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Sommario: St illustra lipotesi del continuo, le sue applicazioni in matematica e le sue conseguenze sui

fondamenti della matematica.

Abstract: We give an overview of the continuwm hypothesis, of its impact on mathematics, and on the

foundations of set theory.

1. — Introduction

Georg Cantor’s name is inextricably connected with
set theory and the continuum hypothesis. But while
set theory (or rather the set-theoretic jargon) has
become the standard framework in which mathema-
tical objects are construed, the continuum hypoth-
esis is still fairly unknown among mathematicians.
The continuum hypothesis, CH for short, is the
assertion that every infinite subset of the real line
is either countable or else it is in bijection with the
line itself; in other words: there is no type of infinity
intermediate between that of the integers, and that
of the real numbers. Georg Cantor first conjectured
this fact in 1878, and spent the rest of his life in
trying to prove it, an endeavour undertaken by
many other valiant mathematicians. The situation
changed dramatically in 1963, when Paul Cohen
devised the method of forcing to prove that the
negation of CH is consistent with ZFC, the com-
monly accepted axiomatic framework for set theory.
In other words, CH cannot be proved from the
axioms of ZFC. On the other hand Kurt Godel had
showed in 1938 that CH is consistent with ZFC,

Accettato: il 11 luglio 2018.

showing thus that there is no point in trying to
refute CH. To summarize: the continuum hypothesis
can neither be proved, nor disproved from ZFC.
Cantor’s continuum hypothesis is an easily stated
problem, one that should tickle the curiosity of a
mathematician. It is not a particularly recent ques-
tion, one of those problems that haven’t had a chance
to get enough exposure. In fact CH was the first
among the twenty three problems posed by Hilbert
at the International Congress of Mathematicians
held in Paris in 1900, one hundred years have passed
since Cantor’s death, and fifty five years have
passed since Paul Cohen’s breakthrough ). As ob-
served in [Cho09], “Monastyrsky’s outstanding book
[Mon97] gives highly informative and insightful
expositions of the work of almost every Fields
Medalist-but says almost nothing about forcing.”
Another book that surveys a vast portion of twen-
tieth century mathematics, but says almost nothing
about the continuum hypothesis, set theory and,
more generally, mathematical logic is [Die82]. A
possible explanation for this phenomenon is that
research on the continuum problem is connected

(*) Cohen announced his result in July 1963, and was
awarded of the Fields Medal in 1966.
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with nontrivial questions in mathematical logic, a
feature that hinders the communication of the
results.

The aim of the present paper is to try to correct,
at least in part, this situation. We shall carefully
examine the statement of the continuum hypothesis,
showing what kind of results it entails in mathe-
matics, and how it impinges on the foundations of
mathematics.

While this is essentially a survey paper in mathe-
matics, we will try to highlight Cantor’s contribu-
tions to set theory and the continuum problem. Yet
this paper is not an historical survey of Cantor’s
work—for this the reader is referred to [GKW12;
Dau90] or to the original source [Can80], and to the
papers in this volume by mathematicians that are
much more versed in the history of set theory than
the present author.

2. — Countable and uncountable sets

Consider a very large tea-set, so large that we
cannot estimate the number of items: if every cup
corresponds to a single plate and conversely, then
we can infer that the number of cups is the same as
the number of plates. The key idea of set theory is
that this comparison method applies to all sets,
finite or otherwise: two sets have the same size just
in case there is a bijection between them. Before we
move on, let us fix some notation.

We write A 2 B if there is an injective function
f:A — B, and if moreover f is surjective then we say
that A and B are equipotent, in symbols A < B. It is
immediate to check that, on the universe of all sets,
the relation < is a pre-order (ie. reflexive and
transitive) and that =< is an equivalence relation. The
Cantor-Schrioder-Bernstein theorem (%) says that

A =< B just in case AZXB and B 2 A;

(3 This result was stated (without proof) by Cantor in
1887 and in 1895 he obtained this result as corollary of the
fact that every set can be well-ordered. Schroder published
an incorrect proof of it in 1896, while Bernstein gave a
correct proof a year later. In any case, the first correct proof
of the theorem dates back to 1887 and it is due to Dedekind,
but sadly his name is not associated to this result.

in other words < is the equivalence relation induced
by the pre-order <. In naive set theory the cardin-
ality of a set A is identified with {B|B < A}, the
equivalence class of A with respect to =<, and hence
one defines the natural number as follows: 0 = {(} is
the equivalence class of the only set without ele-
ments, 1 = {{a}|a} is the family of all singletons,
2={{a,b}|a # b} is the family of all sets with
exactly two distinct elements, and so on. The pro-
blem with this approach is that the <-equivalence
class of a nonempty set is a proper class, a collection
that is too large to be a set. The official definition of
cardinality is deferred to Definition 4.2—for the time
being we just present the construction of the natural
numbers due to John von Neumann:

0=0, 1={0}, 2={0,1}, ...
n+1={0,1,...,n},

Note that n < m < n € m and by pigeonhole prin-
ciple n 2m < n < m, so that n < m < n = m.

A set is finite if it is in bijection with some n € N
where N ={0,1,2,...} is the set of all natural
numbers; otherwise it is infinite. (This is the defini-
tion of finiteness used by Cantor; another common
definition of finiteness, due to Dedekind, says that a
set A is finite just in case A % B for any B proper
subset of A. Assuming the axiom of choice these two
definitions agree, but in the absence of this axiom, a
set could be Dedekind-finite without being finite.)

A set is countable if it is finite or in bijection with
Nj; equivalently, if it is empty or else it is the
surjective image of \N. The set I\ is equipotent with
each of its infinite subsets, and it is also equipotent
with 7 using the bijection N — 7, 2n+—mn and
2n+1— — (n+1). The function J:NN x N — N
defined by J(n,m) = (n+m)(n +m+1)/2+n is
a bijection, so N x N is countable. As any rational
number can be written as n/m with n € 7,
m € N\ {0} and n, m co-prime, we have that Q is
in bijection with a subset of 7, x N < N x N < I\
and therefore N < Q. By further applying the map
J, Cantor was able to prove that the set of all
algebraic numbers is countable. (Note that J essen-
tially the bijection devised by Cantor in 1878; more-
over J and (n,m)+— J(m,n) are the only known
polynomial functions that are a bijection between
N x N and N [Smo91].)
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The next goal is to show that R is not countable,
but in order to prove this we first digress a bit.

