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Sommario: Su invito di Hugo Beirdo da Veiga ho tenuto il 28 febbraio 2018 due conferenze al Centro de
Matemdtica Computacional e Estocdstica, Instituto Superior Técnico, Universidade de Lisboa. Rivolgo a lui
miel ringraziamentt per avermi offerto loccasione di presentare queste preziose scoperte di Newton. Gli
argomenti delle conferenze riguardavano “Risultati fondamentali nei Principia Mathematica di Newton”, in
particolare “Il corpo di minima resistenza’, dove Newton affronta un problema variazionale in un modo
davvero sorprendente, e “La forza di attrazione di un corpo sferico”, dove egli impiega gli strumenti della
geometria greca per calcolare un integrale singolare. Il presente articolo offre una versione estesa della prima
conferenza.

Abstract: Following an invitation of Hugo Beirdo da Veiga I gave on February, 28, 2018, two lectures at the
Centro de Matematica Computacional e Estocdstica, Instituto Superior Técnico, Universidade de Lisboa, and I
thank him very much for the possibility of presenting theses gems of Newton’s inventions. The topics were
“Central Results from Newton’s Principia Mathematica”, namely “The Body of Least Resistance”, where
Newton treats a variational problem in a truly astonishing way, and “The Force of Attraction of a Spherical
Body”, where he uses Greek geometry in order to evaluate a singular integral. This paper contains the first

lecture.

1. — Introduction

Newton’s Treatise "Philosophiae Naturalis Princi-
pia Mathematica” is the fundamental work of mod-
ern science as it developed in the 17% century. In
this work celestial mechanics and other areas of
physics are analyzed in a way that became charac-
teristic for the exact sciences. As indicated in the
title, mathematics provides the basie tools for the
scientific investigation. At about the same time
infinitesimal calculus was invented and developed,
and this branch of mathematies became the distince-

Accettato: il 7 giugno 2021.

tive way to formulate propositions in physies. As it
was invented by Newton and Leibniz it is by no
means obvious that in the Principia Mathematica
Newton proves theorems of celestial mechanics by
using methods of Euclidean geometry. From the
assumption that all points of a material body attract
each other with a force that is inversely proportional
to the square of the distances between these points,
Newton concludes that the attraction of a homoge-
neous sphere towards a material point outside of it is
inversely proportional to the square of the distance
between the point and the center of the sphere.
Nowadays the proof of this statement would be
given by evaluating a singular integral, and there-
fore it may be surprising — in any case it is most
admirable — that Newton does so using ancient
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geometry. (') And he proceeds in the same way when
he investigates the motion of a heavenly body along
a parabolic path; the force that acts on the comet is
determined by properties of conic sections as they
were known in classical geometry.

A comprehensive analysis of Newton’s methods
is given by N. Guicciardini in his fundamental
work [2] “Reading the Principia”.

There are however theorems in the Principia that
Newton proved using methods of infinitesimal calcu-
lus. Of special interest is a minimum problem which in
today’s terminology belongs to the calculus of varia-
tions: a rotationally symmetric body of prescribed
base and height is to be determined such that its
resistance in a uniform fluid flow becomes minimal. (%)

In 1690 and in 1696 the problems of the catenary
and of the brachistochrone were posed: What is the
shape of a chain of uniform density under the influ-
ence of gravity? And what is the curve that connects
two points A and B in a vertical plane such that a
material point moving along it from A to B does so in
shortest time? These questions were published in the
Acta Eruditorum as a challenge to all mathemati-
cians, and in both cases several solutions were sub-
mitted. Consequently these problems are regarded
to be the beginning of a new field, the calculus of
variations. As Newton published the problem of the
body of least resistance several years earlier, we will
look at the following questions:

(i) How was Newton’s contribution received by his
contemporaries, in particular when they in-
vestigated the catenary and the brachisto-
chrone?

(*) The instruction at St. John’s College, Anaheim, MD, is
based on the original literature rather than modern textbooks.
Hence celestial mechanies is studied by an intensive reading of
parts of Newton’s Principia Mathematica. This is made
possible by providing appropriate aids, which in the present
case are collected in the book [1] by Dana Densmore. The
expanded proofs in this book not only contain a comprehensive
description of the arguments; in many cases it is also listed
where the statements that are used occur in Euclid’s elements.

