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There are more things in heaven and earth,
Horatio, Than are dreamt of in your philosophy.

(W. Shakespeare - Hamlet)

Sommario: Esiste davvero una bellezza matematica della natura? E la rivoluzionaria idea di Turing puo
fornire una chiave per decifrarla? In questo articolo si cerca di rispondere a questi interrogativi illustrando la genesi,
le basi teoriche e limpatto scientifico della teoria di Alan Turing sulla “pattern formation”. Il quadro che emerge ¢
quello diunateoria ancora di grande attualita, che continua ad affascinare per la sua forte interdisciplinarieta e per
1 tamti progressi che ha permesso di ottenere sia in ambito matematico che in campo chimico e biologico.

Abstract: Does it really exist a mathematical beauty of nature? And the revolutionary Turing’s idea can be a
key to decipherit? Inthis paperwe try to answer these questions by describing the origins, the theoretical basis and
the scientific impact of Alan Turing’s theory on pattern formation. The picture that emerges is that of a highly
topical theory, that still fascinates because of its strong interdisciplinary features and for the many advances that it
has allowed to obtain in mathematics as well as in chemistry and in biology.

1. — Shapes of Nature: patterns everywhere

Nature — because of the enormous variety of its
shapes and structures — has always been the inspi-
ring muse of a great number of writers, painters and
poets. What is perhaps less known is that this great
variety of shapes and structures has as well surpri-
sed, intrigued and excited a large number of ma-
thematicians who have always tried to find regula-
rities in the great diversity of natural patterns in
order to decipher their mysteries.

To the question: What do fishes have in common
with the desert sand dunes?, who would not answer
right away: Nothing at all? Surprisingly, a careful
look at both, fishes and sand dunes, suggests that
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the answer is not so obvious. And it is not the only
surprising thing. Looking at the fishes, one cannot
be struck by the large variety of coat markings that
may exhibit stripe, labyrinthine or spot patterns.
Similarly, it is impressive to see the occurrence of
the same type of structures in landscapes also at
different scales.

The notable circumstance that — as for fish coat
markings and sand dunes — many patterns in nature
exhibit structures that are strongly reminiscent of
the ones found in many other different contexts, has
suggested the very fascinating idea that such scena-
rios — although belonging to very different worlds —
might be explained within a common theoretical
framework.
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Therefore, questions as “Do these patterns really
have anything in common?” and “How do these
patterns arise?” have produced stimulating resear-
ches in the mathematical field of nonlinear dyna-
mics, with the aim to understand and describe the
constitutive mechanisms underlying such kind of
processes.

In this regard, a first methodological answer was
provided by the Scottish biologist and mathemati-
cian Sir D’Arcy Wentworth Thompson that — with a
beautiful merging of natural history, biology, ma-
thematics and physics — put together in the monu-
mental book On growth and form [54], all that was
then known about patterns and forms in nature,
paving the way for the scientific understanding of
the mechanisms underlying plant and animal pat-
tern formation. In his book, Thompson suggestively
describes the problem of biological form at many
levels of organisation [54]

‘The waves of the sea, the little ripples on the shore,
the sweeping curve of the sandy bay between the
headlands, the outline of the hills, the shape of the
clouds, all these are so many riddles of form, so many
problems of morphology, and all of them the physicist
can more or less easily read and adequately solve’

and aims to apply mathematics and physies in a
descriptive way,

‘My sole purpose is to correlate with mathematical
statement and physical law certain of the simpler
outward phenomena of organic growth and structure
or form’

His precious description of the mathematical beau-
ty of nature deeply fascinated Alan Turing and
highly contributed to the birth of the mathematical
theory of morphogenesis.

2. — Alan Turing and pattern formation

After the Second World’s war, Alan Turing —
already well known in the field of mathematical logic
and cryptology — began working on the project
‘building a brain’ focussed on the construction of
an electronic computer, [49]. As a consequence, he
ripened a growing interest in the brain structure,

becoming more and more involved in the problem of
its biological development. The first results of this
interest appeared in 1948 and in 1950 when Turing
published two papers highlighting the relation bet-
ween (i) genes and brain structure [56] (i) human
mind and computer [57].

Two years later, Alan Turing published ‘The
chemical basis of morphogenesis’ [58], a paper that
is now considered a milestone for the mathematical
theory of morphogenesis. In this pioneering paper,
he clearly declares

‘The purpose of this paper is to discuss a possible
mechanism by which the genes of a zygote may de-
termine the anatomical structure of the resulting or-
ganisms’.

