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Sommario: I problemi di frontiera libera sono quelli descritti da EDP che mostrano interfacce o frontiere a
priori sconosciuti (liberi). L'esempio piu classico é lo scioglimento del ghiaccio in acqua (problema di Stefan). In
questo caso, la frontiera libera e l'interfaccia solido-liquido tra acqua e ghiaccio. Una sfida matematica centrale in
questo contesto e comprendere la regolarita e le singolarita delle frontiere libere. In questo articolo introduciamo
questo argomento presentando alcuni risultati classici di Luis Caffarelli, oltre ad alcuni importanti lavor: recenti

dovuti ad Alessio Figalli e collaboratori.

Abstract: Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfaces
or boundaries. The most classical example is the melting of ice to water (the Stefan problem). In this case, the free
boundary is the liquid-solid interface between ice and water. A central mathematical challenge in this context is to
understand the reqularity and singularities of free boundaries. In this paper we provide a gentle introduction to
this topic by presenting some classical results of Luis Caffarelli, as well as some important recent works due to

Alessio Figalli and collaborators.

1. — Introduction

1.1 — The Stefan problem

The Stefan problem, dating back to the XIXth cen-
tury, is the most classical and important free
boundary problem.

First considered by Lamé and Clapeyron in
1831, aims to describe the temperature distribution
in a homogeneous medium undergoing a phase
change, typically a body of ice at zero degrees
centigrade submerged in water. It is named after
Josef Stefan, a Slovenian physicist who introduced

Accettato: il 11 giugno 2019.

the general class of such problems around 1890; see
[562, 53, 37].

The most classical formulation of the Stefan
problem is as follows: Let Q2 ¢ R? be some bounded
domain. For concreteness, we let us think that € is
cylindric water tank as depicted in Figure 1. We
denote

0 = 0(x,t)

the temperature of the water at the point x € €2 at
time ¢t € R* := [0, +o0). We assume that 6 > 0 in
QxR

Given are the (nonnegative) initial temperature
and temperature at the boundary of the tank.

The set {(x,t) € 2 x R" : 0(x,t) > 0}, denoted
for brevity {6 > 0}, represents the water while its
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Fig. 1. — The Stefan problem.

complement, denoted {0 = 0}, represents the ice.
The temperature 6 satisfies the heat equation

00 — A0 =0 in the region {6 > 0},

while in the complement @ is just zero.

Determining where is the interphase or free
boundary that separates the two regions (i.e., the
surface 9{0 > 0}) is part of the problem. For it, an
extra equation (or boundary condition) on the
interface is needed. This is the so-called Stefan
condition:

(1.1) 80 = |V.0° on 8{0>0}.

This extra relation comes from two considerations.

First, the normal velocity of the interphase, V, is
proportional to the amount of heat absorbed by it
(which must be used to melt the ice). In turn, this
heat which “enters” the interphase is, by Fourier
law, proportional to the gradient of temperature.
Thus, we have |V| = C|V#)| . Second, since § = 0 on
the moving interphase we obtain that, on it, V and
V6O are parallel and (0; +V - V)6 = 0. Combining
the two previous informations and choosing the
physical units to make C = 1, we obtain the Stefan
condition (1.1).

One can also see that, by the “maximum princi-
ple”; the ice {# = 0} shrinks with time. In other
words, if at some point of the tank there is liquid
water for some given time then that point will
remain liquid at all future times.

It can be shown that, after the transformation

u(x,t) = /Ote(:)c,T)dT,

(see [2, 18]) the new function

w: QxR = RT

satisfies
o — Au = —X fu>0}
(1.2) u >0
o > 0,

where y, denotes the characteristic function of the
set A.

Since we can easily recover 6 from « by comput-
ing its time derivative, we see that (1.2) is an
equivalent formulation of the Stefan problem. The
new formulation is useful because it enjoys better
mathematical properties (it has the structure of
“variational inequality”) than the original formula-
tion with 6. For instance, while from the original
formulation with 6 it is unclear how to show
existence and uniqueness of solution (there was no
rigurous proof for more than a century!), it is much
easier to do it with the equivalent formulation (1.2).

The stationary version of (1.2) is the well-known
obstacle problem:

Au = X{u>0}

(1.3) w0

It is among the most famous problems in elliptic
PDE, as it arises in a variety of situations.