(® This problem is treated in Section VII: “The motion of
fluids and the resistance made to projected bodies” of Book
II: “The motion of bodies” in Vol. I of the Principia, cf. in
particular Proposition XXXIV and the following Scholium,
see [9], pp. 331-334, and [8], pp. 471-475.

(ii)) How did Newton react to the challenges, in
particular to the one from 1696, where the
deadline for submitting a solution was extended
in order to give mathematicians abroad, who
would receive the Acta Eruditorum later, enough
time to take part in the competition?

We will deal with these points in §6. We start the
presentation of Newton’s results in §2 by formu-
lating the problem, in particular the physical
assumptions. As the body is assumed to be rota-
tionally symmetric it can be described by a real
function u = u(r) of one real variable. The corre-
sponding resistance is then an integral whose
integrand depends on » and the derivative of u
only: R(u) = [f(r,w'(r))dr. After defining R(u)
Newton considers two examples, a sphere and a
circular cylinder; in this case the flow hits the
planar disc at its top. These simple examples
demonstrate distinetly how Newton argued:
rather than calculating two integrals and finding
out that the value for the sphere is half that for the
cylinder he compares the forces the fluid exerts on
related points of the sphere and the cylinder; the
forces are constant on the cylinder’s top dise, and
they form a paraboloid in case of the sphere.
Finally a theorem of Archimedes gives that the
volume of the paraboloid is half the one of the
cylinder which circumscribes it.

In §3 the body of minimal resistance is determined
in the class of truncated cones. Such a cone is
characterized by a real parameter e and its resistance
turns out to be an algebraic function R = R(e).
Because of this Newton obtains the minimizer by
calculating the value of e for which the derivative
R'(e) vanishes.

§4 contains the basic result: the proportion that
characterizes the minimizer. In modern terminology
it is called a first integral of the Euler equation. The
Principia do not contain a derivation of this state-
ment; from Newton’s notes to this proposition we
take a perturbation (variation) of the minimizing
function that can be used in an elementary proof
using modern notation.

Any admissible body B of prescribed base is
bounded on the lower end by a disc B due to the
assumption of symmetry. Newton found the surpris-
ing fact that the minimizing configuration is bounded
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by a similar dise at the upper end, too. Its radius is
determined by the fact that the lateral surface meets
this disc at an angle of 135°. Also for this result we
give a proof in modern notation in §5, and we point out
that this property of the solution can be regarded as a
transversality or a free-boundary condition, depend-
ing on the type of representation we choose; such
properties were studied systematically in the caleulus
of variations centuries later.

2. — The resistance of a rigid body
in a uniform flow:
Newton’s assumptions. Examples

We first derive a formula for the resistance that a
rotationally symmetric body experiences in a flow
which is parallel to its axis of rotation. We write
Newton’s assumptions and arguments first in mod-
ern notation in order to make them easier accessi-
ble. ®) If a particle hits the body in some Point P
with force e = PQ), then only the normal component
e, = e-n = PRy, where n = PR is the unit normal
to the lateral boundary at P, contributes to the
resistance. We may assume |[le|| =1, then
e, = cos o, where o is the angle between the normal
and the direction of the flow. The vector e, := e;n
has one component, R0, that is orthogonal to e; in
the end it does not contribute to the resistance
because due to the symmetry of the body there is
a point P’, opposite to P, where the corresponding
component is of the same size but has opposite
direction. Hence only the projection of e, in direc-
tion of e must be taken into account, and that is
cos®a - e. In order to determine the resistance of
some part of the lateral boundary, e.g. the graph of
w =wu(r) for r in some interval (ry,72), Newton
assumes the medium to consist of equal particles
that are at equal distances from each other; further-
more these particles do not interact with each other.
If ds is the line element of the curve C, which
generates the lateral boundary, then the number
of particles that hit ds equals cos a ds. As the curve is

(®) As in the original figures the axis of rotation points in
horizontal direction, and we consider graphs of functions
% = u(r) that are defined on an interval of the vertical axis.

g +—

T1 <+

u = ulr)

F1GURA 2.1 — Resistance due to the flow.

the graph of some function v = u(r), we eventually
get for the resistance

27 )
R =R(u) = J J cos® o - cos o/ 1 + |a/ () [Pr dr do.