To lower the complexity of the problem, when
describing the zygote, Turing neglected both the
electrical properties and the internal structure of
the cell, taking initially into account only its chemical
and mechanical properties. However, also the

‘interdependence of the chemical and mechanical data
adds enormously to the difficulty’

so that Turing only considered cases where

‘the mechanical aspect can be ignored and the che-
mical aspect is the most significant’ [58]

and assumed genes (or proteins and enzymes) acting
only as catalysts for spontaneous chemical reactions,
which regulate the production of other catalysts.
Turing proposed a hypothetical chemical reaction
that could spontaneously break the symmetry in an
initially uniform mixture of chemical compounds.
Such symmetry breaking — triggered by random
disturbances — could occur because of the interplay
of two main processes — reaction and diffusion —
involving certain chemical ‘species’: reaction is the
process that creates and destroys such chemicals;
diffusion is the action of spreading chemicals
through the tissue. Turing hypothesized that if one
of the reacting pair of chemicals was a growth
hormone, the symmetry breaking would result in a
spatially non-uniform growth and hence to the de-
velopment of structures, i.e. spatial patterns. For
this reason, he evocatively called these chemicals
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morphogens, choosing the word morphogen %o con-
vey the idea of a form producer’, [58]. The related
chemical system is called a reaction-diffusion sy-
stem. Turing’s analysis showed that, by properly
choosing system Kkinetics, it was possible to obtain
a steady state that — although stable in the absence
of diffusion — could become unstable when diffu-
sion was introduced. Moreover the difference in
the diffusion rates of the chemicals was a necessa-
ry, but not a sufficient condition for such diffusion-
driven instability to occur. Turing’s results appea-
red in a certain sense counterintuitive since diffu-
sion usually acts as a stabilizing and a homogeni-
zing process. Hence, Turing’s revolutionary intui-
tion was to show that the interplay of two stabili-
zing processes can cause instability and lead to the
arising of spatial structures. This pattern forming
mechanism is now known as diffusion-driven in-
stability (or Turing instability) and the pattern is
said to emerge or self-organize.

Since Turing predicted the phenomenon of dif-
fusion-driven instability, it took almost 40 years for
Turing patterns to be created in a real chemical
reaction. In fact Turing patterns were first expe-
rimentally observed in 1990 by De Kepper’s group
[13] that carried out an oscillatory chemical reac-
tion involving chlorite and iodide ions and malonic
acid (CIMA) in a thin layer of gel that was conti-
nuously fed from opposite directions with fresh
reagents. Following Turing’s scheme: (i) the CIMA
reaction is described by an activator and inhibitor
system; (ii) different rates of diffusion have been
introduced in the CIMA reaction by conducting it
in a polymer gel. The CIMA’s reaction spatial
organization properties were later confirmed by
Ouyang and Swinney [47] who observed that the
patterns disappeared if the gel was warmed above
18°C and reappeared by cooling again the gel.
Moreover, by increasing the iodide concentration
or lowering the malonic acid concentration, they
showed that symmetry could be broken in different
ways so that stripe as well as spot patterns could be
observed.

This experimental observation of Turing structu-
res in a real chemical phenomenon determined a
renewed interest in Turing pattern formation as
shown by the large number of theoretical [28, 50],
computational [33, 60] and experimental studies in

the field [2, 32]. Turing’s diffusion-driven instability
is now universally recognized as one of the leading
mechanisms of spatial self-organization in reaction
diffusion systems and has become the subject of
extensive studies in a variety of different applied
contexts.

3. —- The mathematics behind Turing
patterns

Investigations on Turing patterns within the
reaction-diffusion modeling framework, often requi-
re the combined use of both the linear stability
analysis and the nonlinear bifurcation theory. The
simplest model that can give rise to diffusion-driven
instability involves two chemicals — the activator «
and the inhibitor v — and reads as:

(1) uw = DAw + F(w)
ot
with zero flux boundary conditions on a 2D rectan-

gular domain. In the adimensional system (1),

[ (1 0 ([ flu,v)
o= (0 2=Ga) =)

where: (i) w contains the system variables, i.e. the
concentrations u(r, t) and v(r, t) of the two chemicals
at the spatial position » = (x, %) and time ¢, on the 2D
rectangular domain; (ii) the diagonal matrix D con-
tains information about the diffusion coefficients, i.e.
d = d,/d, is the ratio between the diffusion coeffi-
cients d,, and d, of the two chemicals; (iii) F’ accounts
for the reaction kinetics through the source terms
f(u,v) and g(u,v); (iv) A stands for the Laplacian
operator 6% /0x? + 67/ Oy>.

