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Sommario: Nella sua intensa carriera, Alessio ha prodotto un numero straordinario di risultatt
eccezionali riguardanti una varieta impressionante di temai di ricerca. Tra le molteplici direziont intraprese,
quella riguardante le superfici minime nonlocali ha proposto Alessio come un leader mondiale per i suot

contributi stimolantt e innovativi.

Abstract: Alessio has produced in his very intense career an extraordinary number of outstanding
results in an impressive variety of topics. Among the multifold research lines in which he acted as a trailblazer,
the one focused on nonlocal minimal surfaces offered an excellent opportunity for Alessio to pioneer some
of the first settlements in a brand new subject of investigation and pave the way to a broad spectrum of future

research.

Alessio has produced in his very intense career an
extraordinary number of outstanding results in an
impressive variety of topics. Among the multifold
research lines in which he acted as a trailblazer, the
one focused on nonlocal minimal surfaces offered an
excellent opportunity for Alessio to pioneer some of
the first settlements in a brand new subject of in-
vestigation and pave the way to a broad spectrum of
future research.

Nonlocal minimal surfaces are beautiful objects
whose research combines motivations and methods
arising in different disciplines, including mathema-
tical analysis, differential geometry and mathema-
tical physics, and a full understanding of their
complexity requires a truly cross-disciplinary and
open-minded approach. As it often occurs in the new
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research lines, to understand nonlocal minimal
surfaces one has to discover novel methodologies
revealing the striking differences with respect to the
previous knowledge, get off the beaten path, and
think differently. Giving a full account of all the
important progress that the field of nonlocal mini-
mal surfaces has recently experienced is a goal
which goes well beyond the purpose of this note,
therefore we will simply focus here on some of the
very original and important contributions given by
Alessio in this field. Without any attempt of being
exhaustive, other fundamental contributions pro-
vided by other authors will be only tangentially
discussed: the reader who wants to dig more into the
subject can consult the existing literature, including
a set of lecture notes coauthored by Alessio himself
[CF1T].

Nonlocal minimal surfaces have been introduced
in [CRS10] as the outcome of a minimization problem
involving a nonlocal notion of perimeter. Roughly
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speaking, the energy functional takes into account
the pointwise interactions of a set with its comple-
ment. These interactions are weighted by a kernel
which is invariant under translations and rotations,
and which is self-similar after scaling. One can also
take into account the contributions of this energy
functional with respect to a given reference domain
Q2 C R” (that we take with smooth boundary for the
sake of simplicity). In this case the energy con-
tributions that involve the interactions of points ly-
ing in the complement of 2 are omitted from the
functional.

More precisely, fixed s € (0,1), one defines the s-
perimeter of a (measurable) set E C R” with respect
to the reference domain 2 as

Per (£, Q) :=,(ENQENQ) +

1)
+ LIENQE NQ)+ (ENQE NQ),

where we used the superseript “c” to denote com-
plementary sets in R”, and I,(-, -) represents the set
interaction given by

dx dy
I,(A,B) / / — T
AxB [ —y|
(2)
for all disjoint subsets A and B of R”,
see Figure 1.

Fig. 1. — Pointwise interactions defining the s-perimeter.

In spite of its remarkable structural simplicity,
codifying the most fundamental geometric property
of a given set, the s-perimeter turns out to be one of
the most difficult objects to fully understand. On the
other hand, it provides a large amount of informa-
tion on several models of concrete interest, including
long-range phase transitions, spin models and image
reconstruction.

The factor s(1 — s) has been included in the in-
teraction functional in (2) for normalization pur-
poses. In this way, one has that if £ has finite clas-
sical perimeter in a neighborhood of 2, then

lim Per(E, Q) = w,_1 Per(E,Q),
s/'1

where w, is the volume of the unit ball in R", and
“Per” denotes the classical perimeter. In this sense,
up to a dimensional constant, the s-perimeter re-
covers the classical perimeter as s " 1.

The limit of the s-perimeter as s \, 0 is somehow
more complicated, and it has been investigated in
full details in [DFPV13]. In this work there are ex-
plicit examples of smooth sets for which such a limit
does not even exist, and, in general, it is shown that
the existence of the limit of the s-perimeter as s \, 0
is strictly related to the existence of the following
limit:

(3) ((E) =

I S / dx
1m .
s\Onwy Jp\p, o]

Roughly speaking, the quantity ((£) measures the
“mass” of the set £ at infinity, weighted by the
kernel. We observe that ¢ is monotone with respect
to set inclusion. Also, it is apparent that ((¢J) =0
and ((R") = 1. Furthermore, ¢ evaluated at a half-
space is exactly 1/2 and, more generally, ¢ evaluated
at a cone gives the opening of the cone itself, that is if
E :={tp, pc ¥, t >0} for some ¥ C S"~!, then

E) =1 d dH" 1
C( ) Sl{%Hn IS" 1 //pw 1,4+00) szn+8 4 ( )

B Hn—l(z)
e (Snfl) ’

It turns out that we can consider ((£) as a “convex
parameter”, and it is proved in [DFPV13] that if £
has finite sy-perimeter in Q2 for some sy € (0,1) and
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Fig. 2. — Classical (on the left) and nonlocal (on the right) minimal surfaces inside the dashed box, given the outside data.

the limit in (3) exists, then the limit as s \, 0 of the s-
perimeter of £ in ) also exists, and

(4) lim Per, (5,2)=(1~C(8)) [EN Q|+ (5) |8 N,

where we denoted by | - | the volume of a set.

