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Sommario: I cosiddetti “modelli di Kuramoto”, e altri simili ad esst, rappresentano un modo paradigmatico
per descrivere una serie di fenomeni di sincronizzazione, cioe stati a cui possono passare sistemi incoerenti, come
capita spesso nelle transiziont di fase e in una moltitudine di cast, che vanno dalla Fisica alle Neuroscienze, dalla
Biologia all’Ingegneria e persino alle Scienze Sociali. Questi fenomeni spiegano, almeno qualitativamente, una
grande varieta di processi complessi. In questo articolo, passiamo in rassegna tali modelli e la matematica

sottostante, mostrando alcune delle loro peculiarita.

Abstract: The so-called “Kuramoto models” and similar ones represent a paradigmatic way to describe a
number of synchronization phenomena. These are states into which incoherent systems may go, often as it
occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology
to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex
processes. In this paper, we review such models and the underlying mathematics, showing some of their

peculiarities.

1. — Introduction

The so-called “Kuramoto models” (and similar
models), that is, systems of ordinary differential
equations (ODEs), describing coupled oscillators,
seem now to be ubiquitous. They describe rather
general interactions in populations of “units”, which
can be interpreted as oscillators undergoing syn-
chronization, and hence exhibiting a collective be-
havior. It turns out that such synchronization may
explain a number of phenomena pertaining to Biol-
ogy, Medicine, Neuroscience, Chemistry, Physics,
Engineering, and even Social Sciences.

Accettato: il 18 gennaio 2016.

We recall the picturesque story according to
which the biologist Hugh M. Smith, in 1935 ob-
served, in Thailand, swarms of a certain kind of
fireflies [male Pteroptyx malaccae fireflies], one
insect virtually on each leave of a certain tree,
flashing in synchrony, in the dark. What Smith
reported is recorded in the literature. He wrote:
“Imagine a tree 35 to 40 feet high thickly covered
with small ovate leaves, apparently with a firefly on
every leaf, and all the fireflies flashing in perfect
unison at the rate of about three times in two
seconds. Between flashes the tree was in complete
darkness. Imagine a tenth of a mile of river front
with an unbroken line of Sonnerati trees with fire-
flies on every leaf flashing in synchronism, the trees
at the ends of the line acting in perfect union with
those between.”
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However, other similar, though less spectacu-
lar phenomena of collective synchronization were
observed in a number of cases: the old famous
Huygens’ synchronization of pendulum clocks
hanging on a wall, crickets chirping in unison,
pancreatic beta-cells and pacemakers heart cells,
epileptic seizures in the brain, menstrual cycles in
groups of women, Josephson junctions, lasers, and
antennas arrays, rhythmic applauses, and many
more.

While, likely, such models may not provide de-
tailed information on specific concrete problems,
e.g., in Medicine and Engineering, they are however
quite powerful in shedding light on fundamental
mechanisms governing a variety of collective phe-
nomena. Indeed, developments and many applica-
tions of Kuramoto and similar models have appeared
even recently. We recall complex networks of
coupled oscillators, in particular the Internet and
the World Wide Web, coupled biological and chemi-
cal systems, neural networks, social interacting
species, computational neuroscience, dynamical or-
ganization of resting-state activity in the brain,
microwave generation in magnetic nano-structures
driven by spin-polarized current, synchronization of
oscillations across space in ecology. But these are,
again, only few examples.

From the mathematical standpoint, these mod-
els include both, “molecular dynamics”-type mod-
els, when we face finitely many (though very nu-
merous) oscillators, that are described by systems
of ordinary differential equations, as well as by
certain partial differential equations (PDEs), typi-
cally describing populations of infinitely many os-
cillators. More precisely, the former can be formu-
lated in terms of systems of deterministic or sto-
chastic ODEs, the latter as integroparabolic differ-
ential equations. In this paper, we will confine
ourselves only to very few aspects, according to
the taste and the specific contributions of the
author and his collaborators.

The widespread popularity of Kuramoto and
similar models in so many fields is witnessed by
the to date 1,355 Google Scholar citations (876 in the
Web of Science) of the review paper published in the
Rev. Mod. Phys. in 2005 [6]. This review already
covered research made over the previous 28 years,
with 225 references.