0 Jny

With coso = 1 this gives
1+ /()
@.1) R(u) = j _ " &
‘ n ()

We will specify r and 7, when we look at the
examples. The assumptions about the medium and
its interaction with the rigid body are stated in
Proposition XXXIV;then the resistance of a sphere
and a circular cylinder are calculated. “In a rare
medium consisting of equal particles freely disposed
at equal distances from each other, a globe and a
cylinder described on equal diameters move with
equal velocities in the direction of the axis of the
cylinder, the resistance of the globe will be half as
great as that of the cylinder.” *

We obtain this result from (2.1) immediately. In
the set-up used there the sphere is generated by
u1(r) = vVR?2 — 12,0 <r < R,R = h, and this gives

T
=- R
R(ul) 2
For the cylinder of height R the resistance equals
the area of its top which is a disc of radius R, and
hence we get

R = nR2.

() [9], p- 331.
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Ficura 2.2 — Sphere and Circular Cylinder.

Now we present Newton’s proof. The figure shows
the cross-section GNOQ of a circular cylinder and
the one of a sphere, IKA. We may assume that a
particle that hits the sphere in B and the cylinder
in b does so with force BL. Let F'(B) and F(b)
denote the forces that act perpendicularly on the
sphere in B and on the circular cylinder in b, resp.
Then

F(B):F(b) = DL : BL,

because the tangential component of BL does not
contribute to the resistance. Since we are interested
in the ratio of the forces we may assume that
|BC| = |BL|, and therefore we get

F(B): F(b) = BE : BC.

Next, the force that moves the globe in direction of
FB relates to the force that moves it in direction of
BC as BE to BC. Hence, joining the two ratios we
get that the force which moves the globe in direction
of AC is to the force on the cylinder like BE? to BC?.
Now we sum up these quantities. We define the

point H on the line EF by
BE? BE?
bH = BC =BC- BCZ =AC - cosa,

with o as in Fig. 2.1. If we define H in this way for
every b between O and N we get a parabola. To see
this, let x = EC and y = EC be the coordinates of
H. Then by definition of x we have bH = AC — x;

with BE? = BC? — CE? = AC? — 5 we obtain
BE: 1 ,
AC — = bH =0 = - (ACE ),
hence,

AC? —AC -x =AC? —
and this means
¥ =AC -,

and AC is the latus rectum of the parabola.

If we now rotate the parabola OCNH that is
generated by the segments bH about the axis CA,
we get a paraboloid; taking bF instead of bH and
proceeding in the same way we get the circular
cylinder that circumseribes the paraboloid. Accord-
ing to a theorem of Archimedes the volume of the
cylinder is twice that of the paraboloid.

3. — The truncated cone of minimal
resistance

In the Scholium to Proposition XXXIV Newton
describes another class of problems in which the
one of least resistance is to be determined. “As if
upon the circular base CEBH from the center O,
with radius OC, and the altitude OD, one would
construct a frustum CBGF of a cone, which should
meet with less resistance than any other frustum
constructed with the same base and altitude, and

B

F1GURA 3.1 — Truncated Cone.
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FIGURA 3.2 — Newton’s Notes.

going forward towards D in the direction of its axis:
bisect the altitude OD in @ and produce OQ to S so
that QS may be equal to QC, and S will be the vertex
of the cone whose frustum is sought.” (%)

At first sight this example may appear somewhat
artificial. We will see later that in the general case
where the line CF' that generates the lateral bound-
ary of the cone is replaced by some curve the
minimizing configuration contains also such a dise
at the upper end. A proof that the cone which is
characterized by choosing its vertex in this way is
not given in the Principia. Newton’s notes from 1685
however contain a proof that uses calculus in the
same way we would do it nowadays.

These notes contain a drawing of the truncated
cone where all points are denoted as in Fig. 3.1 which
is taken from the Principia; there is, however, an
additional point P on the segment OC with
|OP| = |DF|. This point P or, equivalently, the
length of CP serves as parameter in the family of
truncated cones, for it determines the disc on the top
as well as the lateral boundary of the body.

Newton sets (®) a = OC,b = OD, and e = CP; a
and b are the data of our problem, and the resistance

@) [9], p. 333.

(®) [11], pp. 456-480, in particular plate 111, after p. 462.
The first line (I) starts with “OC = a.CD = b.DF = ¢ = FP”
The last expression should read “DF = ¢ = FP, which is
clear from the next equation “PC =a —c =¢”.

