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ANTONIO FASANO - MARIO PRIMICERIO 

WAX DEPOSITION IN CRUDE OILS: A NEW APPROACH 

To Guido Zappa on the occasion of his 90* birthday 

ABSTRACT. — The complex phenomenon of solid wax deposition in wax saturated crude oils subject to 
thermal gradients has been treated in a number of papers under very specific assumptions (e.g. thermodynamical 
equilibrium between dissolved wax and the wax suspended in the oil as a crystallized phase). Here we want to 
consider a more general framework in which thermodynamical equilibrium may not exist, the whole system may 
form a gel-like structure in which the segregated solid wax has no diffusivity, the thermal field may evolve due to 
a non-negligible difference between the thermal conductivity of the solid wax deposit growing at the cold wall of 
the container and the conductivity of oil, etc. 

KEY WORDS: Free Boundary Problems; Heat and Mass Transfer; Nonisothermal saturated solutions; Wax 
Deposition in Crude Oils. 

1. INTRODUCTION 

Crude oils are complex mixtures containing paraffins, aromatics, naphtenics, resins, 
asphaltenes and other impurities. For the purpose of our analysis, we can consider a 
solution of a high molecular weight paraffin (referred to as wax in this paper) in a solvent 
(referred to as oil). 

The solubility of wax in oil decreases very sharply with temperature. At off-shore reservoir 
temperatures the solubility is sufficiently high to keep wax fully dissolved. But when oil is 
pumped in subsea pipelines, where the external temperature can be a few degrees 
centigrades, the decreased solubility causes the formation of wax crystals and at the same 
time deposition of solid wax on the pipe wall, due to diffusional migration of wax in the 
saturated solution induced by the radial thermal gradient. 

The enormous economic relevance of this phenomenon stimulated several studies, 
laboratory experiments and field measurements (see, e.g., [1, 2, 7, 15-17]). In the 
framework of a research contract with Enitecnologie, we have proposed mathematical 
models [9-11] for the phenomenon and applied them to the interpretation of data form 
an experimental device called cold finger [5-6]. 

Such models were based on the assumption that the segregated crystals can diffuse 
(though their diffusivity is much smaller than the one of the dissolved wax) and they are at 
any time in thermodynamical equilibrium with the solute. 

Here, we want to include in our analysis the substantially different case in which wax 
crystals develop such a strong tendency to aggregate in a gel-like structure, that they can 
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be considered as immobile and not subject to diffusion (under «reasonable» 
concentration gradients). This situation occurs when temperature is sufficiently low. 

We will also include the case in which the thermal conductivity of the deposit is much 
smaller than the one of the oil. The main consequence of this circumstance is that the 
growth of the deposit is accompanied by a quasi-steady evolution of the thermal field. 

Let us denote by cs(T) the saturation of the solution, i.e. the maximum concentration 
(mass per unit volume) of wax that can be dissolved in the given oil at temperature T. Let 
Ctot(&) t) be the total concentration of wax (either dissolved or crystallized) at each point x 
and time t. 

If G(x, t) denotes the concentration of wax crystals (often referred to as segregated 
wax), we have the obvious inequality 

(1) G(x, t) > [ctot(&, t) - cs(T(x, *))]+, 

where [ • ]+ denotes the positive part. 
If we assume that thermodynamical equilibrium between dissolved and segregated 

wax is instantaneously reached, we prescribe that (1) holds with the equality sign. In this 
circumstance, the concentration c(x, t) of the dissolved wax will be given by 

(2) c(x, t) = min(ctot{x, t), cs(T(x, t))) 

and, in any case, 

(3) ctot{x, t) = c(x, t) + G(#, t). 

