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Sommario: Uno dei molti aspetti affascinanti della combinatoria enumerativa ¢ quello di trovare contatti fra
varie aree della matematica, e di rivelare relazioni insospettate. Il Cyclic Sieving Phenomenon (CSP), introdotto da
Reiner, Stanton e White nel 2004, e un recente capitolo di ricerca in questo campo. Lo scopo di questo articolo e quello
di offrive un introduzione breve ed elementare al CSP attraverso alcuni esempi. In sintesi, il CSP consiste in questo:
st parte da un insieme su cui c’e una azione di un gruppo ciclico con n elementi, e si associa in modo naturale a
questo insieme un polinomio. Il punto fondamentale é che questo polinomio ha una proprieta “magica’ se st valuta
nelle radict ennesime dell’unita, si ottengono dei numert naturali che contano © punti fissi dell’azione del gruppo
ciclico. Nei nostri esempi compariranno molti oggetti combinatori interessanti, legati ai numert di Catalan, di
Kirkman-Cayley e di Narayana, come le triangolazioni e le dissezioni di poligoni regolari, le partizioni non
incrociate, le parentesizzazioni di liste e © grafi ad albero con radice.

Abstract: One of the many fascinating aspects of Enumerative Combinatorics is that it often finds contacts between
different areas of mathematics, and reveals unsuspected relations. The Cyclic Sieving Phenomenon (CSP), introduced
by Reiner, Stanton and White in 200/, 1s a recent chapter in this field. The purpose of this paper is to give a short and
elementary introduction to the CSP by some examples. The gist of the story is that one starts from a set equipped with a
cyclic group action, and finds a natural way to associate a polynomial to this set, with the following ‘magic’ property: if
one evaluates this polynomial at some suitable roots of 1, one gets nonnegative integers that enumerate the fixed points
of the group action. In our examples many interesting combinatorial objects will come into play, liketriangulations and
dissections of reqular polygons, noncrossing partitions, parenthesizations of lists and rooted ordered plane trees.

1. — Premise: a polynomial that knows a lot .. .. & .. ..
about the rotations of triangulated :
hexagons... &) O
Westart by desing with avery specificexample. (7 () & O

There are 14 different ways to triangulate an hexa-
gon, i.e., to draw three nonintersecting diagonals: Fig. 1. — All the triangulations of a regular hexagon.

This is just an instance of a famous formula on the
Accettato: i1 1 maggio 2017. triangulations of a regular (n + 2)-agon: the number
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of its different triangulations is equal to the n-th
Catalan number

(1) Cat(n) :=

1 (2n\ 2n@2n-1)---(n+2)
n—+1< >_ nmn—-1)---1

We will give a closer look to the Catalan numbers in
Section 5.

Let us now consider the group of rotations of
the hexagon, that is generated by the rotation R
through the angle 2 (say clockwise) around the
barycenter.

This group contains 6 elements, including the
identity, and when it acts on the set of triangulated
hexagons represented in Figure 1 it splits the set into
parts, called orbits. There is one orbit made by 6
elements, two orbits made by 3 elements and one orbit
made by two elements (see Figure 2).

We will now show a natural way to associate a
polynomial to the set of triangulations of a regular
polygon. This will provide an algebraic counterpart
of the geometric picture of rotations and their orbits
described above. As a first step we recall what is the
g-analog of a positive integer.

DEFINITION 1.1. — Given a positive integer n, we
say that its g-analog is the following polynomial:

1
=14+q+-+q¢""

— =

We notice that, according to the definition above,
[1], = 1. Arelevant property of the polynomial %], is
that if we evaluate it at ¢ = 1 we obtain %. In other
words, if one considers the variable ¢ as a complex
number, [r], can be interpreted as a continous
deformation of n, that gives back the value n when
q is equal to 1.

Let us focus again on the equation (1). Let us
substitute the integers 2n,2n — 1,...,n + 2 that ap-

O
o
{

O\
'\O O v
\ H/

_ <:> A T

pear in the numerator on the right by their g-analogs,
and let us do the same with the integers
n,n —1,...,2,1 that appear in the denominator. We
obtain a quotient of polynomials that can be called, ina
natural way, a g-analog of the Catalan number Cat(n):

2n] [2n —1], -
[7]

[n+2],

Cat,(n) = TES )

q[

One immediately observes that if we evaluate this
rational function at ¢ = 1 we get the number Cat(n).
More surprisingly, one can prove that Cat,(n) is in
fact a polynomial with nonnegative integer coeffi-
cients.

Let us check this in our case when n = 4, i.e. in
the case associated to triangulated hexagons:

6y (@-1)(" -1 -1) _
(¢* = D(¢® - 1)(¢*-1)

:q12+q10+q9+2q8+q7+2q6+q5+2q4+q3+q2+1

Caty(4) =

Now we are getting to the crucial point of our
example. Let us consider the complex number
(e = % + \/7?;@, that is a primitive 6-th root of 1. One
can observe that:

o If we evaluate Cat,(4) at ¢ =1= 8 we ob-
tain 14.
If we evaluate Cat,(4) at ¢ = (s we obtain 0.

If we evaluate Cat,(4) at ¢ = {5 we obtain 2.

If we evaluate Cat,(4) at ¢ = {§ we obtain 2.

