable manifolds are oriented (in such a way that
< X >=< Sp > + < Up > at each critical point p). Then [M ] and [N ] are
horned chain currents and

∂ [N ] = [M ]−
∑

cq[Uq]

The sum goes trough all the critical points q of index n−dimM and for any
such q, the coefficient cq “counts with orientation” the number of flow lines
joining M and q.

Of course a similar statement holds for backward shadows, by replacing
unstable manifolds by stable manifolds. In particular, for any critical point
p, the current boundary of the stable manifold Sp is given by:

∂ [Sp] =
∑

cpq [Sq]

Important Remark If the manifold is compact, the coefficients cpq in the
previous formula are exactly the same we described in the construction of the
Morse Complex in section 1.1. This implies that replacing a critical point by
its stable manifold provides a “geometric” realization of the Morse Complex
as a subcomplex of the complex of currents (interpreting the boundary in
the Morse complex as the boundary of currents).

This embedding of the Morse Complex suggests a way to define a gen-
eralized Morse complex in a noncompact setting. This will be the subject
of the next chapter.

2.4 Volume bound for the Flow and the Funda-
mental Morse Equation

The aim of this section is to use theorem 2.3.1 to find a bound for the volume
of a Weakly Proper, Smale flow.

We need to prove that the submanifold T ⊂ X×X defined in section 1.2
(the graph of the flow) has locally finite volume. We actually show much
more: T is a horned stratified set and its current boundary will be described.

Consider the height function h on the circle S1 and put:

H : S1 ×X ×X → R
H(θ, x, y) = h(θ)− f(x) + f(y)
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The flow Ψ on S1 ×X ×X given by:

Ψt(s, x, y) =

{ (
e−ts, φt(x), φ−t(y)

)
for s coordinate near S

(ets, φt(x), φ−t(y)) for s coordinate near N

is gradient like with respect to H (here S and N are the South and North
pole of S1).

Lemma 2.4.1 The dynamical system (S1×X×X,Ψ, H) is Weakly Proper
and Smale.

Proof. The critical points of Ψ are of the kind (S, p, q) and (N, p, q), for
p and q critical points of φ, and the corresponding stable and unstable
manifolds at such points are:

S(S,p,q) = S1 × Sp × Uq S(N,p,q) = {N} × Sp × Uq
U(S,p,q) = {S} × Up × Sq U(N,p,q) = S1 × Up × Sq

Clearly all possible intersection are transversal, thus insuring the Smale
hypothesis. It remains to prove the Weakly Proper condition. By contradic-
tion, let γ be a non compact flow line for Ψ contained in a slab H−1[a, b]; it is
not restrictive to choose γ unbroken. Since the first coordinate is bounded,
the lack of compactedness comes from the x or y variable. But the con-
tribute by x and y to H are of the same sign (either for positive times or
for negative ones) and so the weakly proper hypothesis for φ on X implies
the same hypothesis for Ψ ¤

Let now 1 ∈ S1 be the point whose coordinate in the chart containing
the south pole is 1 and consider the subset

T = {(e−t, φt(x), φ−t(x))| t ≥ 0, x ∈ X} ⊂ S1 ×X ×X

Observe that
T =

⋃

t≥0

Ψt({1} ×∆)

and that {1} ×∆ is contained in the level set of 1/2, which we can suppose
to be regular for H (if not, start from another point in S1).

Lemma 2.4.2 The submanifold {1}×∆ is transversal to all the stable man-
ifolds.

Proof. First observe that T does not intersect any stable manifold of the
critical points (N, p, q). The remaining stable manifolds are of the form
S1 × Sp × Uq and transversality for Sp × Uq ∩ ∆ is exactly the same then
transversality of Sp ∩ Uq in X, the Smale hypothesis proves the lemma ¤
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Proposition 2.4.3 The closure of the submanifold T is a horned stratified
set with singular strata {1} × ∆ and U(S,p,q) for any critical points q 4 p.
The boundary of the corresponding chain current [T ] is:

∂[T ] = {1} ×∆−
∑

[U(S,p,p)] (2.2)

Proof. The previous lemma and theorem 2.3.1 proves the first statement.
on the other hand, the boundary value technique implies that, near each
(S, p, p), the set T is a manifold with boundary given by {1} ×∆ ∪ {S} ×
Up × Sq (cf. theorem 1.3.21), so the equation in the statement holds near
points (S, p, p) (recall S is just the south pole in the circle S1).

The current T is a horned chain and its boundary is thus a sum of sin-
gular strata. By dimension restrictions, the only admissible ones are exactly
{1}×∆ and U(S,p,p), thanks to corollary 2.3.6. Since the equation holds near
(S, p, p), it then holds everywhere. ¤

We can now state the main theorem:

Theorem 2.4.4 A Weakly Proper Smale flow has locally finite volume. In
fact the closure of the “total graph” T is a horned stratified set whose singular
strata are ∆ and Up × Sq for any critical points q 4 p.

The following “Fundamental Morse Equation” of h-chain currents
holds in X ×X:

dT = ∆− P (FME)

where (denoting by Cr the set of critical points)

P =
∑

p∈Cr
[Up × Sp] (2.3)

Proof. Continuing with the previous notations, the projection onto the
second factor π : S1×X×X → X×X maps T onto the “total flow” T . The
projection is a diffeomorphism on the top dimensional stratum of T , and a
trivial submersion on the singular strata {1}×∆ and U(S,p,q) = {S}×Up×Sq
(here S is just the south pole in the circle and q 4 p).

Since π is proper and T is h-stratified, to prove that T is h-stratified too
it remains to show the A-B regularity. By the remark after definition 2.2.1
it’s enough to prove “B”. This is trivial along the stratum ∆ (the singularity
is smooth here). Along the other strata Up × Sq, the argument is similar to
the corresponding one in the proof of theorem 2.3.1, by using the fact that
T is made up of flow lines for the (auxiliary) flow (φt, φ−t) on X ×X. Note
that ∆ is not contained in a regular level set for this auxiliary flow, that’s
why we needed to introduce T .

It’s thus proved that T is horned stratified too and the corresponding
h-chain current is just T = π∗T . The equations in the statement then follow
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by pushforwarding the relation 2.2 ¤

We end this section by applying the “locally finite volume” technique to
the previous equation. Using the kernel calculus, let

T, I, P : E∗cpt (Y ) −→ D′∗ (Y )

be the operators whose kernels are T,∆ and P (recall E denotes smooth
forms and D′ currents).

Proposition 2.4.5 For any Weakly Proper, Smale dynamical system (X,φ),
and any test form α on X, the limit and the integral:

P(α) = lim
t→+∞

φ∗t (α) =
∑

p∈Cr

(∫

Up

α

)
[Sp] , T(α) =

∫

R+

φ∗t (α) (2.4)

converge as currents and the following equation holds:

d(T(α)) + T(dα) = α−P(α) (2.5)

Proof. The only nontrivial fact is the integral expression for T. Since the
current T = Φ∗(R+ ×X), where Φ(t, x) = (φt(x), x), for any forms α and β
on X it is:

T (α⊗ β) =

∫

R+×X
Φ∗(α ∧ β) =

∫

R+×X
φ∗t (α) ∧ β =

∫

X

(∫

R+

φ∗t (α)

)
∧ β

and this proves the expression 2.4 for T. Note that the current T(α) is
clearly smooth away from the stable manifolds of critical points in the back-
ward shadow of the support of α ¤

Remark As observed in section 1.2 about the finite volume technique, equa-
tion 2.5 is not so relevant if X is not compact. In fact, it provides a chain
homotopy between I and P but I does not induce any algebraically interest-
ing map in topology, hence P doesn’t as well. Nevertheless, one can extend
the operators involved to act on spaces where this equation regains power.
This will be done in the next section by introducing the “forward supports”.
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Chapter 3

Non Compact Morse Theory

In this chapter, starting from the Fundamental Morse Equation proved in
the last chapter, we’ll derive an equation of operators called the Morse Chain
Homotopy. As the name suggests, the new equation provides a chain homo-
topy between a complex of forms with some restriction on the support and a
non compact analogous of the Morse complex. A noncompact Morse theory
is established, relating the dynamics of a Smale, Weakly Proper flow to the
spaces of cohomology with “forward supports” of the manifold. Those are of-
ten infinite dimensional and endowed with a natural locally convex topology.
The standard trick of inverting the flow leads to a forward-backward duality.

All over the chapter we assume that X is an oriented n-dimensional
manifold, endowed with a Weakly Proper, Smale dynamical system (φ, f).
An arbitrary orientation is assumed chosen for the unstable manifold of each
critical point, inducing an orientation on the stable manifolds in such a way
that < X >=< Sp > + < Up > at each critical point p.

3.1 Forward Supports and the Morse Chain Ho-
motopy

We here study the operators P and T introduced in the last chapter. The
structure and position of the stable and unstable manifolds and the expres-
sions 2.4 suggests that P and T extend to forms which are supported in
f−1[a,+∞) for some a ∈ R and it’s quite obvious that the range of the
operator consists of currents supported in the same way. This justifies the
following definition.

Definition 3.1.1 A closed set A ⊂ X is a compact/forward set (abbre-
viated c/f set) with respect to the function f if both

• A∩ f−1 ([b, c]) is compact for any b ≤ c ∈ R (i.e. A is slab compact)

45
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• A ⊂ f−1 ([a,+∞)) for some constant a ∈ R (i.e. A is forward).

One can defined backward and compact/backward sets in a similar
manner. Of course, a closed set is forward (resp. backward) if and only
if it has compact intersection with all the compact/backward (resp. com-
pact/forward) sets.

Remark (stability) Suppose f0 and f1 are two weakly proper functions on
X whose difference is bounded (say by the constant c ≥ 0). Then f0 and f1

determine the same family of compact/forward sets.

Since f−1
1 ([−∞, a)) ⊂ f−1

0 ([−∞, a+ c)) for any a ∈ R, if A is c/f with
respect to f0 then A is also c/f with respect to f1. Actually, both the notions
forward set and slab compact (cf definition of c/f set) are the same for f0

and f1.

The subscript ↑ will denote the family of forward sets while c ↑ or c/f
will denote the compact/forward ones; analogously for backward sets. For
example, E∗↑ (X) = Γ↑(X, E∗) and E∗c↑ (X) = Γc↑(X, E∗) denote the space of
smooth forms with forward and compact/backward support, respectively.

Clearly either of the forward, backward, c/f and c/b family of sets is a
paracompactifying family for X in the terminology of Godement ([G]). It
makes thus sense to compute (sheaf) cohomology with supports in such fam-
ilies of sets. For example, one can compute the cohomology of X with real
coefficients (i.e. the cohomology of the locally constant sheaf R) and forward
supports via deRham theorem, using either smooth forms or currents as:

Hk
↑ (X,R) ≈

{ω ∈ Ek↑ (X) | dω = 0}
{dη | η ∈ Ek−1

↑ (X)}
≈
{θ ∈ D′k

↑ (X) | dθ = 0}
{dρ | ρ ∈ D′k−1

↑ (X)}

Note that the stable manifolds have compact/forward support, whereas
the unstable manifolds are compact/backward (“compact” because of the
Weakly Proper hypothesis).

As one expects, the following duality hold:

Proposition 3.1.2 The currents with compact/forward support are the con-
tinuous linear functionals on the space of forms with backward support,
and similarly the forward-supported currents are functionals over the com-
pact/backward forms:

(
Ek↓ (X)

)′
= D′k

c↑ (X)
(
Ekc↓ (X)

)′
= D′k

↑ (X)
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Proof. We just prove the first statement. For j = 1, 2 . . . the closed sets Bj=
f−1(−∞, j] form an exhaustive sequence of backward sets. Now each E ∗Bj

(X)

(the space of forms with support contained in Bj) is a closed subspace of
the Frechet space E∗ (X). Therefore

E∗↓ (X) = lim−−−−−→
j→+∞

E∗Bj
(X)

is the strict inductive limit of Frechet spaces (in particular, an LF-space).
Since the inclusion map Ekcpt (X) ↪→ Ek↓ (X) is continuous with dense

range, the adjoint map Ek↓ (X)′ ↪→ D′k (X) is similar (i.e. 1-1, continuous,

with dense range). In particular each continuous linear functional on Ek↓ (X)

is a current. Now if T ∈ Ek↓ (X)′ ⊂ D′k (X) and spt(T ) ∩Bj is not compact
(for some j), there exist a sequence of pairwise disjoint open balls Un ⊂ Bj
whose centers don’t accumulate. Pick ϕn ∈ Ekcpt (Un) with T (ϕn) = 1. Since

ϕ =
∑
ϕn ∈ Ek↓ (X) but T (ϕ) is not defined this is a contradiction, proving

that sptT is compact forward.
Conversely, if T ∈ D′k

c↑ (X) has c/f support then T (ϕ) is defined for all

ϕ ∈ Ek↓ (X), since spt(T )∩spt(ϕ) is compact. Also, the maps T : EkBj
(X)→

R are continuous. That is, D′k
c↑ (X) ⊂ Ek↓ (X)′ ¤

We now turn back to the kernel currents T, ∆, P and their associated
operators T, I and P. Let’s introduce a terminology which will only appear
in the next lemma: a set A × B ⊂ X ×X will be said “compact/forward-
backward” (abridged cf-b) if A is compact forward and B is backward in X
and analogously one defines “forward-compact/backward” product sets.

Lemma 3.1.3 The support of T,∆ and P has compact intersection with
any product subset of X×X which is compact/forward-backward or forward-
compact/backward and hence the three currents act on any form with such
support.

Proof. It suffices to prove the statement for T , since the supports of P and
∆ are contained in sptT . Let A be forward and B compact/backward in X.
Choose a sequence (xn, yn) ∈ (A×B)∩ spt(T ) and suppose that (xn, yn)
doesn’t accumulate. The points xn ≥ yn lie on the same (broken) flow line.
There are two cases:
- If the yn don’t accumulate, then necessarily f(yn) is not bounded below
(since B is c/b) and therefore also f(xn) ≤ f(yn) is unbounded below, which
contradicts xn to be a forward set.
- If the yn accumulate in y, it’s f(xn) ≤ f(y) + ε and hence the points xn
lie in some slab f−1[−a, f(y) + ε], since A is forward. The weakly proper
hypothesis then implies that the points xn necessarily accumulate since the
yn do. An analogous argument proves the c/f-c case ¤
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By the very construction of the operator associated to a kernel current,
the previous lemma, together with proposition 2.4.5 proves the next theo-
rem:

Theorem 3.1.4 The operators T, I and P associated to the kernel currents
T , ∆ and P , which a priori are operators from

E∗cpt (X) −→ D′∗ (X)

extend to continuous operators from

E∗↑ (X) −→ D′∗
↑ (X)

and satisfy the following equation, which we call Morse Chain Homotopy:

d ◦T + T ◦ d = I−P (3.1)

In particular, for any forwardly supported form ϕ:

P(ϕ) = lim
t→+∞

φ∗t (ϕ) =
∑

p∈Cr

(∫

Up

ϕ

)
[Sp] (3.2)

The statement remains true by replacing “forward” with “compact/forward”
everywhere.