If we release assumption (2), we have to replace it by imposing that the transition 
G —• c occurs according to a given kinetics. A reasonable assumption is 

(4) c(x,t)<cs(T(x,t)), 

(5) Q(x, t) = -PVcs(T{x, t)) -c(x, t)]H(G), 

where \Q\ is the mass of segregated wax dissolving per unit volume and unit time at x, t, 

(6) H{G) = {1\ ^ 0l 
< 0, 

and fi is a positive constant. 
In the next section we illustrate the general framework of our analysis, using for 

simplicity a one-dimensional geometry. The rest of the paper is devoted to the study of 
various specific situations. For the necessity of being concise most of the proofs will just 
be sketched. 

2 . A MODEL PROBLEM 

In this paper we will study a one-dimensional problem (confining to the planar 
symmetry, just to simplify notation). Thus we consider the slab xG(0,L) whose 
boundaries are kept at temperatures 

(7) T(0,/) = T1, T(L,t) = T2>T1. 
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Since wax diffusivity is much smaller than thermal diffusivity we can assume that 
thermal equilibrium is instantaneously reached. Therefore, if thermal conductivity is 
constant, we have the linear profile 

(8) To(*) = T i + £ ( T 2 - T i ) . 

We also assume that cs(T) is a given increasing function and we refer -as it is often 
done, when the temperature varies on a sufficiently small range (T\, T2)- to the case of a 
linear solubility curve (c" = 0), although in Sect. 7 we outline the peculiarities of general 
cs(T) and study in some detail a case in which c" > Oin (7\, T2],c's(Ti) — 0, essentially for 
its mathematical interest. 

We suppose that 

(9) ente, 0) = c*> cs(T2), x e (0,L), 

and that we have initially thermodynamical equilibrium, i.e. 

(10) c(x,0) = cs(T0(x)), *G(0,L), 

(11) G(*,0) = G0(x) = c*~ cs{T0(x)) > 0, xe (0,L). 

We will also assume that the densities of segregated wax, dissolved wax and oil are 
equal and that the latent heat involved in the transition from crystallized to dissolved wax 
is negligible (see the discussion in [7]). 

The statement of the problem is completed prescribing that the boundaries x = 0, 
x = L are impermeable to wax and oil. The solution is assumed to be diluted (even when 
saturated) in the sense that oil will be considered to be immobile, although wax is 
displaced by diffusion (this is true in practical cases, for a more general model, see [10]). 

The basic idea of our model is that the dissolved wax diffuses towards the cold wall 
and creates a solid deposit of increasing thickness o(t). 

The law of advancement of the interface x = a(t) is given by the mass balance 

(12) [p - G(a(t)ftï]à(t) = DcMt), f), t > 0 

where p is the density of the solid layer which is supposed to incorporate all the segregated 
wax present in the region crossed by the interface. The wax diffusivity D will be taken 
constant for simplicity, although it is likely to depend on G. As a matter of fact, the 
problem with D = D(G) with H{G) < 0 presents several interesting mathematical 
aspects. Moreover 

(13) p > maxGo(x) = Go(0). 

REMARK 2.1 (mass conservation). In principle, the diffusing wax that deposits on the 
wall induces the displacement of oil and mass conservation (12) takes into account this 
additional effect. This would also affect the evolution equation for c and G with the 
appearance of a convective term. As we pointed out above, the assumption of diluted 
solution allows us to neglect these terms. 

REMARK 2.2 (asymptotics). Irrespectively of the assumptions on thermodynamical 
equilibrium (hypotheses (2) or (4)-(5)) and on the diffusivity of c (including or not its 
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possible dependence on G), the asymptotic situation for t —» oo is such that a —• aœ, 
which is the unique solution of 

(14) paw + cs(T(aoo))(L - croc) = c*L, 

and c(x, t) —• Coo, Vx G ((Too, L), such that 

ôo = ^(T((Too)). 

Note that the same situation is reached irrespectively of the fact that diffusion of G is 
included or not in the model and for any strictly monotone cs(T). 