2. — The original Kuramoto model

In 1975, Y. Kuramoto [15, 16], motivated by the
behavior of biological and chemical oscillators, pro-
posed a mathematical model to describe the dy-
namics of their synchronization, introducing the
system of ODEs

) KX
(1) Hi:wi+NZsin(0j—9i), i=1,2...,N,
j=1

where N is the number of the limit-cycle oscillators,
the ith oscillator having its natural frequency w;,
and K > 0 being a constant sizing the coupling
strength (the strength of the nonlinearity). Clearly,
if we set K=0 in (1), we obtain a simple set of
“phases”, 0; = 0;(t),i = 1,2,...,N, evolving trivially
(and independently on each other) as 0;(t) =
w;t + 0;(0). The effect of a nonzero value of the
parameter K is to couple all such phases, and since
this coupling is nonlinear, the ensuing phenomena
may be expected to be rather complicated. Adopting
a terminology borrowed from statistical mechanics,
we can say that the model described by (1) is a mean-
field model, since each oscillator is affected by the
average of all the others.

More general models, often also called “Kura-
moto models”, can be found in the literature, for
instance with K/N replaced by K; ;/N (hierarchi-
cal, in particular, first-neighbor coupling) under
the sum.

As we said, with no coupling, i.e., setting K = 0,
all oscillators run independently at their natural
frequency, and even when the coupling is suffi-
ciently weak, the oscillators run incoherently. Be-
yond some threshold, i.e., when K > K., being K.
some critical value, it is found that collective syn-
chronization emerges spontaneously. This is a par-
tially synchronized state, and full synchronization
may occur in the limit when K — + oo.

It is convenient to associate to such ODE model
the complex-valued “order parameter”, defined by
the relation

4 1M
(2) ry ey = N Z el
J=1

where ry = ry(t) and yy = wy (t) are amplitude and
phase of the order parameter. By this, we can write
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the system in (1) in the more compact form

(3) 0; =w;+Krysin(yy —0;), i=1,2,_...,N.

Note that here ry and yy depend on the 0;’s, i.e.,
they are functionals of the 6,’s,

When all oscillators run independently, i.e., in-
coherently, then #y =0. Otherwise, whenever
ry > 0, its value provides an indication, a measure
of the degree of coherence; 1y = 1 means full syn-
chronization, usually achieved only in the limit
K — + o0o. Transition from incoherence (ry = 0) to
collective synchronization (ry > 0) resembles a
phase transition in statistical physics.

As for the case of infinitely many oscillators, it is
convenient to define a distribution (a density) func-
tion, say p = p(0,w,t), of phases, satisfying the
“continuity equation”,

op Owp)
) o oo
where we set
(5) v:=w+ Krsin(y —0).

This PDE describes the evolution of the system
obtained in the limit N — oo, and should be solved
along with a normalization condition,

+ 0o
(6) J o0, 0,8)d0 = 1,

— 00

and an appropriate initial condition. Actually, only
normalization of the initial value, p(0, ®,0), should
be required, while normalization of p at later times
follows. This hyperbolic PDE yields, however, in-
finitely many solutions, and, as we will see below, it
represents the singular limiting-case when a small
amount of noise is introduced into the system. In
fact, in the latter case the PDE will become para-
bolic.

It should be recalled that, historically, before
Kuramoto, Robert Adler, “the man who invented
the TV remote control”, in 1946 considered a single
nonlinear oscillator with sinusoidal nonlinearity like
(7) ﬁzdwo—%;}ésina,

(“Adler’s equation”), to describe locking phenom-
ena [7], in a circuit containing a vacuum tube, but

it was generalized in 1993 by R.A. York to include
a number of similar coupled oscillators. Some-
times, in the literature, some people still refer to
“Adler’s type systems”. It may be a nice curiosity
to recall that Robert Adler, who held 180 patens
for electronic devices, was the man who invented
one of the first kinds of wireless TV remote
control. Adler’s idea was to use sound waves, and
later ultrasonic waves, to transmit signals to the
TV set. According to an anecdote, he had the idea
while he was sitting in the living room, in front of
his TV set, while his wife was in the kitchen to get
him a bier. Even Alan Turing in 1952, used sinu-
soidal couplings in studying the chemical basis of
morphogenesis [27].

Noise, due to a variety of reasons, might affect
the system of oscillators in equation (1), which
then takes the form of a system of Langevin
equations,

) KX
(8) 0;=w; + NZsm 0; — 0;) + &),
j=1
1=1,2,...,N,
where the &’s are suitable stochastic processes. If
these are chosen to be independent identically dis-

tributed white noises, they have mean and correla-
tion

9) (&) =0,

where the parameter D > 0 sizes the strength of the
noise.