We also get the important:

Corollary 3.1.5 The operators T, I and P act on a local chain current
K on X with forward support (resp. c/f) provide K is transversal to any
unstable manifold. The result is a local chain current with forward (resp.
c/f) support. The equation of chain currents

d(TK) + T(dK) = K −P(K) (3.3)

holds as well as the expression:

P(K) = lim
t→+∞

φ∗t (K) =
∑

p∈Cr
([Up] •K) [Sp] (3.4)

where the coefficients in the previous sum are integers and vanish if dimK 6=
dimSp. In particular, P acts as the identity on any stable manifold Sp. All
the statements remains true by replacing “chain” with “horned chain”.

Observe that, by definition, it’s ([Up] •K) = [Up ∩K](1) ∈ Z.

Proof. Note first that for any point x, the intersection {x} × X ∩ ∆ is
transversal. Also, for any point (y, x) in the interior of T , with y = φt(x),
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using the automorphism (φt, id) on X×X it’s not difficult to prove that the
intersection {x}×X ∩T is transversal. Finally, given a submanifold K ⊂ X
and two critical points p, q, the intersection K ×X ∩ Uq × Sp is transversal
if and only if K is transversal to Uq. Since all the singular strata in T are
of this form, the first statement follows from proposition 2.2.15.

Now, suppose that the dimension of K is k and α is a smooth form
of degree k on X. By lemma 3.1.3, if the support of K is forward in X,
then T ∩K ×X has compact intersection with any set of the form X × B
provide B is compact/backward. The relation [T ∩ (K×X)](1(x)∧α(y)) =
[T ](K(x)∧α(y)) = [T(K)](α) proves that the operator T extends to K and
T(K) is a chain current with forward support. Exactly the same argument
works for P and ∆ and for the cases when K has compact/forward support
(obtaining a chain with compact forward support) or is horned (obtaining
horned chains).

The last statement holds since for any pair of critical points (p, q) it’s
[Up] • [Sq] = [Up ∩ Sq](1) = δpq ¤

Remark The chain T (K) is the “backward shadow” of K, cf. defini-
tion 2.1.1.

3.2 Realization of the Morse Complex

Let’s start with the definition:

Definition 3.2.1 The (compact/forward) S-complex over Z, denoted
by ZS∗c↑ (φ) is the subcomplex of D′∗

c↑ (X) (the complex of currents with c/f
support) consisting of those currents of the form

∑

p∈F
ap [Sp] where F is a c/f set of critical points and ap ∈ Z

The boundary d : ZS∗c↑ (φ)→ ZS∗c↑ (φ) is the current boundary.
Similarly we define RS∗c↑ (φ) (the S-complex over R) and S∗↑ (φ) (the

forward S-complex).

Note that each element of ZS∗↑ (f) is the sum of a locally finite family
of stable manifolds and it is a horned chain (cf. corollary 2.3.6). We will
sometime skip the explicit refence to the flow φ and just write ZS∗c↑. The
following is a direct consequence of corollary 3.1.5.

Lemma 3.2.2 The operators T and P extend to act on RS∗↑ . In particular
P acts as the identity on RS∗↑ .

We can now state the main theorem of the chapter:
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Theorem 3.2.3 The maps

P : E∗c↑ (X)−→RS∗c↑ (φ) and the inclusion J : RS∗c↑ (φ) ↪→ D′∗
c↑ (X)

induces isomorphisms in cohomology:

Hp
c↑ (X,R) ≈ Hp

(
RS∗c↑ (φ)

)

The statement also holds by replacing compact/forward with forward every-
where.

Proof. Since J ◦ P is homotopic to I and the latter induces an iso-
morphism in cohomology, we just need to show that P is surjective. This
means that if S ∈ RS∗c↑ is closed than there is a closed ϕ ∈ E∗c↑ (X) such that
P (ϕ) = S. This fact is a little technical, though not very difficult and the
proof is a refinement of an argument in [13]. Suppose S ∈ RSkc↑ is closed

and f(S) ≥ 0. The idea is to consider slabs f−1([0, n]) and find a sequence
of forms ϕn with compact forward support on X such that:

- ϕn is closed
- spt(ϕn) ⊂ f−1([n,+∞[) and it is compact/forward
- P (

∑n
i=1(ϕi))− S vanishes on f−1([0, n])

In this case ϕ =
∑
ϕn would define a closed form with c/f support and

P (ϕ) = S.
Recall k = dimS and let Rk+1 be the set of critical points of index k+1

contained in the slab f−1([0, 1]). The unstable manifolds of these critical
points don’t accumulate and are disjoint from spt(S). We can therefore
choose a neighborood A of sptS with empty intersection with the unstable
manifolds of critical points in Rk+1. Of course we can (and do) also suppose
A to be compact forward since S is. Consider now the family of closed sets
well contained in A (i.e. the closed B such that there exists C open for
which B ⊂ C ⊂ C ⊂ A). By deRham theory, one can compute cohomology
of A with such supports using either smooth forms or currents. Therefore
there exists a closed smooth form ϕ1 and a current θ such that both have
support well contained in A and satisfy:

S − ϕ1 = dθ

The form ϕ1 and the current θ extend to X respectively to a closed
smooth form and a current, both with compact forward support contained in
f−1([0,+∞[). We now want to prove that P (ϕi)−S vanishes on f−1([0, 1]).
Observe that for any critical point q of order k in A, the corresponing un-
stable manifold Uq is closed (and a closed current) in A, since the boundary
of an unstable manifold is another unstable manifold and we already cut
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out those of the fitting dimension. Also, the family of unstable manifolds of
critical points of order k is discrete in A, since contained in a slab. There-
fore, within A, one can present any of these Uq as a limit of smooth closed
forms uεq ⇀ Uq (even if such forms might not extend to closed forms on all
of X). Now, the operator P acts on S − ϕ1 and hence on dθ. Moreover,
since there is no unstable manifold of dimension n− k − 1 = deg(θ), it is:

[P(dθ)]|f−1[0,1] =
∑

0≤f(p)≤1

([Up](dθ)) [Sp] =
∑

0≤f(p)≤1

lim
ε

(
[uεp](dθ)

)
[Sp] = 0

where the last equality holds since the forms uε are closed on the support
of dθ. Replacing S by S − P(

∑r
i=1 ϕi), the same argument proves the rth

inductive step. The proof is similar in the forward case ¤

As for integer coefficients, one can use the S-complex over Z to compute
H∗
c↑ (X,Z).

Theorem 3.2.4 The maps

P : C∗c↑ (X) 99K ZS∗c↑ (φ) and the inclusion J : ZS∗c↑ (φ) ↪→ C∗c↑ (X)

induce isomorphisms in cohomology

Hp
(
ZS∗c↑

)
≈ Hp

c↑ (X,Z)

The S-complex over Z thus computes integral cohomology with forward
supports. Consequently, if ZS∗c↑ is a finitely generated group, then so is
H∗
c↑ (X,Z) and the Morse inequalities can be derived (the strong inequali-

ties over Z) as in the classic case.

Remark The dashed map in the previous statement is of course defined
only on chains transversal to the unstable manifolds.

Proof. By lemma 3.2.2, and since the operator P commutes with the bound-
ary and has range in S, it readily follows that it’s enough to prove that in
each class [K] ∈ Hp(C∗) there is a representative K ′ in the domain of both
the operators P and T since in that case the Morse chain homotopy 3.3
applies.

It is thus necessary, given a chain current K, to find a chain K ′ which
is transversal to all the unstable manifolds and is homologous to K. Since
the unstable manifolds make up an A-B regular stratification of X, the
maps transversal to all the unstable manifolds are an open and dense set
among the possible ones (cf. proposition B.0.10). The result then follows
by pushforward of a 1-parameter deformation. ¤
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3.3 Forward-Backward Duality

So far we considered the forward semigroup of the flow φ; in this section
we’ll use the backward semigroup to obtain a duality.

Denote by U∗
↓ the subcomplex made up of all the currents of the form∑

p∈B ap [Up] where B is a backward set of critical points. These currents
are backward supported, of course.

Since all the hypotheses were symmetric in time, the result so far estab-
lished for the asymptotic limits of the flow φt can be as well obtained for
the limits at −∞, using the flow with reversed time φ−t. In particular, what
has been proven for the S complex holds for the complex U with obvious
modifications.

Flowing backwards in time produces hence a projection operator from
E∗↓ (X) to U∗

↓ (φ) which is chain homotopic to the identity. Thus

Hp
↓ (X,R) ≈ Hp

(
E∗↓ (X)

)
≈ Hp

(
U∗
↓ (φ)

)

Recall (cf. proposition 3.1.2) that if Bj = f−1((−∞, j]):

E∗↓ (X) = lim−−−−−→
j→+∞

E∗Bj
(X)

and the complexes E∗↓ (X) and D′∗
c↑ (X) are dual complexes. Once we know

that d : Ep−1
↓ (X) −→ Ep↓ (X) and d : D′

c↑
q−1 (X) −→ D′

c↑
q (X) have closed

range, an elementary Hahn-Banach argument would establish the duality

(
Hp

(
E∗↓ (X)

))′ ≈ Hn−p (D′∗
c↑ (X)

)

This same argument establishes DeRham duality and Serre duality under
the closed range hypothesis.

Now, U∗
↓ (φ) = lim−−−−−→

j→+∞
U∗
Bj

(X) where U∗
Bj

(X) is a closed subspace of

D′∗
Bj

(X). Equivalently, U∗
Bj

(X) can be defined as the infinite product∏
p∈Bj∩Cr(φ)

R. All linear subspaces of an infinite product of R’s are closed sub-

spaces. Therefore d : U∗
Bj

(X) −→ U∗
Bj

(X) automatically has closed range.

This proves that d : U∗
↓ (φ) −→ U∗

↓ (φ) has closed range. The isomorphisms

Hp
(
E∗↓ (X)

)
= Hp

(
U∗
↓ (φ)

)
and Hp

(
E∗↓ (X)

)
= Hp

(
D′∗

↓ (X)
)
, along with

the chain homotopy P and the inclusion I implies that if ϕ ∈ E↓ (X) is d-
closed and is mapped by P to an exact current, then ϕ is exact in E↓ (X).
This proves that

P−1 (im (d)) ∩ ker(d) = im (d)

and hence, by the continuity of the projection P : E∗↓ (X) −→ U∗
↓ (φ), it

follows that d : Ep−1
↓ (X) −→ Ep↓ (X) has closed range. Note that the previ-
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ous isomorphism H∗
(
E∗↓ (X)

)
≈ H∗

(
U∗
↓ (φ)

)
is an isomorphism of locally

convex linear topological spaces.
The situation is similar for compact/forward cohomology. The families

of compact/forward sets and backward sets are characterized by the fact
that intersections are compact. Choose a countable exhaustive sequence Fj
of c/f sets for X. Again,

E∗c↑ (X) = lim−−−−−→
j→+∞

E∗Fj
(X)

is the strict inductive limit of Frechet spaces, and

E∗c↑ (X)′ = D′∗
↓ (X)

As before, using the Morse Chain Homotopy and the fact that d :
S∗c↑ (X) −→ U∗

c↑ (X) has closed range, it follows that d : D′
c↑
q−1 (X) →

D′
c↑
q (X) has closed range. We just proved:

Theorem 3.3.1 (Duality) The spaces

Hp
↓ (X,R) and Hn−p

c↑ (X,R)

are dual locally convex linear topological vector spaces.

The duality can be simply interpreted via the representatives in the S
and U complexes since U∗

↓ and S∗c↑ are in ”perfect” duality.
First (Up, Sq) = δpq for all p, q ∈ Cr (φ). Second, if U =

∑
p∈B

ap [Up] and

S =
∑
q∈F

bq [Sq] ,where B is a backward set of critical points and F is a c/f

set of critical points, then B ∩ F is finite and (U, S) =
∑

p∈B∩F
apbp. Using

integers coefficients this yields the following:

Corollary 3.3.2 The groups Hp
↓ (X,Z) and Hn−p

c↑ (X,Z) are dual.

Remarks
a) If f is a proper exhaustion function, then backward sets are compact

sets and compact/forward ones are closed sets. Consequently the forward
backward duality is just ordinary DeRham duality between Hp

(
E∗cpt (X)

)

and Hn−p (D′∗ (X)).
b) If f is a bounded function then all closed sets are backward and com-

pact/forward is the same as compact. Again this duality reduces to the other
case of ordinary DeRham duality betweenHp (E∗ (X)) andHn−p (D′∗

cpt (X)
)
.
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Chapter 4

Novikov Theory Revisited

Morse Novikov theory is a variation of non compact Morse theory, governed
by the addition of the action of a certain (Novikov) ring on subsets of the
ambient manifold. This action commutes with the flow and the complexes of
forms and currents are endowed with a natural structure of modules over the
Novikov ring. We will first consider the special case of ”cyclic coverings”, and
later deal with the general case, where there is less compatibility between
the algebraic structure and the dynamical system.

4.1 Cyclic Coverings (Circle Valued Morse the-
ory)

Suppose X to be compact and g : X −→ R/Z to be a function whose
singularities are those of a Morse function (the domain does not influence
the definition of “nondegenerate”), i.e. a circle valued Morse function.
Let now σ : R −→ R/Z be the quotient map, ρ : Y → X the covering map
induced by pulling back σ and f : Y → R the corresponding lifting of g.

Y
f−→ R

↓ρ ↓σ
X

g−→ R/Z

The group of deck transformations of the covering Y → X is the inte-
gers Z = 〈t〉, where t : Y −→ Y is a diffeomorphism. The equivariance
f (ty) = f (y) + 1 relates the covering group and the function f , which is
clearly Morse.

For a simpler exposition, we’ll just consider gradient flows (instead of
gradient-like ones); this fact will be later stressed in the notation of the
S-complex.

Choose a Riemannian metric on X and let φ be the gradient flow of g
(i.e. the vector field obtained by raising indexes to the one form dg).

55
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By pulling back via ρ, the flow φ can be lifted to a flow ψ on Y , which is
the gradient of the Morse function f (for the pullback metric). We assume
ψ to be Smale (this is a generic condition).

The function f is clearly proper (hence the flow ψ is automatically
Weakly Proper). The critical points upstairs are just the preimages of the
critical points downstairs. The main difference between the two dynamical
systems is that upstairs there are no closed orbits (nor closed broken flow
lines) whereas downstairs there might be some. Actually any flow line that
has no finite limit point downstairs lifts to a closed curve (necessarily tend-
ing to ∞ in Y ).

Consider the group rings of the covering

R
[
t, t−1

]
and Z

[
t, t−1

]

i.e. the the rings of Laurent polynomials in t.

Definition 4.1.1 The (Laurent) Novikov rings

ΛR = R [[t]]
[
t−1

]
and ΛZ = Z [[t]]

[
t−1

]

are the rings of formal Laurent series with finite principal parts. In partic-
ular ΛR is actually a field. Moreover ΛR is a R

[
t, t−1

]
-module and ΛZ is a

Z
[
t, t−1

]
-module.

By the geometric series trick it readily follows:

Algebraic Fact 1 ΛR is a field.