R = R(e) is given as follows: The contribution of the
upper disc of radius F'D equals its area which is
- (@ — e)®. The resistance of the lateral surface is

n-[a? — (¢ —e)?] - ; here the first factor is the

2
area of the projection of the lateral boundary in
the direction of the flow, and this gives the area of
the annulus with radii OC and CP. The second one

is sin® 6, where 0 is the angle /OSF; there holds
9="_04 with « being the angle between the

2
normal to the line CF and the direction of the

flow, cf. the previous example. With sin 6§ = g_]_{;'

2
and CF? = CP? 4+ PF? we obtain sin®f = %
which finally gives e
2
2 _ 2 5 _¢
81) R(e)=m(a"—¢€)+nfa—(a—e) ].b2+e2'

In Newton’s notes this reads

aaee + bbaa — 2bbae + bbee
R = ,
bb + ee

cf. line (IV) in Fig. 4. This is equivalent to
bR + eeR = aaee + bbaa — 2bbae + bbee,

cf. line (V); differentiating with respect to e and
setting R'(e) = 0 Newton gets

2eR = Zeaa + 2bb — 2bba,

A CENTRAL RESULT FROM NEWTON'’S PRINCIPIA MATHEMATICA: THE BODY OF LEAST RESISTANCE
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eebb + bbaa — 2bbae + bbaa

and inserting aa + for
bb + ee

R he eventually obtains a quadratic quation for e:

(X) eea = abb — ebb.

In the formulas leading to (X) terms that cancel each
other are indicated by a dot as in eaa. The solution to
the quadratic equation (X) reads

bb / bb —bb + bv/bb + 4aa
(X) 6——%4' M—be— 2% .

From (X) it is clear that R is minimal at the critical
point e in (XI), and we may regard the problem to be
solved. Newton however transforms the result such
that the cone frustum of minimal resistance can be
geometrically constructed in an elementary way: S
is determined by CQ = @S, as was stated in the
scholium. He arrives at this statement in two steps:

(XI) OC:0D =CQ—-0Q:CP=CQ—0Q:CO—FD ("

This follows from (X) by writing it in the form

“ib +a _é

e Y

(3.2)

now it contains — = OQ = QD. The next relation

NS O R

(XII) €Q+0Q:0D =0C :0C — FD = OC : CP

follows from (3.2), if we multiply it by

/1 b
2102002 102 this o
4b + a —|—2, this gives
1 1
~b 4 a? - b
af Lo o by 47 77 47
b 4 2 e

A/ 4_1 b +a” + é B g
b e

which is (XII). On the other hand we have from the

intercept theorem

OC:CP=0S:PF=08:0D=0Q+@QS:0D,

Y

(") In Newton’s notation the equality sign after CP refers
only to this quantity.

which is the same relation as (XII) with QS insted of
CQ; hence these quantities must be equal. Newton
concludes this calculation with the statement how
the point F is to be constructed: fac QS = QC et due
CS secantem F'D in F', which means: make QS = QC
and draw the line CS that cuts FD in F'.

4. — Newton’s Proportion for the Body of
Least Resistance

In the Scholium to Proposition XXXIV Newton
states the following proportion which characterizes
the body of least resistance:

(4.1) MN : GR = GB? : (4BR x GB?)

“If the figure DNFG to be such a curve, that if,
from any point thereof, as N, the perpendicular
NM be let fall on the axis AB, and from the given
point G there be drawn the right line GR parallel
to a right line touching the figure in N, and
cutting the axis produced in R, MN becomes to
GR as GB? to 4BR x GB?, the solid described by
the revolution of this figure about its axis AB,
moving n the before-mentioned rare medium
from A towards B, will be less resisted than any
other circular solid whatsoever, described of the
same length and breadth.” ®

(3]
3

FiauraA 4.1 — Body of Least Resistance.

In modern notation we can describe the curve
DNFG by the function u = u(r); then MN corre-
sponds to the variable 7, and the point N of the curve

&) [9], pp. 333-334.
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has coordinates (7,u(r)) with w(r) = CM, which
means that the curve DNFG is a graph above the
interval CD on the r-axis. We now transform (4.1)
into a differential equation for the function u = u(7r).
Let GR be parallel to the tangent in N, and let 6 be
the angle at G between GB and GR, which means

4.2) BR :GR =sm6, GB:GR = cos?f.