Note that if f:A — B is injective and a € A,
then g: B — A,

o(b) = {le(b) if b €ran f

a otherwise

is surjective and g o f: A — A is the identity. Thus if
() # A X B, then B surjects onto A. Reecall that the
power set of A

P (A)={B|BC A}

is equipotent to the set of all functions from A to
2=1{0,1}

A2 —{fI1f:A—2)

via the bijection 22 (A) — 42, B yp, mapping
B C A to its characteristic function. (The set 42 is
usually denoted in mathematics as 24; the first
notation is preferable to the second when A is a
natural number or an ordinal: 32 is the set of all
23 = 8 functions from 3 = {0,1,2} to 2 = {0,1}.)
Clearly

AIB=2(A)22(B)
and
A=xB=%2A) <22 (B).

The function a+ {a} shows that A 322 (A), and
hence £2 (A) surjects onto A. The converse does not
hold: if /" A — P (A),theset B={a € A|a¢ F(a)}
cannot be of the form F(a) for any a € A. In fact, if
B=F(a) then a € B< a¢ F(a) = B: a contradic-
tion. We have therefore proved:

THEOREM 2.1(Cantor). — For every set A, there is
no surjection A — P(A). A In particular
P (A) ZA and hence 7 (A) # A.

In particular, 22 () is uncountable. Let us show
that R < 22 (N) so that R is uncountable as well.

() Cantor’s original proof in 1890 showed that there is
no surjection from A onto 42; but this is equivalent to our
statement, as 22 (A) < 42.

The set R can be construed as the set of all
Dedekind sections, that is the set of all ) #x C Q
that are an initial segment of Q (that is to say:
q < p € x = q € x) and have no maximum. It follows
that R .22 (0Q) < 22 (N). The set 2™ can be mapped
injectively into [0;1] C R by the function

> 94(i)
5 'Zo gitl
1=

so 2 (N) 2 R. By the Cantor-Schrider-Bernstein
theorem it follows that R < 22 (IN).

C:2% — [0;1],

REMARK 2.2. —ran C C [0;1] is the Cantor set, a
well-known object studied in real analysis, topology,
dynamical systems, ete. It is a closed, uncountable
subset of the real line, of measure zero and empty
interior. If 2 = {0,1} is endowed with the discrete
topology and 2" is given the product topology, then
C is a homeomorphism onto its image. For this
reason 2" is known as the Cantor space.

Given three sets A,B,C, the function
®: (AB)C - AB<C gending each F:C — AP to
®(F): B x C — A defined as

(F)(b,c) = F(c)(b),

is a bijection. Keeping in mind that \N' x N =< I\, we
have that

(1) R = 2N = oNxN o pN.

In particular R SR x R = C ZR™, so C is equipo-
tent with R.

Using these results one can easily verify that
many sets encountered in mathematics are in bijec-
tion with R.

ExampPLE 2.3. — The set C(R,R) of all continuous
functions from R to R.
In fact a continuous function is completely de-

termined by its behaviour on the rationals, so
C(R,R) 2 R” from which we get C(R, R) < R.

ExAMPLE 2.4. — The set H of all entire functions.
Recall that an entire function is an f:C — C

which is everywhere differentiable, and that

every such f can be written as a power series,
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thatis f(z) =), cn an?" for suitable a,, € C. Thus
HICY < C. As C3H then H < C < R.

3. — The theory ZF

Naive set theory, as usually presented in beginning
math courses, is based on two principles: the axiom
of extensionality and the principle of comprehen-
sion. The former states that two sets coincide just in
case they have the same elements, while the latter
asserts the existence of the set of all  that satisfy
P(x), where P is a given property. This approach
works fairly well if we just want to formalize simple
concepts, but quickly shows its inadequacy when
slightly more advanced notions are considered.
Firstly when we consider very large collections
(such as the =-equivalence classes) we run into
logical antinomies (*), the most famous being

Russell’s paradox. By the principle of comprehension
consider the set R = {x | x ¢ a} of all sets  that do not
belong to themselves: does R belong to itself? One
readily sees that R € R < R ¢ R, a contradiction!

Secondly, several elementary questions on car-
dinalities are not easily solved with the tools of naive
set theory. For example:

QUESTION 3.1. — Suppose A is uncountable. Is it
true that AN < A?

Another problem that cannot be easily solved
using elementary methods is:

QUESTION 3.2. — Suppose A is infinite. Is it true that
AxA=<A?

Cantor’s result summarized by equation (1)
yields a positive answer to both Questions in specific
cases: for example if A =< B™ for some B (as in the
case of A =R) the answer to both questions is
affirmative, and in view of Cantors’ bijection
N =< N x N, the answer to Question 3.1 is also

(Y See Gabriele Lolli’s contribution “Cantor e le anti-
nomie” in this volume.

affirmative when A is countable. These arguments,
though, do not generalize to arbitrary sets.

In the first decades of the twentieth century,
several distinct axiomatizations of set theory were
introduced, aiming at avoiding the antinomies such
as Russell’s paradox. The approach that was most
successful is the theory Zermelo-Fraenkel ZF and
its further extensions. Let us see how to formalize in
ZF the notion of ordinal and cardinal numbers, two of
the pivotal ideas introduced by Cantor.

The ordinals are sets x that are transitive (%)
(that is such that z € ¥y € x = 2z € ) on which the
membership relation is a well-order-the ordinals
are denoted by lower-case Greek letters o,p,...,
Ord is the class of ordinals and the ordering on
Ord is the membership relation. Thus the natural
numbers are ordinals, and so is the set IN, which in
set theory is usually denoted by w. It is possible to
define on the class of ordinals the operations of
addition, multiplication, and exponentiation, and
check that they agree with the usual operations on
the natural numbers. An ordinal is a suceessor if it is
of the form o + 1% 5 U {a}; otherwise it is limit, if
different from 0.