We conclude this section by writing the expression for the temperature. With no loss 
of generality we can rescale length and take L = 1. According to the already mentioned 
assumptions, temperature is a linear function of x in each layer of constant conductivity. 
We set 

(15) 4 = kd/ko 

where kj and ko are the thermal conductivities of the deposit and of the solution (the 
latter being considered to be independent of c and G), and we impose continuity of 
thermal flux at the interface 

(16) kdTMt)-, t) = koTMt)+, t), t > 0. 

We find: 

(17) T(x,t) = T1 + (T2-Tl)a{t) + ;{l_a{t)y xeiOMt)\ t>0, 

(18) T(x,t) = T1 + (T2-T^lf;Z^ , € « , ) , ! ) , , > 0 . 

In particular 

(i9) w u - r . + m - r . w f f , ^ . '>•• 

REMARK 2.3. In most practical cases 

(20) ait) < (Too « 1. 

So, if S = 0(1), 

(21) T(<j(t),t)~Tu 

but this is no longer true if $> <C 1, meaning that even a thin deposit can have a relevant 
influence on the thermal profile. This means that the thermal effect of the deposit can be 
taken into account, still desregarding the corresponding modification on the geometry of 
the problem. 

In the next two sections we will study in some detail the following cases: 

- thermodynamical equilibrium with full saturation (Section 3), 
- thermodynamical equilibrium with partial saturation (Section 4). 
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3. CASE OF THERMODYNAMICAL EQUILIBRIUM: FULL SATURATION 

Assume (2) holds and let the initial situation be described by (10), (11). We start by 
considering the case of non-vanishing diffusivity DQ of wax crystals. Then, there will be a 
time interval (0, t\) such that 

(22) G(x, t) > 0, c(x, t) = cs{T{x, t)), x e (crW, 1), t e (0, h), 

where T(x,t) is expressed in terms of o{t) by (18). During this period, dissolved wax 
migrates towards the cold wall with a flow rate equal to 

(23) 

Therefore 

(24) 

(25) 

Dei T2-T1 
s a(t) + tf(l - a(t)) a(t) + S(l - a{t)) ' 

lp-G(a(t),t)lâ(t) 
o{t) + ${\-a{t)Y 

<T(0) = 0. 

t€ {0,h) 

Dissolution of wax crystals occurs at x = 1, where segregated wax has to dissolve to 
replace the migrating dissolved wax, but also in the bulk because of the increase of 
saturation concentration. 

Hence, owing to thermodynamical equilibrium, G has to be found by solving the 
problem 

(26) 

E>GGXX -Gt = cl
sTt = 4<rW 

DGGx(l,t) = 

K l - S)(l - x) 

[a{t) + S{\-G{t))f 

te {o,h), 

xe (a(t),\),te (o,/i), 

o{t) + S(l - a(t)) ' 

GMt),t) = o, t€ (0,(0, 

{ G(x, 0) = Goto = c* - cCToto), x e (0,1), 

which is coupled with (24), (25). 
Problem (24)-(26) is a free boundary problem of a non-standard form for the heat 

equation. Its solution can be sought e.g. by means of successive approximations. 
Let us sketch the procedure. Let r„(f) be a Holder continuous function such that 

r„(0) = G0(l) and 0 < r(t) < G(0). Compute a„(t) by integrating 

y (27) [a„ + -8(1 - a„y\à„ = • 
P-r„> 

thus identifying a„(t) as the positive root of the equation 
t 

ax 

<Jn(0) = 0, 

(28) l ( l - ^ + * . = 7 / _ * _ , 
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which possesses a Holder continuous derivative, positive by definition and a-priori 
y 

bounded by an < n = cr0. 
&(p-Go(0)) Sip-G (0)) 

We fix a time interval (0,7), such that 1 < - , so that on{t) < 1. 
y 

Next we compute Gn(x,t) by solving problem (26) with G = on and defining 
rn+\{t) — Gn(an(t), t). The procedure can be started taking for instanceT\(t) = Go(0). 
It is easy to obtain an a-priori uniform estimate of rn+\ in a Holder space. 