GB is considered to be a constant ¢, because we are
interested in local perturbations of the curve in

interior points. This gives GR = ﬁ, and with
(4.2) we can write (4.1) in the form

r 11 1

C " 4sinb cos?o.
cos 6
We multiply b sin 0 and get

cosO 4dcost0 4 cosz 0

C
_ (1
4<+

This equation can be written in terms of the deriva-

rsing ¢ 1 c (sinze—i—cosz 9)2_

) 2
sim26
cos26/)

. 0.
tive o/ (r) = % in the form

ru'(r)

C
43 (L+ w4

From (2.1) we see that the resistance, formulated in
terms of the function u = u(7), is an integral whose
integrand does not depend on u explicitely:

fryu,p) = rqﬂpz Then the Euler equation reduces

to f, = const, which is (4.3).

The Scholium in the Principia does not contain a
hint how Newton derived condition (4.1).

Goldstine calls this differential equation “the
heart of Newton’s contribution”, (°) and he gives a
detailed interpretation of Newton’s notes from 1685
and 1694. (*°) Rather than describing the comments
of Goldstine, Whiteside, and other historians we give

* [51, p-15, Footnote 28.
(1% [6], pp.456-480. The ones from 1894 were made for D.
Gregory who had asked Newton to explain (4.1) to him.

an elementary argument in modern notation that is
based on Newton’s idea: the minimizing arc is
compared with another one that is constructed by
moving a piece of it in direction of the flow.

We consider the integral

b
ﬂwzjfmww»m,

and let uyp =up(x) be a minimizer; to define a
variation v = v(x) we fix &’ € (a,b) and set

(@) +w (€ —a) forx € [a,a+h]
v(r)= w@+e forz € [a +h, 2" — h]
(o) eEERE (0 —af) fora € [ —h, o
o () forx € [/, b]

v(x) differs from uy by a constant term ¢ in
@+ h,x" — R, and therefore v'(x) equals ug(x) in
this interval. Hence we get

/

a+h 1
I(v)—I(uo):J f(x, v (x)) de +[ fla, o' (x)) de

a ' —h
(4.4)

x/

a-+h
—J S, ug(x)) doe — J £, up()) dae
a ' —h
for all h > 0 and |¢| < 1.

In [a,a + k] and in [&' — k,2'] ¥/ is constant; the
integrals can be evaluated by the mean value theo-
rem, such that we get

x/

Jm Fl, 0/ () do + J Fla,of (@) dae =

a @' —h
= hf(®@ 0 (@) + hf (@0 (@)

with¥ € [@,a + k] and & € [’ — h, 2.
As Z(v) is minimal for ¢ = 0, we get from (4.4)

%{h»f(%, uo(a + h)}-ZFE—Mo(CL)>+

g ()= =)+

which leads to

01 .fp(ﬁ’uo(a—l—h}i—uo(a))_ 1

b5 B ()
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Ficura 5.1 - a) Free-Boundary and b) Transversality Condition.

and with ~ — 0 we eventually get
Jola,u'(@) = fo (2, uo(2)).
As & is any point in (a, b), this means that

(@, up(x')) = const VX' € (a,b).

5. - The Body of Least Resistance -
a Free-Boundary Problem

In the Scholium to Proposition XXXIV Newton
states that the body of minimal resistance is
bounded at its upper end by a disc B, that is parallel
to the circular base of the body and that the lateral
surface meets B, at an angle of 135°. In modern
terminology this statement turns out to be a trans-
versality or a free-boundary condition.

If the lateral surface X is described as before by a
real function u = u(r) then the minimizer to

7 r

R(p,u) = np? +27TJ —

p 14w (r)f
is a function that is constant on some interval [0, p|.
In Fig. 5.1.b it is depicted in the usual way, i.e with
the independent variable r on the horizontal axis.
Now it is clear that at some point P of the graph of u

the minimizing curve is not differentiable; the hor-
izontal part of the graph meets the curved one at an
angle of 135°. Variational problems of this type have
been studied very extensively. This transversality
condition satisfied by » at some interior point p of
[0, R] is the content of Hamilton’s formula. &)

If we write the lateral boundary as a graph of
some function = u(z) that is defined on the inter-
val [0, 2], cf. Fig. 5.1.a, then the resistance reads

Ly ~ ! 2~y

for u: [0,h] — [0,00) with boundary conditions
#(0) = R and u(h) > 0. Now the point P has coordi-
nates (h,%(h)); because & is a boundary point and %
satisfies in / an inequality, the condition on the angle
at P is in modern notation a free-boundary condi-
tion.

