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K-GROUPS AND WREATH PRODUCTS

To Guido Zappa on the occasion of his 90 birthday

AsstrACT. — We give criteria for a wreath product to have complemented subgroup-lattice.

Key worps: Complemented group; Wreath product; Subgroup lattice.

A group G is called a K-group if its subgroup lattice £(G) is a complemented lattice.
For basic information concerning K-groups we refer the reader to [9, §3 n. 1]. While
finite simple groups are K-groups, [2], and while the structure of solvable K-groups is
well understood [11], a characterization of all finite K-groups is still missing. The purpose
of the present paper is to give a contribution in this direction, by establishing several
criteria for a wreath product G of L by H, G = L H, to be a K-group.

The paper is divided in 4 sections. Section 1 contains preliminaries of general nature
and shows how to reduce the classification of K-groups to the case where the solvable
radical $(G) of G is trivial. In section 2, we give relevant structural information on the H-
invariant subgroups of the interval [B/4B], where B is the base group of G and 4B is the
diagonal subgroup of B: Propositions 2.3 and 2.4 are central for our applications. In
section 3 and 4 are presented several criteria which guarantee that a wreath product is a
K-group; particular relevance in this regard have Theorems 3.2, 3.5, 3.8 and 4.2.

The notation is mainly standard; in case of special symbols, we shall define them when
first needed in the course of exposition. We emphasize that throughout the paper H
stands for a transitive permutation group of degree # > 2 on a set 2 whose elements are
either the digits 1,2, ..., # or the right cosets H;» with H; the stabilizer of 7 and » € H.
All groups are meant to be finite.

1. We recall that in a K-group G, an interval [E/D] is a complemented lattice as soon
as D is a Dedekind subgroup ([9], 2.1) and E is a dual-Dedekind subgroup ([9], 2.4) of G;
moreover if A < B < G with A normal in G and B subnormal in G, then the Frattini
subgroup @(B/A) is trivial. In particular the generalized Fitting subgroup F*(G) is a
direct product of simple groups. Useful in this context is the well known statement:

(1.1) Let A be a nilpotent subnormal subgroup of a group G. Then ASD(G)/D(G) is a
direct product of minimal normal subgroups of G/ D(G) and bas a complement in G| D(G)
[4, 12].
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Prorosrrion 1.1, Let S be a solvable subnormal subgroup of G. Then G is a K-group if
and only if G/SC is a K-group and ®(G/F;(S®)) = 1 for all terms of the ascending Fitting
series of SC.

Proor. The necessity is clear. Conversely, let G be a minimal counterexample. Then
S # 1 and, since @(G) = 1, by (1.1) we have G = F(§€) : C, where F(S€) is a direct
product of minimal normal subgroups, while C 2 G/F(S®) is a K-group. But then, by [9]
3.1.9, G itself is a K-group, a contradiction. O

CoroLLAryY 1.2. The group G is a K-group if and only if:
) G/S(G) is a K-group, and
D(G/F(8(G))) = 1 for all i’s. O

As one may note, Corollary 1.2 reduces the study of K-groups essentially to the
semisimple case.

COROLLARY 1.3. Let G be a K-group and N 2 G. Then N is a K-group if and only if
N/S(N) is a K-group.

Proor. Assume N/S(N) a K-group and N a minimal counterexample. Then S(N) # 1
and, since G/F(S(N)) is a K-group, such is N/F(S(N)). Moreover @(N) < &(G) =1 so
that, by (1.1), N = F(S(N)) : C, with F(S(N)) a direct product of minimal normal
subgroups of N, while C is a K-group. But then N is a K-group by [9] 3.1.9, a
contradiction. d

By Corollary 1.3, if R is subnormal in $(G) and G is a K-group, then R is 2 K-group.