An ordinal « is a cardinal if it is not in bijection
with some f§ € o, and Card is the class of cardinals.
Every natural number is a cardinal, and so is w. Not
every ordinal is a cardinal: for example the ordinal
o + 1 (that is: the set ® U {w}) is in bijection with w
and hence it is not a cardinal. The aleph function (°)

N: Ord — Card \ @

enumerates all infinite cardinals. Thus Xy = w, N,
is (X,)" that is the smallest cardinal larger than X,,
and if A is limit, then R, is the smallest cardinal
larger than all 8, with o < 4. It is customary in set
theory to write w, for N,. Let x € Card be an
uncountable cardinal: we say x is a limit cardinal
if for any o < x there is a cardinal ¥’ with o < ¥’ < r,
otherwise it is a successor cardinal. Equivalently: a
limit eardinal is of the form N; with A a limit ordinal,
while a successor cardinal is of the form X, ;.

(®) Keep in mind that in ZF every object is a set; in other
words: the elements of a set are also sets.
®) N is aleph the first letter of the Hebrew alphabet.
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4. - Cardinality and the continuum problem

4.1 — The axiom of choice and cardinality

The theory ZF is not strong enough to efficiently
handle the notion of cardinality. In order to solve
this problem one adds the axiom of choice, obtaining
thus the theory ZFC.

DEFINITION 4.1. — The axiom of choice AC is the
statement: for every nonempty family A of none-
mpty sets, there is a choice function for A4, that is to
say a function C with domain A such that C(x) € x
for every x € A.

By the results of Godel and Cohen, AC is inde-
pendent of ZF, that is to say: working in ZF, it is
neither possible to refute, nor to prove AC. The
axiom of choice and Zorn’s Lemma (which is well
known to be equivalent to AC) have countless con-
sequences in many areas of mathematics. In many
cases one can show that the theorems proved using
choice are equivalent in ZF to AC. For example AC is
equivalent to each of the following:

e for every surjective function g: B — A there is
an injective function f: A — B such that g o f is
the identity on A;

e A 2 B or B X A for every pair of sets A and B,

e every set is well-orderable, that is it is in
bijection with an ordinal,

o if A is infinite, then A < A x A (").

Assuming AC every set is equipotent with an ordi-
nal, and the least such ordinal is a cardinal.

DEFINITION 4.2 AC. -The cardinality of A, in
symbols |A|, is the unique x € Card such that A < «.

If x, 2 € Card then

e x + Aisthe cardinality of ({0} x x) U ({1} x ),
the disjoint union of x and 4;

e i - 1 1is the cardinality of x x 4;

e x* is the cardinality of “x.

() Thus the answer to Question 3.2 is affirmative for an
arbitrary infinite set A if and only if AC holds.

These operations restricted to the naturals agree with
the usual arithmetical operations. When #x,1 > o,
then addition and multiplication are trivial, meaning
that kx + 4 = k- A = max(x, 1), while if 2 <x then
x* > A by Cantor’s Theorem 2.1.

REMARK 4.3. — Since ({0} x k) U ({1} x 1) and x x A
are well-orderable in ZF, the definitions of x + 2 and
k-4 do not require AC. The situation for ex-
ponentiation is different: without some form of
choice it is not possible to prove that 2 is well-or-
derable, so 2% would not be defined.

Replacing x+— k™ with x+— 2 in the definition of
the X function we obtain the beth function (%)

3:0rd — Card \ ®

defined as 3y = w, 41 =2 e 3, = sup,_; J,if 1
is limit. In some sense the 7 function is more natural
than the X function, as the size of most sets occurring
in mathematics is of the form J,. For example:

e countable infinite sets have size 7,

e R, C, the family of Borel subsets of R, a separ-
able Banach space, ... all have size J; = 27,

° RR, the family of Lebesgue measurable sets, the
Stone-Chech compactification of the integers
BN, ... all have size Jp = 271 = 227,

On the other hand, one would be hard pressed to find
a concrete mathematical object of size 8; or No. In
fact even the definition of N is a bit contrived: it is
the smallest kind of infinity above the countable.
Kazimierz Kuratowski, extending previous work of
Sierpinski, proved in 1951 a little known theorem
that gives a very concrete criterion as to when a set
is of size < N,,.

DEFINITION 4.4. — Let (eq, ..., e,) denote the cano-
nical basis of the vector space R"”; a line parallel to
e; is a set of the form {a + xe;|x € R}, for some
a € R". The set of all lines parallel to a non-zero
vector u is denoted by u.

® Jis beth, the second letter of the Hebrew alphabet.
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With a minor abuse of notation, we extend this
definition when R is replaced by some arbitrary set
X: aline parallel to e; is a set of the form

{(a, . o) €X' e X}

for some ay, ..

. 7a’i—17xaa/i+17 .

i1, Wity e, Ay € X

THEOREM 4.5 (Kuratowski). — For any n and any
2<k<n+2 the statement |X| <N, is equiva-
lent to

HAl,...,Ak(AlU...UAk = Xt

and

V1 <i <KYL € &L NA;| <Nypap))-

Therefore

e X is countable if its square can be partitioned
into two parts so that every horizontal inter-
sects the first part in a finite set, and every
vertical line intersects the other part in a finite
set;

e X has size < Ny if its square can be partitioned
into two parts so that every horizontal inter-
sects the first part in a countable set, and every
vertical line intersects the other part in a
countable set; or equivalently if its cube can
be partitioned into three parts so that every
line parallel to the coordinate axis intersects
the relevant part in a finite set;

e and so on.

4.2 — The continuum hypothesis

Having shown that |R| >|IN| and not having been
able to exhibit a subset of R of intermediate cardin-
ality, Georg Cantor conjectured that the cardinality
of R < 22 (N) was least possible:

) XCR= (X3NorXx=R).

Every open interval is in bijection with IR, so an open
subset of R is either empty, or else is in bijection
with R. Therefore every open set X satisfies (2).
Not every closed set is equipotent with R, but
Cantor proved that every closed set can be written
as C U P where C is countable and P is closed with-

out isolated points (*); therefore a closed set is either
countable or else it contains a homeomorphic copy of
Cantor’s space. Therefore every closed set X satis-
fies (2). In other words: if X is open or closed, then it
satisfies

XCR= (XZNor3f:i2" —
3)

— X continuous embedding).

Not only (3) implies (2), it gives an explanation for
its truth: a given subset of R is either small
(i.e. countable) or else it is big (i.e. equipotent to R)
for a topological reason. Property (3) has been
verified for all Borel sets, but cannot hold for every
set, as Felix Bernstein constructed an uncountable
X C R that does not contain any copy of the Cantor
set.