In the special case in which |[E N Q| = |E°NQJ, it
is also shown in [DFPV13] that (4) is true in-
dependently on the existence of the limit in (3), since
in this case

lim Pery(E,Q) = [ENQ| = |[E°NQ.
s\.0

On the other hand, if |[ENQ|# |[E°NQ| the ex-
istence of the limit in (4) is shown to be equivalent to
that in (3).

Besides its importance in the foundation of a new
field of research, these results contributed in the
development of several new lines of investigation: in
particular, the quantity introduced in (3) has been
later efficiently utilized in order to detect a rather
surprising phenomenon occurring for the mini-
mizers of the s-perimeter, namely their strong ten-
dency to “stick” at the boundary of the domain, in
sharp contrast with the classical case, see e.g. Fig-
ure 2 — but this is somehow a different story.

Let us now go back to the variational problem
related to the s-perimeter. Local minimizers of the s-
perimeter are called s-minimal sets, and their
boundaries are called s-minimal surfaces. An s-
minimal set which is the subgraph of a function (in a
given direction) is called an s-minimal graph. Also,
an s-minimal set which is a cone (i.e. a point p be-
longs to it if and only if ¢p belongs to it for all ¢ > 0) is
called an s-minimal cone. The empty set, the full
space R", and the half-spaces {w-x >0} with
w € 8" are examples of s-minimal cones. The other
cones necessarily exhibit a singularity at the origin,
and therefore are called “singular”.

In this setting, the regularity of the s-minimal
surfaces turns out to be one of the most interesting
and challenging topic related to nonlocal problems,
which still presents many open fundamental ques-
tions.

Asusual, Alessio attacked the problem vigorously,
obtaining pioneering results on the topic. In previous
works, in low dimension and for special ranges of the
nonlocal exponent, a regularity in class C1* for all
a € (0,s) was obtained. Then, in [BFV14] a new and
general bootstrap result for fully nonlinear nonlocal
equations was provided, whose special application to
the geometric case of s-minimal surfaces established
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that if an s-minimal surface is locally C' for all
a € (0,s) (or even just locally Lipschitz, as remarked
in [FV17]) then it must be locally C*°.

This, combined with previous results, give that s-
minimal surfaces are C* in  c R" at least in two
cases:

o ifn <2
e if n <Tands € (sg,1), for some sy € (0,1).

It has still to be determined whether or not s-mini-
mal surfaces are smooth in dimension n < 7 for s not
close to 1 (say, s smaller than the above mention sy,
which, in principle, could be very close to 1), and in
dimension » > 8. In particular, it is still not known
an example of singular s-minimal cone, not even in
very high dimension. It is also an open problem to
establish whether s-minimal surfaces are analytic.
The regularity of s-minimal surface is also related
to the flatness of s-minimal graphs. Namely, we say
that the s-Bernstein property holds true in R" if all
the s-minimal graphs in R" are necessarily affine. In
[FV1T7], a general result is given which states that if
there are no singular s-minimal cones in dimension
n — 1, then the s-Bernstein property holds truein R".
From this one obtains that the s-Bernstein property
holds true in R" at least in two cases:
o ifn <3,
e if n <8ands € (sg,1), for some sp € (0,1).

Once again, the general picture remains rather
mysterious, namely it is not known whether or not
the s-Bernstein property holds true in R” when
n < 8 and s < sg, and when n > 9, hence we hope
that the work of Alessio will also stimulate new re-
sults in these directions.

We observe that the s-perimeter defined in (1)
can be also considered in the case 0 = R”, in which
case one simply has that

(5) Per,(E, R") = I,(E, E°).

A well-investigated question in this setting is the
isoperimetric problem, consisting in detecting the
minimizers of the functional in (5) for a prescribed
volume. As in the classical case, these minimizers
turn out to be balls, namely, given the scale-in-
variance of the s-perimeter

Per(E,R") S Pery(B1, R")

being B; the unit ball of R".