Given a non-trivial group L, let L be the group of all functions of  in L, group which
can be identified with the direct product B of # copies of L, B=1L; x --- X L,. The
position f#(w) = f(«’") defines a right action of » on L?. The semidirect product G of B
by H defined by (£, h)(;, 1) = (g,hb1), with g = ff?, is called the wreath product of L by
H and is denoted by G = L H = B : H. The group B = L? is called the base group and
the subgroup 4B of constant functions is called the diagonal subgroup. The group H
permutes the elements of {L, . .., L, } via conjugation according to the rule L? = L. We
recall that Hg = 1, Cg(B) = Z(B), Cg(H) = Z(H) x 4B, Ng(H) = H x 4B, while H; is
the normalizer as well as the centralizer of L; in H. ,

(1.2)  Given G = L1H, assume S(L) # L. Then ®(G) < S(G) = S(B) == (S(L))".

Proor. We have G/S(B) = (L/S(L)) 1 H and S$(G) N B = S(B); hence S(G)/S(B) <
< CG/S(B)(B/S(B ) < B/S (B), since S(L) # L. ]

ProrostTion 1.4, Given G = LU H we bave
a) if G is a K-group then (L/S(L))  H, H and S(L) are K-groups. L itself is a K-group if
(and only i) L/S(L) is a K-group.
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b) G is a K-group if and only if (L/S(L)) t H is a K-group and ®((L/F,(S(L)) 1 H) = 1 for
all ’s.

Proor. a) Since G/S(B) = (L/S(L)) 1 H and H =2 G/B, they are K-groups and, by
Corollary 1.3, such is S(B) and so is S(L). Also, again by Corollary 1.3, B is a K-group if
and only if B/S(B) is a K-group, so that L is a K-group if and only if L/S(L) is a K-group.

b) By Proposition 1.1, G is a K-group if and only if G/S(B) is a K-group and
&(G/F;($(B))) = 1 for all 7’s, and we are done since G/F;(S(B)) = (L/F;(S(L))) H. O

Given a group G and a subgroup X, the interval [G/X] is called monocoatomic with
coatom M if M is the unique maximal subgroup of G containing X. For later references we
recall the following criterion established in [2].

ProrosttionN 1.5. Let {{G/X,1}, be a family of monocoatomic intervals with {M;}, the
family of its coatoms. Then G is a K-group if each X; is a K-group and (N; Mj)pg = 1,
P(G) being the group of all autoprojectivities of G. O

2. Given G = L H and a non-empty subset I of £, set 4y = {(x1,...,x,) €EB|x;=x;
for all 7,7 € I}. Thus 4; is the subgroup of B of all functions constant on I: we
have A; = A( x Lp) x [[ Ly = LI+ and, for h€H, A}’ =dp = A( X L) x

kel kel kel?

X [T Ly = A( x L) x ] Lg. The following intersection formulas hold for non-
kgl kel kel
empty subsets I, | of Q

iy 10 ] #0
() 4 N 4y A x L) % A L) % TT L fINn J=0
kgIU]
The map X +— X N B defines an isomorphism of [G/H] onto the lattice [B/1]y of H-
invariant subgroups of B; in what follows we are mainly interested in describing the
structure of maximal subgroups as well of maximal H-invariant subgroups of B. If one
puts L, ={f €L?|f() = 1}, then L;<L;AB=B and X—XNL; defines an
isomorphism of [B/4B] — [L,;/1]4s. For T < B we set T# = X T%, with 7; : B — L;

the projection map, and T, = X T, T;=L;NT<T.Tis called a .rtandard subgroup of B

if T=T“(=T, and non- standard otherwise: since (4B)” = B, all elements of [B/4B]
different from B are non-standard subgroups Cleatly a standard subgroup T of B is H-
invariant if and only if T? = T for all ’s and it is a maximal standard H-invariant
subgroup of B if moreover T,;<- L.