Compact/forward sets can be defined algebraically, as a simple conse-
quence of the interaction of the deck map t and of f :

Lemma 4.1.2 A closed set A ⊂ Y is a compact/forward set if and only
if there exists a compact set K ⊂ Y and an integer N ∈ Z such that
A ⊂ ⋃

n≥N t
n (K).

Let’s now reconsider the complexes of forms and currents E∗c↑(Y ) , D′∗
c↑(Y ),

C∗c↑ (Y ) , and S∗c↑ (f) defined in the previous chapter. We remark that in this
setting, the words “forward” and “compact/forward” have the same meaning
(the Morse function being proper), nevertheless we mantain the terminology
“compact/forward” to be consistent with the following section, dealing with
a more general case.

Since the covering map t commutes with the flow ψ, the previous lemma
implies that the action of t by pushforward is a self map of all the previous
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complexes. This induces actions of the group rings and Novikov rings. The
operators

T : E∗c↑ (Y ) −→ D′∗
c↑ (Y )

P : E∗c↑ (Y ) −→ RS∗c↑ (f) ⊂ D′∗
c↑ (Y )

commute with the action of t by pushforward, and hence they are ΛR-linear
maps.

Theorem 4.1.3 The map of ΛR-complexes

P : E∗c↑ (Y ) −→ RS∗c↑ (f)

induces an isomorphism of finite dimensional ΛR-vector spaces

H i
c↑ (Y,R) ≈ H i

(
RS∗c↑ (f)

)

Moreover, dimΛR RSkc↑ = #(critical points of index k for g) is finite.

Proof. The first statement is a direct consequence of theorem 3.2.3 and of
Fact 1. In addition, any choice of a lifting p ∈ Cr (g) 7−→ p̄ ∈ Cr(f) for
the set of critical points downstairs provides a (finite) ΛR basis for RS∗c↑ (f),
consisting of the stable manifolds Sp̄ ∈ RS∗c↑ at those (lifted) points ¤

The inequalities of Morse type between the dimensions (over ΛR) of

RS∗c↑ (f) and of H i
c↑ (Y,R) are an algebraic consequence of this theorem.

As for the theory with integer coefficients, a key result is:

Algebraic Fact 2 ΛZ is a principal ideal domain.

Now, observe that the inclusion map ZS∗c↑ (f) ↪→ C∗c↑ (Y ) commutes with
the action (as pushforward) of t and the complexes involved are complexes
of Z

[
t, t−1

]
-modules as well as of ΛZ-modules. Theorem 3.2.4 then implies:

Theorem 4.1.4 The inclusion map of ΛZ-complexes

ZS∗c↑ (f) ↪→ C∗↑ (Y )

induces an isomorphism of ΛZ-modules

H i
(
ZS∗c↑ (f)

)
≈ H i

c↑ (Y,Z)

Moreover, ZSkc↑ is finitely generated, with one generator in ZSkc↑ for every
critical point of g of index k (downstairs).
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Because of Fact 2, the Novikov inequalities over the integers are again
an algebraic consequence of this theorem, exactly as in Morse theory.

Next we compare H∗
cpt (Y,Z) and H∗

c↑ (Y,Z), in analogy with the result

in [25]. The sheaf cohomology groups Hp
cpt (Y,Z) are standard topological

invariants of Y (isomorphic to Hn−p (Y,Z), i.e. homology). Altough the
constructions of T, P and the S-complex depend on f , the cohomology
with c/f supports H∗

c↑ (Y,Z) only depends on the covering translation t.
Consequently, to compute the c/f supported cohomology we may replace
f by a new f which is the lift to Y of a (single valued!) Morse function
g : X → R.

The isomorphism of Λ-modulesHp
(
ZS∗c↑ (f)

)
≈ Hp

c↑ (Y,Z) remains valid

for the new f .

But with the new f , each stable manifold Sp is relatively compact in
Y , therefore [Sp] has compact support and its boundary consists of a finite
sum of other stable manifolds. In particular the space ZS∗cpt (f) (made up
of finite sums of stable manifolds) is closed under taking boundary, i.e. it
is a complex. Moreover, the operator P maps E∗cpt (Y ) to RS∗cpt (f) and the
operator T is a chain homotopy between P and the identity I : E∗cpt (Y ) −→
D′
cpt

∗ (Y ).

Consequently, there are isomorphisms of real vector spaces and abelian
groups:

Hp
cpt (Y,R) ≈ Hp

(
E∗cpt (Y )

)
≈ Hp

(
RS∗cpt (f)

)

Hp
cpt (Y,Z) ≈ Hp

(
C∗cpt (Y )

)
≈ Hp

(
ZS∗cpt (f)

)

The (covering) group ring Z [π] = Z
[
t, t−1

]
of Laurent polynomials acts

on ZS∗cpt (f) and C∗cpt (Y ). Therefore ZS∗cpt (f) ⊗
Z[π]

ΛZ and C∗cpt (f) ⊗
Z[π]

ΛZ are

complexes of ΛZ modules and there are isomorphisms of ΛZ modules:

ZS∗cpt (f) ⊗
Z[π]

ΛZ = ZS∗c↑ (f) and C∗cpt (f) ⊗
Z[π]

ΛZ = C∗c↑ (f)

We now need:

Algebraic Fact 3 ΛZ is flat over Z [π] = Z
[
t, t−1

]
.

By taking homology of the complexes, this implies:

Theorem 4.1.5 As finitely generated ΛZ-modules:

H∗
c↑ (Y,Z) ≈ H∗

cpt (Y,ΛZ)

where, by definition, H∗
cpt (Y,ΛZ) = H∗

cpt (Y,Z) ⊗
Z[π]

ΛZ.
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4.2 General Case

Let’s now look at the general case of Novikov theory. We start with a closed
one form ω with nondegenerate singularities on the compact manifold X.
We’ll call such forms “Novikov” forms. We recall that the irrationality
degree of ω is the minimal number k − 1 such that all the periods of ω are
rationally dependent by the periods χ1, . . . , χk. It corresponds to the small-
est number of generators of ω by forms in H1(X,Z).

Let k − 1 be the irrationality index of ω and χ = (χ1, .., χk) denote
its generating periods. Let ρ : Y → X be a minimal covering such that
ω pulls back to an exact form, say df , with f : Y −→ R. The group π
of deck translations of (Y, ρ) is a free abelian group with k generators, say
t1, ..., tk (i.e. π ≈ Zk) and the group rings (over R and Z) are the Laurent
polynomials rings:

R [π] = R
[
t1, .., tk, t

−1
1 , .., t−1

k

]
and Z [π] = Z

[
t1, .., tk, t

−1
1 , .., t−1

k

]

The equivariance relations f (ti (y)) = f (y) + χi hold for any i = 1, .., k.

If k = 1 the covering is cyclic and the one form ω can be seen as the
differential of a circular valued function, which was the case in the previous
section.

Using the covering map ρ as it has been done for cyclic coverings, the
form ω lifts to a Morse function f on Y . Note that f is not proper.

We choose a metric Y which is the lift of a metric on X and for which
the gradient flow ψ of f is Smale. The gradient flow of ω on X is denoted
by φ.

The critical points of f on Y are just the preimages of the critical points
of ω on X. Of course ψ has no closed orbits (nor broken closed orbits).

Lemma 4.2.1 The lifted flow ψ is weakly proper.

Proof. Suppose γ̄ : [0,+∞[→ Y is a forward flow-half line of ψ which is
not relatively compact in Y (i.e. γ̄ does not converge to a critical point); we
just need to show that f is unbounded on γ̄. Consider the projected curve
γ = ρ (γ̄), which is a forward flow-half line for φ. Since ρ∗ (ω) = df , and

lim
s→+∞

[f (γ̄ (s))− f (γ̄ (0))] = lim
s→+∞

∫ s

0

d

dt
f (γ̄ (t)) dt =

∫

γ̄
df =

∫

γ
ω

we are left to prove that
∫
γ ω = +∞. Observe that γ cannot converge to a

critical point for φ in X, otherwise γ̄ would also converge to a critical point
for ψ in Y . Moreover, for any open set D ⊂ X containing all the critical
points, there exists a constant c > 0, determined by ‖ω‖ on X\D, such
that for any piece of an integral curve α contained in X\D, the estimate
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∫
α ω =

∫
|α̇|2 dt > c

∫
|α̇| dt holds. Since γ doesn’t converge to a critical

point, we can choose D so that γ has unbounded lenght in X\D ¤

Remark The previous lemma (and proof) holds for any covering where ω
pullbacks to an exact form, in particular the lifted flow is weakly proper for
the universal covering.

Now we modify the classic Novikov Theory (for k > 1) by introducing a
new ring. Let χ also denote the linear functional on Rk defined by χ (v) =
χ·v, where χ is the vector of periods.

Definition 4.2.2 A subset F ⊂ Zk is said:

1) slab compact if F intersect each slab χ−1 ([a, b]) is compact (i.e.
finite),

2) forward if F ⊂ χ−1 ([a,+∞)) for some a ∈ R,
3) compact/forward or c/f if F is both slab compact and forward.

First, consider formal Laurent series α =
∑
ant

n , where t = (t1, .., tk)
and n = (n1, .., nk). The support of α, denoted by |α|, consists of all n∈Zk
such that an 6= 0.

Definition 4.2.3 The forward (Laurent) ring Λ consists of all formal
Laurent series α =

∑
ant

n with compact/forward support and with integer
coefficients an ∈ Z. The alternative notations Λ = Λcf = Λ (Z) will also be
used.

Note 1 The support of α is c/f if and only if |α| ∩ χ−1 ((−∞, a]) is finite
for all a ∈ R.

Note 2 Consequently, given α, β ∈ Λ, the Cauchy product γ = αβ is defined
by the finite sums cn =

∑
p+q=n

apbq, and γ has c/f support.

Notations. The degree of a monomial term tn is defined to be χ (n). The
set of degrees of all the non zero monomial terms in the expansion of α ∈ Λ
is the image χ (|α|) of the support |α| under the map χ : Zk → R. This set

DEGS (α)
def
= χ (|α|) is a discrete (possibly finite) subset of R , bounded

below. Consequently, each α ∈ Λ has a unique expansion α =
N≤∞∑
j=0

ajt
Aj

with each aj non zero and deg tAj < deg tAj+1 . The degree of α is defined
to be the degree of the leading term a0t

A0 .
Define l : Λ → Z by taking the leading coefficient, namely l (α) = a0 (and
l(0) = 0). Note that l is not a ring homomorphism, though it is a homo-
morphism for the multiplicative group of Λ.
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Lemma 4.2.4 The map l sends ideals to ideals and an element α ∈ Λ is a
unit if and only if l (α) is a unit.

Proof. Let I be an ideal in Λ, and m = l(µ), n = l(ν) for some µ, ν ∈ Λ
that we can suppose to be of degree zero. If m+n 6= 0 then m+n = l(µ+ν).
Moreover, −m = l(−µ) and therefore l(I) is a subgroup of I. Since l is a
homomorphism for the multiplicative group of Λ, it follows that l(I) is an
ideal in Λ. As for the second statement, the nontrivial part is the “only if”.
We can assume α = 1− β with deg (β) > 0. Since deg

(
βk

)
= k deg (β), the

geometric series in β provides the inverse for α in Λ (Z) ¤

As a consequence we obtain the analogous of the Algebraic Fact 1:

Corollary 4.2.5 The ring Λ (R) obtained by considering coefficients in R
is a field.

The proof of the second algebraic fact is more involved:

Lemma 4.2.6 The forward ring Λ (Z) is a principal ideal domain.

Proof. Suppose I is an ideal of Λ. Since Z is a p.i.d., l (I) = Za for some

integer a ∈ Z. Choose an element α = a+
∞∑
j=0

ajt
Aj in the ideal I with degree

zero and leading coefficient l (α) = a. Given γ ∈ I, we will inductively define

β =
∞∑
j=0

βj ∈ Λ (Z) so that γ = βα, proving that I = Λα.

Define γ0 = γ and, given γk ∈ I, define the monomial βk = bkt
Bk as the

leading term of γk divided by a. Since l (I) = Za, the coefficient bk ∈ Z.
Now define

γk+1 = γk − βkα = γ − (β0 + β1 + ..+ βk)α

as the error in the factorization. Thus deg βk = deg γk < deg γk+1. Put
zk = deg βk: if no γk vanishes, it remains to show that lim

n→∞
zn = +∞. Note

that zk = minDEGS (γk), the set of degrees of terms in γk. Let

{y1, y2, ...} =
{
deg tA1 , deg tA2 , ...

}
= DEGS (α) \ {0}

{x0, x1, ...} =
{
deg tC0 , deg tC1 , ...

}
= DEGS (γ) = DEGS (γ0)

Now

γ1 = γ0 − β0α = C1t
C1 + C2t

C2 + ...− b0a1t
C0+A1 − b0a2t

C0+A2 − ...

and z0 = x0 = deg tC0 . Therefore,

DEGS (γ1) ⊂ (DEGS (γ0) ∼ z0) ∪ {z0 + y1, z0 + y2, ...}
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Similarly,

DEGS (γk+1) ⊂ (DEGS (γk) ∼ zk) ∪ {zk + y1, zk + y2, ...}

Consequently, the union of all the sets DEGS (γk) is contained in the set
D of real numbers of the form xj + yi1 + ...+ yik . Since both the set of xj ’s
and the set of yi’s are discrete and bounded below, the set D is also discrete
and bounded below. Therefore lim

k→∞
zk =∞ ¤

Exactly as in the cyclic covering case, compact/forward sets based on
f can be defined algebraically in terms of the covering group Zk.

Lemma 4.2.7 A closed set A ⊂ Y is a compact/forward set if and only if
there exists a compact set K ⊂ Y and a c/f set F in the lattice Zk such
that A is contained in the union of the sets tn (K) over n ∈ F .

Theorem 4.2.8 Each of the theorems 4.1.3, 4.1.4, 4.1.5 stated in the last
section holds for k > 1 if one substitutes the ring Λcf for Λ.

The statements and their proofs are identical, (the third algebraic fact
will be proved in the next section as corollary 4.3.4), and they will not be
repeated here. We just point out an important remark.

Remark (Topological Stability) Any two Novikov forms in the same co-
homology class in H1 (X,R) define the same c/f sets on Y . In fact they differ
by the differential of a bounded function (since X is compact). Therefore
their liftings to Y differ by a bounded function. The stability remark in the
section on Morse theory applies.

4.3 Comparison with Novikov Theory

Finally, we compare the previous results with Novikov theory (k > 1). In
order to be concise, we will restrict to integer coefficients. It is convenient
to define the Novikov ring in terms of supports.

Definition 4.3.1 A subset F ⊂ Zk is a cone-forward (or Novikov for-
ward, abbreviated n/f) set in the lattice with respect to χ if there exist a ∈ R
and ε > 0 such that F ⊂ χ−1([a,+∞)) and (”stability”) this remains true
for all χ∗ with |χ− χ∗| < ε. The Novikov ring Λnf consists of all formal
Laurent series α =

∑
n∈F

ant
n with integer coefficients whose support F = |α|

is a cone-forward set in the lattice Zk.