1.2 — Motivations and applications

Both the Stefan problem and the obstacle problem

appear in many different models in physics, in-

dustry, biology, or finance. We next briefly comment

on some of them, and refer to the books [19, 34, 43,

27, 42] for more details and further applications of

obstacle-type problems.

e Phase transitions. In the classical Stefan pro-
blem, as explained in the previous subsection, the
solution u of (1.2) is the integral of the tem-
perature of a solid undergoing a phase transition,
such as ice melting to water.
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Water

Fig. 2. — The Dam problem.

Fluid filtration. The so-called Dam problem
aims to describe the filtration of water inside a
porous dam. One considers a porous dam separ-
ating two reservoirs of water at two different
heights; see Figure 2. Then, the interior of the
dam has a wet part, where water flows, and a dry
part. In this context, an integral of the pressure
solves the obstacle problem (1.3), and the free
boundary corresponds to the interface between
the wet and dry parts of the dam.

Hele-Shaw flow. This model, dating back to
1898, describes a fluid flow between two flat
parallel plates separated by a very thin gap.
Various problems in fluid mechanies can be ap-
proximated to Hele-Shaw flows, and that is why
understanding these flows is important.

A Hele-Shaw cell (see Figure 3) is an experi-
mental device in which a viscous fluid is sand-
wiched in a narrow gap between two parallel
plates. In certain regions, the gap is filled with

\

Air j

Injection
point

Fig. 3. — A Helle-Shaw cell.

fluid while in others the gap is filled with air.
When liquid is injected inside the device though
some sinks (e.g. though a small hole on the top
plate) the region filled with liquid grows. In this
context, an integral of the pressure solves, for
each fixed time ¢, the obstacle problem (1.3). Si-
milarly as in the Dam problem, the free boundary
corresponds to the interface between the fluid
and the air regions.

Optimal stopping, finance. In probability and
finance, both the Stefan problem (1.2) and the
obstacle problem (1.3) appear when considering
optimal stopping problems for stochastic pro-
cesses.

A typical example is the Black-Scholes model
for pricing of American options. An American
option is a contract that entitles its owner to buy
some financial asset (typically a share of some
company) at some specified price (the’strike
price”) at any time before some specified date
(the “maturity date™). This option has some va-
lue, since in case that the always fluctuating
market price of the asset goes higher than the
strike price then the option can be “exercised” to
buy the asset at the lower price.

The Black-Sholes model aims to calculate the
rational price u = u(x,t) of an option at any time ¢
prior to the maturity date and depending on the
price x € R of the financial asset. Since the op-
tion can be exercised at any time before maturity,
determining the “exercise region”, i.e. the pairs
(@, t) for which it is better to exercise the option,
is a part of the problem. Interestingly, this pro-
blem leads to a Stefan problem of the type (1.2),
and the free boundary corresponds to the
boundary of the exercise region.

Interacting particle systems. Large systems of
interacting particles arise in physical, biological,
or material sciences.

In some some models the particles attract
each other when they are far, but experience a
repulsive force when they are close [14]. In other
related models in statistical mechanics, the par-
ticles (e.g. electrons) repel with a Coulomb force
and one wants to understand their behaviour in
presence of some external field that confines
them [48].

UNDERSTANDING SINGULARITIES IN FREE BOUNDARY PROBLEMS
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External field

/

Fig. 4. — The equilibrium configuration for a Coulomb system.

In the previous models, a natural and inter-
esting question is to determine the “equilibrium
configurations”. For instance, in Coulomb sys-
tems the charges accumulate in some region with
a well definite boundary; see Figure 4. Interest-
ingly, this problems are equivalent to obstacle
problems of the type (1.3) — for instance the
electric potential u = u(x) generated by the
charges solves a problem like (1.3) and free
boundary corresponds to the boundary of the
region in which the particles concentrate.

o Elasticity. Let us consider the equilibrium posi-
tion v(x) of an elastic membrane whose boundary
is held fixed, and which is constrained to lie above
a given obstacle ¢(x).

Fig. 5. — An elastic membrane above an obstacle ¢.

In the region where the membrane is above
the obstacle ¢, the solution v solves a PDE (.e.,
Av = 01in {v > ¢}), while in the other region the
membrane coincides with the obstacle (i.e., v = ¢).
By considering the function u :=v —¢ >0, we
are led to an obstacle problem of the type (1.3).

2. — Regularity of free boundaries

From the mathematical point of view, a central
question in the Stefan problem (1.2) and the obstacle
problem (1.3) is to understand the regularity of free
boundaries [12, 42].