According to [10, §11, to get a maximal subgroup F in [B/4B] one can proceed in the
following way: consider in B an H-invariant standard subgroup §=S5; x --- xS,
§? =83, with S; maximal normal in L; and set F=Rx [[Ly, u={rs},

. keu
R =S, x §) AL, x L;). Then F is a maximal subgroup of B contaﬁling 4B. We are
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now interested in determining the structure of Fy. To this end, we introduce the set U/ of
all subsets of Q of cardinality 2. On U we define a relation ~ by setting

(xx) u ~ v if there exist sequences #g, ...,4; inU and by,...,h,in H, t > 0,

such that uf.’il =u; and u;_1 Nu; # ( for all 7 > 0.
Clearly ~ is an equivalence relation, and it is an H-congruence [3, Exercise 1.5.4], in
the sense that # ~ v if and only if 2/ ~ 1”: hence H acts on the quotient space U/ ~. We
note that  ~ v implies v = #” for some / € H.

Lemma 2.1. Given u € U, let V be the congruence class of u and let V& = {U;},; be
the orbit of V in U] ~. Then :

a) if {r,s} €U; and {r,s'} € U;, with i, j € I, then i = j,
b) fori € I, set Q; := x v C Q. Then {Q;};c; is a complete system of (imprimitivity)

blocks for H with Q; =Q; if and only if i=j; Hy =Hg, |I|=|H:Hg,)
|.Q,'{ = |Hg‘ :Hrl, re .

c) leti € I be such that u € U,, and let r € u. Then Q; is the intersection of all blocks for
H containing u or, equivalently, if u = {H,,H,x}, then Q; = {H,h | h € (H,,x)}; Q; isa
minimal block [3, Example 1.5.1] if and only if H,<- (H,, x).

Proor. a) Let heH be such that U’ =uU;. Then {r,s}’ ~ {r,¢}, so that
{r,9} = {r,s}*” for a certain ' € H; butthen{rs} {r.s},ie Uy =U;,andj =1.

b) Assume r € Q; N Q;. Then {r,s} € U;, {r,s'} € U; for certain s, s/, sobya) i=j.
Let b € H, andletl/lb—u- Then Q; = Q" = U U—Q],SOZ—],al‘ldu =U;.

! vel;
¢) Let Q be the intersection of all blocks containing %, and suppose Q C ©;. Then

there exists a v € U; such that vQ. Since # ~ v, there are sequences (%), (b;) as in ( x *).
Hence there exists / such that #,_; € Q, but #; ¢ Q, but this is a contradiction, since
uj = ub 1 sothat 2N Q" 2 ;1 Nu; # 0. Therefore Q; = Q. If r € u and we identify u
with {H,,H,x} (for a certain x € H \ H,), then the minimal block containing # has
setwise stabilizer the subgroup (H,,x) € [H/H,] [3, Theorem 1.5A], that is
Q;={H,h | b € (H,,x)}. The conclusion follows. O

For simplicity and without loss of generality, further on we shall assume that
u = {1,r} and call U; the congruence class of u.

LEmMMA 2.2. Set 2, = L_LJ{ v, F=A4,. Then
veldy
a) F, = Fu, = 4o

b) F(Hgl)b = FIliIgl = AQI;.

ProoF. a) We have Hy, = Hg, by Lemma 2.1 5). For b € Hy,, we get F* = 4,, with
u ~ ;0 if (u;), (h;) are sequences as in ( * *), using (* ) we get ,

FAF > Ayey N+ N4, _p > do,.
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Since dg, is Hg,-invariant, we get Fy, > 4gq,. But since 2, = beLPJI #”, also the other
inclusion holds. “

b
b) F =F AN FP=( AN F) =A4.. O
) Feag b = Fiay el (erul ) 14

PrOPOSITION 2.3, Set H = 1<L2 Hg, b, with by =1, F = 4,. Then
Sism
a) Fy = 1s?<5mA(,e€>;gi L)~ L", AB< Fy, Fu AL =1;
b) there exists an order-inverting embedding ¢ of [H/H;] into [B/4Bly such that

X ANL; =1 forall i’s, if X # H;.
c) if L is simple non-abelian, then (FyH)g = 1.

b,‘ b - ~ JTm 1
Proor. a) Fy = S/\ Frgp, = /z'\FH91 = /l‘\AQ1 =% A(k X, L;)=L" using
Lemma 2.2 b). = €
b) For X € [H/H;] consider the imprimitivity system {€;},;,, determined by X.
Then the map ¢ : X+ x A x L) has the required properties.