(4)
(4)
If we evaluate Cat,(4) at ¢ = 52 we obtain 6.
(4)
(4)

If we evaluate Cat,(4) at ¢ = {3 we obtain 0.

Why have we obtained nonnegative integers? Are
we counting something?

The (beautiful) answer is that the polynomial
Catg(4) is strictly related to the action of the group

(N
D

Fig. 2. — The orbits of the set of triangulated hexagons under the action of rotations.
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of rotations genarated by R on the set of triangu-
lated hexagons. In fact, looking at Figure 2 one
observes that in the set of triangulated hexagons:

e there are 14 elements fixed by the rotation
R (i.e., by the identity);

e there are 0 elements that are fixed by the
rotation R! = R;

e there are 2 elements that are fixed by the
rotation R2 = Ro R;

e there are 6 elements that are fixed by the
rotation R> = RoRo R;

e there are 2 elements that are fixed by the
rotation R*;

e there are 0 elements that are fixed by the
rotation R®.

By comparing the two lists above one concludes that
for every ¢ =0,...,5 the number of triangulated
hexagons fixed by the rotation R’ is equal to the
evaluation of the polynomial Caty(q) in ¢ = Cé.

We are in the presence of an instance of a
remarkable combinatorial phenomenon, the CSP
(Cyclic Sieving Phenomenon). It was pointed out
by Reiner, Stanton and White in 2004 in their paper
[10] (generalizing the Stembridge’s ¢ = —1 phenom-
enon, see [19], [20]), and since then many instances
have been discovered, like precious jewels, involving
many interesting objects in combinatorics, algebra
and geometry.

This paper is devoted to a first introduction to the
CSP: in particular we will focus on a family of
examples that include the triangulations of regular
polygons.

We will start by recalling, in the next section,
some basic definitions and some properties of ¢-
analogs. But before doing this, we would like to
intrigue the reader with another remark on the
polynomial Cats(q). Let us consider the complex
number (g = cos %” + ¢ sin 28%’, that is a primitive 8-th
root of 1. If we evaluate Caty(q) at ¢ = (s, ¢ = {%,
q= Cg, q= Cg we obtain 0, while evaluating Cat4(q)
at ¢ = (& we obtain 2, at ¢ = (g we obtain 4 and at
q= Cg we obtain 2. Again, the results of the evalua-
tions are nonnegative integers. Does this mean that
Caty(q) can also tell us another story, involving the
group of rotations of a regular octagon?

2. — A formal definition of cyclic sieving

As illustrated by the example in the preceding
section, the basic ingredients of the cyclic sieving
phenomenon are a set equipped with an action of a
cyclic group and a polynomial which naturally re-
turns the cardinalities of the sets of fixed points
when evaluated at appropriate roots of unit.

Let X be a finite set, let C = (¢) a finite cyclic
group acting on X, and let { € C be a root of unit
having the same multiplicative order as c. Let
X(q) € Zq] be a polynomial with nonnegative inte-
ger coefficients and let us denote by X, for every
integer d, the set of elements of X fixed by c.

DEFINITION 2.1. — The triple (X,C,X(q)) is said
to exhibit the cyclic sieving phenomenon (or CSP) if,
for every integer d,

#X = X(9).

Of course it’s always possible, given a cyclic group C
acting on a set X, to find a polynomial X(q) that
satisfies the cyclic sieving condition. Furthermore,
via representation theoretic tools, one can show that
such a polynomial can be taken with nonnegative
integer coefficients. The point of this definition is
that the polynomial X (q) should be somehow natu-
rally associated to the set X, and there are several
ways to do that.

3. — Basic introduction to g-analogs

The most widespread way to associate a poly-
nomial to a set of combinatorial objects involves
g-analogs.

In a first, still vague, attempt of definition, a q-
analog of an expression is any generalization invol-
ving a new parameter ¢ that returns the original
expression in the limit as ¢ — 1. Notice that, if
(X,C,X(q)) exhibits the cyclic sieving, then
X(1) =#X, so X(1) is an enumerator for X. It
follows that X(q) is a g-analog of an enumerator,
usually called g-enumerator, for the set X.

Often g-analogs are based on the fact that

lim ¢ -1 =
q—1q — 1

o
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as we have seen in the example of Section 1, where
we introduced the definition of the q—analog [n], ofa
positive integer n: [n], = % =1+q+- -+ q" L
This can be extended to natural numbers by putting
[0], = 0.

Despite this choice for [r], seems to be arbitrary,
it arises spontaneously in several contexts. It also
allows for a natural definition of g-factorial and g¢-
binomial. Namely, given n,k € N, with k < n, we
define their g-factorial and ¢-binomial as

],

L: el !l — K],

where the symbol [0] ! means 1 (this reminds the
convention 0! = 1).

As we are going to show, it is not hard to prove
that the ¢g-binomial is a polynomial with nonnegative
integer coefficients. This might not be true if we
choose some different polynomial with nonnegative
integer coefficients as g-analog of a natural number.

Let us start by noticing that many identities
among binomial coefficients have their g-analog.
For example, the well known binomial identity

(-G

generalizes to the following:

n),! = ], —1], - [1], and {Z

ProposiTioN 3.1. — For every n, ke N with
0 < k < nwe have the equalities

i) Lol e,
AR R

ProoF. — We prove the first equality (the second
equality can be easily obtained from the first one

. . [m n
using the relation [ } = [ } ).
k g - k .