DEFINITION 4.6. — The continuum hypothesis (CH)
is the statement 2% = ¥y,

Note that CH subsumes that R is well-orderable
(2.e. some form of AC). The statement that (2)
holds for every X is known as the weak continuum
hypothesis, in symbols wWCH: clearly it can be
stated without choice, it is a consequence of CH,
and under choice is equivalent to CH, that is to say
AC = (CH < wCH).

It is neither possible to prove nor to refute CH
from ZFC (see Section 7), and the problem of estab-
lishing the cardinality of R is known as the con-
tinuum problem.

The only result provable in ZFC is that 2% > ;.
For example, it is consistent with ZFC that the value
of 2% is N, for any given n > 0; or else that it is
Nyt1, Nept2, - .. or even larger, for example R, . By
Corollary 6.4 of Section 6, |R| cannot take any value:
for example 2% £ R,

(®) This result, known as the Cantor-Bendixson theorem,
is at the basis of descriptive set theory, a thriving area of
research with many applications to other areas of mathe-
matics. Its proof is a landmark in set theory: not only it
introduced the concept of ordinal to the world, but served as
a template for many other important results, such as Felix
Hausdorff’s analysis of scattered linear orders.
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4.3 — Isthe continuwm problem a real math problem?

Some mathematicians have expressed doubts over
the fact that the continuum problem is a true math
problem, a question that is relevant for the rest of
mathematics. For example the late Solomon Fefer-
man was a proponent of the thesis that CH is not a
definite math problem. Giving a reasonable account
of his point of view (and arguing for a rebuttal) would
take too much space-the present author finds Fe-
ferman’s attitude towards set-theoretic methods not
so different from the reactions that mathematicians
of the XVII century would have had when con-
fronted with a continuous function that is nowhere
differentiable.

Another rather common attitude is to use inde-
pendence results to infer that, since undecidable, the
continuum hypothesis is not mathematically inter-
esting. Results that depend on CH aren’t true
results; if a problem turns out to depend on CH then
you’d better change problem [Fol99, page 17]. This
seems a rather peculiar position, as if from the non-
existence of a method for solving by radicals all
equations of degree bigger than four, we should
infer the lack of interest for algebraic equations of
higher degree, and maybe even for algebra and
number theory as well.

At this point the reader would like to see a
consequence of CH (or its negation) in mathematics.
An exhaustive treatment of the consequences of CH
and similar arguments would require a book of its
own; here we just limit ourselves to a (far from being
exhaustive!) list of topics in which set-theoretic
techniques have played an important role:

e The Stone-Chech compactification of the inte-
gers BN is the set of all ultrafilters on N. Itis a
very important object for functional analysis
and operator algebras, and it is becoming
increasingly more relevant for Ramsey theory,
a very active research area of combinatorics
[HS12]. The structure of BN is most sensitive
to the set-theoretic assumptions that are
added to ZFC. For example, using CH one can
construct special elements of BN (Ramsey
ultrafilters, P-points, etc.) that have several
applications to various problems.

e Functional analysis has always been a play-
ground for set theory. For example, Kaplans-

ky’s problems on automatic continuity for Ba-
nach algebras depends on CH [DW87]. Results
on Banach spaces use increasingly sophisti-
cated techniques, such as the Proper Forcing
Axiom, a powerful generalization of the Baire
category theorem that implies that 2% = Ry:
for example Stevo Todoréevi¢ used this axiom
to prove very general theorems on non-separ-
able Banach spaces [Tod06].

e Inthe last few years many important results in
C*-algebras and von Neumann algebras have
been obtained by Ilijas Farah and his colla-
borators [Farll; CF14; Far+14], using tech-
niques from logic and set theory.

e The use of set-theoretic methods in algebra has
focused, initially, on the structure of infinite
modules, in particular under the work of Sa-
haron Shelah-see [EM02]. Among the more
recent applications we would like to point to the
paper [Kra+05].

5. — The continuum hypothesis
in mathematics

In this section we look at a few results that not only
depend on CH, but are actually equivalent to it.

5.1 — Complex analysis.

If F is a subset of H, the family of entire func-
tions, and z € C let F, ¥ {f(2) |f € F}. Clearly, if
F is countable, then so is F,. The converse is
equivalent to the negation of CH [Erd64].

THEOREM 5.1. — —CH holds iff for every F C H, if
F. 1s countable, for all z € C, then F is countable.

Theorem 5.1 and its proof yields some further
information on entire functions. By Example 2.4
|H| = 2%. Say that F C H is x-small if |F,| <x for
all z € C. Direction = in Theorem 5.1 follows from
the next result when x = ;.

LEMMA 5.2. — If k < 2% and F C H is k-small, then
|F| <.
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COROLLARY 5.3. — If F, is finite for all z € C, then F
18 finite and hence there is an n such that |F,| <n

for every z.

Theorem 5.1 can be phrased as follows: CH im-
plies that there is F C 'H of size 2% that is 2%-small.
Erdés [Erd64] asked whether this implication can be
reversed. The answer is negative: it is consistent
with ZFC the existence of an F of size 2% > X; which
is 2%-small [KS17]. In that model the continuum is
quite large 2% = X, and it is not known if a negative
answer to Erdos’ problem can be obtained with a
small continuum, such as 2% = R,.

5.2 — Real analysis.

THEOREM 5.4 ([Dav74]). — CH s equivalent to each
of the following statements:

a) For every f:R® — R there are gn,hn: R — R
such that for every (v,y) e R® the set
{new|gn(x) hy(y) #0} is  finite and
f@,y) =22 90(®) - hu(y).

b) As in (a), but with f(x,y) = e™V.

By Cantor’s results we know that R = R**l;
moreover there is a continuous surjection
[0;1] — [0;1]% (Peano’s curve).

THEOREM 5.5 ([Mor8T]). — For every k>1 CH
is equivalent to the existence of a surjection
(A, Sefir1): R = R where fi: R — R and
1 <i<k+1, such that for any x € R at least one
among the f; is differentiable in x.

In particular, CH < 3(fi,f2): R — R surjective
such that either f{(x) exists or else fy(x) exists for
every x € R.