(Ci(8)¢;(s)) = 2D 9;;0(¢ — s),

3. - Infinitely many noisy oscillators:
The Kuramoto - Sakaguchi model

The previous equations in (8) are (Ito-type) sto-
chastic differential equations. We can associate to
that system the parabolic PDE [20, 21, 22]
op % Owp)

(10) o= Por o0

satisfied by the oscillators’ distribution function
[the probability density function], p(0,w,t); p is
also called a “one-oscillator” distribution function.
This PDE is a nonlinear Fokker-Planck equation,
sometimes called Vlasov-McKean equation, and is
obtained in the thermodynamic limit, N — cc.
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From the mathematical standpoint, we now face a
nonlinear integrodifferential parabolic PDE. An
initial value,

(1)

should be prescribed, besides 27-periodicity (in 6),
and normalization of p, (while that of p at later
times can be proved).

The order parameter is now defined as

p(07 , O) = pO(H? CO),

21 +00
re¥ .= J J ep(6,t, w) g(w) db dw,

0 —o0

(12)

where g(w) is the natural frequencies distribution,
and hence the drift term in the PDE becomes

(18) v=20,t,0) = w+ Krsin(y — 0).

Note that this PDE replaces the aforementioned
hyperbolic PDE in (4), and may be considered
more satisfactory, being more realistic. Some nu-
merical treatment of such problems was conduced
in [23, 5].

In all PDE models, it is understood that the
frequency, w, should be picked up from the sup-
port of the given distribution g(w). For such rea-
son some authors refer to a set of “randomly”
distributed frequencies, which can be a bit mis-
leading. Again, » =0 (and p = 1/27) means inco-
herence, while r > 0 represents some degree of
synchronization. The occurrence ry = 1 means full
synchronization, usually achieved only in the limit
K — +o0.

Linear stability of the incoherent state was
studied by Strogatz and Mirollo in [24]. They
showed that the behavior earlier conjectured by
Kuramoto that, in the infinite-N limit, the incoher-
ent solution is stable for all K < K, and becomes
unstable for K > K., was correct. In practice, this
means that a partially synchronized state exists
and is (linearly) stable when K > K.. Moreover,
the case of infinite-N limit was found to be singular
with respect to the addition of a small amount of
noise, since in presence of the latter, when K < K,
the incoherent solution switches from (neutrally)
stable, as it was, to linearly stable: in presence of
noise, the solution with »(f) = 0 is unique, while
there are infinitely many solutions in the absence
of noise.

4. - Bimodal frequency distributions

The interesting, richer, case of bimodal fre-
quency distributions was investigated in [12, 13,
1]. In [24], the natural frequencies distribution
was considered symmetric and one-humped. In
[12, 13, 1] the nonlinear stability of incoherence
was studied, along with various bifurcations. In [1],
bimodal, even “asymmetric” bimodal distributions
were considered.

In fig. 1, we show the stability regions for the
incoherent solution in the in the parameter space
(K/D,wy/D), for the bimodal distribution g(w) =
[0(w + wp) + d(w — wp)]/2. Above the parabolic line
but on the left of the vertical line, incoherence is
linearly stable, while it is linearly unstable else-
where in the first quadrant, see [12].

In fact, when the natural frequency distribution is
bimodal, new features appear. It turns out that when
the coupling is sufficiently small, namely K < 2D, the
incoherent solution is linearly stable for all values of
@y, while it becomes linearly unstable for sufficiently
large couplings, K > 4D. For intermediate values of
the coupling, i.e., for 2D < K < 4D, the incoherent
solution may become linearly unstable in two ways:

@) for wy > D, a pair of complex conjugate eigen-
values cross the imaginary axis onto the right half-

3.0
2.0 r =
e
S stable
unstable
1.0 - B
0.0 =~ *
0.0 2.0 4.0 6.0 8.0

K/D

Fig. 1. — Stability regions for the incoherent solution in the
parameter space (K/D,wy/D), for the bimodal distributions
g(w) = [d(w + wp) + (w — wp)]/2. Above the parabolic line but
on the left of the vertical line, incoherence is linearly stable,
while it is linearly unstable elsewhere.
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plane, as K becomes larger than the critical value
K. :=4D.When K = K., abranch of solutions with a
time-periodic order parameter bifurcates from the
incoherent solution.