Note that any cone-forward set is compact/forward, so that the Novikov
ring Λnf is a subring of the ring Λcf . Again, the geometric power series
argument shows that the Novikov ring Λnf (R) over R is a field.
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Pajithnov in [26] attributes to J. Sikorav the following result; we provided
a new proof for completeness.

Proposition 4.3.2 The Novikov ring Λnf is a p.i.d.

Proof. Given an ideal I ⊂ Λnf (Z), let Ī be the ideal in Λcf (Z) generated
by I. Pick α ∈ I, such that the ideal l (I) ⊂ Z is generated by l (α). Then
Ī = Λcf (Z)α. In particular, if γ ∈ I then β = γα−1 ∈ Λcf (Z), but γα−1

also belongs to Λnf (R). Finally note Λnf (Z) = Λnf (R) ∩ Λcf (Z) ¤

Proposition 4.3.3 The Novikov ring Λnf is a flat algebra over the Laurent
Polynomials ring L = Z

[
t1, . . . , tn, t

−1
1 , . . . , t−1

n

]

Proof. Let Λ+
nf be the subring of the Novikov ring Λnf made up of the

elements of positive degree, and L+ the subring of L made up of polynomials
of positive degree (according to our definition of degree), so that Λ+

nf is an

algebra over L+. We now observe that Λnf can be presented as Λnf =
L ⊗L+ Λ+

nf . Since ”extending the scalars” preserves flatness (cf. [B], I.2.7,

Cor. 2), we are left to prove that Λ+
nf is flat over L+.

Let’s restrict to two variables, but the idea can be simply generalized to
the general case. For any α ∈ [0, π], let Λ+

α be the subring of Λ+
nf made up

of series whose support in Z2 is contained in a cone of angle α centred in the
origin and symmetric with respect to the vector χ. In particular Λ+

0 = Z
(since the origin is the only point of the line with direction χ and integer
coordinates) and Λ+

π = Λ+
nf . Let finally L+

α = L ∩ Λ+
α and observe that

Λ+
nf = lim−→Λ+

α , and L+ = lim−→L
+
αwhere the direct limit is taken for α↗ π.

We will next prove that any Λ+
α is a completion of L+

α . Since the set of
points with integer coordinates is discrete in the angular regions described
above, the degree of elements in L+

α (and in Λ+
α ) is a discrete (hence well

ordered) set in [0,+∞), say {a0 = 0, a1, . . . , ak, . . .}. Also, the sets

Iαk = {λ ∈ L+
α | deg (λ) ≥ ak}

are ideals for L+
α and the quotients

L+
α /I

α
k ≈ {λ ∈ L+

α | deg (λ) < ak}(mod Iαk )

”are” the polynomials in L+
α of degree less than ak. It is the clear that

Λ+
α = lim−→L

+
α /I

α
k , i.e. Λ+

α is a completion of L+
α . Since a completion of a ring

is always flat over that ring (cf. [Ma]), the previous proves that any Λ+
α is

flat over L+
α .

Recall that Λ+
nf = lim−→Λ+

α , and L+ = lim−→L
+
α , and since ,roughly speaking,

the direct limit preserves flatness (cf. [5] I.2.7, Prop. 9), it follows that Λ+
nf
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is flat over L+, completing the proof of the lemma ¤

As a consequence, we get the analogous of Algebraic Fact three for the
compact/forward ring.

Corollary 4.3.4 The compact/forward ring Λcf is a flat algebra over the
Laurent Polynomials ring L.

Proof Any torsion free module over a p.i.d. is flat (cf. [20]), and the com-
pact/forward ring Λcf is torsion free over the Novikov ring Λnf , so Λcf is
flat over Λnf . We just proved Λnf is flat over the Laurent polynomials L
and since flatness has the transitive property we are done ¤

Definition 4.3.5 A closed subset A ⊂ Y is a Novikov-forward set (ab-
breviated n/f-set) if there exists a compact set K ⊂ Y and a n/f set F in
the lattice Zk such that A ⊂ ⋃

n∈F
tn (K)

The Novikov-forward sets are compact/forward with respect to f , since
f (tn (y)) = χ · n + f (y). The converse is not always true if k > 1 because
the lattice contains compact/forward sets which are not Novikov/forward.

Clearly, each covering translation ti acts on the various complexes of
forms and current with support in Novikov/forward-sets and the different
actions commute (since the ti’s do). This allows one to define actions of the
group ring and Novikov ring ”by linearity” on those complexes; the supports
are in fact preserved by the action of the Novikov ring Λ. One can also define
an S-complex ZS∗nf with supports in n/f -sets and all the previous arguments
carry over substituting n/f -sets for compact/forward sets with respect to f .

Theorem 4.3.6 Each of the Theorems 4.1.3, 4.1.5, 4.1.5 stated for cyclic
covers holds for the (k > 1) Novikov case if one substitutes n/f-supports for
compact/forward supports.

Again, the statements and their proofs are identical and will not be
repeated here. These three theorems in the n/f case and the c/f are directly
related as follows. Since Λcf (R) is a field, Λcf (Z) is a torsion free module
over the ring Λ = Λnf (Z). Since the ring Λ = Λnf (Z) is a p.i.d., this implies
that Λcf (Z) is a flat Λ-module. Therefore:

ZS∗c↑ ≈ ZS∗nf ⊗Λ Λcf (Z)

H∗
c↑ (Y,Z) ≈ H∗ (

ZS∗c↑
)
≈ H∗ (

ZS∗nf
)
⊗Λ Λcf ≈ H∗

nf (Y,Z)⊗Λnf
Λcf

In particular the Novikov numbers and inequalities are the same over Λnf

or Λcf .
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The larger ring Λcf (Z) is geometrically more natural in the context
of non-compact Morse Theory, while the smaller ring Λnf (Z) has other
advantages. Of course they coincide in the cyclic (k = 1) case.

4.4 Lambda Duality

Let ΛZ denote either the compact/forward or the Novikov ring, and let ΛR
denote the corresponding field. First, consider the field Λ = ΛR, subscripts
are understood. Each critical point x0 ∈ X, of index h, determines a Λ-line
in Shc↑ denoted Shx0 which equals Λ [Sy0 ] where y0 is any fixed critical point

above x0. Each S ∈ Shx0 uniquely determines λ ∈ Λ for which S = λ · [Sy0 ].
Similarly, each critical point x0 ∈ X, of index h determines a Λ-line in Un−hc↓ ,

denoted Un−hx0 , which consists of all sums U =
∑
n∈|µ|

bnUt−ny0 = µUy0 , where

µ =
∑
n∈|µ|

bnt
n ∈ Λ. As before, U ∈ Un−hx0 uniquely determines µ ∈ Λ with

U = µUy0 .

Note. The same Λ acts on S and U ; necessarily, then, the variable t acts
by pullback on U and in particular the line Un−hx0 ⊂ Un−hn↓ ⊂ Un−hc↓ .

Definition 4.4.1 Given U ∈ Un−hx0 and S ∈ Shx0 define the Λ -pairing of U
and S by

(U, S)Λ = λµ

where U = µUy0 and S = λSy0 determine λ and µ.

Lemma 4.4.2 The pairing ( , )Λis Λ-bilinear and independent of the choice
of the critical point y0 ∈ Y above x0 ∈ Cr (ω) ⊂ X.

Proof. Suppose y′0 is another choice of critical point above x0. Then
Sy′0 = Stny0 = tnSy0 while Uy′0 = Utny0 = t−nUy0for the same n ∈ Z so

that λ = λ′tn and µ = µ′t−n and λµ = λ′µ′ ¤

Note that Sh =
∑

x∈Cr(ω,Ind h)
Shx and Un−h =

∑

x∈Cr(ω,Ind h)
Un−hx . Given

S ∈ Sh and U ∈ Un−h the Λ-bilinear pairing obviously extends to (S,U)Λ.

Remark If (S • U) denotes the current intersection of S with U paired with
1 (i.e. the number of points in the intersection), then (S • U) ∈ Z is the
leading coefficient of (S,U)Λ ∈ Λ.

Theorem 4.4.3 The Λ-vector spaces Shc↑ and Un−hc↓ are finite dimensional
dual vector spaces under the pairing ( , )Λ. Consequently, the Λ-vector

spaces Hh
(
S∗c↑

)
and Hn−h

(
U∗
c↑
)

are Λ-dual finite dimensional vector spaces.
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The proof is immediate.
The integer case produces two finitely generated complexes of ZΛ-bilinear

pairing; and with bases Si, Ui so that (Si, Uj) = δij . It follows algebraically
that Λ-Poincaré duality holds over Z.
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Functions and 1-forms with
Bott Singularities

5.1 The Boundary Value Technique

We now present a generalization of the theory discussed in section 1.3, adapt-
ing it to the case of Bott singularities. The arguments are often very similar,
so the proof are sometimes omitted or sketched. Again, no part of this sec-
tion is completely original, and we refer to the sources quoted before as
references.

Definition 5.1.1 Let V be a vector field on a manifold X of dimension n
and C ⊂ X a regular (hence closed) submanifold of dimension c. Suppose
V |C = 0. The singular points on C are called of “Bott” type or “nonde-
generate in the normal direction” if for any point p ∈ C there exists
local coordinates u, v near p such that C = {u = 0} and the local system
determined by V has the form

{
u̇ = Au+ a(u, v)
v̇ = b(u, v)

where A is a square matrix of order n− c with no purely imaginary in-
variant and a and b are vector valued functions which vanish on C together
with their differentials.
The number λC = (λp) of negative characteristic exponents of the matrix A
is called the index of C (or of any p ∈ C). We also put, following [18],
λ∗C = n− c− λC .

A function f : X → R or a one form ϕ ∈ E1(X) is called “Morse-
Bott” if for some (and hence all) Riemannian metric, the singularities of the
corresponding gradient vector field are of Bott type, distributed on compact
critical manifolds.

67
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Consider the following system on Rs × Ru × Rc:




ẋ = L−x+ f(t, x, y, z, θ)

ẏ = L+y + g(t, x, y, z, θ)

ż = h(t, x, y, z, θ)

(5.1)

where the matrices L− and L+ are in Jordan form, the real parts of the
eigenvalues of L− are strictly negative, say −λs ≤ · · · ≤ −λ1 < 0, and those
of L+ strictly positive, say 0 < µ1 ≤ · · · ≤ µu.

In the sequel the symbol |x, y, z| will always mean the max among
|x|, |y|, |z|. Now set:

F = (f, g, h) : R× Rs × Ru × Rc ×W → Rs × Ru × Rc

We assume that F vanishes on the critical manifold C = 0× Rc and the
spatial derivatives of the non linear terms are uniformly bounded, i.e. there
exists δk such that:

F (t, 0, 0, z, θ) = 0

δkε
def
= sup

|x,y|≤ε

∑

|m|=k

∣∣∣ ∂kF
∂(x,y,z)m

∣∣∣ ≤ δk < +∞ (5.2)

Note that the bounds δkε are taken over tubular neighborhoods of the
critical manifold.

Lemma 5.1.2 In the previous hypotheses, the following inequalities hold:

|F (t, x, y, z, θ)| ≤ δ1
|x,y||x, y| (5.3)

|∂
kF

∂zk
(t, x, y, z, θ)| ≤ δk+1

|x,y||x, y| (5.4)

Proof. By F (t, 0, 0, z, θ) = 0 it follows ∂kF
∂zk (t, 0, 0, z, θ) = 0; then apply the

mean value theorem ¤

Definition 5.1.3 We say that the Boundary Value problem (abridged
B.V. problem) with data (x0, y1, z1, τ) ∈ Rn × [0,+∞) is solvable for the
system 5.1 if there exists a solution (x∗(t), y∗(t), z∗(t)) defined on [0, τ ] and
satisfying:

(x∗(0), y∗(τ), z∗(τ)) = (x0, y1, z1)

Theorem 5.1.4 Suppose the estimate 2δ1 < α hold. Then the Boundary
Value problem for the system 5.1 is solvable for any data (x0, y1, z1, τ). The
solution is unique, it depends smoothly on (t, x0, y1, z1, τ, θ) and satisfies:

|x∗ (t) , y∗ (t) | ≤ 2|x0, y1| for any t ∈ [0, τ ] (5.5)
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Notations In the same way as for an Initial Value problem, a BV problem
is denoted by:





ẋ = L−x+ f (t, x, y, z, θ)
ẏ = L+y + g (t, x, y, z, θ)
ż = h(t, x, y, z, θ)

x∗(0) = x0, y
∗(τ) = y1, z

∗(τ) = z1

(5.6)

The solutions to Initial and Boundary Value problems will be denoted as
in section 1.3; we just recall the “end point map” (x∗1, y

∗
0, z

∗
0) for the BV

solution, defined as:

x∗1 (x0, y1, z1, τ) = x∗ (τ, x0, y1, z1, τ) (5.7)

y∗0 (x0, y1, z1, τ) = y∗ (0, x0, y1, z1, τ) (5.8)

z∗0 (x0, y1, z1, τ) = z∗ (0, x0, y1, z1, τ) (5.9)

It is useful to join the “unstable variables” y, z under a single coordinate

w
def
= (y, z). For example, the discussion after theorem 1.3.3 works word for

word by replacing y with w and therefore proving:

Corollary 5.1.5 The following matrices are invertible and

(
∂w∗

∂w1
|(t,x0,w1,τ)

)−1

=
∂w

∂w0
|(t,x0,w∗

0(x0,w1,τ))
(
∂w∗

0

∂w1
|(x0,w1,τ)

)−1

=
∂w

∂w0
|(τ,x0,w∗

0(x0,w1,τ))

Proof of the theorem. This time the system of integral equations is:





x(t) = etL
−
x0 +

∫ t
0 e

(t−s)L−
f(s, x(s), y(s), z (s) , θ)ds

y(t) = e−(τ−t)L+
y1 −

∫ τ
t e

(t−s)L+
g(s, x(s), y(s), z (s) , θ)ds

z (t) = z1 −
∫ τ
t h(s, x(s), y(s), z (s) , θ)ds

(5.10)

Fact 5.1 Any continuous curve, solution of the equations (5.10) is necessar-
ily smooth in t and is a solution to the BV problem with data (x0, y1, z1, τ).
The viceversa is also true.
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The right hand side of the equations (5.10) defines an operator on the
space of continuous curves: its fixed points are our target. In order to make
it a contraction, we consider a weighted norm for the curves.

Choose any γ such that = δ1 < γ < α/2 and denote by γVτ the Banach
space C0 ([0, τ ] ,Rn) of continuous curves endowed with the γ-weighted norm

‖X = (x (t) , y (t) , z (t))‖γ = sup
[0,τ ]

(|x (s) , y (s) , z (s) |eγs)

Define T : γVτ × Rn ×W → γVτ by acting on (X(t), x0, y1, z1, θ) as:





T x (X) (t) = etL
−
x0 +

∫ t
0 e

(t−s)L−
f(s, x(s), y(s), z(s), θ)ds

T y (X) (t) = e−(τ−t)L+
y1 −

∫ τ
t e

(t−s)L+
g(s, x(s), y(s), z(s), θ)ds

T z (X) (t) = z1 −
∫ τ
t h(s, x(s), y(s), z(s), θ)ds

Claim 5.1 T is continuous (on γVτ × Rn ×W ).