It is also possible to obtain a uniform estimate of the first vanishing time of Gn(x, t), 
using the fact that the sink term in the differential equation is dominated by 
C'SG0—T—(1—*) and that DcGnx(l,t) < 5. Moreover Gn < G0(0) at all internal 
points. Thus we possess enough information to say that there exists a subsequence 
{rn} converging uniformly to a Holder continuous limit r(t) taking values in (0, Go(0)) 
for t G (0, t). To this we can associate a pair (G, G) which turns out to be a solution of our 
free boundary problem, as it can be shown by taking the limit of (G„, Gn) along the same 
subsequence (note that G„, Gnx are also equibounded). 

Uniqueness is not difficult to be proved. Let (o"i,Gi), (025 G2) be two solutions. 
Setting òG — G\— <72, ÔG = Gi(Gi(t),t) — G2ÌG2(t),t), from (24), (25) we deduce an 
integral inequality of the type 

t 

(29) |<M*)|< j{A\ÔG{T)\+B\ÔG{i;)\}dT, 

0 

for some easily computable positive constants A, B. Since |5G(/)| can be estimated in 
terms of sup \ôG(T)\ = \ÔG\t (the proof is lengthy and is omitted), (29) leads to a 

T€(0,*) 

Gronwall inequality for \ÔG\t with zero free term, implying SG = 0. Thus the recursive 
scheme described above is convergent. 

This procedure can be iterated up to the time t\ > 0 such that 
(30) G(x,t)>0, a(t)<x<l, 0<t<ti. 

The time t\ is necessarily bounded. Note that if the diffusivity of segregated wax vanishes, 
t\ is also zero and a part of the domain will be unsaturated from the very beginning. 

4. CASE OF THERMODYNAMICAL EQUILIBRIUM: PARTIAL SATURATION 

At time t\, a new free boundary x = r{t) appears, separating the zone x £ (G(t),r(t)) 
where c = cs and G > 0 from the zone x € (r(/), 1) where c < cs and G = 0. This stage 
ends at time ti when rfe) = ofe)-

For x e (G(ï), r{t)) dissolved wax diffuses with a flow rate still given by (23) and the 
differential equation for the function (j(f) representing the thickness of the deposit is still 
(24) with initial condition 

(31) a(h) = GU 

where G\ is calculated from the previous stage, if t\ > 0 (i.e. if DQ ^ 0). 
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a) We start by considering the case Dc j^ 0. 
Now we have in the saturated zone: 

(32) 

DGGXX - Gt = cf
sTt = c'sà{t)v f(1 y *j 2 , x € (<r(f), 1), * G (0, ft), 

G(r(t)it) = 0, t€(tut2), 

Gx{<r(t),t) = 01 te (>i,fe), 

lG(x,ft) = Gi(x), xG(dfe) , l ) , 

where Gi > 0 (G\ > 0 in [cW, 1)) has been found in the previous stage (remember (31)). 
On the other hand, c(x, t) solves the following problem in the unsaturated zone 

x e (r(t), 1): 

(Dcxx-ct = 0, xe (rW,l), ' *€(*i,*2), "' 

(33) lc(r(t),t) = cs(r(t)it), te(tut2), 

[cx(l,t) = 0, £<E (/i,fe), 

and on the new free boundary we have the following condition expressing mass balance 

(34) 
a(t) + S(l-a(t)) 

+ DGGx(rW-, *) = Dcx(r(t)+, t) 

for £ € (hih) with condition 

(35) r(/i) = l.' 

Problem (24), (31)-(35) is a problem with two free boundaries of explicit/implicit type< 
For the necessity of being concise, we confine ourselves to sketch a possible way of 

proving existence, leaving a more precise analysis of the well-posedness of the problem to 
a future paper. 