Linear stability analysis allows one to derive
conditions in order that the homogeneous steady
state P, can undergo diffusion-driven instability.
Following Turing’s, one has hence to require that
P, is stable in the absence of diffusion but looses
its stability when diffusion is considered, [43].

The homogeneous equilibrium P, = w, = (U, v,)
verifies F'(w,) = 0 and its stability can be analyzed
by studying the system behavior when a small
inhomogeneous perturbation Jow is introduced in
the neighborhood of w,, i.e. w = w, + Jw. The per-
turbation dw can be written in terms of its spectral
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decomposition given by:

(2) ow(r,t) = Z ¢iehte T,
J

where k = (k1, ko) is the wave number vector and
r = (x,y) the spatial variable. Hence, the wave mo-
des k; rule the spatial part whereas the related
eigenvalues 4; = A(k;) account for the temporal part
and describe the growth rate of the perturbation. By
substituting (2) in (1) and retaining only the linear
terms, one obtains for each k; the equation:

451 = J e, v,) + DI | =0,

where J(u,, v,) is the Jacobian matrix evaluated at
the steady state P,. Such equation provides the
characteristic polynomial of (1):

3) 2+ [KP(1L+d) — tr(J (e, v))| A+ h(k?) = 0,
with
WE?) = ktd — K2(J% + dJS,) + det(J (u, v,)).

To predict the unstable wave numbers one makes
use of the dispersion relation A(k), obtained by
solving (3). The growing modes look like
Weik re k!t where W is the amplitude and A(k) is
the growth rate defined by the dispersion relation.
Hence, those wave numbers k characterized by
Re(i(k)) < 0 will decay whereas those such that
Re(A(k)) > 0 will grow exponentially. Among them
the wave number k.., corresponding to a maxi-
mum positive value of Re(A(k)), represents the most
unstable mode. At the onset of instability A(k.) =0
holds and, at bifurcation, a single mode with wave
number k. is driven unstable for d ~ d.. By (3), such
critical wavenumber is given by:

IS + deJ§ det(J (e, v,))
2 _ Y22 Y11 ey Ve
(4) kc - ch - dc

and the characteristic length of the pattern emer-

2 ..
gent at d =~ d, is 1. = k_n Here ij stands for the 7

entry of the Jacobian macltrix evaluated at the equili-
brium P, = (u.,v.) and d, is the critical value of the
diffusion coefficient d which is chosen as a bifurca-
tion parameter.

For the general system (1), it can be easily shown
that the Turing space — consisting of parameters

resulting in Turing instability — is bounded by the
following set of inequalities:

Ji+J5 <05 J)J5 — J7J5 > 0;

(5) e e \2
QI+ Ty >0, 2T Z;Jll)

> det(J (e, Ve)).
The first two inequalities are derived by stability
considerations on the homogeneous equilibrium P,
in the absence of diffusion, the others are obtained,
as (4), by considerations on the onset of instability
when diffusion is introduced. We refer to [43] and
references therein for the explicit derivation of the
system of inequalities (5). Moreover conditions (5)
also indicate that d > 1 is a necessary condition for
diffusion-driven instability to occur, meaning that
the homogeneous steady state P, cannot be unstable
with respect to small spatial perturbations if both
the chemicals have the same diffusion coefficients.

When conditions for diffusion-driven instability
are all met, because of the destabilizing effect of
diffusion, at least one mode is unstable with respect
to small spatial perturbations and grows exponen-
tially with time. The wave number k., represents
hence the mode that — growing faster than the
others — dictates the length scale of the emerging
spatial pattern as ¢t — oo.