As before, this can be simply checked directly.

Claim 5.2 T is C∞ in the γVτ arguments.

Proof. The differentials dkT in the V arguments are the linear operators

dkTX
(
X ′

1, . . . , X
′
k

)
(t) =





∫ t
0 e

(t−s)L−
dkf |(s,X(s),θ) (X ′

1 (s) , . . . , X ′
k (s)) ds

∫ τ
t e

(t−s)L+
dkg|(s,X(s),θ) (X ′

1 (s) , . . . , X ′
k (s)) ds

∫ τ
t e

(t−s)L+
dkh|(s,X(s),θ) (X ′

1 (s) , . . . , X ′
k (s)) ds

where X,X ′
i ∈ V , and dkf . . . are the differentials in the spatial direc-

tions. In fact let’s just check Taylor’s formula:
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ψ(t) =
∣∣∣
(
T (X+X ′)− T (X)− dTXX ′ −. . .− dT kX

(
X ′,. . .,X ′)) (t)

∣∣∣ ≤

≤ sup





∫ t
0 e

−α(t−s)|f(s,X+X ′)−f(s,X)−∑k
i=1 d

if |(s,X(s),θ)(X
′,. . .,X ′) |ds

∫ τ
t e

α(t−s)|g(s,X+X ′)−g(s,X)−∑k
i=1 d

ig|(s,X(s),θ)(X
′,. . ., X ′) |ds

∫ τ
t |h(s,X+X ′)−h(s,X)−∑k

i=1 d
ih|(s,X(s),θ) (X ′,. . ., X ′) |ds

≤ sup





∫ t
0 e

−α(t−s)δk+1
‖X‖+‖X′‖

|X′(s)|k+1

k+1! ds

∫ τ
t e

α(t−s)δk+1
‖X‖+‖X′‖

|X′(s)|k+1

k+1! ds

∫ τ
t δ

k+1
‖X‖+‖X′‖

|X′(s)|k+1

k+1! ds

≤
δk+1
‖X‖+‖X′‖

k + 1!
‖X ′‖k+1

γ sup





∫ t
0 e

−αt+(α−(k+1)γ)sds
∫ τ
t e

αt−(α+(k+1)γ)sds
∫ τ
t e

−(k+1)γsds

Hence we get

ψ(t)eγt ≤
δk+1
‖X‖+‖X′‖

min{(k + 1)γ, |(k + 1)γ − α|}(k + 1!)
‖X ′‖k+1

γ

which provides an estimate (uniform in τ) for the C∞ smoothness of T .

Claim 5.3 T is a contraction on γVτ . In fact ‖dT‖γ <
δ1

γ
(which is < 1

by hypothesis).

Proof. We can easily check dT to be a contraction (here δ means δ1):

∥∥dTXX ′ (t)
∥∥
γ

= sup
[0,τ ]

eγt





∣∣∣
∫ t
0 e

(t−s)L−
df |(s,X(s))X

′ (s) ds
∣∣∣∣∣∣

∫ τ
t e

(t−s)L+
dg|(s,X(s))X

′ (s) ds
∣∣∣∣∣∫ τ

t dh|(s,X(s))X
′ (s) ds

∣∣

≤ sup
[0,τ ]

eγt





∫ t
0 e

−α(t−s)δ‖X‖|X ′ (s) |ds∫ τ
t e

(t−s)L+
δ‖X‖|X ′ (s) |ds∫ τ

t δ‖X‖|X ′ (s) |ds

≤ δ‖X‖
∥∥X ′∥∥

γ
sup
[0,τ ]

eγt





∫ t
0 e

−α(t−s)e−γsds∫ τ
t e

α(t−s)e−γsds∫ τ
t e

−γsds
≤
δ‖X‖
γ

∥∥X ′∥∥
γ
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And therefore ‖dTX‖γ ≤
δ

γ
< 1 ¤

Remark The estimate 2δ1 < α assumed as hypothesis differs from the sim-
ilar estimate δ1 < α assumed in the case of isolated singularities. In the last
inequality proven, in fact, we needed at the same time δ < γ and δ < α− γ,
and hence δ1 < α was not sufficient.

Because of the previous claim, the contraction lemma provides the ex-
istence of unique fixed points for the operator T for any choice of data
(x0, y1, z1, τ), solving the existence and uniqueness issue for the BV prob-
lem.

Claim 5.4 Fix (x0, y1, z1, θ) and a curve X(t) = (x(t), y(t), z(t)). If the
inequality |x(t), y(t)| ≤ 2|x0, y1| holds, then |T x(X)(t), T y(X)(t)| ≤ 2|x0, y1|
for the first components of T (X) too.

Proof. Exactly as Claim 1.4; the γ norm is not involved here.

Claim 5.5 The operator T : Vτ × Rn ×W → Vτ is C∞ regular.

Proof. T is affine in the spatial data (x0, y1, z1) and the parameters θ
can be considered as new variables adding them to “z” via the constant
equation θ̇ = 0. Since T is continuous, the theorem about differentiability
after regularity of partial derivatives proves the claim.

By now, the proof of smooth dependence of solutions on the variables
(x0.y1, z1, θ) goes on exactly as in the case of nondegenerate singularities,
relying upon the implicit function theorem in Banach spaces. The same ar-
guments as before (replacing the variables y, z by w and using corollary 5.1.5)
works word for word in the present case, proving the smooth dependence of
the solution to a BV problem on τ and completing the proof of the existence
and uniqueness theorem ¤

The derivatives of the solutions to a BV problem certainly satisfy the
corresponding variational differential systems. Moreover, as in the case of
isolated singularities, the variational systems are in the same form as system
5.1. The proof given for corollary 1.3.5 then shows:

Corollary 5.1.6 Under the hypothesis of the existence and uniqueness the-
orem 5.1.4, the derivatives to the BV problem 5.6 with respect to the spatial
BV data x0, y1, z1 and parameters θ can be found as solutions to the BV
problem whose equations are the variational equations and the new BV data
are given by formal differentiation of the old ones. In particular the BV data
are zero for the derivatives in θ or anyway for derivatives of second order
and higher.



Bott Singularities 73

The derivatives in t for the solutions are described by the differential
equations themselves (of the original system or of the variational ones),
whereas for the τ variable, the discussion in section 1.3 goes through word
for word if one here substitutes w = (y, z) to the variables y there.

Corollary 5.1.7 The derivatives of the BV solutions in τ satisfy:

∂x∗

∂τ
|(t,x0,w1,τ) = − ∂x

∗

∂w1
|(t,x0,w1,τ)

∂w∗

∂t
|(τ,x0,w1,τ) (5.11)

∂w∗

∂τ
|(t,x0,w1,τ) = −∂w

∗

∂w1
|(t,x0,w1,τ)

∂w∗

∂t
|(τ,x0,w1,τ)

Theorem 5.1.8 The first derivatives of the endpoint map satisfy:

∂x∗1
∂x0, w1, θ

|(x0,w1,τ) =
∂x∗

∂x0, w1, θ
|(τ,x0,w1,τ) (5.12)

∂w∗
0

∂x0, w1, θ
|(x0,w1,τ) =

∂w∗

∂x0, w1, θ
|(0,x0,w1,τ) (5.13)

∂x∗1
∂τ
|(x0,w1,τ) =

∂x∗

∂t
|(τ,x0,w1,τ) −

∂x∗

∂w1
|(τ,x0,w1,τ)

∂w∗

∂t
|(τ,x0,w1,τ) (5.14)

∂w∗
0

∂τ
|(x0,w1,τ) =

∂w∗

∂τ
|(0,x0,w1,τ) (5.15)

The kth derivatives of the endpoint map are linear combinations of deriva-

tives
∂hx∗

∂ht, x0, w1, θ
|τ,x0,w1,τ and

∂hw∗

∂ht, x0, w1, θ
|0,x0,w1,τ with 0 ≤ h ≤ k, the

coefficients being products of other derivatives of x∗ and w∗.

Hypothesis From now on, the differential system is supposed to be local
and autonomous, i.e. of the form:





ẋ = L−x+ f (x, y, z)
ẏ = L+y + g (x, y, z)
ż = h(x, y, z)

(5.16)

The non linear terms F = (f, g, h) are just defined locally near the ori-
gin, and satisfy F (0, 0, z) = 0 and dF |(0,0,z) = 0.

In the new hypothesis, there exists a small enough neighborhood of the
origin U ⊂ Rs×Ru×Rc where the estimate 2δ1 ≤ α on the first derivatives
holds. Modifying the system 5.16 away from U by a smooth cut off, the
existence and uniqueness theorem 5.1.4 applies, and its thesis then holds on
U for system 5.16 as well, thanks to the bound given by relation 5.5. We
can now prove:
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Theorem 5.1.9 (Stable Bundle) For any point z in Rc ∩U there passes
a unique invariant manifold Sz of dimension s called “stable manifold for
z” which is the union of trajectories in U tending to z. The union S = ∪Sz
is a C∞ bundle over the critical manifold Rc called the “stable bundle” and
it is made up of all the trajectories which stay bounded in a neighborhood of
0 for all times.

Proof. Using the cut off trick,it’s sufficient to assume the nonlinear terms
to be globally defined and the bound on their first derivatives to hold on all
of Rn.

Fix now a z1 ∈ C and translate the system Ẋ = F (X) so that z1 = 0.
The new system is just Ẋ = F (X − (0, 0, z1)), which we can consider as
a system depending on the “nonspatial” parameter z1. Consider now the
Banach space V of continuous curves defined on the half line and bounded
in the γ-weighted norm, for some 2δ < γ < α.

The choice z1 = 0 allows the integral operator T associated to 5.16 to
operate on V for τ =∞. In fact T is now given by:





T x (X) (t) = etL
−
x0 +

∫ t
0 e

(t−s)L−
f(s, x(s), y(s), z(s), z1)ds

T y (X) (t) = −
∫ +∞
t e(t−s)L

+
g(s, x(s), y(s), z(s), z1)ds

T z (X) (t) = −
∫ +∞
t h(s, x(s), y(s), z(s), z1)ds

Observe that z1 is considered as one of the old “θ” parameters. All
the estimates in the proof of theorem 5.1.4 still work for the new T , since
they never involved τ explicitly. Therefore, for any fixed z1 and for any x0

there is a solution x∗(t), y∗(t), z∗(t), defined on the half-line, which con-
verge exponentially (faster than e−γt) to the point (0, 0, z1). One then
gets a smooth “endpoint” map (x0, z1)→ (y∗0(x0, z1), z

∗
0(x0, z1)). Note that

(y∗0(0, z1), z
∗
0(0, z1)) = (0, z1). Therefore, the graph S of the endpoint map

is a smooth manifold of dimension s + c and is the disjoint union of the
submanifolds Sz1 , graphs of the restrictions of the endpoint map to z = z1.
Of course, S is the stable bundle and its fibers Sz1 the unstable manifolds.
In fact, similarly to the case of isolated singularities, one proves that Sz1
is invariant by the flow and contains any solution which is bounded in the
γ-norm after translation in (0, 0, z1), i.e. any solution which tend to (0, 0, z1)
faster than e−γt (for any 2δ < γ < α).

The fact that all bounded small solutions actually belong to the stable
bundle can be seen using the estimates we’ll later prove ¤

Remark Repeating all the discussion by considering z as a stable coordi-
nate (i.e. treating z as the x coordinates instead that as the y ones) provides
analogous results. In particular there exists the “unstable bundle” of the
critical manifold C whose fibers are the “unstable manifolds” for the points
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in C.

Using an analogous of lemma 1.3.13, it is not difficult to check the
transversalities needed to state the following:

Corollary 5.1.10 (Straighten Coordinates) After a smooth change of
coordinates, the system 5.16 can be written as





ẋ = L−x+ f(x, y, z)x
ẏ = L+v + g(x, y, z)y
ż = h(x, y, z)xy

(5.17)

where f, g, h are square matrices of smooth functions vanishing on the crit-
ical manifold Rc and h(x, y, z)xy stands for a vector whose components are
sums of terms each of which factors through xiyj, for some i, j. The new
coordinates are called straighten coordinates since the stable and unstable
manifolds in z0 are given by y = 0, z = z0 and x = 0, z = z0 respectively.

In straighten coordinates, useful estimates hold on the size of the solu-
tion. Again, the “not leaving the neighborhood” issue (usually needed for
this kind of estimates) is simple to deal with, for solutions to Boundary
Value problems, since these are confined by construction.

Theorem 5.1.11 Suppose |x0, y1| ≤ ε. Then for any τ ∈ [0,+∞) the
following inequality hold, for some constant C0 independent on τ :




|x∗(t, x0, y1, τ)| ≤ |x0|e−(α−δ)t

|y∗(t, x0, y1, τ)| ≤ |y1|e(α−δ)(t−τ)
|z∗(t, x0, y1, τ)− z1| ≤ C0τe

−δτ
(5.18)




|x∗1(x0, y1, τ)| ≤ |x0|e−(α−δ)τ

|y∗0(x0, y1, τ)| ≤ |y1|e−(α−δ)τ

|z∗0(x0, y1, τ)− z1| ≤ C0τe
−δτ

(5.19)

Proof. The Gronwall lemma, applied exactly as in the proof of theorem
1.3.16 proves the estimates on the x, y variables, since nothing formally
changes. As for z, observe that

z(t)− z1 = −
∫ τ

t
h (x(s), y(s), z(s))x(s)y(s)ds

so that the thesis follows, bounding h by δ ¤

As for the derivatives of the solutions, we observe that the variational
systems for derivatives of order k in the x, y, z or t variables have the form:
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



Ẋk = L−Xk + f(x∗, y∗, z∗)Xk + (· · · )Xk−1 + . . .+ (· · · )x
˙Y k = L+Y k + g(x∗, y∗, z∗)Y k + (· · · )Y k−1 + . . .+ (· · · )y
Żk =

∑
(· · · )(X iY h−i)

(5.20)

This means that each summand in the first equation factors trough some
lower order derivatives of x (and similarly in the second), whereas in the
third equation all addenda factor through products of derivatives of x and
y (of course 0 ≤ h ≤ k in the formula).