For every given cr in a ball of C\(t\, t2) satisfying (31), problem (32)-(35) can be seen as 
a diffraction problem for the function 

u(x, t) = Cfotix, t) - cs(x, t), 

noting that the diffusivity for u has a jump for u = 0. 
This class of problems has been investigated in the context of fast chemical reactions 

(see [3, 4]) and those techniques can be adapted to fit the present situation. Then a 
compactness argument can be used to find o{t) and conclude the proof of the existence 
theorem: taken cr in a convenient convex set Ë of Lipschitz continuous increasing 
functions, solve the free boundary problem for u and compute a by means of (24), (25), 
this time using the formula 

t 

Ht) = y j Mr) + S(l - G{T))T1\.P - u(.o{T),x)Yldx, 
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and show that if E is selected properly, then a G E and that the mapping G —• a is 
compact w.r.t. the sup-norm. 

b) The case of T>Q = 0 is simpler. We have already noted that t\ — 0, so that the 
initial conditions for the two free boundaries are 

(36) (7(0) = 0, r(0) = l. 

Up to time *2 when the whole solution becomes unsaturated we have that the deposit 
grows according to equation (24). 

In the saturated layer x G (cr(/), r{t)) we have 

(37) G(x, *) = G0(x) - fc(T(x, /)) - cs(T0(x))] = 

= Go(x)-c's(T2- TOOL - t f ) 4 — ^ r(l - x ) , 
(7 + #(1 — (7) 

for x G (cr(/), rW) and f G (0, /2). 
In the unsaturated region x G (rM, 1) <?(#, /) solves (33), and the condition on x = r{t) 

is the following 

(38) a{t) + ^_a{t})-mG(r(t)-,t)=Dcx(r(t)+,t), 

for te (0,fe), with 

G(r(/)-,/) = Go(r) - c's{T2 - Ti)(l - tg) °}\\~ r) . > 0. 

Note that in this scheme G is discontinuous across the free boundary. 
For a given increasing a G C1, problem (33), (38) is a problem of generalized Stefan 

type for which we have proved a well-posedness result in [13]. Again, the completion of 
the proof is achieved via a compactness argument. In order to follow this procedure it is 
important to be sure that the region r(t) < x < 1 remains desaturated. Since 

it is easy to check that the function u = c — cs is negative in the domain considered, just 
applying the maximum principle (ut — Duxx < 0, u(r(t), t) = 0, #*(!, t) < 0). 

5 . F U L L Y UNSATURATED SLAB 

Of course, once we know that the solution has a wax concentration under saturation 
and G = 0, the mathematical model becomes insensitive of whatever assumption we have 
made on the behaviour of the segregated phase. 

To be specific, we assume we have gone through the previous stages and we start from 
time t2, knowing the following initial data: 

(39) a(t2) = o2 

(40) G(x,f2) = 0, .x G ((72,1), 

(41) C(X, t2) = C2(x), X G ((72, 1), 
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where 

(42) C2(x)<cs(T(x)), * € (<72,1), 

and cs(T(x)) is found from (19). 
We have the following diffusion problem for c(x, t) with one free boundary: 

(43) Pcxx-ct = 0, xe(cr(t),l), t>h, 

(44) c{x,t2) = c2(x), x G ((72,1), 

(45) cx(l,t) = 0, t>t2, 

(46) c(G(t)ìt) = cs{T(a(t)ìt))ì t>t2, 

(47) pa(t) = -Dcx(a(t), t\ t > t2, 

(48) a(t2) = a2 e (0,1). 

The fact that c(x, t) remains below cs{T(x,t)) can be proved as follows. First replace (47) 
by 

pà = - D M < T ( / ) , / ) ] + , 

(no dissolution of the deposit) so that à > 0 by definition. Then we apply the same 
argument we have used at the end of the previous section, showing that u = c — cs < 0. 
Moreover, as an easy consequence of the maximum principle, we can prove that we have 
cx(x, t) > 0 as long as cx(a, t) > 0. Now, if for some time interval (/, t") we have à — 0, we 
can easily see that c takes its minimum for x — a, implying that cx{o{t),t) > 0 in (f, f), 
thus contradicting the assumption a = 0. Hence we may say that à{t) > 0 for all t > t2. 