We observe that by definition

-2 G-

Since
qn_l_l :qk qn—k_l
¢ -1 ¢ —1

we can write

k k—11]
q q
n—k
(€ =1\ [n-1]  4[n-1
q(t]’“—l)[’f—l]_q[ k } -
q q

The fact that [Z] is a polynomial with nonnegative

q
integers now easily follows by induction, using the
proposition above.

To keep getting some practice with g-binomials
(for a deeper introduction see for instance Section
1.7 of [17]), let us show the g-analog of the well-
known binomial theorem, that can be stated as: for
every n € N we have

" /n
(1+a)" = kz;<k>ack
The g-analog of this identity is the following, which
of course specializes to the standard one for ¢ = 1:

THEOREM 3.2 (The g-binomial theorem). — For all
n > 1 we have

ﬁ1+xq7 qu [ ]
J=1

PrOOF. — There are many nice ways to obtain and
prove this formula (see for instance Section 1.8 of
[17]). Here we simply show how, once we have the
formula, we can prove it by a straightforward in-
duction on n. For n =0, the thesis is obvious.
Suppose that the thesis holds for n. We have

n+1 n
H(1+90q]) (1 +2¢"™) - T1A +xq’)
j=1 j=1
— (1 +%qn+1) . q(k;l) |:,n:| %k
k=0 k q
n+1
=2 <q(k51) [n] gl { ! } %
k=0 k q k-1 q
n+1
A NAEY) <[n} _|_qn—k+1[ n ] )xk
k=0 k q k-1 q
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Now by applying the second equality of Proposition
3.1 we obtain

n+1
Zq(k;l) [n ;Cr 1} o
=0 q

which is the formula for % +1, so the thesis
follows. O

There are several tools that allow us to evaluate
q-analogs of certain expressions at roots of unit. The

most basic one is the following.

THEOREM 3.3. — Let m = nmodd, and let { = ;.
Then
m
e _ )%
[n]C B { 1

where the notation [m|, indicates the evaluation of
the polynomial [m], in ¢ = (.

fm=n=0 modd

otherwise.

Proor. — Let m =n = rmodd, with 0 <r < d.
Since 14 { + % + -+« + {71 = 0, we may delete any
d consecutive terms in 1+ ¢ + --- + 71 (or &7,
SO

M) =Ml =1+(+C++ "

It follows that if » # 0 then [m], = [r], = 7, as de-
sired.

Suppose r = 0. Then we can write n = hd and
m = kd. Hence we have

[m]q (1_|_q+...+qd*1)(1+qd+...+qd(k*1))

ml, (T+q+ - +¢ DA+ +--+ ¢ D)

so canceling the 1 + ¢ + - - - + ¢?~! factor and recal-
ling that (¢ = 1, we have

T

K

as desired. O

8 (7], [6
For instance, if we evaluate & 7 & at

- 4], 8, 2],
qQ= C‘z’ = {, we obtain " 1, 5 respectively. Therefore
B,0,06,
@,B,e, =

ql®lql=lg
is 6, in accordance with the computation in Section 1.

q
)

the evaluation of Cat,(4) =

COROLLARY 3.4. — If { = {y and d | n, then

”;}{(Zﬁ) ik
¢

0 otherwise.

PrOOF. — In the equality above, consider the nu-

k.
after canceling factorials. Since d | n, the product
[n]:[n —1];---[n -k + 1], starts with a zero factor
and has another zero exactly every d factors; the
product [1][2],---[k], starts with d —1 nonzero
factors, and then has a zero every d factors.

Sinee the number of factors is the same, it follows
that the numerator has always at least as zero factors
as the denominator, with equality if and only if d | .

It follows that if d does not divide k, the equality
holds. If d | k then d | (n — k) and we have, applying
Theorem 3.3,

merator and denominator of the left hand side [n]
¢

{n} 7[n—k+1]£.[n—k+2]( ..... @
T 2, [,
n—k+d n—k+2d n
-1...1- .1...1.T.1 ...... 1%
~n/d—k/d+1 n/d—k/d+2 _ n_/d
— . ) 5 . 'k/d
_(n/d
- \k/d
as desired. O

Provided these tools, we are ready to approach
some easy cyclic sieving problems.

4. - A first example of cyclic sieving
phenomenon

The most straightforward approach to prove that
a given triple (X,C,X(q)) exhibits the CSP is by
brute force evaluation. If the action of C on X is
simple enough, one may directly compute the car-
dinalities of the fixed point set X¢'. Moreover, if it is
also possible to evaluate the g-enumerator at the
roots of unit, one can show that

#X¢ = X((Y).

The other major approach used to prove that a triple
(X,C,X(q)) exhibits the cyclic sieving phenomenon

POLYNOMIALS AND THE ART OF COUNTING: SOME INSTANCES OF THE CYCLIC SIEVING PHENOMENON
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is algebraic, and it involves representation theory.
Such kind of proofs tend to be more elegant, and
they also give an insight into why a given triple
should exhibit the CSP. Conversely, an instance of
the CSP may suggest various new results in repre-
sentation theory.