Isism “pegy

¢) Set N = (FyH)g. Then NAB =1, hence N < Cg(B) = 1. O

CoROLLARY 2.4. Let T be an element of [B] ABly such that L; = L;/L; N T is simple--
non-abelian. Then T is a maximal element in [B/ABly i and only if
T/T,= x A x Ly), wherem = |H : Hq, | and {;} is a complete system of minimal

S

1<i<m k

blocks for H, afforded by an R € [H/H;]1 such that H;<-R.

Proor. The sufficiency is clear from our previous discussion. Assume now that T is a
maximal element in [B/4Bly. Since T # B, there exists #={1,7} such that
T/T, <F/Ty = A4,T;/T; = ALy x L,) x [[ Ly<-B/Ty. So T < Fy € [B/4Bly implies

kg
T = Fy and T /T has the indicated structurgue by Proposition 2.3 ). Moreover, since T is
maximal H-invariant, according to Lemma 2.1¢), 2 = {H;b | b € R}, with H;<-R. The
conclusion follows. O

CoroLLARY 2.5. Let F = A, u = {Hy,Hx}. Then

a) Fy = 4B if and only if H = (H,,x) i.e. x ¢ UM;, H} < M;<-H.
b) if H is primitive and L is a non-abelian simple group then [B/ABly bas length 1.

PrOOF. a) By Proposition 2.3 4), Fy = 4B if and only if Hp, = (H,,x) = H.
b) follows from Corollary 2 4. O

Remark 2.1. We note that in general if [B/AB]y has length 1, then H is primitive and
L is simple, since then, by Proposition 2.3 b), we have H;<-H and, if S<L, then
SVH € [B/4B]y. However, in the other direction, if L is not assumed to be non-abelian,
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then [B/4Bly may have length greater than 1. Consider the following example: let
L=C,, H=((12...n)). Then H; = {1}<-H if and only if # is prime. Assume now
n = 3. Then the cardinality 5 of [B/4Bly is

3 ifp=3
h=<{2 ifp= —1mod3
4 if p= 1mod3

and [B/4B]y has length 1 if and only if p = —1mod3.

In general, if # is an odd prime ¢, then [B/4Bly has length 1 if and only if g is a
primitive divisor of p?~! — 1, that is if and only if ¢ # p and ¢ does not divide p* — 1 for
1<i<q—1 (see [6]). : O

To the expression Fy = L[; X --- x L,, in Proposition 2.3 4), where L; stands for

A( X L/e) we can associate, via conjugation, the transitive permutation representation
/eeQ

0 : H — Sym(m) of degree . In the next lemma we collect some useful properties of 6.

Lemma 2.6. We have:

a) l(erl? = (Hg,)y and, if H= H/ker 6, then Q: FyH /ker 0 = Fy : H=I11H,
with H a transitive permutation group of degree degH = |H : Hg, | < deg H acting on
the complete system of blocks {Q} for H on Q.

b) i ®(G) = 1 and H is a K-group, then for any normal subgroup N of FyH contained
in ker 6, ®(FgH/N) = 1.

Proor. 4) We have H('; =1 and Ng(f,i) = Cg(I:,»), sothat G=L1H.

b) Set M = {X<-FyH |N < X}, Myn = {X<H|N< X} and M = {FuX | X €
€ Myn}; then FgX < FgH, FyX ANH = X and M C M. Thus/\Y<ker9/\ (/\ Y) <
<H/\(/\Y) /\ Y N since §(H/N) = 1. d

Tueorem 2.7. Given a group L consider G = LUVH. Let S; be a maximal normal
subgroup of L; with L; = L;/S; non-abelian, S! =Sy for each i and § =8y x -+ x §,,.
Then a T in [B/SAB) is H-invariant if and only zf T = Bor there exists a complete system of
blocks {2}, i<, for H on Q xucf? that T|S = e (/egg L).