In [FFM*15], a number of important questions
related to the s-isoperimetric inequality in (6) are
addressed. First of all, a “stable” version of (6) is
obtained, stating that if a set “almost attains” the
minimal possible value in the fractional isoperi-
metric ratio, then it must be necessarily “almost a
ball”. More precisely, one considers the so-called
Fraenkel asymmetry of a set £, which measures the
L!-distance of E from the set of balls of volume |E|
and is defined by

[EAB, (x)]

AB) s

:= inf

reR”
where 75 > 0 is such that |B,,| = |E|. In this setting,
it is shown in [FFM+15] that for any sy € (0,1) and

any s € [so, 1) there exists a positive constant C(n, sy)
such that

Per,(E,R") - Per(B;, R") (1 A%(E) )

e
B[ B Cn.s0)

Of course, (6) is now a particular case of (7). Also, the
result in [FFM+15] carries on to the case s " 1. As
usual, the case s\, 0 is more tricky, and it is con-
jectured in [FFM+15] that

C(n,s) ~ l

as sp \, 0.
S0

The second variation of the fractional perimeter has
been also computed in [FFM +15]: this formula can
be considered as a nonlocal counterpart of the clas-
sical Jacobi equation, in which the classical Laplace-
Beltrami operator is replaced by an integral op-
erator along the boundary of the domain, namely (up
to normalization constants) an operator (acting on a
given function f) of the form

f(%') _f(y) dH"_l(y),

oF |£Y/' _ y|n+8

and the norm of the second fundamental form is
replaced by a weighted L?-norm of the normal v,
such as

2
|V(i)€) B V7E%s)| dHn—l(y)
o8 |©— 1yl

(6) —t> ——, Once again, the nonlocal problems reveal an in-
I |By| trinsic geometric structure which can be related to
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the classical objects in the limit as s 1.

Moreover, in [FFM+15] several variational
problems in which the “aggregating” effect of the
fractional perimeter is compensated by a “dis-
aggregating” term are also considered, with special
attention to the case given by Riesz potential £. In
this framework, minimizers with small volume are
necessarily balls, and the case of volumes which are
not necessarily small demands further investiga-
tion.

Interestingly, minimizers of the s-perimeter in
R"™ for a fixed volume satisfy an Euler-Lagrange
equation which can be considered as a prescribed s-
mean curvature equation. Namely, for any « € OF,
one can consider the s-mean curvature of £ at x,
defined by

M) = s(1 — s)/}% a.

where, as customary, x4 : R" — {0,1} denotes the
characteristic function of the set A. By symmetry,
one can easily see that the s-mean curvature of a ball
of radius R is constant along its boundary, and, by
scaling, it is equal to a constant depending on » and s
divided by R*.

As s ' 1, the s-mean curvature approaches the
classical mean curvature.

One can show that if £ is a minimizer for the s-
perimeter in R" for a fixed volume, then its s-mean
curvature is constant along OE. A natural question in
this setting is to determine the shape of the sets
which possess constant s-mean curvature along
their boundaries. In the classical setting, this was a
classical result due to the famous Russian mathe-
matician (and mountaineer) Aleksandr Danilovich
Aleksandrov, stating that a smooth, connected and
closed hypersurface with constant mean curvature
is necessarily a sphere (hence, soap bubbles are
round).

In [CFMN18] the nonlocal counterpart of the
Aleksandrov’s result is obtained, proving that if a
bounded open set with smooth boundary has con-
stant s-mean curvature, then it is necessarily a
sphere. It is interesting to remark that the nonlocal
version of such a result is somehow stronger than
the classical case, since the set is not assumed to be

connected. This shows one of the special features of
the nonlocal environment, in which remote interac-
tions give significant contributions to the problem,
and, in this case, they rule out the possibility of
multiple connected components (for instance, two
disconnected balls do not have constant s-mean
curvature). In other words, the nonlocal setting, in
this case, turns out to be much more rigid than the
classical one, since, even without any connectedness
assumption, a set with constant s-mean curvature is
a single sphere, whereas of course any disjoint union
of balls with equal radii has constant mean curvature
in the classical sense.

Quantitative formulations of the Aleksandrov’s
result are also provided in [CFMN18]. In particular,
it is shown that bounded sets with almost-constant s-
mean curvature are necessarily close to a single ball,
and moreover the Lipschitz constant of the s-mean
curvature controls the C2-distance from a single
sphere.

Once again, these results reveal some special
features of the nonlocal universe. Indeed, while in
the classical case a connected boundary with almost-
constant mean curvature may be close to a com-
pound of nearby spheres of equal radii, the nonlocal
case turns out to be more rigid and the quantitative
results for almost-constant s-mean curvature sets
are obtained without the need of imposing any extra
geometric constraint. This also points out an inter-
esting feature of the nonlocal case, which prevents
bubbling phenomena.

Needless to say, the contributions of Alessio in
this field have been pivotal also to trigger new re-
search related to sets of constant (and, in particular,
Zero) s-mean curvature, and to a number of evolution
problems of geometric type (e.g., the ones in which a
sets evolves with normal velocity given by its s-mean
curvature).

As customary, Alessio was an avant-garde in-
vestigator of nonlocal geometric and variational
problems. His results, and his research style, will
certainly leave an indelible footprint in the interna-
tional scenario, and the future research will cer-
tainly count on his extraordinary talent to solve new
questions, open new lines of research and expand
knowledge way beyond the present frontiers.
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