For example, in the Stefan problem: is there a
regularization mechanism that smoothes out the
free boundary, independently of the initial data?
(Notice that a priori the free boundary could be a
very irregular set, even a fractal set!) Such type of
questions are usually very hard, and even in the
simplest cases almost nothing was known before the
1970s. The development of the regularity theory for
free boundaries started in the late seventies, and
since then it has been a very active area of research.

2.1 — Some examples of Schaeffer

The first thing one might try is to construct some
explicit solutions to the obstacle problem, and see
how their free boundaries behave. What one finds is
that, in most simple cases, free boundaries seem to
be very smooth.

It was Schaeffer who first realized that with a bit
more effort one can actually construct several free
boundaries with some singularities. Namely, he
constructed different solutions to the obstacle pro-
blem in R? in which the free boundary has a cusp.

These examples are actually constructed by
using complex analysis, and the cusps are repre-
sented by the curves

2%+1
Xp=Fa; 7

0<x <1

Fig. 6. — A one-sided cusp.
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The set {u >0} is actually the image of
{|2| <1, Imz > 0} under the conformal mapping
f(2) = 22 +12*%*1 and u satisfies near the origin

2
L3

RS Im(zzl”g) + ...,

u(z)
where z = x; + ixo.
Another type of singularities (a two-sided cusp)
was also constructed by Schaeffer.
In this case, these two-sided cusps are repre-
sented by the curves

X2 = + ‘901‘2]0, -1 < < 1.
///# ‘M\\
/ N\
/ \
/ \
/ \
\ /
\ /
N\ /
N Ve
~ e
~ -

Fig. 7. - A two-sided cusp.

By considering slightly more general obstacle
problems of the type (1.3) in R?, Schaeffer noticed
that it is even possible to construct examples in
which the free boundary has infinitely many cusps.

—W-“%t.‘f’-'a«‘«"{—

Fig. 8. — The free boundary could even create an infinite number
of cusps.

2.2 — The breakthrough of Caffarelli

Despite all these examples, before the late 1970s
there was no general regularity result for free
boundaries. A natural guess, given these examples,
could be that free boundaries are smooth outside a
certain set of “singular points”. However, no result

of this type was known, and this seemed to be an

extremely challenging open problem.

This changed in 1977 with the groundbreaking
paper of Luis Caffarelli [6]. Such work developed for
the first time the regularity theory for free bound-
aries in both the obstacle problem (1.3) and the
Stefan problem (1.2).

The main results from [6] (see also [33]) may be
summarized as follows:

e The free boundary splits into regular points and
singular points.

e The set of reqular points is an open subset of the
free boundary and it is C*.

o  Singular points xy can be characterized as those
at which the set “contact set” {u = 0} has density
zero (as in a cusp), i.e.

. {u=0}NnB,(x)|

2.1) lim

=0.
mo [B(ao)]

In other words:

The free boundary is smooth, outside of
a certain set of cusp-like singularities.

This is one of the main results for which Caffarelli
received the Wolf Prize in 2012 and the Shaw Prize
in 2018.

2.3 — Blow-ups

To prove such regularity result, one considers blow-
ups. This is a key idea that is common in many
problems in PDEs and Geometric Analysis.
Given a free boundary point xj, one first con-
siders the rescaled functions
~ u(wo + 1)

Up() = ————,

/}/-2

forr € (0,1). Notice that, when taking » > 0 smaller
and smaller, we are zooming in the solution « around
the point xy. Caffarelli showed that for any free
boundary point xy and » > 0 one has

cr? < sup u < Cr?
Br(mo)

where ¢ and C are positive constants. Thus, the re-
scaling factor 2 is just taken so that the functions
u, satisfy ¢ < maxp, u, < C.
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Fig. 9. — The rescaled function u, at a singular point.

Then, the idea is to take the limit » | 0, and prove
that

~ u(xo + 1)

up(x) := 2 10 wup(x)

for some function %y which is a global solution of the
obstacle problem in the entire space. The function u
is called a blow-up of u at x.

Roughly speaking, the function u, should give us
information about how the solution u looks like at
the point x.

The main difficulty is actually to classify blow-
ups, i.e., to show that either

(a) ug is 1D solution of the form

uo(w) = (- e)7,

where e € S”! is some unit vector;

Fig. 10. — A 1D solution uy.