The linear stability analysis described above —
which is developed under the assumption of small
perturbations of the homogeneous steady state —
turns out to be an efficient tool for the following
tasks: (i) determine the bifurcation thresholds for
the arising of diffusion-driven instability; (ii) identi-
fy the Turing space; (iii) approximate the characte-
ristic length of the resulting patterns. By applying
this technique one is instead not capable to gain any
information about the morphology of the resulting
pattern. For example, stripe patterns and spot
patterns are two typical morphologies for reaction-
diffusion systems in two spatial dimensions [43], but
to establish which one is selected by the system,
linear stability analysis is not enough and the use of
nonlinear bifurcation theory is required.

In Turing systems, bifurcation analysis can be
fruitfully employed to investigate possible qualita-
tive changes in the stability of different patterns
when a bifurcation parameter — typically the distan-
ce to the onset — is varied. The starting idea is to
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express the system variables w = (u,v) as a super-
position of unstable and stable Fourier modes:

w=woy Wi +Wre ™,
k:

]

where W; and W]* are the amplitudes of the modes k;
and —k; respectively. The unstable modes have slow
dynamics whereas the stable modes relax quickly.
Near the transition from a homogeneous steady
state towards a pattern, it is hence possible to derive
a reduced description of the resulting patterns in
terms of their amplitude. The time evolution of the
amplitudes W; of the unstable modes k;, with
j=1,...,n is in fact described by the following
general set of n nonlinear differential equations

aw;
(6) g = Wi L(Wi, Wa, ..

, Wa).

In system (6) the linear part accounts for the linear
growth predicted by the positive eigenvalue of the
linearized system, see equation (3), whereas the
nonlinear terms fj(Wi,Ws,...,W,) describe the
nonlinear coupling of the unstable modes. The next
step will be to derive the normal form for the
amplitude equations related to a particular morpho-
logy, e.g. spots or stripes, and determine the coeffi-
cients of the normal form in terms of the system
parameters. To this aim, various complex mathema-
tical techniques can be applied to detect the exact
form of the nonlinear terms f;.

One of these methods is the weakly nonlinear
analysis which has been employed as a mean to
predict and characterize the emerging patterns [6,
19, 19, 20]. Its key idea is that — close to the
bifurcation value — the pattern evolves on a slow
time scale so that, by using the method of multiple
scales, one can derive an evolution equation for the
amplitude of the pattern. The system variables and
the bifurcation parameter are hence expanded in a
small parameter ¢ and the coefficients of the ampli-
tude equations are then obtained through the solva-
bility conditions of the resulting linear differential
equations at different degrees of e.

An alternative approach is based on the center
manifold reduction [9, 10, 24] that essentially ex-
ploits the decoupling between the fast dynamics of
the decaying components of the system, and the
slow dynamics of the marginal stable modes on the

center manifold. System dynamics near a bifurca-
tion can be hence suitably described in a low-dimen-
sional space of amplitudes through the so-called
amplitude equations. In fact, in the neighborhood
of a local bifurcation, the motion of the system
variables in the r-dimensional center manifold W*
can be described by » amplitudes y;, 1 =1,...,7,
which are coordinates of a point y in the center
subspace E¢ with respect to a basis of eigenvectors
(related to the critical eigenvalues) of the linearized
vector field. A set of differential equations for the
amplitudes ¥; and a transformation A(y) from E° to
W¢ can hence be derived to describe the dynamical
evolution of the system variables on the center
manifold. Once the general amplitude equation is
obtained, the relevant coefficients can be determi-
ned directly in terms of the original vector field and
the amplitude equations can be used to capture the
qualitative behavior of the system, see i.e. [24, 25,
30]. At this point, investigations on the stability
properties of the morphology under study can be
easily performed by using the linear stability ana-
lysis on the obtained system of the amplitude equa-
tions. For further details on nonlinear bifurcation
methods, we refer to specific literature on this topie
[15, 34].

The methods presented above allow one to gain
insight into the essential mathematical features of
Turing pattern formation, enabling to detect the
bifurcation thresholds for the arising of the diffu-
sion-driven instability phenomenon and to characte-
rize the morphological structures expected at the
onset of instability. In addition, topological methods
as the Leray-Schauder degree theory can also be
used to prove the existence of non constant steady
states as in [55, 63] and hence to deduce the exi-
stence and non-existence of patterns. The combined
use of the bifurcation and topological theories allows
a more complete characterization of the emerging
patterns. In fact, bifurcation techniques gain in-
sights into the rough spatial profile of the patterns
even if such results only hold in the neighboring of
the bifurcation point whereas the Leray-Schauder
degree theory provides results holding for a larger
parameter region, but with none information about
the pattern profile. To make the picture even more
complete, rigorous computational methods — as the
one proposed in [7] — can be used to compute global
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bifurcation diagrams of non constant steady states
for systems of PDEs allowing to answer specific
questions about the number of non constant co-
existing steady states or about the behavior of the
solutions on the global bifurcating branches.