(ii) for wy < D, one eigenvalue becomes positive
as K becomes larger than some K, being K, /D :=
2(1+ wf/D?). A stationary state branches off the
incoherent solution at such value, K.

5. — Analyzing the Kuramoto-Sakaguchi PDE

A basie rigorous analysis on the Kuramoto-Saka-
guchi model, represented by the integroparabolic
PDE,

p Bdwp) Fp

(14) a0 o
where
(15) vi=w+Krsin(y —0)

(see (10), (13)), requiring 2z-periodicity in 6, and
prescribing an initial value as well as its normal-
ization, i.e.,

+ oo
J p0,w,t=0)d0 =1,

— o0

was made in 1999, 2000, 2004, and in 2014, see
[17, 18, 19]. In [17], existence and uniqueness of
solutions to such a problem were established, while
in [18] time-independent estimates were derived
and a comparison theorem for certain nonlinear
integroparabolic equation of the Fokker-Planck
type was also proved. In [19], existence, unique-
ness, and regularity for the Kuramoto-Sakaguchi
PDE were established when the oscillators’ nat-
ural frequency distribution is assumed to be un-
bounded.

It should be observed that a number of patholo-
gies affect such a model, making it highly nonstan-
dard:

e the PDE is nonlinear and integrodifferential;

(16)

e the variable w, which enters the PDE, not in its
derivatives but as an integration variable, runs
over the full real line (hence, it is an unbounded
coefficient).

Global in time existence and uniqueness of
classical solutions were established in [17], and
regularity and time-independent estimates were
obtained in [18]. In [19], the limitation to fre-
quency distributions with a compact support was
removed.

6. — Models with inertia: The “adaptive
frequency model”

In 1991, B. Ermentrout introduced a model with
inertia, that is with some mass, formulated as a
system of second-order ODEs for phases [14]. This
was an “adaptive frequency” model, which implies
that the natural frequencies of all oscillators are
allowed to vary with time. H.A. Tanaka, A.J. Lich-
tenberg, and S. Oishi, in 1997, also suggested some-
thing similar, in the framework of mean-field cou-
pling, with sinusoidal nonlinearities [25, 26]. Start-
ing from such contributions, in 1998 the system of
second-order Langevin equations,

(17) m@l—k@l = .Qi —I—K1"N sin (l//N — 01) ‘f‘éi(t),
i=1,2,... N,

where m > 0 is like a mass (an inertial term), was
proposed in [2,4], and the &;’s take into account some
noise. This equation is equivalent to the system

Qi:wi
184 1 . 1
a)l:%[—COI—FQI—FKTNSIH(WN_QZ)]+%él(t)7

fori=1,2,... N.

In the thermodynamic limit N — oo, the “adap-
tive model” takes on the form of the nonlinear
integrodifferential PDE (of the Fokker-Planck
type) [2]

e BCs appear in the form of a periodicity condi- (19) op _ D @ B
tion; ot m? 0P
e the support of the frequency distribution g(w) 1 0 . op
in (12) could be, in general, unbounded; m Ow [(-e+Q+Krsin(y —0)p] - “50°
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and the order parameter is now defined by

+ 00 2n + 00
(20) rev = J MquHJ‘ngGDJ@ﬁ&aLQJL

— 00 0 — 00

where ¢g(Q2) is the natural frequencies distribution.

Models with inertial effects seem to better ex-
plain certain aftereffects in alterations of circadian
cycles in mammalians as well as the behavior of some
“Josephson junctions” arrays. Josephson junctions
are quantum mechanical devices, made by sand-
wiching a thin layer of a nonsuperconducting mate-
rial between two layers of superconducting materi-
als. There are several applications of Josephson
junctions to electronic circuits, and it seems that
very fast computers could be built using them. A
noteworthy application occurs in some special de-
vices called SQUIDs (Superconducting Quantum
Interference Devices), which are capable to measure
extremely weak magnetic fields, such as those in the
human brain.

7. — An uncertainty principle

A meaningful synchronization phenomenon
should actually concern both phase and frequency
synchronization, hence the adaptive frequency mod-
el should receive a special attention.