Theorem 5.1.12 Suppose ε > 0 is such that kδ < α. Let X∗(t), Y ∗(t) be
some kth-order derivatives of (x∗, y∗) in the spatial variables x0, y1 and/or
in the time variables t, τ . The following inequalities hold, for some constant
Ck > 0:

|X∗(t)| ≤ Cke−(α−kδ)t

|Y ∗(t)| ≤ Cke(α−kδ)(t−τ)

|Z∗(t)| ≤ Ckτe−(α−kδ)(τ)

Proof. The proof of the first two inequalities is exactly the same as in
theorem 1.3.18 since the expressions are formally the same. It remains to
deal with Z∗. Since Z∗ solves

Z(t)− Z1 = −
∫ τ

t

∑
(· · · (s))(X i(s)Y h−i(s))ds

The dots are bounded by a uniform constant depending on the estimates
on the derivatives f, g, h, whereas |X i(s)Y h−i(s)| ≤ Ce(α−kδ)τ where C de-
pends on the constants coming from the estimates of X i and Y h−i and on
the number of terms involved. Integrating gives the thesis ¤

By theorem 5.1.8, in the same hypothesis of the previous theorem, it
then follows (again w stands for (y, z)):

Theorem 5.1.13 Let V ∗(τ) denote some derivative among
∂kx∗1

∂kx0, w1,τ
|(x0,w1,τ)

or among
∂kw∗

0

∂x0, w1, τ
|(x0,w1,τ). Then the following inequality holds, for some

constant Ck > 0, not depending on x0, w1, τ :

|V ∗(τ)| ≤ (1 + τ)Cke
−(α−kδ)τ

Conclusions We finally draw out the consequences which will be used later.
For the sake of clearness we repeat all the hypothesis here.
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Consider a vector field on Rn = Rs × Ru × Rc having Rc as critical
submanifold of Bott singularities. Let φ = (φt)t∈R be the (local) flow of
solutions near a critical point, which we assume to be the origin. Then
there exists “straighten coordinates” x, y, z near the origin for which S =
{y = 0} is the stable bundle and Sz1 = {y = 0, z = z1} the stable manifolds,
U = {x = 0} the unstable bundle and Uz1 = {x = 0, z = z1} the unstable
manifolds.

Consider then the unit cylinder B = {(x, y, z)| |x, y, z| < 1 } and decom-
pose its boundary ∂B in the pieces:

∂+B = {|x| = 1, |y, z| ≤ 1, } ∂−B = {|x, z| ≤ 1, |y| = 1}
∂cB = {|z| = 1, |x, y| ≤ 1, }

We can suppose that ∂−B and ∂+B are transversal to the vector field (at
least for small z) and that if a point m ∈ ∂−B does not belong to the
stable bundle S and is distant from ∂cB, then the trajectory starting from
m will touch ∂B again in ∂+B. This is granted by corollary 5.1.10 and the
estimates in theorem 5.1.11. The construction defines a “first escape” map

ϕ : ∂+B\S → ∂−B\U

Since the vector field is not tangent to ∂±B and the flow of solutions is a
smooth map, an application of the implicit function theorem proves

Theorem 5.1.14 The first escape map ϕ : ∂−B\S → ∂+B\U is a diffeo-
morphism onto its image.

Now, consider the submanifold

W = {
(
φ t

1−t
(m),m, t

)
|m ∈ Rn, t ∈ (0, 1)} ∩ B ×B × (0, 1) ⊂ R2n+1

Theorem 5.1.15 The closure W = (W,∂W ) is a smooth, closed submani-
fold in ×B ×B × R with boundary

∂W = U ×C S × {1} ∪ ∆× {0}

where

U ×C S = {(0,y,z,x,0,z) ∈ Rn × Rn}

is the fiber product of the stable and unstable bundles, which is a smooth
submanifold of dimension n.

Proof. Using the starred notation for the solution to the BV problem, by
the existence and uniqueness theorem one can reintrepret W as:
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W =
{(
φ t

1−t
(x0, y0, z0), x0, y0, z0, t

) ∣∣ (x0, y0, z0) ∈ Rn
}
∩B ×B × (0, 1)

=
{(
x∗1

(
x0, y1, z1, τ

1−τ

)
, y1, z1, x0, y

∗
0

(
x0, y1, z1, τ

1−τ

)
, z∗0 , τ

) ∣∣ |x0, y1, z1| < 1
τ ∈ (0, 1)

}

so that the estimates in theorem 5.1.13, combined with the same invariance
argument given for theorem 1.3.21 permit to conclude ¤

5.2 Vector Fields and One Forms with Bott Sin-
gularities

All over this section X will denote an oriented (not necessarily compact)
n-dimensional manifold, V a complete vector field and φ the corresponding
flow. The vector field is supposed to have Bott singularities distributed
along compact oriented (critical) submanifolds.

Using the notations UC (resp. SC) for the unstable bundle (resp. sta-
ble bundle) of the critical manifold C and Up (resp. Sp) for the unstable
manifold (resp. stable) of the critical point p, we introduce the following:

Definition 5.2.1 The flow φ satisfies the generalized Smale condition
if all the intersections between stable bundles and unstable manifolds and be-
tween stable manifolds and unstable bundles are transversal. In other words,
for any critical points and critical manifolds p ∈ Cp and q ∈ Cq, the inter-
sections SCp ∩ Uq and Sp ∩ UCq are transversal.

We assume the flow φ to satisfy the generalize Smale condition and the
vector field V to be Weakly Proper with respect to some smooth function
f : X → R. Note that for a vector field with Bott singularities it’s enough to
check the Weakly Proper hypothesis just on points instead than on compact
sets, cf. proposition 2.1.3.

Under these hypotheses, any critical manifold is contained in a level set
of f . Two critical manifolds C and C ′ cannot intersect and if there is a (pos-
sibly broken) flow line connecting C and C ′ then the inequalities λC < λC′

and λ∗C′ < λ∗C hold between the corresponding indexes.

Remark Contrary to the case of Morse functions, it is not true that any
function f with Bott singularities always admits a metric such that the gra-
dient vector field ∇f is generalized Smale, cf. [18] for an example.

We will next show how to generalize the results of chapters 2 and 3 to
flows of vector fields with Bott singularities, starting with the following:
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Definition 5.2.2 A compact stratified set Y of dimension k will be called
compact generalized horned-stratified (or compact gh-stratified) set
if:

• The stratification of Y is AB Whitney regular;

• There exists a k-dimensional compact manifold with corners M , a re-
finement of the stratification of M to an AB regular stratification which
does not modify the interior of M , and a submersive stratified map
π : M → Y .

The manifold M with the refined stratification is called a desingularization
for Y and the map π a gh-projection.

A locally gh-stratified set Y ⊂ X is a stratified set which locally
coincide with a compact generalized horned stratified set.

Remark. The A-regularity requirement for Y in the previous definition is
granted by the existence of the desingularization M → Y . Observe, more-
over, that the refinement of the stratification on M is not supposed to be
locally finite. It is often needed, for example, to consider a two dimensional
face as stratified by one dimensional submanifolds.

The arguments in section 2.2 work in the present setting by replacing h-
stratified with gh-stratified and giving to “desingularizing” the new meaning
of definition 5.2.2. The only point to keep in mind is the double nature of
the desingularization: as manifold with corners and as a stratified set. As
an example, we prove the following:

Proposition 5.2.3 Let Y ⊂ X be a gh-stratified set and Z ⊂ X a closed
submanifold. Suppose that each stratum of Y is transversal to Z. Then the
family of all intersections of strata makes up a gh-stratification for Z ∩ Y .

Proof. It’s enough to find a desingularization for Z ∩Y . Let π : M ⊂ N →
X be a local desingularization for Y . By hypothesis, the restriction of π to
any stratum of M (both as a manifold with corners and as a stratified space,
after the refinement) is transversal to Z and thus M ∩ f−1(Z) is endowed
with both the structures of compact manifold with boundary and AB reg-
ular stratification (by refinement of the corners). The restriction of π is a
gh-projection, because of lemma 2.2.5 ¤

Referring to section 2.2 for the proofs, that basically work word for word
as observed above, we just state:

Proposition 5.2.4 Let Y1, Y2 ⊂ X be gh-stratified sets and suppose that all
possible intersections of strata of Y1 and Y2 are transversal. Then the family
of these intersections is a gh-stratification for Y = Y1 ∩ Y2.
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Corollary 5.2.5 Let Y1, Y2 ⊂ X be gh-stratified sets and y ∈ Y1 ∩ Y2. If
the two strata containing y intersect transversally, then all the strata near
y intersect transversally and hence, near y, the intersection Y1 ∩ Y2 is a
gh-stratified set.

Remark In the case of h-stratifications, the local desingularizations define
“h-chain” currents by pushforward under some orientability assumption. For
gh-stratifications one might still define “gh-chain currents” by pushforward
(assuming the desingularizations are oriented maps), but such a family would
not be close under the boundary operation and so we’ll not pursue this aim.
Nevertheless the pushforward of a gh-projection is a quite special chain
current, in fact (cf. proposition 2.2.15):

Proposition 5.2.6 Let [T ] be a k-dimensional chain current in Rn locally
defined as the pushforward π∗(M) under the gh-projection π : M → T of the
gh-stratified space T . If [S] is chain current of dimension l and the simplexes
which locally define S are transversal to the strata of T , then [S] and [T ]
can be “intersected” and [S]∧ [T ] = [S ∩ T ] is a chain current of dimension
h+ k − n.

Keeping the notations introduced in section 2.3, we can now state the
following generalization of theorem 2.3.1:

Theorem 5.2.7 Let (X,φ, f : X → R) be a Weakly Proper generalized
Smale dynamical system, c ∈ R a regular value for f and M ⊂ f−1(c) a
smooth (embedded) submanifold of dimension m. Suppose M is transversal
to every stable manifold and let N =

⋃
t>0

φt(M). Then the closure N coin-

cides with the shadow LM and it is a gh-stratified subset of dimension m+1
whose singular strata are unstable manifolds.

As in the case of isolated singularities, one also gets the following:

Corollary 5.2.8 The unstable bundle UC of a critical manifold C (resp. the
unstable manifold Up of a critical point p) is a generalized horned stratified
subset whose singular strata are the unstable manifolds in the shadow of C
(resp. p). Similarly for stable bundles and manifolds.

The proof given for the analogous theorem 2.3.1 is still valid for the
previous theorem, but its preliminary results (propositions 2.3.4 and 2.3.5)
need to be modified to fit in the new frame. We thus just prove the two
adequate extensions.

Suppose p is a critical point belonging to the critical manifold C. We fix
a chart Ω in “straighten coordinates” x, y, z centred in p (cf. the previous
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section). The boundary of Ω decomposes as ∂Ω = ∂+Ω∪∂−Ω∪∂cΩ , where

∂+Ω = {‖x‖ = ε, ‖y, z‖ ≤ ε}
∂−Ω = {‖x, z‖ ≤ ε, ‖y‖ = ε}
∂cΩ = {‖x, y‖ ≤ ε, ‖z‖ = ε}

Note that the third component of boundary is not necessarily invariant
by the flow. Define the “links” of (un)stable bundles and manifolds as:

S+ = S ∩ ∂+Ω = {‖x‖ = 1, y = 0} , S+
z = Sz ∩ ∂+Ω

U− = U ∩ ∂−Ω = {‖y‖ = 1, x = 0} , U−
z = Uz ∩ ∂−Ω

We can now prove the analogous of the “second brick” in the proof of
theorem 2.3.1 :

Proposition 5.2.9 Suppose A+ ⊂ ∂+Ω is a compact manifold with corners
such that all strata have transversal intersection with S. Put

A = {φt(x)|x ∈ A+, t > 0} ∩ Ω

Then the closure A coincides with the shadow LA
+

Ω and is a compact gen-
eralized horned stratified set. Its singular strata (besides the shadows of the
strata in A+) are unstable manifolds.

The closure of A− def
= A ∩ ∂−Ω is gh-stratified too. Its singular strata

are links of unstable manifolds (and of the shadows of the strata in A+).

Remark The shadow of A+ does not touch ∂cΩ at all provide Ω is small
enough and A+ is well disjoint by ∂cΩ, thanks to the estimates in theorem
5.1.11.

Proof. We restrict to the case when A+ ⊂ ∂+Ω is a smooth compact
submanifold, transverse to the stable bundle S. Since the flow is not tangent
to A+, the parametrization

(t,m) ∈ [0,+∞)×A+ σ7−→ φt(m) ∈ A

is a diffeomorphism. Consider now the following submanifold of R2n × R:

W = {
(
φ t

1−t
(m),m, t

)
|m ∈ Rn, t ∈ (0, 1)} ∩ Ω× Ω× R ⊂ R2n+1

By the BV technique (cf. theorem 5.1.15), within Ω× Ω× R, the manifold
W is smooth, with boundary

∂W = U ×C S × {1} ∪ ∆× {0}

Define two subsets of R2n × R by:
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Z
def
= Rn ×A+ × R

(A1, ∂A1)
def
= Z ∩ (W,∂W ) =

{
(m′,m, t) | 0≤ t≤1,m∈A+,m′ = φ t

1−t
(m)

}

The submanifold Z is transverse to ∂W since A+ is transverse to S.
Besides, transversality of W ∩ Z elsewhere is readily proved. Therefore,
(A1, ∂A1) is a smooth compact manifold with boundary:

∂A1 = U ×C
(
A+ ∩ S

)
∪ ∆A+ × {0}

where

U ×C
(
A+ ∩ S

) def
=

⋃

(x,0,z)∈A+∩S
Uz × {(x, 0, z)} ⊂ Rn × Rn

It is actually the previous decomposition for U×C (A+ ∩ S) that suggests
how to refine some of the strata in ∂A1 into a family of (possibly lower
dimensional) strata, in the spirit of definition 5.2.2. From now on, the
component of boundary U ×C (A+ ∩ S) ⊂ ∂A1 is not any longer to be
considered a submanifold of the same dimension of A+ but as a union of
strata of dimension λ∗C (they are unstable manifolds).

Projecting onto the first factor via

π : Rn × Rn × R→ Rn

it is π
(
A1

)
= A and the topological boundary of A is :

⋃

(x,0,z)∈S∪A+

Uz ⊂ Rn

so that A is exactly the shadow of A+ in Ω. Moreover, the projection π is
clearly a diffeomorphism on the top stratum, and a trivial projection on the
singular strata (after the refinement), thus:

π|(A1,∂A1) : (A1, ∂A1)→ A = LA
+

Ω

is a gh-projection. As for the “regularity” of the stratified space A, the A-
regularity condition follows from being submersed by the gh-projection (cf.
the remark after definition 5.2.2). The B-regularity follows by the invariance
of A under the flow, as observed in the proof of proposition 2.3.4.

Finally, the intersection A− = A ∩ ∂−Ω is transversal, and hence gh
stratified too, thanks to proposition 5.2.3 ¤

Next, we state the analogous of the “third brick” (cf. proposition 2.3.5):
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Proposition 5.2.10 The previous proposition 5.2.9 holds word for word by
replacing “compact manifold with corners” with “compact gh-stratified set”.

Proof. Let A+ be a compact submanifold with boundary which desingu-
larizes the gh-stratified space A+. It is not restrictive to suppose A+ ⊂
Rj × ∂+Ω and the h-projection to be the restriction of the projection onto
the second factor.

The auxiliary flow ψ on Rj×Rngiven by ψt(x
′, x) = (e−tx′, φt(x)) on Rj×

Rn extends φ by a linear contraction and the following diagram commutes

Rj × Rn ψt−→ Rj × Rn
↓ π ↓ π
Rn φt−→ Rn

(5.21)

Note that C is a critical manifold of Bott singularities for ψ; the stable
bundle is Rj × S and the unstable bundle is {0} × U . Clearly the stable
bundle “upstairs” is transversal to the desingularization A+ ⊂ Rj × ∂+Ω,
which is a compact manifold with corners. The hypotheses of proposition
5.2.9 are thus fulfilled for the flow ψ by the “incoming link” A+ and there-
fore the shadow A of A+ into Rj × Ω is a gh-stratified set having unstable
manifolds {0} × Uz as singular strata (besides the shadows of the strata in
A+).