4. — Evidences from chemistry, questions
from biology

To evaluate if Turing mechanism can actually be
considered as a common underlying process promo-
ting pattern formation in physies, chemistry and
biology, a methodological shift in the usual way of
employing mathematics is strongly required. At this
regard, the different role played by chemistry and
biology is particularly enlightening.

As just stressed in the previous Sections, the first
experimental validation of Turing’s theory of pat-
tern formation was obtained — although 40 years
later Turing’s intuition — by the means of the CIMA
chemical reaction. From then on, a great deal of
work has led to the validation of the ideas of Turing
in the chemical context (i.e. [17, 50, 60, 61]) and, very
recently, also whithin the alloy electrodeposition
framework (i.e. [3, 4, 31]) providing tangible exam-
ples of the fruitful interplay between mathematical
modeling — with its analytical and numerical results
— and the experimental validation of those results.
Asinterestingly stressed in [61], within the chemical
context, experiments can be performed under stric-
tly controllable conditions and the relevant parame-
ters can be manipulated in order to generate pat-
terns. As a consequence, chemical systems can
provide rigorous experimental validation of Turing’s
theoretical predictions and have become a privileged
tool in order to elucidate the fundamental issues
about pattern formation.

Differently from chemistry, the existence of Tu-
ring patterns in biology has been a long-debated
question. However, also in the field of biology, much
progress has recently been made in this direction.
For example in [46, 59] a possible application of the
Turing mechanism is pointed out at least for three
biological situations. The first one is the feather bud
formation in birds whose patterning was investiga-
ted by Jung et al. [27] that identified a number of
activators and inhibitors (morphogens) involved in

the process, hence suggesting a possible explanation
of this phenomenon in terms of the Turing mecha-
nism. A further example is given by hair follicle
patterns of mammals that have been theoretically
related to the Turing mechanism by a number of
well established mathematical models, i.e. [11, 44],
even if the existence of specific morphogens has
been clearly stated only quite recently. In fact, by
using a combined experimental and computational
modeling approach, Sick et al. [53] suggested a
couple of activator-inhibitor (i.e. WNT and DKK)
functioning as morphogens to determine the hair
follicle spacing in mice and provided in vivo corro-
boration of the reaction-diffusion mechanism for
epidermal appendage formation. In addition Mou
et al. [41] identified the Ectodysplasin receptor
(Edar) and its inhibitor, the bone morphogenetic
protein (BMP), as a further activator-inhibitor pair
in follicles localisation. Finally, for the Drosophila
melanogaster, a number of morphogens were iden-
tified just as the components of the gene control
networks involved in patterning, [46, 59]. A further
interesting case study regards the investigations in
vitro of the self-organising properties of multipoten-
tial adult vascular mesenchymal cells. In the re-
search performed by Garfinkel et al. [21], the pair
BMP-2 and MGP were qualitatively recognized as a
Turing morphogen pair and it was shown that — just
as predicted by the Turing model — cells may
aggregate into stripe, spot and labyrinthine pat-
terns according to the different manipulations per-
formed on the system, [40].

Along with these advances about morphogens
and their identifications, much of the progress in
the biological field is also due to the new role played
by the mathematical modeling. In fact, just as it
happened before in the case of the chemistry, ma-
thematical models have recently been combined
with the experimental observations also in biological
systems. In particular, mathematical models have
been recognized as dynamic tools that can actively
support the experimental activities and provide a
platform to test old and new hypotheses. In this
regard, the case of the Drosophila melanogaster
appears to be quite enlightening since mathematical
models for Drosophila oogenesis have suggested
experiments that otherwise would have not been
thought (and performed) and have hence highly
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improved the current understanding of the under-
lying biology, [46, 52]. On the other hand, both
experiments and biological observations can also
suggest further refinements to the existing mathe-
matical models so that they can become less rough
approximations of the complex biological realities
they attempt to describe.