If fi,fo are as in Theorem 5.5, define
gi(@1,x2) = fij(1) with j =1,2 and g3(x1,22) = @2,
so that (1,92, 93): R — R? is surjective and differ-
entiable with exceptions, in the following sense.

DeErFINITION  5.6.—If #n,k>1, the function
(A, fern): R" = R¥™ where f: R" — R, is dif-
ferentiable with exceptions if for any a € R" at
least 7 + k — 1 among the f; are differentiable in a.
In other words: for all a € R” there is j* such that

8 .
1<j <k+mnso thata—ﬁ.(a) exists for all j # j* and
1

alll <1 < n.

THEOREM 5.7 ((CM84]). — For all k> 1, 2% <V,
1s equivalent to the existence of a surjection
(A, freon): R — REY that is differentiable with
exceptions.

Thus 2% < Xy if and only if there is a surjection
(fi, fo, f3): R* — R? such that for any (a,b) € R?, all

.. Of . .
derivatives % (a,b) exist, with at most one excep-
i
tion.

5.3 — Euclidean spaces

For the next two results, recall that (e, ..., e,) is the
canonical basis of the vector space R" (Definition 4.4.)

THEOREM 5.8 ([Sieb6]). — CH is equivalent to each of
the following statements:

a) There are Ai,As such that R? = A; UAs and
every horizontal line intersects Ay in a countable
set, and every vertical line intersects Az n a
countable set.

b) There are A1, As, Az suchthat R* = Ay UAs U Az
and every line parallel to e; has finite intersec-
tion with A; 1 =1,2,3).

Theorem 5.8 is due to Sierpinski, but was proved
in different decades: part (a) is from 1919 while part
(b) is from 1951. It is the ancestor of Kuratowski’s
Theorem 4.5, of whom is an immediate conse-
quence-see [Sim91] for more on the history of this
result.

THEOREM 5.9. - 2% < X, is equivalent to the ex-
istence of Ay U...UA,,2 = R™2 such that every
line parallel to e; has finite intersection with A;.

More generally, for every k <mn, 2% <N, is
equivalent to

341, Ayye [A1 UL UA, 5 = RTEF
and

VL €'¢; (L NA; < Nk)]
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There is no need to work in high dimension to have a
statement equivalent to 2% < R,,.

THEOREM 5.10 (Davies). — 2% < R, ifand only if there
are AgU...UA, s =R2and 0<0y< ... <O0p2<m
such that every line with direction 0; has finite in-
tersection with A; .

The following result in [EJM94]
Theorems 5.9 and 5.10.

generalize

THEOREM b5.11. — Let AffGr;(R") be the affine
Grassmanian manifold, that is the set of all lines
of RE. Let 4 be a limit ordinal or 0 and let n € w be
such that A +n > 0. The following are equivalent:

a) 2% < N

b) For every k,m>2 and every partition
L1U... UL, = AffGrl(Rk), there is a partition
A U...UA,, = RFsuchthat |L N A;] <)yt
forall L €,

¢) There are k> 2 and n+2 > m > 2, there are
uy, . .., W, pairwise non collinear vectors of R¥
and a partition R" =A;U...UA,, such that
|L mAi| < Nn-m+1 fOT all L € ﬁz

REMARK 5.12. — In Theorem 5.11 we adopted the
following convention:

e if s > 0, then |A| < N_; means that A is finite,
and

e if Ais limit and s > n then |A| <R,,, ;s means
that |A| <X, y.

THEOREM 5.13. — For every k > 1, CH holds if and
only if there is a partition {D, |n € w} of RE such
that for every m € w the set D, has distinct dis-
tances, that is to say: if Py, P1, P2, P3 € D,, are dis-
tinct, then {d(P;,P;)|0 <t <j < 3} has size 6.

In Theorem 5.13 the case k = 1 is from [EK43],
the case k =2 is from [Dav72], the general case
k > 3 is from [Kun87].

Fix a point C € R?: a cloud with center C is a
subset of R? that has finite intersection with every line
through C; a star with center C is a subset of RZ that
intersects every half-line from C in a finite segment; a

spray with center C is a subset of R? that has finite
intersection with every circle centred in C.

Note that given a cloud X with center C one can
construct a star Y O X with the same center—for
each half-line r passing through C take the segment
determined by the points that are furthest apart. It
is easy to check that R? cannot be covered by two
stars (and hence by two clouds) or by two sprays; nor
it can be covered by three stars (and hence by three
clouds) whose centers are collinear.

In [GLO1] it was asked whether the plane can be
covered by three stars.

The next two theorems are due to Péter Komjath
[KomO01], James Schmerl [Sch03; Sch10] and Ra-
miro de la Vega [Veg09].

THEOREM 5.14

a) CH if and only if R% is covered by three clouds.

b) 2% < R, if and only if R? is covered by n + 2
clouds.

THEOREM 5.15

a) R? is covered by three sprays whose centers are
not collinear,

b) CH if and only if R? is covered by three sprays
whose centers are collinear.

In [Komo01] it is announced that it is consistent
with ZFC + —CH that the plane cannot be covered
with three stars.

5.4 — Algebra.

The next two results are essentially contained in
[EK43].

THEOREM 5.16. — Let V be a vector space over Q such
that V < R.

2% < it if and only if theve is a partition
V = U, e Ax such that there are no distinct vectors
belonging to the same A, such thata+b =c +d.

Letting k = Wy we have that CH holds just in case
there is a partition V- =, o, An sSuch that there are
no distinct vectors a,b, e, d belonging to the same
piece A, such thata +b =c+d.
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THEOREM 5.17. — 2% < x* if and only if R\ {0} is
the union of k many Q-independent sets. In parti-
cular CH if and only if R\ {0} is the union of
countably many Q-independent sets.

If we look at algebraic independence we obtain a
similar result.

THEOREM 5.18 [Zol06]. — 2% < x* if and only if the
set of all transcendental numbers can be covered by
K many algebraically independent sets. In parti-
cular CH if and only if the set of all transcendental
numbers is the union of countably many algebrai-
cally independent sets.

A set X is union of a chain of subsets of size < r if
X = |JCwhere Cis a family of subsets of X, each of
size < k, which is linearly ordered under inclusion.