An “uncertainty principle” was found for the
original Kuramoto model (with no inertia) [3]. This
term is reminiscent of the celebrated principle of
Quantum Mechanies, according to which it is impos-
sible to determine with arbitrary accuracy at the
same time both, position and velocity, e.g., of an
electron. Indeed, we found that, within the Kuramo-
to model, it is impossible to do the same with phase
and frequency. We first defined the spreads
- (40)° = (0 = )*), = (0 =), ",

(M) := (1?), — ((v),)?,

where (), denotes taking an average with respect
to the phase distribution, p = p(0, w,t), and ¢ =
(v, w,t) denotes the corresponding frequency dis-
tribution. Here the spread of the drift, v, was used
since the “instantaneous frequency”, 0, in some
sense can be considered not observable, having

the same nature of the white noise, while the drift
term has the same nature of the Brownian motion
(see (8). Then, it was found that, for large K’s,

D

(22) (MFNK, () ~DK,
and hence
(23) A0 Av ~ D.

This shows the aforementioned “uncertainty prin-
ciple”: the more accurate is the phase, namely the
smaller is 40, the larger will be the inaccuracy of
the drift, v.

For the model with inertia, where the oscillators
have some mass, m, defining

(24) (dof = (&), — (o),
we found instead

(25) A0 do ~

(mK)l/Z )

for large K. Hence, a large inertia and a large
coupling strength, tend to reduce the uncertainty,
while the noise tends to make it more significant. We
actually found the two separate relations

D D

2 2

(40) f7d (4w) g

for large K, well confirmed by numerical simula-
tions, see the figs. 2-5 below.

(26)

08| | :

"X
([
AN

0.6

0.4

0.2

OO Il Il Il Il
0.0 10.0 20.0 30.0 40.0 50.0

t

Fig. 2. — Time evolution of the amplitudes of the order para-
meters, with N = 20,000 oscillators, no noise (D = 0), Lorenzian
frequency distribution, g(w) = (y/n)/(@? + %) with y = 0.4, cou-
pling K = 2 (continuous line), and K = 4 (dashed line).
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— K=2
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I3 1

04 f - 1

02| 1
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0.0 10.0 20.0 30.0 400 50.0

t

Fig. 3. — See previous caption: here there is |s(t)| vs. ¢.

In summary, clearly (for given inertia and cou-
pling), the noise is responsible for such uncertainty.
Cf. the role of the Planck constant in Quantum
Mechanics, and also the noise as a possible explana-
tion put forth in Nelson’s stochastic mechanics.
Hence, using stochastic instead of deterministic
ODEs may explain how uncertainty affects an other-
wise deterministic world. Generally speaking, un-
certainty is intrinsic to Quantum Mechanics, and,
according to E. Nelson, noise may provide a possible
interpretation for it.

It is convenient to define a complex order para-
meter for the frequencies besides that for phases,

; 1N . 1 .
(27) rne"N = N Z el syeey .= N Z i
J=1 j=1

(phase and frequency order parameters, when
N < 0),

+ 00 2n
(28) re = J dw J do g(w) e p(0, w, t)
— 00 0

(phase order parameter, when N — o0),
+ 00 w+Kr

(29) se'® == J dw dvg(w) e’o(v, w,t)

—00 w—Kr
(frequency order parameter, when N — oo).

In figs. 2 and 3, the time evolution of amplitudes
of both order parameters, »(t) and s(t), is plotted for

the classical (no inertia) Kuramoto model, with
N = 20,000 oscillators, a Lorentzian frequency dis-
tribution g(w) = (y/n)/(@? 4 7?) with y = 0.4, K = 2
(continuous line), and K = 4 (dash line), and no noise
(D =0). These figures show that, in absense of
noise, increasing the coupling parameter, K, larger
values of |r()| as well as of |s(t)| are observed, hence
a higher degree of phase and frequency synchroni-
zation occurs. Things are vey different when noise is
present: Figs. 4 and 5 show that larger K’s provide
larger values of |r(f)| (a smaller spread, according to
the first relation in (22)), and smaller values of |s(?)|.

1.0

08 |
06 :
0.4 -

02 i

0.0 !
0.0 50.0

100.0 150.0

t

Fig. 4. — As above, with N = 20,000 oscillators, noise D = 0.5,
Lorenzian frequency distribution, g(w) = (y/7)/(? + %) with
y = 0.4, coupling K = 2 (continuous line), and K =4 (dashed
line).