At this point global existence and uniqueness for (43)-(48) is a well known result (see 
[13]). 

6. CASE OF NONEQUILIBRIUM 

In this section we will assume (4)-(6) and we suppose that the same initial conditions 
(9)-(ll) are prescribed. 

With respect to previous sections, we have a basic difference, that is a consequence of 
the fact that (excluding the trivial case S = 1) the deposition causes cs(x,t) to be an 
increasing function of time at any point x: in the present case immediate desaturation 
takes place. Indeed, since we are assuming c" = 0, the solution has to be unsaturated 
throughout, because io keep c = cs one should have Q < 0, thus contradicting (5). 

We start by considering the case DG = 0 and we study the following problem 

(49) -G,(x, /) = -/?fo(T(x, t)) - c(x, t)]H(G), x € (<JW, 1), t > 0, 

(50) G(x, 0) = G0W = e - cs(To(x)), x e (0,1), 

(51) Dcxx - ct = -/?[fi(TU, *)) - c(x, t)}H(G), x e (a(t), 1), t > 0, 

(52) *(x,0) = ^(T0(*)), x e ( 0 , l ) , 
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(53) cx(l,t) = 0, t>0, 

(54) c(a(t),t) = cs(T(a(t),t)), t > 0, 

with the free boundary conditions 

(55) [p - G(a(t), t)ìà(t) = DcMt), t), 

(56) a(0) = 0. 

From (49) we find a formal expression for G 

t 

(57) G(x, t) = G0 W - fi f [cs(T(x, r» - c(x, r)]dz, 

o 

holding for x > a(t) and / < JG(X) which iss the unknown time of extinction of G at the 
location x, if a(tc) < x, and is o~l{x) otherwise. 

For the sake of brevity we just sketch the procedure to prove the well-posedness of 
problem (49)-(56). We use again a fixed point argument. We prescribe a{t) in a Lipschitz 
class E of monotone functions so that T(x, t) is given by (18) and thus (57) expresses 
function G as a functional of c(x, t). 

Then, the r.h.s. of (51) is also a functional of c, through H(G). Problems of this kind 
are non-standard, but the existence of one unique classical solution can be proved by the 
methods of [14] and we note that the argument works also if we allow D to depend on G, 
provided that suitable conditions are satisfied. 

The resulting function c(x,t) is easily shown to be such that cx(o(t),t) is Holder 
continuous and that its Holder norm depends on the Lipschitz constant of a. 

So, a mapping a —• a can be defined using (55), (56). It is not difficult to show that 
this mapping is contractive in E with respect tq the sup-norm in a sufficiently small time 
interval. Hence, a unique fixed point is found, providing a solution to our problem, which 
is actually C1. 

Extension to arbitrary time intervals is then obtained by means of standard arguments. 
Finally, let us just see how the arguments change when DG ^ 0. Now (50) is replaced 

by 

(58) DGGXX -Gt= filcs{T{x, t)) - c(x, t)]H(G), 

and no flux conditions are to be assigned on the boundaries 

(59) -G*(l,-*) = 0, GMt),t) = 0, t>0. 

Of course, for each given a in the Lipschitz class, the two parabolic problems for G 
and for c are strictly coupled and hence the existence of c and G has to be proved 
beforehand. However this task is not particularly difficult. Once this is accomplished, the 
proof follows the same pattern as in the previous case. 
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7. MASS TRANSFER WITH NO DEPOSITION 

In this section we give some ideas on the behaviour of the system when linearity of 
cs(T) is no longer assumed. As a general remark, we note that if we start from initial 
conditions (10)-(11) and we have c"(T) < 0 in some interval (xi ,^) , t n e n a 2 o n e of 
desaturation will immediately appear in case (4)-(5) (even if T remains constant in time). 

On the contrary, saturated layers, bound to become extinct in a finite time, are present 
in correspondence of intervals in which c" > 0. Intervals in which c" — 0 confining on the 
r.h.s. with an interval where c" > 0, remain saturated provided temperature does not 
change in time. Desaturation occurs immediately at x = 1, irrespectively of the sign of 
<(T2),ifDG = 0. 