We will now briefly explain how representation
theory can be used to prove an instance of cyclic
sieving. The reader who is not familiar with group
actions on vector spaces may skip a few lines.

In order to prove that a given triple (X,C, X (q))
exhibits the CSP via representation theory, we have
to find a vector space V with a distinguished basis
B ={e, | x € X} and a group G which acts linearly
on V. We alsoneed an element g € G whose action on
V can be easily described in terms of the basis B and
the group C = (c).

For instance, let us suppose that for every x € X
we have g - e, = e.,. Let us denote by y: G — C the
character of the G-representation V, defined by
x(g) = Tr(p,), where p, is the matrix associated to g.

Then for every d € Z we have #X' = y(¢g%). One
then only needs to show that X (¢%) = x(g?), and this
can be done using several tools from algebra.

We will now prove an instance of the CSP for the
set X = Py([n]) of subsets of [n]:={1,---,n} of
cardinality k.

The group S,, acts naturally on {1,---,n}. This
induces an action on X in this way: if S = {41, -, 4}
then oS = {o(%1), - -,0(ix)}. Then we consider the
cyclic group generated by an mn-cycle: take
c=(1,---,m) and C = (c). We only need a g-enu-

merator for X. An obvious choice is X(q) = [Z] .
q

Now we are ready to state our first real cyclic
sieving theorem, which is a special case of a more
general result proved by Reiner, Stanton and White
in their paper [10].

THEOREM 4.1. — The triple
n
(m([nn,«l,---,n», H )
q
exhibits the cyclic sieving phenomenon.

We propose two different proofs of this theorem,
a brute force one and an algebraic one.

Brute force proof.

Let’s start by counting fixed points. First of all
we need to introduce some notation. We recall that
every element o € S,, can be written as a product of
disjoint cycles: we will say that the set of numbers
that appear in a cycle is the support of the cycle. For
instance if in Sg we consider the permutation

o =(1,2,4)(3,5,6)

the supports of the cycles of ¢ are the sets {1,2,4}
and {3,5,6}. Now we need a lemma.

LEMMA 4.2. — Let 0 € S,,, S C [n]. Then oS = S if
and only if S is a disjoint union of supports of cycles

of o.

Proor. — If S is a disjoint union of supports of
cycles of g, then clearly S = S. Conversely, if S is
not a disjoint union of supports of cycles of g, then
there must be some cycle 7 of g, and some 7,j € [n]
such that1 € S,j ¢ S and 7(7) =j, so aS # S. O

COROLLARY 4.3. — If g € C is an element of order
d, then

n/d\ .
pxo | (ia) T
0 otherwise.
PROOF. — Since ¢ is a power of (1,---,n) of order

d, then the disjoint cycle decomposition of g consists
of n/d cycles of length d. If d does not divide k, then
no subset of k elements can be a disjoint union of
supports of cycles of g, so there are no fixed points. If
d | k, then the fixed points are the sets obtained by
choosing k/d of the n/d supports of cycles of g, which
can be done in the number of ways stated above. [J

We now have to evaluate X ({;), where {; is a root
of unit of order d. This is easily done using the
results shown in Section 3. Then the thesis immedi-
ately follows comparing Corollary 4.3 and Corollary
3.4. O

Algebraic proof.

This proof is less elementary and the reader who
is not familiar with multilinear algebra can skip to
the next section.
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At first we need a vector space with a basis
indexed by X = Py([n]). A quite natural choice is
V = A*Cn], because not only it has the right dimen-
sion as C-vector space, but it also has a basis
B = {es | S € X} indexed by X, where

eg = /\ e;.
eS
Notice that if M is a G-module, then A¥M is also a G-
module, with the action defined by

g1 A=+ Avg) = g(v1) A+ Ag(vk)

extended by linearity.

So our vector space V is a S,, module.

Let y = yy. At first we want to evaluate y(c?),
where ¢ = (1,...,n). Since ¢ has order n, we know
that its eigenvalues on C[n] are ¢, %,..., 0" 1 1.
Now, let vy, ..., v, be a basis of C[n] of eigenvectors
for c. Then {vg | S € X}, where

Us = /\vi,
eS
is a basis of V of eigenvectors for c. The correspond-
ing eigenvalues are CES , Where XS = ", ¢, there-

fore we have
ety =320,
SeX

Now we notice that the coefficient of & in the left
hand side of Theorem 3.2 is equal to > gy ¢*5. It
follows that

GRSSH

so we need to prove that, if ¢?S =S, then
¢l eg = Cd(k?)es. If this statement holds, in fact,
then C‘d(kgl) 2(c?) = #X, because the trace is in-
variant by base change. Since it agrees with the g-
binomial evaluation, the thesis will follow.

Let ¢S = S. Then ¢? is a product of d cycles of
length » =n/d, and S is a disjoint union of the
supports of b of these cycles, with k = br. We have
¢ eg = (—1)"(“1)63, so we have to prove that
(—1)2 = ¢4(*%). Tt holds

k
(@ = 1)" = [Jw— ")
i=1
so, evaluating at « = 0, we have (—1)b = (—1)de(k51),
and the thesis follows immediately. |

5. — Catalan numbers, Narayana numbers
and Kirkman-Cayley numbers

Before discussing some other instances of cyclic
sieving, we need to give a closer look to the Catalan
numbers, that were introduced in the Premise and
appeared also in the previous section:

1 2n
Cat(n) =i (n)
The Catalan numbers count an impressive amount
of apparently unrelated things. More than 200 dif-
ferent combinatorial interpretations can be found in
[18]: we now show one of these interpretations.