(b) ug is a quadratic polynomial of the form

1
up(x) = éacTAx,

where A > 0 is any positive semidefinite ma-
trix satisfying tr(4) = 1.

Fig. 11. - A quadratic polynomial uy.

Notice that, after the blow-up, the contact set
{uo = 0} becomes either a half-space —in the case
(a)-oritis a linear proper sub-space of R" and hence
it has zero measure —in the case (b). The first case is
what we expect at regular points, while the second is
what we expect at singular points. This intuition is
not only correct but actually is translated into a
rigorous mathematical definition: we say that a free
boundary point xy is regular if the blow-up ug at x is
of the type (a) and we say that it is singular if the
blow-up g at xg is of the type (b).

To complete the prove of Caffarelli’s theorem, one
has to “transfer information” from ug to %, and show
that if xp was a regular point, then the free boundary is
C' in a neighborhood of x,. This is delicate and is
another of the main achievements in [6]. On the other
hand, the fact that {u = 0} satisfies 2.1 at singular
points is a more immediate consequence of the
definition of singular point and follows easily using
the fact that the convergence of u, to u is uniform and
the that uy > 0 outside of a proper linear sub-space of
R". We refer to [7, 8] or [42] for more details.

3. - Understanding singularities

After the results of Caffarelli [6], a natural question
is to understand better the set of singular points.
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The fine understanding of singularities is actu-
ally a central research topic in a number of areas
related to nonlinear PDE and Geometric Analysis.
In the present context, it is natural to ask:

e How large may the singular set be?
e In case it is a large set, does it enjoy some nice
regularity properties?

3.1 — The 2D case

The first results in this direction were obtained by L.
Caffarelli and N. Riviere in two dimensions [11].
They proved that, at every singular point xy, any
solution  to the obstacle problem in R? satisfies

3.1) u(®) = pa(e) + o[ — xof*),

where p. is a quadratic polynomial satisfying pe > 0
and Aps = 1.

Moreover, this implies that the singular set is
contained in a C! curve.

It took a long time before these results could be
improved. The next important result in this direc-
tion was obtained by Sakai in 1991 [44, 45], who
proved that the isolated cusps of Schaeffer (de-
scribed above) are essentially the only ones that
may appear for the obstacle problem (1.3) in RZ. This
nice and sharp result gives a complete picture for the
obstacle problem in the plane, and its proof uses
crucially tools from complex analysis.

3.2 — Higher dimensions

In dimensions # > 3, where complex analysis is of no
use, the first results on the singular set were es-
tablished by Caffarelli in 1998 [8] (see also [40]). He
proved that, if « is any solution to the obstacle pro-
blem (1.3) in R", then (3.1) holds at every singular
point x.

Moreover, this implies that the singular set is
contained in a C! manifold of dimension (7 — 1).

For almost two decades, this was the best known
result for the singular set in dimensions » > 3. Still,
it was an open question to understand whether (3.1)
can be improved or not.

In two dimensions, because of the results of

Sakai, at every singular free boundary point we have
that

(3.2) u(@) = pa(x) + O (|x — xo?).

It is however important to notice that Sakai’s
methods, based on complex anaysis, cannot work in
higher dimensions (nor for the Stefan problem).
Thus, improving (3.1) in dimensions » > 3 would
require completely different ideas.

The first new result in this direction for dimen-
sions n > 3 was established by Colombo, Spolaor,
and Velichkov in 2017 [15], by improving and refin-
ing the methods of Weiss [54].

They proved that at every singular point the
expansion (3.1) holds with an additional logarithmic
modulus of continuity on the term o(|x — ac0|2).

Independently and with different methods, Fig-
alli and the second author proved in [23] the follow-
ing result for the obstacle problem in R":

THEOREM 1 ([23]). — Outside a small set of Haus-
dorff dimension n — 3, [3.2] holds.

In other words, in higher dimensions, [3.2] holds at
most singular points x.

Itis important to remark that the fine description
of u [3.2] actually gives a fine description of the cusp
at 2. Namely, it follows from the results of [23] that,
at most singular points x, (possibly after a rotation)
near xy we have

{u =0} C {lo| < Cle'PY,

where x = (2, x,), ¥ € R"",

Furthermore, it was shown in [23] that the result
is sharp, in the sense that there exist (isolated)
singular points in R? at which (3.2) fails. In fact, at
these points, the logarithmic modulus of continuity
of [15] cannot be improved.