Assuming thermodynamical equilibrium leads to a very similar scenario, unless 
temperature is time independent. In the latter case saturation persists locally for some 
time (with the exception of x = 1 if DQ — 0), and points where c" < 0 may become 
desaturated before they are reached by the desaturation front coming from the warm wall. 
Thus the general problem is considerably complicated. 

We will consider in more detail a situation in which we assume time-independent 
temperature 

(60) T(xit) = To(x) = T1 + (T2-T1)x 

and this assumption is justified by the absence of solid deposit. Indeed, we assume 

(61) ^(T1) = 0, < ( T ) > 0 in (T1;T2). 

For the sake of brevity we confine to the case DQ = 0 and to the absence of 
thermodynamical equilibrium. 

Once more we take D independent of G. It can be seen that if D = D(G) with D' < 0 
the problem presents an interesting mathematical structure, however too complicated to 
be treated here. 

It is clear that the situation described by (60), (61) is rather artificial from the physical 
point of view, also because the corresponding asymptotic limit of G(x) would be a point 
mass located in x — 0. Nevertheless we will investigate it briefly because of its 
mathematical interest. 

We have 

(62) G, = - fiH(G)hs(T0{pc)) - c(x, t)] + Hicix, t) - cs(T0(x)))Dc's'(T'0f 

where 

f l , * > 0 
(63) H(z)=\ 

[0 , z< 0. 

Since c <cs either the positive or the negative term is active. 
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Now we have to solve a free boundary problem in the unsaturated layer x G (sit), 1): 

(64) ct-Dcxx = H(G)p(cs-c), xe(s(t),l), te(0j), 

(65) s(0) = 1, 

(66) cx(l,f) = 0, te (0,1), 

(67) c(s(t),t) = cs(T0(s(t))), te(0,t), 

(68) cx(s(t),t) = cf
s(T0(s(t)))T0, te (0,1). 

Condition (68) expresses the continuity of solute flux and follows from the continuity of 
G at the interface. 

Indeed, G(s(t)—, t) > 0 can be evaluated from (62) 

(69) G,(x, /) = D<(To(x))7£, * G (0, *(*)), * G (0, t), 

(70) G(x,0).= Gb(x), x e ( 0 , l ) , 

while, in the unsaturated zone G is decreasing according to the kinetics 

(71) Gt(x,t) = -p(cs-c)H(G) 

and (71) has to be integrated starting from x = s(t). 
Following the technique of [8] it can be shown that (64)-(68) can be reduced to a 

Stefan-type problem, although of a singular kind. For instance, as long as G > 0 in the 
unsaturated zone setting ct = w, performing formal differentiations on (64), (66), (67), 
(68) one arrives at the scheme 

(72) wt - Dwxx = -w, x G (s(t), 1), t G (0, J), 

(73) «;x(l,f) = 0, - / € « ) , * ) , 

(74) w(s(t),t) = Q, te(0j), 

(75) wMt\ t) = cï(T0(s(t)))Tf
0

2s(t), t G (0, t). 

To this system one has to add the information that the limit of w in the corner point (0,1) 
along directions marked by a unit vector pointing inside the domain is — oo. The solution 
can be obtained as the limit as n —• oo of regularized problems in which the initial 
condition is 

(76) sM(0) = l~-, 
n 

(77) wM(x,0)=fM(x), 

where f{n)(x) = -nc'(T0s
{n)(0))Vi for 1 - - + ^ < * < 1 , fn(s

in)(0)) = 0 while in 
/ 1 1 1 \ n n 

( l ,1 h^- ) it is any decreasing function such t h a t / ^ is smooth in [s^(0), 1]. 
\ n n nl ) 

The feasibility of this procedure can be proved using a technique similar to the one 
employed in [12] for obtaining existence for a singular diffusion-consumption problem. 
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