Proor. Assume T to be H-invariant in [B/S4B], and T # B. We have S; < T}, hence
§ =T, <T < T"=B and by Corollary 2.4 there exists F = S4,, with « = {Hy, Hix}
and H; < (H,, x) such that Fy is a maximal element of [B/4B]y, T/S < Fy/S = g3 L,

where L; :A( x Lk)%’ L. By Lemma 2.6, (Fy/S):H=L1H=G, m=degH =
|H Hg, | < degH Let G be a counterexample with H of minimal degree. If
=1, then T/S= L;, a contradiction. Hence m>2. In G=L1H we have

AB <T<T*=Bie Tis a proper element of [B/4Bly. By minimality, there exists a
complete system of blocks {2;}, ., for H, s < msuch that T/S = gy A(/e x L).Letd
< Ji<s y
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be the cardmahty of Q;. Then each block €; is the union of d convenient blocks of {Q;}:
Q= U Q and so 2 (thought as a subset of ©) is a block & for H with

1<i<d
|Q|=d|Hgq, :H| and T/S = gy A( x L) L, a contradiction. The converse is
clear by Proposition 2.3 5). VS kel O

(2.1) Given G = L1 H, we have (4B x H)g = 1 if and only if Z(L

Proor. Z(L) =2 Z(4B) < 4B x H and since Z(4B) <« G, (4B x H)g # 1 if Z(L) # 1.
Assume now Z(L) =1 and UBx H) g =N#1. f NAB=1 we get N< Cs(B) <B
Ze. N<Z(B), a contradiction. So D=NAB#1 and since N < 4B x H we have
D < (4B x H)AB = 4B and D < G. Take a non-trivial element (d, ..., d) € D and pick
1+#(0,1,...,1) € B. Then (¢4,1,...,1)7'(d,...,d)1,1,...,1) = (d",d,...,d) €D,
ie.dd =dforall ¢, € Lsod e Z(L) =1, a contradiction. Therefore N = 1. |

3. We begin with

LemMA 3.1. Let L be a simple non-abelian group and assume that H has a maximal core-
free subgroup M. For R < My, let Hy denote the (faithful) right coset representation of H
afforded by R. Then Gg = L Hg is a K-group if and only if H is a K-group.

Proor. We begin with R = M. By Corollary 2.5 5), 4B is a maximal element in
[B/4Bly, hence 4B x H is a maximal K-subgroup of Gg, since 4B = L. By (2.1)
(4B x H)g = 1, hence by Proposition 1.5, G is a K-group. For R < M), assume that
Gg is a counterexample and choose R with | H : R | # 1 minimal. Thus R # M, and we
can take # = {R, Rx} with R<- (H,,x) = A < M. Then for F = 4,, Fy, is, by Corollary
2.4, a maximal element in [B/4Bly,, hence Fy,Hr<-G. According to Lemma 2.6,
FyHr ~2L1H, with H~H since ker@=Ay=1 and degH=|H:A|<
<|H:R|=degHg. By the minimality assumption, LY H is a K-group and by
Proposition 2.3 ¢), (Fg,Hr)c = 1. But then by Proposition 1.5, Gg is a K-group, a
contradiction. O

TrroreM 3.2. Let L be a given group such that L/S(L) is a direct product of simple
groups and let H be a group with a maximal core-free subgroup My. Then for every R < My,
GRr s a K-group if and only if H is a K-group and ®(G/F;(S(B))) = 1 for all i’s.