Let us say that there is a special all-you-can-eat
offer at the restaurant, for 10 euros only, and that
2n people go to the restaurant. Half of them have a
10 euros bill, while the other half have a 20 euros
bill. Unfortunately the cashier has no available
change, but if enough people with the 10 euros bill
pay first, then everything will be ok, right? In how
many ways can it be done? The answer is essen-
tially based on these omnipresent numbers, as we’ll
see in a moment. But let us start with a different
problem.

DEFINITION 5.1. — A Dyck word of length 2n is a
sequence consisting of n X’s and n Y’s, such that no
mitial segment of the sequence has more X’s than Y's.

For instance, YYXYXX is a Dyck word of length
6, while YYXXXY is not. How many Dyck words of
length 2% are there? Thisis related to the restaurant
problem: it is sufficient to interpret the people with
the 10 euros bill as Y’s, and the people with the 20
euros bill as X’s. Then the answer to the restaurant
problem is the number of Dyck words of length 2n
multiplied by (n!)* (because the people are all dif-
ferent, but the letters aren’t). Now it is time to count
Dyck words.

THEOREM 5.2. — The number of Dyck words of
length 2n 1s Cat(n).

PRrOOF. — Let us consider a sequence w of n X’s
and n Y’s that is not a Dyck word. Therefore there is
a first ‘bad’ X that violates the Dyck condition: let us
denote by w' the subsequence of w that starts after

POLYNOMIALS AND THE ART OF COUNTING: SOME INSTANCES OF THE CYCLIC SIEVING PHENOMENON 231



this bad X. Now we modify w by interchanging all
the X’s and Y’s in the subsequence w': we get a
sequence of (n + 1) X’s and (n — 1) Y’s. Conversely,
given a sequence y of (n + 1) X’sand (n — 1) Y’s we
can obtain, by reversing the procedure above (notice
that in y there must be a first bad X), a sequence w of
n X’s and n Y’s that is not a Dyck word.

Now we observe that the total number of se-
quences of 7 X’s and n Y’s is (*"), while the argu-
ment above shows that the sequences that are not
Dyck words are as many as the sequences of (n + 1)
X’s and (n — 1) Y’s, that is to say, (2.

Therefore the number of Dyck words is

(25 ) N (nzf 1)

that is equal to Cat(n), as it is shown by an easy
computation. O

DEFINITION 5.3. — A Dyck path is a lattice path
from (0, 0) to (n,n) that lies (weakly) above the line

x=1y.

Is it obvious that Dyck paths and Dyck words are
in a bijective correspondence, described as follows.
Let us consider a Dyck word w: if we start from (0, 0)
and increase the x coordinate by one each time we
read an X in w and the y coordinate by one each time
we read a Y, we end up with a Dyck path.

Now, we could go a little further. It’s obvious that
a Dyck path is composed of an even number of
segments. Given the integer k, with 1 <k <mn,
how many Dyck paths with exactly 2k segments
are there? The answer is given by the Narayana

number
N =L (1)(," ).

For a proof of this fact, together with more informa-
tions about Dyck paths, one can see Excercise 6.36
of [16].

A generalization of the Catalan numbers is pro-
vided by the Kirkman-Cayley numbers. To intro-
duce them, we go back to the problem of dissecting a
polygon by its diagonals, that was discussed in
Section 1 in the particular case of the triangulations
of a hexagon.

DEFINITION 5.4. — A dissection of aregular n-gon
with k diagonals is a way to draw k diagonals of the
n-gon such that any couple of diagonals do not in-
tersect in their interior (they may intersect in a
vertex of the n-gon, though).

THEOREM 5.5. — The number of dissections of a
reqular n-gon with k diagonals is the Kirkman-
Cayley number

1 m-3\/n+k-1
D(n,m_m( . )( ! )

One can find a short proof of this in [16] (Exercise
6.33); other direct proofs by bijections may be found
for instance in [4], [15], [7].

Notice that if k =n — 3, that is to say, if the
number of diagonals is maximal, the dissections
are in fact triangulations. One can check by a simple
computation that D(n,n — 3), the number of trian-
gulations of a regular n-gon, is equal to Cat(n — 2),
as we announced in Section 1. Even if we do not
prove Theorem 5.5 in this paper, we will suggest
later a way to prove that the Catalan numbers count
the triangulations of polygons, as a consequence of a
‘chain’ of bijections (see Remark 8.4). This is one of
the many simple proofs that can be found in the
literature.

6. — An instance of the CSP regarding
polygon dissections

As we said, the cyclic sieving phenomenon has
been observed many times on sets of combinatorial
objects equipped with a natural action of a cyclic
group. A very interesting instance involves polygon
dissections. It turns out that

D,(n,k) = [kjl]q [n];SL[n+Z—1L

is a polynomial with nonnegative integer coeffi-
cients, which is called the ¢-Kirkman-Cayley num-
ber.