Let’s now look to the closure A “downstairs”. Since the diagram 2.1
commutes, it follows that A = π(A) and hence:

A = LA
+

Ω = A ∪
⋃

(x,0,z)∈A+∪S
Uz

We now prove A is gh-stratified. Denote by A1 the desingularization
of A provided by proposition 5.2.9. Then A1 = (A1, ∂A1) is a compact
manifold with corners (∂A1 being the family of its “singular” strata). After
the refinement of some of the singular strata as

∂A1 =
⋃

···
Uz

the projection π1 : (A1, ∂A1)→ (A, ∂A) is a gh projection (i.e. a stratified
submersive map), and in particular a trivial submersion on the singular
strata of the form Uz. Note that the symbol Uz makes sense both on the
“first floor” Rn, “second floor” Rj × Rn and “third floor” Rj′ × Rj × Rn,
since the critical manifolds are of the form C, {0} × C and {0} × C. The
composition of projections (A1, ∂A1)→ (A, ∂A)→ (A, ∂A) is then clearly a
gh-projection being a diffeomorphism on the top stratum and a submersion
on the singular strata.
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The A-B regularity conditions for the stratification A follow, as before,
by the existence of the desingularization and by the invariance of the set A
under the flow. Therefore, A is gh-stratified. Tranversality of A− = A∩∂−Ω
implies that A− is gh-stratified too ¤

As already observed, the previous two propositions, combined with the
same arguments in section 2.3 prove theorem 5.2.7. As an application, we
can prove the following generalization of a theorem in [18] (cf. definition
1.2.1):

Theorem 5.2.11 Let (X,φ, f) be a Weakly Proper, generalized Smale dy-
namical system. Then the closure of the “total graph” T ⊂ X × X is a
generalized horned stratified space whose singular strata are the diagonal ∆
and the product submanifolds Up × Sq for q 4 p. In particular, the flow φ
has locally finite volume.

If, moreover, X is oriented and any critical manifold C ∈ Cr(φ) and its
stable and unstable bundle are oriented (inducing orientations on the stable
and unstable manifolds) in such a way that < X >=< Up > + < C > + <
Sp > for any critical point p, then the following fundamental Morse-Bott
equation holds:

dT = ∆− P (5.22)

where (denoting by Cr the family of critical manifolds)

P =
∑

C∈Cr
UC ×C SC (5.23)

We recall that q 4 p means that there is a (possibly broken) flow line
connecting q and p.

Proof. Using the auxiliary flow on S1 ×X ×X constructed in section 2.4
(which now is generalized Smale), the statement concerning the gh-stratified
structure of T follows as there. It is not so for equation 5.22 though, because
the boundary of the current defined by a gh-stratified space is not so simple
as that of a h-chain. We restrict to sketch the steps of the proof of equations
5.22 and 5.23, referring to [18] and [13] for more details.

1) The current dT − ∆ is supported inside P = ∪q4pUp × Sq, for p and q
critical points.

2) The set P0 = ∪q≺pUp×Sq has Hausdorff dimension not bigger than n−2.

3) Equations 5.22 and 5.23 hold in a neighborhood of (p, p) for any critical
point p, as a consequence of the BV technique (cf. the similar proof for non
degenerate singularities).

4) Equation 5.22 clearly holds locally on X × X − P (meaning that ∆ is
one component of the current boundary of T , since P is certainly supported
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inside P). Using the diffeomorphisms (φt, φt′) of X ×X and the invariance
of T under them, point 3) proves that the two equations hold on X×X−P0.

5) Applying the support theorem for flat currents (cf. appendix A) com-
pletes the proof ¤

The kernel calculus (cf. appendix A) translates the Fundamental Morse-
Bott Equation into an equations of operators from smooth forms to currents;
to better describe those operators it’s worth to first consider a special ex-
ample of kernel.

Let F → B be a fiber bundle with F and B compact oriented manifolds.
Suppose the fibers to be oriented compact manifold with corners. The cur-
rent pushforward πF∗ in this case is just the integration along the fibers
and sends smooth forms on F to smooth forms on B (decreasing the degree
by the dimension of the fiber). In particular, the pullback π∗

F (by duality)
acts on the space of currents, so that both operators act indifferently on
forms and currents. For example, the pullback a point mass in B is the
corresponding fiber, π∗F ([b]) = [Fb].

The Stokes theorem implies the following formulas (α and β might be
either forms or currents):

dπ∗(α) = π∗(dα) + π∂∗ (α) dπ∗(β) = π∗(dβ) + π∂∗(β) (5.24)

where π∂∗ is the pushforward of the boundary bundle ∂F → B.

Lemma 5.2.12 Let F → B and G→ B two bundles as above and F×BG ⊂
F × G be the fiber product. Then the operator associated to the current
P = F ×B G in F ×G is given by:

P : E∗(F )→ D′∗(G) α→ π∗G(πF∗(α))

Proof. Let π1 and π2 be the projections of F × G onto its factors and let
α ∈ E∗(F ), β ∈ E∗(G). Then, by definition:

(Pα)(β) = P (π∗1(α) ∧ π∗2(β)) =

∫

F×BG
(π∗1(α) ∧ π∗2(β))

=

∫

B
πF∗(α) ∧ πG∗(β) =

∫

G
π∗G(πF∗α) ∧ β ¤

Return now to the Fundamental Morse-Bott Equation and look at the
current P =

∑
C∈Cr UC×CSC . It follows by corollary 5.2.8 that for any crit-

ical manifold C the unstable bundle admits a desingularization ŨC
πeUC→ UC

with compact fibers from a manifold with corners ŨC . A similar desingular-

ization S̃C
πeSC→ SC is provided for the stable bundle.
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Observe that there is no smooth map UC → C, but just smooth submer-
sions on their interior:

UC
πU→ C

πS← SC

Nevertheless, one can construct the diagram:

C ← S̃C
↓

↑ SC → X

ŨC → UC
↓
X

(5.25)

We can now describe the operator PC associated to the kernel current
UC×CSC ∈ D′n(X×X), recalling that both UC , SC and UC×SC are defined
as pushforwards of the given desingularizations (the currents are denoted by
the same symbol as their own support).

Let α ∈ E∗cpt(X). Pull it to α̃ via the composition ŨC → UC → X.

Then, apply lemma 5.2.12 to get the form π∗
SC

(πUC∗(α)) on S̃C . Finally,

push this (smooth) current into X via the composition S̃C → SC → X. Of
course the result is a current supported on SC , which will be denoted by
PC(α) = π∗SC

(πUC∗(α)) with a slight abuse of notation. The same “chasing”
of diagram 5.25 can be used to define the action of PC over a local chain
current K, provide K is transversal to all the unstable manifolds of points
in C: intersect K with UC , pushforward to C, pullback to SC , pushforward
again into X. Again, we put PC(K) = π∗SC

(πUC∗(K)), cf. [18] for more
details.

The following formula is a direct consequence of the relations 5.24 and
holds when θ is either a smooth form or a chain current transversal to all
unstable manifolds:

d(PCθ) = PC(dθ) + π∗SC
(π∂UC∗(θ)) + π∗∂SC

(πUC∗(θ)) (5.26)

Remark It is not difficult to prove (cf. [19]) that for any smooth form
θ ∈ E∗(C) there exists a form η ∈ E∗(X), with η supported on a neighbor-
hood of C, such that π∗SC

(θ) = π∗∂SC
(πUC∗(η)) = PC(η). The same is true

for transversal chain currents.

So far we described the behaviour of each PC . Let’s now pass to P =∑
PC. The discussion about forward and compact/forward supports al-

ready done in the case of isolated singularities still works in the present



Bott Singularities 87

framework, since it depends on the weakly proper assumption for the flow.
As before, the operator P extends to act on any smooth form α with forward
(resp c/f) support, and P(α) is then a forwardly supported current (resp.
c/f supported). The same is true when applying P to chain currents. The
application of kernel calculus to equations 5.22 and 5.23 then allows us to
generalize theorem 3.1.4 as follows:

Theorem 5.2.13 The operators T, I and P associated to the kernel cur-
rents T , ∆ and P , which a priori are operators from

E∗cpt (X) −→ D′∗ (X)

extend to continuous operators from

E∗↑ (X) −→ D′∗
↑ (X)

and satisfy the following equation, called Morse-Bott Chain Homotopy:

d ◦T + T ◦ d = I−P (5.27)

In particular, the operator P satisfies:

P = lim
t→+∞

φ∗t =
∑

C∈Cr
π∗SC
◦ πUC∗ (5.28)

Moreover, the operators T, I and P act on any local chain current K on X
with forward support provide K is transversal to all the unstable manifolds.
In this case, T(K) and P(K) are forward chain currents and the previous
expression for P still holds.

All the statements remain true by replacing “forward” with “compact/fo-
rward” everywhere.

Corollary 5.2.14 The operator P commutes with the boundary. Moreover,
if P acts on the current θ then it acts on P(θ) too and P(P(θ)) = P(θ).

Following [18], we next define the S-complex for the flow φ, as a gener-
alization of the S-complex studied in chapter 3. As before, this will be a
geometric realization of the Morse-Bott complex (cf. [1], [9]).

Definition 5.2.15 The (compact/forward) S-complex over R, denoted
by RS∗c↑ (φ), is the subcomplex of D′∗

c↑ (X) (the complex of currents with c/f
support) consisting of those currents of the form

∑
π∗SC

(ϕC)

where the sum is taken over a family of critical manifolds whose union is a
compact forward sets and each ϕC ∈ E∗(C) is a smooth form on the critical
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(and compact) manifold C. The (compact/forward) S-complex over Z
is analogously defined by requiring ϕC to be a chain current on C. Similarly
we define S∗↑ (φ) (the forward S-complex).

The boundary d is the current boundary in all the cases.

The names “over the reals” and “over the integers” are chosen just be-
cause the corresponding complex computes topological invariants with such
coefficients.

Remark As a consequence of the remark before theorem 5.2.13, the compact-

forward RS-complex coincides with the image P
(
E∗c↑(X)

)
, whereas the ZS-

complex is the image of P over compact forwardly supported chain currents
transverse to all the unstable manifolds. The closure of these complexes
under the boundary is then granted by corollary 5.2.14.

Using corollary 5.2.14, a proof along the lines of theorem 3.2.3 readily
yields:

Theorem 5.2.16 The maps

P : E∗c↑ (X)−→RS∗c↑ (φ) and the inclusion J : RS∗c↑ (φ) ↪→ D′∗
c↑ (X)

induces isomorphisms in real cohomology:

Hp
c↑ (X,R) ≈ Hp

(
RS∗c↑ (φ)

)

Similarly, the maps

P : C∗c↑ (X) 99K ZS∗c↑ (φ) and the inclusion J : ZS∗c↑ (φ) ↪→ C∗c↑ (X)

induces isomorphisms:

Hp
(
ZS∗c↑

)
≈ Hp

c↑ (X,Z)

The statement also holds by replacing compact/forward with forward ev-
erywhere.

Remark It is worth to stress the advantage of using the finite volume tech-
nique in the previous theorem. On one side, one realizes geometrically both
the cycles and the boundary of the “Morse-Bott complex” and secondly,
one has a quick and intuitive proof of the result, relating it to the dynamics
of the flow (cf. for comparison the exposition in [1], dealing just with real
coefficients).
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We finally point out that the S-complex is filtered by ∅ = F−1 ⊂ F0 ⊂
· · · ⊂ Fn = S↑(φ) where Fi is defined to be the subset of the forward S-
complex made up of sums of elements supported on stable bundles of index
less or equal to i. This observation goes back to Bott [4].

The spectral sequence associated to the previous filtration has Ek,j
1 terms

generated by the cohomology spaces H j(C), where C runs through the crit-
ical manifolds of index k (cf. [18], or [1] for an approach using a “formal”
Morse Bott complex). Many informations can then be drawn out of the
previous spectral sequence. We just mention two of them, referring to [18]
for proofs and further results.

First, if there are a finite number of critical manifolds one obtains the
analogous of Morse Bott inequalities usually stated for compact manifolds,
relating the Betti numbers and the indexes of the critical manifolds to the
Betti numbers of X.

The second application we quote is the following:

Theorem 5.2.17 Suppose the currents PC = UC ×C SC are closed for any
critical manifold C. Then

Hk
c↑(X,Z) ≈

∑

c↑
Hk−λc(C,Z)

where the symbol
∑

c↑ means that the sum runs through families of critical
manifolds C whose union is a compact forward set.

Of course a similar statement holds for forward supports.

Next, we extend the approach to Novikov theory developed in chapter
4 to the case of Novikov forms with Bott singularities. We consider the
general case at once.

Suppose ω is a closed one form with Bott singularities (a “Novikov Bott
form”) on the compact manifold X and let φ be the flow of the gradient
of ω. Let k be the irrationality degree of ω, χ ∈ Rk the vector of periods
and Y

π→ X the minimal covering trivializing ω, endowed with the action of
Zk =< t1, . . . , tk >, where ti : Y → Y are covering diffeomorphisms. Let f
be a potential for π∗(ω) (hence a Morse-Bott function) and ψ the gradient
of f for the pullback metric; the equivariance relations f(ti(y)) = f(y) + χi
hold.

Exactly as proved in lemma 4.2.1, the flow ψ is weakly proper with
respect to f . Moreover, the critical manifolds upstairs are clearly compact.
We assume the flow ψ to be generalized Smale (this is not a generic condition
for the Riemannian metric).

Considering the complex S∗c↑(ψ) over the reals or the integers, it is trivial
to check that the Forward Laurent Ring Λ acts on it (by letting the covering
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diffeomorphisms ti act by pushforward) and that the operators P,T are Λ-
linear maps. The only difference is that the S-complex is not any longer
finitely generated over Λ.

Away from the finiteness of generators, though, the other results carry
over:

Theorem 5.2.18 The map of ΛR complexes:

P : E∗c↑ (Y ) −→ RS∗c↑ (f)

induces an isomorphism of ΛR vector spaces:

H i
c↑ (Y,R) ≈ H i

(
RS∗c↑ (f)

)

The inclusion map of ΛZ-complexes

ZS∗c↑ (f) ↪→ C∗↑ (Y )

induces an isomorphism of ΛZ-modules

H i
(
ZS∗c↑ (f)

)
≈ H i

c↑ (Y,Z)

The statements also holds by replacing Λ with the Novikov Ring.

As a corollary of the theorem, one might obtain the analogous of Morse
Bott inequalities in the present setting, since the filtration of the S-complex
presented for Morse Bott theory is preserved by the action of the forward
Laurent Ring.