This gives a very complete picture of singularities
for the obstacle problem in all dimensions.

3.3 — The Stefan problem

As explained above, a major question in PDE pro-
blems where singularities appear is to establish es-
timates for the size of the singular set.

UNDERSTANDING SINGULARITIES IN FREE BOUNDARY PROBLEMS
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Some famous results in this direction include those
on minimal surfaces [50, 1], on the Navier-Stokes
equations [10], and on mean curvature flow [56].

In the Stefan problem (1.2), the same techniques
used in the study of the (elliptic) obstacle problem
yield that for problem (1.2) the singular set ¥; is
(n — 1)-dimensional for every t; see [55, 5, 38]. This
result is optimal in space, in the sense that one can
construct examples in which the singular set con-
tains some (% — 1)-dimensional hypersurface (for
instance a sphere) for some fixed time ¢ = ¢;. In this
respect it would seem that the set of singular points
can be as large as the regular points, which is always
(n — 1)-dimensional. However, one could still hope
that, jointly in space and time, the size of singular
set should be in some sense much smaller than the
set of regular points!

For instance, there are no examples in which
singular points appear for every time ¢, but it is (or
was) not clear a priori if this could happen or not. In
case this cannot happen, the next question is to
establish estimates on the size of the set of singular
times. Namely, if we let X; be the set of singular
points at time ¢, then we may denote

S={t:% # J}

the set of all singular times (i.e., the set of all times at
which singularities appear).

The following result was announced at the ICM
lecture of Alessio Figalli [22], and proved in the
paper [24]:

THEOREM 2 ([24]). — Let u(x,t) be any solution to
the Stefan problem (1.2) in R3. Asswme that

uy >0 in  {u > 0}.

Then,

dimy(S) <

DO —

Here, dimy(S) denotes the Hausdorff dimension
of the set S.

In particular, the previous result implies that, for
the Stefan problem in R?:

The free boundary is C* for
almost every time t.

This is the first result on the size of the set of
singular times for the Stefan problem.

The result is stated for simplicity in the physical
dimension n = 3, but [24] actually establishes new
results for the Stefan problem in R" for any dimen-
sion n > 2.

As said above, prior to this result it was not even
known if solutions to the Stefan problem (1.2) in R3
could have singularities for all times t.

It is not known whether the dimension bound % is

optimal or not. What is clear from the proofs is that
such exponent is critical in several ways. This is
somewhat similar (even though the results and
proofs are very different) to what happens in the
Navier-Stokes equations; see the classical result of
Caffarelli, Kohn, and Nirenberg [10].

4. — Generic regularity

A second major question in the understanding of
singularities is the development of methods to prove
generic regularity results. () This is one of the big
challenges in contemporary PDE theory.

Indeed, in PDE problems in which singularities
may appear, it is important to understand whether
these singularities appear “often”, or if instead
“most” solutions have no singularities.

In the context of the obstacle problem (1.3), the
key question is to understand the generic regularity
of free boundaries. As we saw earlier, explicit
examples show that singular points in the obstacle
problem can form a very large set, of dimension
n — 1 (as large as the regular set). Still, singular
points are expected to be rare ([46]):

CONJECTURE 4.1 — (Schaeffer, 1974):

Generically, the weak solution of the obstacle pro-
blem s also a strong solution, in the sense that the
free boundary is a C* manifold.

(*) Here, by generic regularity we mean that there is an
open and dense set of boundary datums for which the
corresponding solution has no singularities.
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In other words, the conjecture states that, gener-
ically, the free boundary has no singular points.

The conjecture was only known to hold in the
plane R? [40], and until very recently nothing was
known in R? or in higher dimensions.

Notice that in the obstacle problem the question
of generic regularity is particularly relevant, since
the singular set can be as large as the regular set —
while in other problems the singular set has lower
Hausdorff dimension [31]. Also, from the point of
view of applications, it is particularly relevant to
understand the problem in the physical space R?.

A key result established by Figalli and the
authors in [24] is the following:

THEOREM 3 ([24]). — Schaeffer’s conjecture holds
in R,

We remark that very few results are known in this
direction in elliptic PDE, and most of them deal only
with the cases in which the singular set is known to
be very small (e.g. the obstacle problem in R? [40], or
area-minimizing hypersurfaces in R [51]).

Due to the general character of the proofs in [24],
one can even apply these results to the Hele-Shaw
flow (explained above).