This polynomial is the main character in the
following:

THEOREM 6.1 (Reiner, Stanton, White [10,
Theorem 7.1]). — Let X be the set of dissections of a
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reqular n-gon using k noncrossing diagonals. Let
X(q) :=Dy(n,k) and let be C = C, be the cyclic
group of order n acting on X by cyclic rotation of the
polygon. Then the triple (X,C,X(q)) exhibits the
cyclic sieving phenomenon.

As we know, when n = 6 and k = 3 the theorem
above deals with the set of triangulations of a
regular hexagon: therefore this set provides an
instance of the CSP with respect to the action of
the groups Cs of the rotations of the hexagon and the
polynomial D4(6,3) = Cat,(4). This was exactly our
starting example in Section 1.

We give here an account of the proof provided by
V. Reiner, D. Stanton and D. White, that is by brute
force enumeration. No representation theoretical
proof is known yet. The readers who are more
interested in a overview can skip to the next section.

Proor. — We will use Lemma 3.3 several times.
Let ¢ be a n' root of unit, and let d | n. At first we
evaluate D 4(n, k).

By straightforward computation, we have

(D(n,k) ifd=1,
Ln+12c—1J! ) B
SEEEEE
D.x(n, k)=
o (" = 1)! .
w 1fd=33ndd|k,
0 otherwise.

Now we need to count polygon dissections which are
z-fold symmetric. The evaluation is split in three
cases.

Case 1. d = 2 and k odd. In this case, a k-dissec-
tion must contain a unique diameter, which can be
chosen in 7/2 ways. The rest of the dissection is
completely determined by the dissection of the
(n/2+1)-gon with (k—1)/2 diagonals on either
side of the diameter. Hence the number of such
dissections is

_ ntk—1]|
ﬁD<ﬁ+1ak 1) T2 n—lE—32| kJ-H 1k
2 7\2" T2 ) Tz ]

as desired.

Case 2. d = 2 and k even. Centrally symmetric
dissections with p antipodal pairs of diagonals
(where the diameter count as a pair) were counted
by R. Simion in [14, Proposition 1.1], and their

number is
(n/Z - 1) (n/Z +p— 1)
p p '

For p = k/2, subtracting those with k¥ — 1 diago-
nals (so, with a diameter), we have that the
number of centrally symmetric dissections with
k diagonals is

n+k—2
5

n n k—1
§D<§+1’ 2 >:n_2nlc4|(lg')2
2 2 "\2°

which agrees with the g-enumerator evaluation.

Case 3. d > 3. In this case, it’s obvious that any
diagonal lies in a free orbit under the action of ¢"/¢,
so k must be divisible by d.

Whend | k, as we did for d = 2, we decompose d-
fold rotationally symmetric k-dissections into two
sets: those for which the central polygon is a d-gon,
and those for which is not. As in Case 1, the former
set is counted by

n._.(n k
aD<a+1,a—l>.

For the latter set, in [8, Proposition 4.2] an explicit
bijection with the set of centrally symmetric sub-
divisions of a 2n/d-gon with 2k /d diagonals is given,
and these are counted in Case 2. Totalling the
cardinalities gives

(e — 1)!

as desired. O

The instance of cyclic sieving provided by The-
orem 6.1 is especially interesting because it seems
to relate with a different, more complicated one, as
suggested also by the final remark in Section 1.
We will discuss it in Section 8, but let us proceed
step by step.

POLYNOMIALS AND THE ART OF COUNTING: SOME INSTANCES OF THE CYCLIC SIEVING PHENOMENON

233



7. — Two instances of the CSP regarding
noncrossing partitions

This section is devoted to set partitions, in parti-
cular to noncrossing partitions. We start by giving
the definitions, then we will show that noncrossing
partitions are enumerated by the Catalan and Nar-
ayana numbers. In this picture, two beautiful in-
stances of the CSP will appear.

DEFINITION 7.1. — A partition of a set X is a set
n=1{X,|a€ A} such that X, # 0, X, C X for all
aeA, X,NXp=0forall o #f and

U&:X

oA

Elements of a partition = are said to be blocks.
Elements in the same block are called blockmates.
If a block has only one element, it’s said to be a
singleton.

Let us denote by II(n) the set of the partitions of
{1,2,...,n}. Thereis a convenient way to represent a
partition 7z € II(n) on a disk, as follows. Draw n
points on a circumference, label them clockwise,
and then highlight the polygons whose vertices are
labeled with elements in the same block of 7.

ExampLE 7.2 — Take, as an example, the parti-
tion {{1,2,4},{3,5},{6}} and the partition {{1,6},
{2,4,5},{3}} in I1(6). These are represented below.

Given € II(n), let us denote as B;(r) the block of
7 such that i € B;(n).

DEFINITION 7.3. — A partition 7z € II(n) is called
noncrossing if, whenever we have 1<a <b<
¢ < d <mn,then

By(n) = Be(n), By(n) = Bqa(n)=
B,(n) = By(n) = Be(n) = By(7).

[
[ ]
o
(%]

4 3 1 3

Fig. 3. — A crossing partition (left) and a noncrossing one (right).

It’s pretty easy to check that a partition is noncross-
ing if and only if its blocks do not intersect when
represented on a disk (so the naming makes some
sense). In example 7.2, the partition on the left is
crossing, while the one on the right is noncrossing.