The compatibility with the action of the Forward Laurent Ring also
permits to extend theorem 5.2.17 to:

Theorem 5.2.19 Suppose the currents PC = SC×CUC on Y ×Y are closed
for any critical manifold C. Then the following (not finitely generated) Λ
modules are isomorphic:

Hk
c↑(X,Z) ≈

∑

c↑
Hk−λc(C ′,Z)

The sums runs trough family of critical manifolds (all diffeomorphic) C ′

whose union is compact forward on Y .

5.3 Applications and Perspectives

In this section we will discuss some generalizations of the theory developed
so far and some ideas and open questions deserving further developments.
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We like to start by mentioning a list of possible extensions and appli-
cations which have not been dealt with, so far, for the sake of brevity and
are now presented for completeness. They have been studied by Harvey
and Lawson and by Latschev using the finite volume approach: it’s thus
reasonable to expect them (and their counterparts in Novikov theory) to
work with obvious modifications for weakly proper flows with isolated or
Bott hyperbolic singularities. Once more we address the reader to [18] and
[13] for an adequate explanation of the following.

• Other coefficients.

We just used real or integer coefficients, assuming all the manifold
we met to be oriented. If the objects under consideration carry R-
orientations, R being one of the Zp for p prime, the theory of chains
mod-p (cf. Federer [8], 4.4.6) permits to obtain analogous results for
cohomology groups with Zp coefficients. Analogously, one can consider
cohomology with coefficients in flat bundles.

• Equivariant cohomology.

If G is a compact group acting on X, and the action commutes with
a flow on X, then the operators T and P can act on the spaces of
equivariant differential forms and equivariant currents. An equivariant
S-complex can be defined too and the Morse chain homotopy still
provides chain homotopies between the three complexes.

• Cohomology operations.

Using the flow to construct a deformation of the triple diagonal ∆ ⊂
X ×X ×X into a current P (similarly to the construction of the Fun-
damental Morse equation), one can obtain a chain homotopy between
the wedge product of two closed forms α ∧ β and a sum of currents
given by intersection of stable and unstable manifolds, thus realizing
the cup product within the S and U complexes. Generalizations to
other cohomology operations are possible by this kind of technique.

We next like to point out three problems related to the approach pre-
sented in this thesis.

The first one concerns the limit of the pullbacks operators φ∗
t of a flow

φ on a manifold X.
For generic gradient-like flows, we proved that the sequence of pullback

operators φ∗t converges; we actually didn’t spend much time to describe the
best convergence one could get, but restricted to consider the “weak star”
convergence. The proof we gave shows that the operators converge with
respect to the “flat” topology, but we won’t discuss it further now either.
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In the case of the gradient flow φ of a closed one form ω (i.e. in Novikov
theory) we introduced a covering Y of X and discussed the gradient flow ψ
of the Morse function f such that df lifted ω. It is interesting, though, to
ask whether the limit of φ∗t converges in some weaker sense, for example as
Cesaro (or “ergodic”) limit.

More generally, we can address the following question: is it true that
for a generic flow φ the pullback operators acting on test forms converge in
some sense? Are there special family of forms or currents over which they
converge? Of course, if we suppose that the flow φ preserves a measure µ,
then the operators φ∗t converge over the functions in L1(µ) (by Birkhoff’s
theorem). This is the case, for example, of Hamiltonian gradients, but still
no convergence is granted on higher degree differential forms.

Coming back to Novikov theory, and supposing to be able to get some
convergence for the pullbacks φt “downstairs”, is there then a relation with
the operator P , limit of the the pullbacks ψt “upstairs”?

The second application we are interested in is to study the relationships
between the dynamics of a flow and the topology of a manifold when the
flow arises by a geometric construction.

The example we have in mind, which partially motivated our interest in
Novikov theory, is that of locally conformal Kähler manifolds (abridged lcK).
These are Hermitian manifolds whose metric is locally conformal to some
(local) Kahler metric. If the underlying manifold X is simply connected,
then the existence of a lcK metric would imply the existence of a Kähler
metric on X. This existence is not granted otherwise, and there are several
counterexamples, the most elementary probably being the Hopf manifold
S1 × S3. Clearly, there are some basic topological obstructions on compact
complex manifolds to admit Kähler metrics. It is a conjecture of I. Vaisman
that if those topological obstructions vanish, then a locally conformal Kähler
manifold admits a Kähler metric.

The conjecture has been proved in the case ω is parallel (in particular
never vanishing), and lcK manifold with parallel Lee form are called Vaisman
manifolds.

Note that if g is the lcK metric, then the differentials df of the local
conformal factors f (defined by the fact that efg are local Kähler metrics)
glue up to define a closed one form ω = df called the Lee form of the lcK
manifold. The cohomology class of ω vanishes if and only if the underlying
manifold admits a Kahler metric.

It would be interesting to try to relate our “finite volume” approach to
this geometric problem, which certainly deserves further study.



Appendix A

Currents and Kernel
Calculus

In this appendix we briefly review and fix notations about currents and
Kernel Calculus, referring to [7], [8] and [10] as comprehensive references.
The papers [14] and [15] are useful short references for Kernel Calculus and
applications of Currents to cohomology. In the following X is assumed to
be an oriented (not necessarily compact) manifold of dimension n.

The space D′k(X) is the space of currents of degree k (also called of
dimension n− k) on X; they are the functionals over the space En−kcpt (X) of

(“test”) smooth forms with compact support. The topology on Ekcpt(X) is
the Whitney topology: in particular, a sequence of forms αn converges to 0
if and only if there exists a compact set K such that the supports of all the
αn are contained in K and for any chart U , the coefficients of the forms αn
and all their derivatives converge uniformly to 0 on compact subsets of U .
The topology on the space of currents D′k(X) is the weak-star topology, so
that a sequence of currents Tn converges to 0 if and only if Tn(α) converges
to 0 for any test form α.

Any smooth form α ∈ Ek(X) defines a current Rα of degree k by partial
integration : Rα(β) =

∫
X α∧ β for any test form β of degree n− k. Usually

Rα is still denoted by α.

Any locally closed oriented submanifold T of dimension k and of lo-
cally finite k volume defines a current [T ] of dimension k by integration:
[T ](α) =

∫
T (α) for any test form α of degree k.

The boundary ∂ of a current R of degree k is a current of degree k + 1
defined as the adjoint to the exterior differential on forms, i.e. for any form
α of degree n − k − 1 it is: ∂R(α) = R(dα). The operator d = (−1)k+1∂
on D′k(X) is called the “differential” (or sometimes the boundary too); in
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this thesis we only used the latter. The pushforward π∗ defined by a smooth
proper map π : X → Y is the adjoint operator of the pull back on forms. It
preserves dimensions.

Currents on a product space are called “kernels”. If Y has dimension n,
each kernel K ∈ D′m+n−k(Y ×X) determines an operator from test forms
to currents

K : Ehcpt(Y )→ D′k−h(Y ×X)

for any 0 ≤ h ≤ k defined by the relation:

(K(α)) (β) = K (π∗Y (α) ∧ π∗X(β))

where α is a test form on Y , β is a test form on X and πY , πX are the
projections of the product.

For example, the following correspondences kernel-operators hold:

diagonal ∆ ⊂ X ×X identity operator
I : E∗cpt(X)→ D′∗(X)

(inverted) graph of a map f : X → Y
Gf = {(f(x), x) | x ∈ X} ⊂ Y ×X

pullback operator
f∗ : E∗cpt(Y )→ D′∗(X)

K, dK K, d ◦K + K ◦ d

We explicitly remark that the last relation implies that a closed current de-
fines an operator which commutes with the boundary d.

We finally quote a theorem. It is actually never really used, but in the
sketch of proof for theorem 5.2.11. A more general statement involving “flat
currents” can be found in [8], 4.1.20.

Theorem A.0.1 (Flat support theorem) Let dR be the boundary of a
current of integration over a locally closed, locally finite volume submanifold
R of dimension k. If the Hausdorff k − 1 measure of spt(dR) is zero, then
dR = 0.



Appendix B

Stratifications

We here collect some results about stratifications, referring to [12] for the
statements not otherwise motivated.

Definition B.0.2 Let Y ⊂ X be a closed set in a manifold. A stratifica-

tion of Y is a family of disjoint sets
{
Yi = Y k

i | i ∈ Ik, 0 ≤ k ≤ m
}

called

strata with the following properties:

• Any Y k
i is a locally closed submanifold of X of dimension k;

• For any i ∈ Ik, j ∈ Ih, if Yi ∩ Yj 6= ∅ then h < k and Yi ⊂ Yj.

The number m is called the dimension of Y (provide Im is nonempty) and
the stratification is said locally finite if the family of strata is a locally finite
family (in the ambient space topology). If two stratifications Y = ∪mi=1Yi ⊂
X and Y ′ = ∪m′

j=1Yj ⊂ X ′ are given, a stratified map f : Y → Y ′ is the

restriction to Y of a smooth map f : X → X ′ with the property that for any
stratum Yi there exists a stratum Y ′

j such that f(Yi) ⊂ Y ′
j . A stratified map

f : Y ′ → Y is called submersive if any of the restrictions to a stratum
f |Yi : Yi → Y ′

j is a submersion (i.e. it is surjective and has differential
surjective at each point).

Remark Though the same subset Y might be stratified in several differ-
ent ways, one sometimes identifies a stratified set just by its support Y . A
special example of stratification is that of a submanifold with boundary. In
this case there is a unique natural choice for the strata. More generally, any
submanifold with corners will be assumed stratified in the natural way.

It is sometime useful to “refine” a given stratification.

Definition B.0.3 A refinement of a stratification Y = ∪Y k
i is a new

stratification Y = ∪Y ′h
j such that for any Y ′h

j there exists an Y k
i such that

h ≤ k and Y ′h
j ⊂ Y k

i . In a refinement any stratum is (possibly) replaced by
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some smaller strata (in size and dimension). The refinement will be called
locally finite if each stratum is replaced by a locally finite (in the ambient
space topology) family of strata.

Remark One can have a locally finite refinement of a not locally finite
stratification, since the definition involves the single strata. Nevertheless,
any locally finite refinement of a locally finite stratification is a locally finite
stratification.

Definition B.0.4 A stratification Y = ∪Y k
i ⊂ Rn is said to be AB (Whit-

ney) regular if for any two strata Y1, Y2 of Y , such that Y1∩Y2 6= ∅ and for
any sequences y1

n ∈ Y1 and y2
n ∈ Y2, both converging to y ∈ Y1 the following

holds:

• A. If the tangent planes Ty2nY2 converge to some limiting plane τ , then
TyY1 ⊂ τ

• B. if in addition the normalized vectors [y1
n, y

2
n] converge to a vector l,

then l ∈ τ .

In the previous definition we supposed the stratification to be embedded
in an euclidean space. This is not relevant, since the property defined hap-
pens to be a C1 invariant, as we next show (cf. [30]).

Let Y1, Y2 be two submanifolds in Rn and suppose Y1 ⊂ Y2 and y ∈ Y1.
Let (U,ϕ) be any “straightening” chart (U,ϕ) near y in whose coordinates
Y1 = V is a k − plane:

ϕ : (U,U ∩ Y1, y)→
(
Rn,Rk × 0n−k, 0

)

Let r be the retraction onto the stratum:

r = ϕ−1 ◦ πV ◦ ϕ : U → U ∩ Y1

and ρ the distance function:

ρ = ρV ◦ ϕ : U → R+

where πV is the orthogonal projection onto V and ρV is the square distance
from V in Rn (if V = {xk+1 = · · · = xn = 0} then ρV (x) = x2

k+1 + · · ·+x2
n).

Theorem B.0.5 The previous condition A on (Y1, Y2) is equivalent to the
following. For any straightening C1 chart such that Y1 is a k-plane, and
any y ∈ Y1 there exists a neighborhood V ⊂ U of y such that r|V ∩Y2 is a
submersion. Furthermore, the map (r, ρ) |V ∩Y2 is a submersion if and only
if (Y1, Y2) is B regular.
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Remark Of course the regularity of the maps r, ρ is granted by construction
(being restriction of smooth functions to submanifolds), and one needs only
to check the surjectivities. Therefore, condition A is equivalent to ask that
for any y in Y1, the n-k plane V ⊥

y orthogonal to y has transversal and
nonempty intersection with Y2. Condition B requires that the spheres of
any small radius S(r) ⊂ V ⊥

y have nonempty and transversal intersection
with Y2.

Proposition B.0.6 Let Y1, Y2 ⊂ X be two (AB-regular) stratified sets and
suppose that each stratum of Y1 is transversal to any stratum of Y2. Then the
family of all intersections of strata makes up a (AB-regular) stratification
for Y = Y1 ∩ Y2.

Corollary B.0.7 Let Y1, Y2 ⊂ X be two (AB-regular) stratified sets and y ∈
Y1 ∩ Y2 be a point of transversal intersection (i.e. the two strata containing
y are transversal). Then Y1 and Y2 are transversal in a neighborhood of y
(and the intersection is AB-regular).

Suppose Y is a (AB regular) stratified set and y ∈ Y belongs to the
stratum Y y. For any Riemannian metric on X let r be the distance function
from y, Bε(y) the corresponding ε-ball and ∂Bε(y) the sphere.

Proposition B.0.8 If Y is AB Whitney then for ε small enough the sphere
∂Bε(y) is transversal to Y . Moreover, if N is a smooth submanifold of X
which is transversal to all the strata in Y , N ∩ Y y = {y} and dim(Y y) +
dim(N) = dim(X), then the sphere ∂Bε(y) is also transversal to N and
hence to N ∩ Y .

The intersection N ∩ Y ∩ Bε(y) is called the normal slice through y
along N and N ∩ Y ∩ ∂Bε(y) is called the normal link through y along N .
They are again AB Whitney stratified in a natural way.
Remark These spaces are very important since for ε small enough the
topological type of the pair (normal slice, normal link) is indipendent by y , ε,
N , and the Riemannian metric chosen to define the distance function. This
is a deep result, consequence of the so called “Thom first isotopy lemma”(it
has not been used in this thesis).

Definition B.0.9 Let Y1 ⊂ X1 and Y2 ⊂ X2 two stratified spaces and f :
X1 → X2 a smooth map. The restriction f |Y1 is transversal to Y2 if for

any point y ∈ Y1 it is df |y(TyY y
1 ) + Tf(y)Y

f(y)
2 = Tf(y)X2, where Y y

1 denotes
the stratum of Y containing y.

In particular, if f |X1 is transversal to Y2 one just says that f is transversal
to Y2. If Y1, Y2 ⊂ X are stratified sets, they are transversal if and only if
the restriction to Y1 of the identity map of X is transversal to Y2.
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Proposition B.0.10 Let f : X1 → X2 be a smooth map, and Y1 ⊂ X1

and Y2 ⊂ X2 two stratified spaces. If f is transversal to Y2, then f−1(Y2)
is a stratified space, which is AB Whitney if Y2 is. If f |Y1 is transversal
to Y2 then f−1(Y2) ∩ Y1 is a stratified space, which is AB Whitney if both
Y1 and Y2 are. For fixed Y1 and Y2, the set S of maps f : X1 → X2 such
that the restriction f |Y1 is transversal to Y2 is open and dense in the set of
smooth functions (with the strong “Whitney” topology), provide Y1 and Y2

are A-Whitney regular.
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