8. — Mathematical analysis of the adaptive
frequency model

The mathematical analysis of the so-called “adap-
tive frequency model”, i.e.,

op D ?p
B0 5 =2 o~
10 . ap
%a—w[(—w—i—!)—i—l{oﬂsm(x/f—ﬁ))p]—w%,

is much more challenging than that of the classical
Kuramoto model. It required extensive prelimin-
ary work, see [8, 9, 10, 11]. This equation represents
an evolution equation for the oscillator density,
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1.0

— K=2
e K=4

0.8 - i

Is®)l

04+ i/ ]

0.2 r 4

00 L 1 L 1 L 1 L 1 L
0.0 10.0 20.0 30.0 40.0 50.0
t

Fig. 5. — See previous caption: here there is |s(¢)| vs. ¢.

p = p0,m,t, Q), and may be compared with a Fok-
ker-Planck equation, where space is the angular
variable 0, and, correspondingly, the velocity w is
an angular velocity.

This PDE can be considered as an ultraparabolic
integrodifferential PDE. In fact, it can be viewed as
parabolic in both variables, 8 and w (space-like
variables), but diffusion in 0 is then missing. It can
also be considered, instead, as having “two times”, ¢
and 0. Treated as a degenerate parabolic PDE, a
regularized parabolic equation with bounded coeffi-
cients was first considered, where a small spatial
diffusion was incorporated and the unbounded coef-
ficients suitably bounded.

Estimates, uniform in the regularization para-
meters, were obtained in [8, 9], which allowed to pass
to the limit, thus identifying a classical solution.
Existence and uniqueness of the latter were finally
established in [10].

The wanted solution to such a PDE is required to
be 2n-periodic (in #), and satisfy a given normalized
initial value. Again, it should be pointed out that
such a problem, is quite pathological, since:

e the PDE is nonlinear, integrodifferential, and
now three integrals appear (instead of two) in
the definition of the order parameter;

e BCs appear in the form of a periodicity condi-
tion in 0;

e the support of the frequency distribution (the
9(£2)) could be, in general, unbounded,;

e there is no derivative with respect to the vari-
able ©, but this enters the PDE as an integra-
tion variable, and runs over the full real line.

Rather cumbersome estimates were obtained for
the solution in suitable anisotropic Sobolev spaces
(the solution belongs to LP spaces with values of p
different as function of the each variable). The PDE
problem can be rewritten in the more suitable form,
op Pp 0 op

o = 0z T e (@ — 2= K,0.0) ]

where we set

32) K,0,t) =
G +o0 21

K J J Jg(Q/) sin (0 — 0) p(0, &0 1, @) d0'de) A2,
-G - 0

with the BC and IC

(33) Plo—o = Plozsrs  Plico = Po(0, 0, Q).

As for the other assumptions, the initial profile,
po0, w,Q2), was assumed to belong to a suitable
Holder space, to be 27 periodic as a function of 6,
nonnegative, normalized according to

21 +00

J J P60, @, 2) dwdf =1

0 —oo

(34)

for every 2 in the support of the natural frequency
distribution, and exponentially decaying (along with
some of its partial derivatives), as w — =+ oo, being
of order of e ™" for some M > 0.

In [11], it was established that global in time
strong solutions are of order of O(e~™“") and that
this decay estimate is optimal.

9. — Concluding summary

Kuramoto-type models have been shown to be
ubiquitous in a number of fields, too many to men-
tion, since they describe the very general phenom-
enon of synchronization occurring in large popula-
tions of coupled “oscillators”. The latter can be, in
practice, individuals, particles, neurons, circuits, or
other things. While large populations of nonlinearly
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coupled oscillators can be better described in the
limit of infinitely many oscillators, by partial differ-
ential equations, yet affected by several peculiari-
ties, analyzing the more natural case of finitely many
but very numerous oscillators, is rather challenging.
Numerical simulations here may play an essential
role.

A model, somewhat different but similar in spirit,
due to F. Cucker and S. Smale, should mentioned.
In 2007, they studied the emergent behavior in
flocks of birds flying together, and determined when
the convergence of all of them to a common value of
velocity could be achieved. Clearly, one may think of
systems of any kind of interacting “agents”, the case
of birds of fish being just an example. The core of the
question is that of “reaching of consensus without a
central direction”.

As recalled in the 2007 Cucker-Smale paper, ex-
amples of this situation is the emergence of a common
belief in a price system, when activity takes place in a
given market, another is that of the emergence of
common languages in primitive societies.
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