Let n,k,s > 0. We define three collections of set
partitions as follows.

NC(n) := {m € II(n) | = is noncrossing},
NC(n,k) := {r € NC(n) | = has k blocks},
NC(n,k,s) := {n € NC(n,k) | = has s singletons}.

We have the disjoint union decompositions

NC(n) = | | NC(n,k)

k<n

and
NC(n, k) =| |NC(n,k,s).

s<k

The set NC(n) of the noncrossing partitions on »n
elements has cardinality given by the Catalan num-
ber Cat(n). In fact there is a bijection between Dyck
paths and noncrossing partitions, that can be de-
scribed as follows. Let us label the “Y steps” of a
Dyeck path from 1 to » as we read them, and the “X
steps” with the greatest label among those already
assigned to some Y step, but not yet assigned to any
X step, asillustrated by Figure 4; then if we consider
the partition whose blocks are composed by the
labels of the sequences of consecutive X steps, we
get a noncrossing partition.

|
~

Fig. 4. — A Dyck path and its corresponding noncrossing
partition.

We also have that the set NC(n, k) of the non-
crossing partitions on 7 elements with & blocks has
cardinality given by the Narayana number Nar(n, k).
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Through the representation of partitions on a
disk, one may define a natural action of the cyclic
group C,, on the set of partitions, by rotation. There
are several known instances of cyclic sieving related
to this action.

The first theorem states an instance of the CSP
for the whole set of noncrossing partitions.

THEOREM 7.4 (Reiner, Stanton, White [10]). — Let
X = NC(n), and let C = C,, acting on X by rotation.
The triple (X,C,X(q)) exhibits the cyclic sieving
phenomenon, where
1 2n
[+ 1] g [ n } g

1s a polynomaal with nonnegative integer coeffi-
cients called the q-Catalan number.

X(q) = Caty(n) :=

As one could guess observing that the action by
rotation preserves the number of blocks, another
instance of the CSP appears.

THEOREM 7.5 (Reiner, Stanton, White [10,
Theorem 7.2]). — Let X = NC(n, k), and let C = C),
acting on X by rotation. The triple (X,C,X(q)) ex-
hibits the cyclic sieving phenomenon, where

1 |n n
X(q) = Nar,(n, k) := q<"_k)("_k_1)[ } [ ]
7 [n] ¢ k ¢ k-1 .
18 a polynomial with nonnegative integer coeffi-
cients called the q-Narayana number.

Actually, there is a third, even more important,
instance of cyclic sieving phenomenon related to
noncrossing partitions, involving the set NC(n, k,0)
of noncrossing partitions on 7 elements, with &
blocks and no singletons. We will discuss it in the
next section.

8. — A CSP instance that springs from
dissections, parenthesizations, rooted
ordered plane trees and noncrossing
partitions

This section is a ride between some beautiful
combinatorial objects that are related by a CSP
instance. We will start from polygon dissections

and by showing suitable bijections we will come to
consider first parenthesizations of lists and then
rooted ordered plane trees; in the end we will come
across noncrossing partitions with 0 singletons.

We start by remarking that dissections of poly-
gons are in bijective correspondence with parenthe-
sizations of the list of n numbers 12...7n. Let us
explain this more in detail.

DEFINITION 8.1. — A valid parenthesization of
the list of » numbers 12...7n with k pairs of par-
entheses is a way to put k pairs of parentheses
among the numbers such that each pair include at
least two elements, different pairs contain different
numbers, and the maximal pair (1...#) is included.

For example,

(((12)3)(45(67)))

is avalid parenthesization with 5 pair of parentheses
of the list of seven numbers 1234567.

LEMMA 8.2. — There is a bijective map between
dissections of a reqular n + 1-gon with k — 1 diag-
onals and valid parenthesizations of 1...n with k
pairs of parentheses.

Proor. — We define an explicit bijection as fol-
lows. At first, we label the edges of the n + 1-gon as
0,1,...,n,and then, for each diagonal, we enclose in
a pair of matching parentheses all the numbers
subtended by that diagonal on the side that does not
contain 0. Since it admits an obvious inverse, this
construction is bijective, so the thesis follows. O

EXAMPLE 8.3 — Take the dissection

6 0
/ 1

4 2

i}

Starting from 0 and going clockwise, the diagonals
are associated to the pairs of parentheses (12), (456),
(56), and (123456), so the dissection corresponds to
the parenthesization (((12)3(4(56))7).

POLYNOMIALS AND THE ART OF COUNTING: SOME INSTANCES OF THE CYCLIC SIEVING PHENOMENON
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REMARK 8.4. — Let us briefly explain why this
bijection can be used to show that the number of
triangulations of a n + 1-gon is Cat(n — 1). We 0b-
serve that in this case the number of diagonals is
n — 2, therefore all we need is a bijection between the
set of valid parenthesizations of 1...n with n — 1
pairs of parentheses and the set of Dyck words of
length 2n — 2, whose cardinality 1s Cat(n — 1) by
Theorem 5.2.

Now, given a valid parenthesization of 1...n
with n — 1 pairs of parentheses, first we remove the
number n, then we remove all the right parentheses,
and finally we substitute every left parenthesis with
a Y and every number with a X. For instance, if we
start from the parenthesization ((((12)3)(4(56))7),
we get ((((123(4(56 and finally the word
YYYYXXXYXYXX. The map associated to this pro-
cedure turns out to be the desired bijection.