THEOREM 5.19. — |X| <k if and only if X is the un-
1om of a chain of subsets of size < k. Thus CH if and
only if R is the union of a chain of countable subsets.

In contrast with the previous results, Theo-
rem 5.19 is a fact in infinite combinatorics, one that
does not use anything of the algebraic (or analytic,
or geometric) structure of R.

It can be restated replacing R with any algebraic
structure X equipotent to it, and requiring that the
subsets be substructures of X. For example CH is
equivalent to the statement that C is union of a chain
of countable (algebraically closed) fields.

6. — Cardinal arithmetic

If w is partitioned into finitely many pieces, then at
least one piece is infinite, since the union of finitely
many finite sets is finite. Similarly, if w; is parti-
tioned into countably many pieces, then at least one
piece is of size Nj, since the countable union of
countable sets is countable (*°). These pigeon-hole-
type of results can be extended to larger cardinals.

(% Actually, this innocent looking theorem requires a
weak form of the axiom of choice.

THEOREM 6.1 [AC]. — Ifxt = U, A, then |A;] =+
for some o < k.

The previous result suggests the following

DEFINITION 6.2. — Let x be an infinite cardinal. We
say that « is regular if for all 4 < x and all partitions
K=, Ay, there is o</ such that |4z = x.
Otherwise we say that x is singular.

Theorem 6.1 says that " is regular, while R, is
singular, since R, = J, ., Ny. Similarly X, is sin-
gular since N, = J,,, Ny is singular. On the other
hand if R, = U, c,,4x, then |4;| =X, for some 7.
To see this, suppose each A, has size X, < X,:
as o, < w;, the regularity of w; yields that
Uncewtn # @1 80 |J,, 0 =% < @i, and hence
| UnewAnl < No- Nz =Nz <X,,. In other words:
although R, can be written as | J,_; A, with 1 <X,
and |4,| < N, for each «, the size of A must be at least
1. In order to explain this phenomenon, we need to
introduce a new notion.

The cofinality of an infinite cardinal «, in sym-
bols cof (), is the smallest ordinal 4 such that there
is a cofinal function f: A — «, that is such that the
values {f(«)|o € A} are unbounded in x. Since the
identity function on x is cofinal, one has that
cof(r) < k. The ordinal cof(x) is actually a cardinal,
and moreover the function f: cof (k) — x witnessing
cofinality can always be taken to be increasing, so
that cof(cof(x)) = cof(x). It can be shown that
cof (x) is the least cardinal 4 such that x = J,_; A,
with |4,| <x. In other words: « is a regular cardinal
if and only if cof (k) = .

Julius Konig in 1908 proved the following result.

THEOREM 6.3. — k<f%) > .

As cof () < k, Theorem 6.3 implies that 2° = x* > «,
so the concept of cofinality allows us to strengthen
Cantor’s Theorem 2.1. Moreover, if x is an infinite
cardinal of countable cofinality then ” > x, showing
that the answer to Question 3.1 is negative (*1).

If the cofinality of 2© were less or equal to x, then
putting 2 in place of x in Theorem 6.3 we would have

(') Question 3.1 appears in a well-known Algebra text-
book.
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that 2~ < (2¢)%f(#) = greof@) — 9x 3 contradiction.
We have therefore proved:

COROLLARY 6.4. — cof (2¥) > k.

It follows that cof(2%) is uncountable, and hence
2% £ N, for any countable limit ordinal A. All other
values for 2%, the ones not ruled out by Konig’s
Theorem 6.3 are acceptable: it has been shown that
2% can be Ny, Rg, ..., or N, 1, Ngy2,. .. or a singular
cardinal of uncountable cofinality, such as X,,,.

But even if we knew the value 2% there would still
be the problem of computing 2 for x > w: even
assuming CH we have no clue as to what 2% might
be, other than it must be a cardinal of cofinality > Ns.

In analogy with CH Hausdorff introduced the
following definition.

DEFINITION 6.5. — The generalized continuum hy-
pothesis (GCH) is the statement Vo € Ord (2% =R,.4).
Equivalently: X, = 3, for all as.

In analogy with the weakening of CH to wCH, we
could state a weak version of the generalized con-
tinuum hypothesis

Vaoe OrdvVX C 2 (N,)(XIN, or X< 2(R,)),

but this statement implies the axiom of choice, so it
is indeed equivalent to the GCH.

As we shall see in the next section, GCH is
consistent with ZFC, and it is a dramatic simplifica-
tion of cardinal arithmetic. In particular GCH im-
plies that 2 is always a regular cardinal.

If we do not assume GCH, what can we say on the
exponential function x— 2?7 We know that it is
monotone (x < /4 = 2¢ < 2%) and that Kénig’s Theo-
rem holds (cof (2¥) > x).

Are there other rules, provable in ZFC, that
govern the exponential function? The answer is
negative if we only consider regular cardinals: if F
is any map on regular cardinals such that
Kk <l=F(k) <F(4), and cof(F(x)) > x, then we
may assume that 2 = F (k) for all regular cardinals
k. But what about 2° when « is a singular cardinal?
The general consensus among set theorists was that
a similar independence result should be established
for singular cardinals as well, but in 1974 Jack Silver
showed that this expectation had to be abandoned.

THEOREM 6.6. — If 2% = R, 1 for every o < w,, then
zNwl = Na}1+l'

In other words: GCH cannot fail first at X, .
Silver’s result is actually much more general, in
particular it holds if X, is replaced by a singular
cardinal of uncountable cofinality. What about sin-
gular cardinals of countable cofinality? For example,
if 2% =N, foralln < o, isit true that 2% = R, ;?
Menachem Magidor in 1978 showed that the answer
is negative: it is consistent that GCH fails for the
first time at R,, e.g. 2% =W,,; for all » and
2% = N,,,2. The value 2% can be made larger than
N,.2, but not arbitrarily large. In fact, in 1989
Saharon Shelah proved the following result.

THEOREM 6.7. —If 2% <R, for all n,
ZN“’ < min(Nw4, N(2N0>+).

then

The interested reader should consult [Jec03].
What has emerged after the last three decades of
work in set theory is that there are highly non-
trivial, new laws that rule the arithmetic of singular
cardinals. This is hardly the end of the story, in fact
it looks like it is only the beginning.