COROLLARY 4 ([24]). Let u(x,t) be any solution to
the Hele-Shaw flow in R? or R,

Then, the free boundary is C* for almost every
time t.

Such result is completely new even in the 2D case
(the most relevant one for this model). Moreover, as
in the Stefan problem, [24] establishes a new bound
on the size of the singular set: for the Hele-Shaw
flow in R?, the set of singular times has Hausdorff

1
dimension at most "

5. — The fractional obstacle problem

5.1 — Optimal stopping and Finance

As explained in subsection 1.2, a nice motivation of
the study of obstacle problems comes from Prob-

ability and Finance. In particular they arise in pri-
cing of American options. Let us explain it in more
detail next.

We recall that an American option entitles its
owner with the possibility to buy a given asset at a
fixed price at any time before the maturity date. In
the Black-Scholes model, the (logarithmic) price of
the underlying asset X; is modelled as a Wiener
process (or Brownian motion) with a drift parameter
that recreates long-term growth and a variance
parameter that matches the volatility of the asset.
Under this assumption, as said in subsection 1.2, the
rational price of the option solves a parabolic ob-
stacle problem like (1.2). However, in finance price
fluctuations are often better modelled by more
general stochastic processes X;: Lévy processes
(see for instance [16]). These are stochastic pro-
cesses with jumps, and were introduced in option
pricing models by the Nobel Prize winner R. Merton
[39] in the 1970s.

Under this more general assumption, the
rational price of an American option still solves an
obstacle problem similar to (1.2) but where the
Lapacian is replaced by some other operator
(actually the so-called infinitesimal generator of
the process X;, which is an elliptic operator of
integro-differential type). The most important and
canonical example of a Lévy process (other than
the Brownian motion) corresponds to the case in
which the law of X; is rotationally invariant and
satisfies a scaling property. In such case, what we
get is the obstacle problem for the fractional
Laplacian

u(x) — u(x +y)
|y|n+28 y’

yue = [,

with s € (0,1).

The obstacle problem for the fractional Laplacian
is often called the fractional obstacle problem.
Because of its connection to Probability and Fi-
nance, in the last decade there have been consider-
able efforts to understand the fractional obstacle
problem (both the stationary and the evolutionary
problem).
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5.2 — Known results

The main questions in this context are:

e What is the optimal regularity of solutions?

e (Can one prove the regularity of free boundaries?
The first results in this direction were obtained

by Silvestre in [49] in the stationary setting, who

established the almost-optimal regularity of solu-

tions, u € C1*~< for all € > 0. The optimal regularity

of solutions was established later by Caffarelli,

Salsa, and Silvestre [13]:

Solutions u are C'*.
Furthermore, they also established the following:

The free boundary is smooth, possibly
outside a certain set of degenerate points.

More precisely, they proved that if # solves the ob-
stacle problem for the fractional Laplacian (—A)® in
IR", then u € C*, and for every free boundary point
xo one has a dichotomy: either the solution  is de-
generate at xy, or the free boundary is smooth
around such point.

After the results of [13], many more results have
been obtained for the (stationary) fractional obstacle
problem: the higher regularity of free boundaries [35,
17, 36, 32], the study of singular points [28, 3, 25, 30,
20, 26], or the case of operators with drift [41, 29, 21].

Still, there was one question that was much less
understood: what happens in the evolutionary setting?

5.3 — The parabolic case

Despite many known results for the fractional ob-
stacle problem in the stationary setting, much less
was known in the parabolic case, in which the solu-
tion evolves with time.

The first result in this direction was established
by L. Caffarelli and A. Figalli in [9], where they
established the optimal regularity of solutions:

THEOREM 5 ([9]). — Let u(x,t) be any solution to
the parabolic fractional obstacle problem.
Then, u is C** in x.

The question of free boundary regularity was still
open for some years.

The key difficulty here was that in the stationary
setting the proofs rely very strongly on certain
monotonicity formulas which do not seem to exist
in the parabolic context. Thus, a quite different
argument must be developed.

This was accomplished in [4], where B. Barrios,
A. Figalli, and the first author established the
following:

1
THEOREM 6 ([4]). — Let s > % and u(x,t) be any

solution to the parabolic fractional obstacle problem.
Then, the free boundary is smooth, possibly out-
side a certain set of degenerate points.

This extended for the first time the results of [13] to
the parabolic setting, with a completely different
proof.
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