As mentioned in §3 Newton studies the resis-
tance of truncated cones, figures that are also
bounded by a disc at their tops. In that case, how-

('Y P. Funk gives a systematic treatment of this type of
variational problem, cf. [4], pp. 60-82; in the appendix he
discusses also Newton’s example, cf. pp. 616-621.
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ever, the angle depends on the data R and #,
whereas here it is a local property that gives the
same value for any R and %. Only in the limiting case
h — 0 the angle in the frustum of the cone tends to
135°, as D.T. Whiteside points out. (*) When we
consider how the calculus of variations developed
we must regard the fact that Newton asked for such
a property of the minimizer to be a truly spectacular
aspect of his investigation. As in the previous chap-
ter we will not present Newton’s notes nor the
literature concerning them. We derive the condition
on the angle by a variation of the integral R(p,u)
with respect to p; as we know the corresponding
Euler equation already the argument is rather
elementary.
Let (p, ) be a minimizer and set

for r € [0,p + ¢

h
Ue(T) = {u(/}/') +ep(r) forrep+eR]

with ¢(R)=0 and u.(p+¢) = u(p+e)+¢(p+e)=h.
Clearly ¢(p + ¢) tends to u/(p), as ¢ — 0. A standard
calculation then shows that

1
B [R(p+e,u:) —R(p,u)] — const - |1

_ 1+3\w<p>|2]

as ¢— 0, and the last quantity vanishes for
W' (p)] = 1.

6. — Newton’s Problem and the Beginning of
the Calculus of Variations

In 1696 Johann Bernoulli posed the problem “of
finding the curve joining two points in a vertical
plane along which a frictionless bead will descend in
the least possible time”. (*3) A similar challenge had
been published in 1690 by Jacob Bernoulli. He
formulated the problem of the catenary, i.e. to
determine the shape of a chain of constant mass
density and given length under the influence of
gravity. Besides Bernoulli also Huygens and Leib-
niz submitted solutions; these contributions, and the
vivid interaction of the mathematicians who pre-

(*3) [11], p. 462.
(**) [5], p. 30.

(L+ [ (p)P)?]

sented them, is described in Truesdell’s introduction
to Euler’s work on mechanics. (**) As Newton was
not involved we shall not go into details here; we
wish to point out, however, that there are manu-
scripts of Newton’s, (*5) published much later than
Truesdell’s work appeared, that show what Newton
did in connection with this problem around 1680.

Besides publishing the problem in the Acta Eru-
ditorum Johann Bernoulli informed various collea-
gues about it directly; he wrote in particular to
Leibniz on June, 14" 1696, informing him about
his result. All were invited to submit an answer,
and if no one would do so by the end of the year,
Bernoulli promised to publish his own demonstra-
tion. Leibniz was very enthousiastic about this pro-
blem, and in an article he speculated who would be
able to solve it. Among the mathematicians he men-
tioned was of course also Newton; he could do it,
Leibniz wrote, provided he would take the trou-
ble. (*%)

A very vivid exchange of ideas evolved, and in
order to let also mathematicians from other coun-
tries join the competition, where usually the issues
of Acta Eruditorum were available rather late, the
daedline was postponed to easter of 1697. For details
of this contest and in particular for the influence this
problem had we refer to Goldstine’s book. (") Here
we are interested in two questions concerning the
role of Newton: (i) Did the mathematicians who
worked on the minimum problem of Bernoulli know
about Newton’s contribution in the Principia? (ii)
How did Newton respond to the challenge of Johann
Bernoulli?

Up to 1696, which means during the first ten
years after the Principia appeared, Newton’s var-
iatonal problem was not referred to in the literature.
It is not known how Newton’s result was received,
except for two examples. The Collected Works of
Christiaan Huygens, published by the Dutch So-
ciety of Sciences in 22 volumes between 1888 and
1950, contain not only his papers and letters but also

() [14], §10: “The contest to find the catenary (1690)”,
pp. 64-75.

(**) [10], pp. 520-524.

(*%) [6], p. 334: “si operam hanc in se reciperet”.