For a long time Turing mechanism was deemed
as not capable to provide reliable spatial patterns
under normal biological variation, [1, 8]. The main
criticism in considering Turing models as possible
pattern generators within the biological framework,
has been the lack of robustness of the related Turing
structures because of their sensitivity to the initial
conditions.

It is in fact well known that, for a given set of
system parameters, reaction-diffusion systems may
exhibit a multiplicity of spatial structures and can
hence be very sensitive to noise and stochasticity in
the initial conditions. As a consequence, the resul-
ting patterns lack in robustness and a precise con-
trol of the initial conditions is necessary in order a
specific pattern to be selected. Surprisingly, in some
cases, this pattern sensitivity to the initial conditions
may not be a problem as for example in models for
animal coat markings, [42]. In fact looking at pig-
mentation patterns, it is striking to observe that
different members of the same species — although
sharing a common pattern typology (e.g. stripes in
the case of the zebras) — display their unique own
pattern, just like the fingerprints for human beings.
In this case, a large variability in patterns is highly
desirable. In other contexts, as for the limb deve-
lopment, such sensitivity may become a big problem
that can, however, be partially overcome by consi-
dering the influence of domain growth on pattern
forming systems. This substantially corresponds to
enrich the Turing paradigm with a more realistic
feature since growth is one of the key processes in
development and can have crucial effects on the
occurrence of spatial heterogeneity since it is capa-
ble to change the dynamics of the patterning me-
chanisms, [37].

In particular, Kondo and Asai [29] investigated
the fish pigmentation patterns of the marine angel-
fish Pomocanthus as its size doubled and indicated a
Turing-like mechanism as responsible for the deve-
lopment of the skin pigmentation. Starting from this

work, the effects of growth in reaction-diffusion
models for fish skin patterns have first been inve-
stigated by the means of numerical simulations [48,
62]. A large amount of theoretical work has then
focused on this topic gaining evidences that, when
coupled with growth, robust pattern formation can
occur without a sensitivity to the initial conditions,
via a cascade of instabilities with bifurcations driven
by the evolution of the domain [12, 36, 39]. The
process of growth in fact can enhance a selection of
certain patterning modes at the expense of the
others and, in addition, enables the models to pro-
duce a dynamics much richer than in the case of
fixed domains. Domain growth can hence be consi-
dered as a mechanism responsible for increasing
robustness in pattern formation.

Within the biological framework, the Turing
mechanism was also criticized with regard to the
scale-invariance question. In Turing patterns, the
number of spots or stripes is in fact proportional to
the system size, whereas in many biological systems
such number is often invariant against the change of
the size and the system exhibits a proportionality of
the scale of the pattern to the system size. Biological
examples in this direction are offered by patterns in
Hydra and Dictyostelium discoideum slugs or in the
development of Drosophila melanogaster [22, 26].

To obtain scale-invariance, different mecha-
nisms have been proposed: for example, Othmer
and Pate [45] showed that scale-invariance could
be achieved by the means of a biologically plausi-
ble modification of the Turing model. They requi-
red morphogen diffusivities to be proportional to
L? (where L is the system-size) showing that this
could be obtained if the diffusion constants depend
on the concentration of a diffusible regulatory
species produced at a constant rate by all the cells.
Hunding and Sorensen [23] similarly discussed a
simple mechanism to explain such concentration-
dependent diffusion by an auxiliary chemical fac-
tor. In [26], a possible mechanism of proportion
regulation is discussed based on the control of the
reaction rate in reaction-diffusion systems. This
can be obtained by the introduction of a morpho-
gen which itself does not convey positional infor-
mation [64], but works as a carrier of information
on the size of the system. It is hypothesized that
the concentration of this morphogen changes with
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some power of the system size thereby influencing
the rate of reaction in the Turing system and
producing scale invariance.

More recently, the problem of identifying those
mechanisms that regulate scaling of patterns has
been widely reviewed and discussed in [59].

In particular, the control of the pattern scale by a
size-sensor molecule — a modulator that regulates
the reaction and transport characteristics of the
morphogen — has been proposed as a generic me-
chanism able to produce scale invariance. Modula-
tors can be used, either in active or passive way, to
adjust the characteristic time scales of diffusion and/
or reaction in a size-dependent manner in order to
achieve the proper proportions of morphogen pat-
terning. Here, in regard to the scale-invariance
question, it is interestingly deduced that

‘the scaling of spatial patterns during development
can result from any of a number of diverse me-
chanisms. Despite the fact that the details of each
scaling mechanism vary, they all must incorporate size
information into the modulation of transport, reaction
and production rates appropriately, in order to adjust
the intrinsic scale and amplitude of the patterning
species. Proper scaling requires at least one species
that properly encodes the size of the tissue being
patterned in order that the distribution of other spe-
cies be scale invariant’, [59].