7. — Independence of the continuum
hypothesis and new perspectives

In this section we try to give some ideas of the
independence phenomenon, and the current work
in the foundations of set theory. The material is
considerably more advanced than what we have
discussed so far, and at times we will assume a
passing acquaintance with some of the concept
currently investigated in set theory, such as large
cardinals and determinacy (*?).

7.1 — An overview of the universe of all sets.

Recall that in axiomatic set theory, the elements of a
set are again sets. The (proper) class of all sets is

(*?) See also Giorgio Venturi and Matteo Viale’s con-
tribution “New axioms in set theory” in this volume.
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denoted by V, after von Neumann. It is stratified in a
hierarchy of sets
v=[J V.

oe0rd

where Vo =0,V, = ,., V., for Aalimit ordinal, and
Vi1 =2 (V,). The V,s are transitive, increasing
(that is: « < f =V, C Vp), and can be seen as an
approximation to the whole universe. We pause for a
few examples.

ExampLE 7.1

a) V, N Ord = « and moreover if « is limit, then it is
closed under ordered pairs. In fact if x,y € V,,
then x,y € Vg for some f < o, and since, fol-
lowing Kuratowski, the ordered pair (x,y) is
{{x},{x,y}}, we have that (x,y) € Vg2 C V,.

b) The set V,, is the collection of all hereditarily
finite sets, that is those sets that are finite, and
whose elements are finite, and whose elements
of the elements are finite, and so on. Equiva-
lently, V,, is the smallest collection of sets having
() as an element, and closed under finite unions
and the operation taking singletons. It is not
hard to see that V, is countable. By part (a)
N = w is a subset of V,,. In fact it is possible to
construe 7 and Q and as subsets of V,,. To see
this identify 7/ with the union of the two sets
{1} x @ and {0} x (w\ {0}), the first set in
being identified with N and the second with the
set of negative integers. Similarly Q can be
construed as the collection of all pairs (n,m)
with n, m € 7 relatively prime and m > 0.

c¢) The set V.1 is equipotent with R, and since a
real number can be identified with the set of ra-
tionals strictly smaller than itself, one can as-
sume that R C V1.

There is another way to stratify the universe of
all sets. The transitive closure TC(x) of a set «x is
the smallest transitive set containing «. Let H,. be
the set of all x such that TC(«x) has size < k. Then

V= J H.

reCard

Note that V, =H,, that V,.; C H,, and that
|H,, | = 2%.

The vast majority of mathematical objects en-
countered in mathematics belongs to (or better: can
be identified with an isomorphic copy of itself be-
longing to) V,.,, for some n € ®, so one might
wonder what is the point of studying arbitrary V,s
and H,s, and, more generally, sets of arbitrary
cardinality. One of the main discoveries in set theory
in the last fifty years has been the positive, and
somehow ubiquitous influence of large cardinals on
just about every aspect of set theory (**). In parti-
cular, the existence of large cardinals yields a very
detailed analysis of the structure of definable (e.g.
Borel, projective, ...) sets of reals. The interested
reader can find some basic information on these
matters in [And03a; And03b] and in the author’s
chapter in [HLT15].

7.2 — Gddel’s constructibility and Cohen’s forcing.

As we have said before, the continuum hypothesis is
independent from ZFC, that is to say: starting from
ZFC it is not possible to prove or refute CH. Recall
that an axiomatic theory T is said to be consistent if
it is free from contradictions, and it is effectively
axiomatizable if the axioms of T form a list that can
be checked in an automatic manner. Godel’s Second
Incompleteness Theorem asserts that an effectively
axiomatizable, sufficiently powerful theory T (such
as ZFC) cannot prove its own consistency, unless T is
itself inconsistent. In 1938 Godel showed that if ZFC
is consistent then also ZFC + CH is consistent, and
in 1963 Cohen showed that if ZFC is consistent then
also ZFC + —CH is consistent.

7.2.1 — The constructible universe.

Given a set M, a subset X C M is said to be defin-
able in M with parameters if there is a formula
¢o(vo,v1,...,v,) and elements py,...,p, € M such
that X is the set of all elements « of M that satisfy ¢
using the parameters py, . . ., py, in symbols

reX & (M,E) ):(p(xapla-"apn)'

(*®) Godel was probably the first logician to suggest that
ZFC should be strengthened by positing the existence of
large cardinals.
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The collection of all X as above is denoted by
Def (M), and it is a collection of subsets closed under
unions, intersections, and complements; in other
words Def(M) is a Boolean algebra. Let us pause
for some examples.

ExXAMPLE 7.2

@ If [M|=x > o, then |Def(M)| =k, since any
X € Def(M) is determined by a formula ¢ (of
which there are countably many) together with
an n-tuple of elements of M, for some n.

(ii)) Among the definable subsets of V,, we have:

e all recursive (i.e. computable) subsets of I\,
e the sets 7, Q (Example 7.1(b)) and all compu-
table real numbers (Example 7.1(c)).

Thus by part (i) above, Def(V,,) is countable so it
is a proper subset of V1.

Godel’s constructible universe is obtained by mod-
ifying the definition of the hierarchy (V, |« € Ord):
rather than using the operation &2 of taking all
subsets we use the operation Def of taking only the
definable subsets. The constructible universe is
the transitive class

L= U L,
oeOrd
where Lo =0, L,; = Def(L,), and L, =J,., Ly
for 4 a limit ordinal. The definition of the map
o +— L, can be carried out in ZF, and it can be shown
that every axiom of ZF holds when restricted to L. In
fact, working in ZF, it is possible to show that the
axiom of choice holds in the constructible universe,
so that every theorem of ZFC is true inside L. The
inhabitants of L can also develop their definition of
the constructible hierarchy; if L thinks that a certain
set M is the a-th level of the constructible hierarchy,
then indeed M = L,. Using this fact one can prove
that L satisfies the statement that every set is
constructible, that is the statement VaJu(x € L,)
holds true in L. We abbreviate this statement as
V = L. As the axioms of ZFC are true in L, this
implies that the existence of a non-constructible set
cannot be proved in ZFC. Moreover from V = L one

The axiom V = L yields a very detailed, highly
uniform description of the universe of all sets, and
solves most of the set-theoretic problems one might
encounter, yet it is generally rejected by the set
theorists as a viable axiom. The reason for this rejec-
tion is threefold. Firstly, requiring that every set be
obtained by taking only definable subsets seems an
unduly restriction; in fact Godel himself thought that
this was a most convincing argument that V cannot be
equal to L. Secondly, the picture of projective sets of
the reals emerging from V = L is very distant from
the results that we can prove in ZFC on Borel or
analytic sets. Thirdly, and more importantly, the
constructible universe is too small to accommodate
large cardinals, a topic that has become increasingly
important for set theory in the last few decades.