(*") 5], pp. 7-29.
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notes that he made when reading publications of
others. And here, “as we might have expected”, as
Whiteside writes, (*®) we see that Huygens read this
part of the Principia between the 22"¢ and the 25" of
April, 1691; he studied Newton’s problem and gave
proofs of the propopsitions that were stated without
any proof by Newton. (*?) Besides the “Incompar-
able Huygens”, as Leibniz called him, we know only
of Leibniz himself that he read Newton’s analysis of
the minimum problem. His copy of (the first edition
of) the Principia, on various pages richly annotated
by his comments, was sold in 1926 by the University
of Gottingen, because they owned two copies of the
first edition and estimated the proper one, that
contained no handwritten comments in the margins,
to be more valuable. It was bought by Martin
Bodmer, Geneva, and is now in the Bibliotheca
Bodmeriana. In 1969 Emil A. Fellmann found out
that the notes were written by Leibniz. Now we
know that he read the propositions on the body of
least resistance, because there is a comment by him.
It consists of five words and says that one will very
easily (!) make progress if one investigates by — and
then the central word “isoperimetricis” is crossed
out and written over by another word that is read
differently by Fellmann and by Whiteside. (*°) But
they agree that the remark by Leibniz is not any-
thing clear or substantial.

As long as notes and remarks of other mathema-
ticians are not found we must consider Huygens to
be the only one who studied Newton’s statements
successfully.

Finally we ask whether Newton learned about
Bernoulli’s challenge, and if so, how he reacted to it.
According to his niece, Catherine Bardon, who lived
in his household, Newton, after coming home from
his work in the mint, would first look whether some
book or paper was sent to him before he would eat.

On January, 29", 16¥,

arrived, and he started to work on it immediately;
by 4 in the morning he had solved it, and on January
30 his solution was sent for publication in the

Bernoulli’s problem had

(*8) [111, p. 466, footnote 25.
() [3], pp. 335-341.
) [7], pp. 84-86; [10], Lc.

C 327

em eundem C B generatur, minus rcﬁ:}litur quam folidum prius;

fi modo utrumque fecundum: plagam axis fui 4B progrediatur.
& utriofque terminus B pracedat. Quam quidem propofitio-
pem in conftruendis Navi-

bus non inutilem futuram

effe cenfeo.

" Quod fi figura DNFB

ejufmodi fic ut, fi adb ejus  [A <
pun&o quovis N ad axem

AB demittatur perpendi- '
culum N M, & a punfto
dato G ducatur re&ta GR

parallela fit reCt= figuram tangentiin N, & axem produétum

ecet in R, fuerit MN ad GR ut,G R eub, ad 4 BRxGBg: So-
lidum qued figurz hujus revolutione circa axem A B fadta defcri-
bitur, in Medio raro & Elaftico ab 4 verfus B velociflime mo-
vendo, minus refiftetur quam aliud quodvis eadem lopgitudine _
& latitudine defcriprum Solidum circulare. “'r'g;j,';'.f-‘.‘-;" el S

F

G
M 'B

1

F1GUrA 6.1 — Annotation by Leibniz.

Proceedings of the Royal Society (*'): It appeared
there — anonymously — in the form of a letter to
Charles Montagu, chancellor of the Royal Society.
When Newton was asked by David Gregory, a scots-
man, about the body of least resistance, he sent him
detailed calculations that were made just for him.
But towards Bernoulli and other mathematicians
from the continent Newton reacted differently. “I
do not love ... To be dunned and teezed by for-
reigners about Mathematical things”, he wrote in a
letter to Flamsteed. (*?) The letter to Montagu was
also published in May 1697 in the Acta Eruditorum,
together with the other solutions. But in the index of
the volume of that year the author is listed as
“Newton, Isaac”.(®) Obviously not only Johann
Bernoulli, who claimed to have recognized the lion
by its claw, tanquam ex ungue leonem, but also the
other mathematicians would not imagine that some-
one else in England had been able to solve this
problem.

(%Y [13], pp. 220-229; [11], pp.72-79.

(*%) [13], p. 296. In this letter Newton wrote that he did
not want to be cited in a paper Flamsteed was about to
publish, and when disapproving this Newton added the
foreigners who ask mathematical questions. The correspon-
dence contains also Flamsteed’s remarks to these state-
ments as well his answer; obviously it was not easy to deal
with Newton.

(**) The library of the University of Halle offers a copy of
this volume for download.
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