In conclusion, the lack of robustness due either to
the patterns sensitivity to the initial conditions or
to their scale-dependence, can be satisfactorily
overcome by acting on the Turing model through
suitable refinements that, increasing the complexi-
ty of Turing’s paradigm, drive the system towards
an higher degree of realism. This is not surprising
since Turing himself was well aware that, because
of the many simplifications, his model represented
a severe approximation of a real biological system:

‘This model will be a simplification and an idealization,
and consequently a falsification. It is to be hoped that
the features retained for discussion are those of
greatest importance in the present state of knowled-
ge’ [58]

Turing knew that the attempt to fully explain
something as complex as the patterning in develo-
ping systems with a simple two-equation model was

rather utopian and that further more realistic
refinements would be needed to deeply understand
the general features related to the growth of form
in nature.

5. — The scientific impact of Turing’s theory

Self-organisation is currently a widespread
concept in chemistry, biology and ecology but
questions as ‘Do chemical, biological and ecologi-
cal patterns really have anything in common?
still represent an open challenge. Although the
role of the Turing mechanism in chemistry has
been well elucidated, in the biological context the
Turing model has challenged — and continues to
challenge — several generations of biologists as
well as of mathematicians.

Biologists faced the arduous task to prove the
existence of morphogens in biological systems and
still have the challenge to corroborate or contradict,
often with a complex series of experiments, the
theoretical findings coming from Turing’s theory
and from its ramifications. Mathematicians have
been challenged by the complexity arising behind
the apparent simplicity of the Turing model: an
amazing variety of spatial and spatio-temporal pat-
terns has in fact been detected in the many mathe-
matical models exhibiting the Turing mechanism
and the development of complex mathematical tech-
niques has been necessary to fully characterize the
emerging dynamics. The nonlinear bifurcation theo-
ry, the fully nonlinear theory of Turing patterns as
well as the computational methods developed to
rigorously characterize the bifurcation branches
are clear examples in this direction. Furthermore,
the problem of Turing pattern formation on growing
domains as well as the one of identifying the me-
chanisms that regulate scaling in Turing patterns
are two challenging tasks which have recently sti-
mulated much theoretical and computational works.

However, along with the many still open challen-
ges stemming from Turing’s original idea, what is
astonishing in Turing’s theory is the strongly inter-
disciplinary nature of the resulting research. We are
now well aware that in chemistry, as well as in
biology, the development of Turing’s theory has
caused a paradigm shift in the usual way of ‘thin-
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king’, making the fruitful interplay between mathe-
matical modeling and experimental verifications an
essential matter of fact. In this way of making
science, experiments have stimulated the arising of
new mathematical problems and mathematical theo-
ries have suggested to carry out experiments that
otherwise would not have been perhaps even
thought.

In a certain sense, we can say that Turing’s
theory acted as a driving force to bring the scientific
methodology proposed in physics by Galileo — which
was based on the innovative combination of experi-
ments and mathematics [51] — beyond the bounda-
ries of physics, allowing the galilean approach to
become a concrete paradigm for the scientific pro-
gress both in chemistry and in biology. In this
paradigm, nature and maths must be the main
actors of the same scientifie discovery process. In
his beautiful book ‘Il Saggiatore’, Galileo already
wrote about this strange pair, nature and maths:

‘Philosophy [nature] is written in that great book
which ever is before our eyes — I mean the universe —
but we cannot understand it if we do not first learn the
language and grasp the symbols in which it is written.
The book is written in mathematical language, and the
symbols are triangles, circles and other geometrical
figures, without whose help it is impossible to com-
prehend a single word of it; without which one wan-
ders in vain through a dark labyrinth.’ [18]

The lesson emerging from the talented Turing’s idea
and from the fascinating research stemming from it
is that, in this great book ‘which ever is before our
eyes’, the mathematical beauty of nature is still far
from being fully revealed so that questions as ‘What
do fishes have in common with the desert sand
dunes?’ no longer seem so obvious and are actually
waiting for reliable answers.
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