A valid parenthesization of the list 1...n with k
pair of parentheses may be represented by a rooted
ordered plane tree with » leaves and n + k vertices,
where vertices represent pair of parentheses. In
particular, each nonleaf vertex represents the pair of
parentheses enclosing all the numbers that label the
leaves below that vertex, as in the following example.

ExampLE 8.5 — The rooted ordered plane tree
associated to the parenthesization

(((12)3(4(56))7)
1s the following:

We notice that this establishes a bijection be-
tween the set of dissections of an + 1-gon with k — 1

diagonals and the set 7 (n,k) of rooted ordered
plane trees with n leaves and n + k vertices that
have the following further property: there are at
least two edges that go down from every nonleaf
vertex.

Let us now take a tree in 7 (n, k) and relabel it
conveniently, so that it may be associated to a
noncrossing partition. We do this as follows: we
start from the root, and then we explore the graph
turning right every time, labeling the vertices as
we visit them (except the root vertex), as in
Example 8.6.

Finally, we associate such a graph with a set
partition of [n + k — 1] with k£ blocks and no single-
tons as follows: we associate each nonleaf vertex v
(including the root) with the block made by all the
numbers that label the vertices immediately below
v. It’s easy to check that such a partition belongs to
NC(n +k —1,k,0) and that the map is bijective,
since one can easily reverse the construction (this
bijection was described by N. Dershowitz and S.
Zaks in their paper [3]).

ExXAMPLE 8.6 — For the previous graph, the re-
sult is the following.

This graph is associated to the noncrossing parti-
tion of {1,...,11} with 5 blocks and no singletons
whose blocks are made by numbers immediately
below the same vertex. For example, the vertex
labeled by 1 has 2,5, and 6 immediately below it;
the vertex labeled by 2 has 3 and 4, and so on.

The result is the partition

{{1,11},{2,5,6}, {3,4}, {7,8},{9,10}}

represented below.
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THEOREM 8.7. — All the maps described above
define a bijection between the set of dissections
of a m+1l-gon with k—1 diagonals and
NC(n +k —1,k,0).

PRrOOF. — One can observe that each step admits
an inverse procedure. O

As a corollary of Theorem 8.7, we deduce that
NC(n,k,0) has cardinality D(n — k + 2,k — 1). It is
here that the CSP appears by means of the following
deep result:

THEOREM 8.8 (Pechenik, [6, Theorem 1.4]). -
Let X =NC(n,k,0), and let C=C, acting on
X by rotation. The triple (X,C,X(q)) exhibits
the cyclic sieving phenomenon, where X(q) =
Dy(n—k+2,k—1).

We can finally go back to the example discussed
in Section 1.

We notice that when n = 5 and k¥ = 4, Theorem
8.7 provides us with a bijection between the set of
triangulations of the hexagon and the set
NC(8,4,0). By this bijection we obtain an unex-
pected action of the cyclic group Cg on the set of
triangulations of the hexagon. By Theorem 8.8 we
know that this action of Cy satisfies the CSP with the
polynomial D,(6,3), that is equal to Cat,(4).

This explains why Cat,(4) evaluated at the 8-th
roots of 1 provides nonnegative numbers, which is
the ‘strange’ phenomenon observed in the end of
Section 1. The nonnegative integers that we com-
puted in Section 1 are the cardinalities of the sets of
fixed points with respect to the ‘hidden’ Cg action on
triangulated hexagons. More precisely, we deduce
that this action partitions the set of 14 triangulations
into three orbits, with respectively 8, 4, and 2
elements, while, as we know from Figure 2, the
natural action of the group Cg of the rotations of
the hexagon produces four orbits with respectively

6, 3, 3, 2 elements. More in general, as Theorems 6.1
and 8.8 show, the ¢g-Kirkman-Cayley numbers come
into play in two different CSP instances, that involve
two different cyclic groups.

The instance described in Theorem 8.8 is espe-
cially important not only because the g-enumerator
is the same that appears in the instance involving
dissections, but also because it can be used to deduce
Theorems 7.4 and 7.5. In [12], B. Rhoades provides
QINC(n)] with a S,-module structure which com-
mutes with the permutation one, thereby giving a
good proof of this instance of cyclic sieving.

9. — Suggestions for further readings

We point out to the interested reader the short
presentation “What is... cyclic sieving” by Reiner,
Stanton and White, in the Notices of AMS 2014 (see
[11]). To the readers who want to learn about more
instances of the CSP we suggest Sagan’s survey [13]
where one can also find an overview on several
connections with recent research. A survey that
gives more advanced information and more details
on the instances of the CSP described in this paper is
the master degree thesis [5]. Another instance of the
CSP regarding the ¢g-Catalan numbers can be found
in the short paper [21].

Finally, we would like to point out to expert
mathematicians that, among the recent advances
in this field, there are some deep and beautiful
instances of the CSP involving the generalizations
of noncrossing partitions and Catalan numbers to
the setting of complex reflection groups: to have an
idea of these developments, one can read the papers
[1],[2], [9] (and one can find further references in the
bibliography there).
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