Proor. The necessity follows from Proposition 1.4 4); actually, in our case, L itself is a
K-group by Corollary 1.3, since L/S(L) is a K-group by [2]. Conversely, by Proposition
1.4 b), we may assume S(L) = 1, 7.e. L=5; x --- x §, ;s simple non-abelian groups.
We have to investigate Gk = L{Hg = B : Hg = (B; x - -+ x B,) : Hg, B; the base group
of §; 1 Hg, with H a K-group. If # = 1, the conclusion follows by Lemma 3.1. We assume
now ¢>1 and use induction on 7. Thus B;: Hg is a K-group for all 7’s, where
B; =B x - - X B; x --- x B,. Assume, to begin, R =M, and set F; = 4B; x B;Hg.
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Since, by Corollary 2.5, 4B; x Hr<- B;Hg, F; is a maximal K-subgroup of Ggr. Now by
2.1) (F:)¢ = B, so AN () = ABZ' = 1 and therefore by Proposition 1.5, G is a K-
group. For a contradiction, assume that there exists an R < My such that Gg is not a K-
group; choose R such that | H : R | is minimal. From what just seen, R # M. Let x be
an element of My such that R<: (H,,x) = A < My; set # = {R,Rx} and for a fixed
1< i <t consider M; = 4,< B; and define M; = M; x B;. Then M,<- B and (M,')HR is
a maximal element of [B/4B; x - -+ X 4B,]y, (see Propositon 2.3 and Corollary 2.4),
thus (M,-)HRHR<~ G. According to Lemma 2.6, (M,-)HRHR/ker 0; =~ L1H, L2 L; here
ker 0;=Ag=1and degH = |H: A| < |H: R|. So, by the minimality assumption,

= (M) Hg is a maximal K-subgroup of Gg. Since! by Proposition 2.3 o),
(( DHHg)c = B; and /\B =1, by Proposition 1.5, Gg is a K-group, a contra-
diction. O

We recall that given a permutation group L on a set I', the group G = L H becomes
a permutation group on I'? via the product action by setting p¥# () = (p(e”” ))ﬂ“/} )

The group G turns out to be a primitive group as soon as L is primitive not regular (see [3,
2.7A)).

COROLLARY 3.3. Let {Hi}lsl-sﬁ t > 2, be a family of simple non-abelian primitive
permutation groups on the sets Q; and let L; = H; X H; be the primitive permutation group
on the set I'; = {A(H; x Hy)b | b € L;}. Then

a) H=H{V(H 1 (H31--+)--+) in its product action is a primitive K-group;
b) H=L Y (L, (L3 1---) -+ -) in its product action is a primitive K-group.

ProoF. a) for ¢ = 2 the primitive group H; { H; is a K-group by Lemma 3.1. Using
induction, H, ! (H3 1 - - - ) is a primitive K-group, hence the primitive group H is also a K-
group by Theorem 3.2.

b) L; is a primitive K-group, since 4(H; x H;)<: L;. Thus, by Theorem 3.2, L1 1 L,
is a K-group and, as in case #), with an induction argument, one reaches the con-
clusion. a

We like to point out that Corollary 3.3 in combination with Theorem 3.2 allows to
construct further examples of K-groups.

ProposITION 3.4. Let L be a group such that L/S(L) is simple and H a direct product of
simple groups. Then G = LY H is a K-group if and only if &(L/F;(S(L)) tH) = 1 for all i’s.

Proor. The necessity follows from Proposition 1.4 4). For the converse, we note that
H is a K-group and by Proposition 1.4 ), we may assume S(L) = 1. Pick » = {1,r},
F = 4,, so that F<- Band FyH<: G. For a contradiction, assume that G is not a K-group,
and take a counterexample with minimal degH. Applying Lemma 2.6, we get
FyH = L1H x ker8, since H = ker 6 x R, and deg H < deg H. By mmlmahty reasons,
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L1H is a K-group, hence FyH itself and by Proposition 2.3 ¢) (MgH)g = 1. So by
Proposition 1.5, G is a K-group, a contradiction. O

TuEOREM 3.5. Let L be a group such that L/S(L) is simple and H be a group whose
proper normal subgroups are solvable. Then G = L H is a K-group if and only if H is a K-
group and ®(G/F;(S(B))) = 1 for all i’s.