7.2.2 — The method of forcing

After Godel’s landmark result that GCH is consis-
tent with ZFC, the question of Cantor’s continuum
hypothesis being provable from ZFC became even
more prominent. Since GCH follows from the state-
ment that V = L, any proof of the consistency of
—CH would entail that V = L is unprovable from
ZFC. By its very nature, L is minimal among the
transitive proper classes M that satisfy the axioms
of ZFC, and this implies that the quest for a con-
struction in ZFC of such an M satisfying —CH, is
doomed to failure. The way out of this conundrum is
to give up either on M being a proper class, or else on
M being transitive. The first option is adopted in the
expositions Cohen’s method of forcing: starting with
a countable transitive model of (a large enough
fragment of) ZFC, one develops a larger countable
transitive model in which CH fails. Forcing is a great
method to obtain new independence results, but
with a fairly steep learning curve. There is another
approach to obtain independence proofs, completely
equivalent to forcing, but somewhat simpler to ex-
plain; it was developed by Dana Scott and Robert
Solovay in the mid 60s, on wake of Cohen’s results,
and it is called the Boolean valued models method.
In introductory courses in logic one gives the formal
definition of

can prove the GCH, and more. From all this we the structure M satisfies the formula (a1, .. ., )

obtain that when we assign uy, ..., u, € M to the variables
if ZF is consistent, then so is ZFC + GCH. L1, dn
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in symbols: M E o(u1,...,u,). Thus given ¢, M,
and uq,...,u, € M, one assign values 1 or 0 to
o(U1,...,uy,) just in case M E o(uq,...,u,) or not.
The key idea of Boolean valued models is to re-
define the semanties by replacing the set {0, 1} with
a complete (*) Boolean algebra B. One then con-
structs a certain class V? together with two func-
tions E,M:V® x VB — B so that E(u,v) is the B-
truth-value of equality between u and v, while
M (u,v) is the B-truth-value of membership between
w and v; for this reasons E(u,v) and M(u,v) are
usually denoted by

[u =]z, [u € v]p.

Using this, one defines by induction on the complex-
ity of ¢ the value

[o(us,. .., u)]z € B foruy,...,u, € V5.

The case of the connectives is easy: for example set

/

[[ﬂ(p(ulw . ,un)ﬂB = [[(P(ul?' cy u”ﬂ)]]B
loVvy(u,...,un)g=[o(1,...,un) [ g YW (21,...,%,)]5

where ' and Y are the operation of taking comple-
ments and sups, respectively, in B. The case of the
existential quantifiers is where the completeness of
B comes into play:

[[HxO(P(ula"'v?’L?l)ﬂB = Sup{[[([)(u(),%1,...,Mn)]]8|u() € VB}
[[onq)(ula EEER) un)ﬂB = lnf{ [[(P(?/L(), Uty un)]]B‘uO € VB}

The (rather non-trivial) definition of the functions £
and M guarantees that the axiom of extensionality
has B-truth-value 13, that is

Ve(rcusrev)=>u=v=1p

for any u,v € V. Similarly, all other axioms of ZFC
and all logical axioms have B-truth-value 1z, no
matter what complete Boolean algebra B is chosen.
This in turn implies that any statement provable
from ZFC will have B-truth-value 1z. So, in order to
show that a certain statement o, such as the con-
tinuum hypothesis, is not provable from ZFC it is
enough to find a specific Boolean algebra B such that

[o]p # 15.

(*) A Boolean algebra is complete if suprema and infima
exist for any set.

7.3 — Woodin’s work on the foundations of set theory.

After the deluge of independence results that followed
from the invention of forcing, for many years it
seemed that no solution for the continuum problem
was possible. In the mid nineties W. Hugh Woodin
started a thorough investigation of the structure
(He,, €). Recall that H, =V, the set of all heredi-
tarily finite sets, is equivalent to the realm of arith-
metic (N, +, x), while H,,, the set of all hereditarily
countable sets, is equivalent to the structure of sec-
ond-order arithmetic (N U 22 (N), +, x, €). Woodin
has argued that the correct axiomatization of H,, is
given by the axiom of projective determinacy, much
like Peano’s arithmetic is the correct axiomatization of
(N, +, x). Furthermore he has singled-out an axio-
matization of (H,,, €), showed that it is canonical, and
that it implies 2% = X,. Unfortunately this approach
does not seem to generalize to larger H,s. The reader
interested in this topic is referred to the papers
[Woo01a; Woo01b] or to the formidable [Wo0099].

In the last ten years Woodin started a massive
program to generalize Godel’s L in order to accom-
modate all large cardinals. This idea has been one of
the main goals of set theory for the last fifty years
(the so-called inner model program) but progress in
this area has been quite slow, hitting some road-
blocks at the beginning of this century. Woodin has
isolated the main obstruction, and although he has
still not been able to remove it, he has proved some
very general theorems showing that in some sense
this is the only block. If Woodin’s approach will be
successful, it would yield a transitive proper class,
called Ultimate-L, which is sufficiently L-like to
guarantee that the generalized continuum hypoth-
esis holds in it. In other words: Ultimate-L should
give a very concrete conception of the notion of set,
quite similar to the conception of natural numbers
that we are accustomed to. A complete account of
these matters has not been completely written down,
but the reader can consult [Rit15], or [Woo0l7] for a
general overview of the program. Regardless of the
final outcome of these investigations, we agree with
Woodin’s remarks expressed in [Woo01b]:

So, is the Continuum Hypothesis solvable?
Perhaps I am not completely confident the “so-
lution” I have sketched is the solution, but it is
for me convincing evidence that there is a so-
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lution. Thus, I now believe the Continuum
Hypothesis is solvable, which is a fundamental
change in my view of set theory . .. The universe
of sets is a large place. We have just barely be-
gun to understand it.
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