Proor. The necessity follows from Corollary 1.2 and (1.2). For the converse, by
Proposition 1.4 4), we may assume L simple non-abelian. For a contradiction assume G is
a counterexample with deg H minimal and pick » = {1, 7} such that 4B < F = 4,<-B
and FyH<- G. Since by Lemma 2.6 FyH /ker 6 = [1H,L~Land degH < degH, by
minimality reasons FH /ker 0 is a K-group. Since S(L H) = S(B) by (1.2) and S(B) =
we get &L H) =1, (FyH)¢ = S(FyH) = ket 6, hence @(FyH) < ker 6. But now by
Lemma 2.6 b) &(FyH/F;(ker6)) =1 for all ’s and so by Proposition 1.1, FyH is a
maximal K-subgroup of G. Since (FyH)¢ = 1 by Proposition 2.3 ¢), by Proposition 1.5 G
is a K-group, a contradiction (note that in the case H = ker6, ie. Fy = 4B, then
AB x H<-B: H and 4B x H = L x H is a K-group). |

We recall that a transitive permutation group H is 3-transitive if the stabilizer H; has
orbits of the same length on 2\ {1}. By a theorem of Wielandt [7, Theorem 3.1 4] a 3-
transitive group is either primitive, or a Frobenius group.

CoroLLARY 3.6. Let L be a group such that L/S(L) is simple and H a 3-transitive
permutatzon group Then G=LU1H s a K-group if and only zf H is a K-group and
®(G/F;(S =1foralli’s.

Proor. This follows from Theorems 3.2 and 3.5, since a Frobenius K-group is
necessarily solvable {if the Frobenius complement has even order, then it has exactly one
element of order 2 [3, Theorem 3.4A]). O

Let us denote with X the class of (simple) groups of Lie type such that Glg) € X,
g=7p/, > 1, if for each divisor d of f and each prime divisor 7 of 4, the interval
G(p?)/G(p¥")] is monocoatomic and G(p?/") is simple (non-abelian). In [1] one can find
a list of groups which are members of the class X. In the following we shall denote by ¢
the field automorphism of G(g) induced by x s .

LemMa 3.7. Given Gy = Golg) € X and y € (@), set G = Gy : y). If r is a prime
divisor of f and Golq'") < M<-Gylq), then the interval [GUH/Go(g"")"H(w)"] is
monocoatomic with coatom M"H(y)".

Proor. GlH=Golg ()" :H. Since MY =M, [Gol@W)/Gol@/)w)] is
monocoatomic w1th coatom M (y); but then [Gy(q)" (w)" /Go(q"/")” w”1x is monocoatomic
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with coatom M” ()", hence [Go(g)" (w)” : H/Go(q"")" ()" : H] is monocoatomic with
coatom M” (w)” : H. O

TueoReM 3.8. Given Gy = Golg) € X, g =/, let w be an element of (¢), where ¢ is
the field automorphism of G induced by x — x* and set G = Gy : (y), G = G 1 H where H
is either primitive, or a group with all its proper normal subgroups solvable. Then G is a K-
group if and only if (G/Gy)” is a direct product of minimal H-invariant subgroups and H is a
K-group.

Proor. If G is a K-group, then G/Gf = (y)1H is a K-group; in particular
D((y) 1 H) = 1 and so the necessity follows from (1.1). Conversely, since (G/Gp)" is a
direct product of minimal H-invariant subgroups, |w| is square-free. Let G be a
counterexample with minimal 4. Let 7 be a prime divisor of | |. By Lemma 3.6,
[G/Golg"")"(y)"H] is monocoatomic with coatom M”(y)"H. Now (M”(y)"H)s A
A Go(g)" =1 and since Cx(G") = Z(G") = 1, we get (M"(y)"H)z = 1. We claim that
Golg"/")(w)"H is a K-group. Set (w) = (w), x (), with y, of ordet 7. By minimality and
Theorems 3.2,3.5, (Go(g*/") : {w,)) L H is a K-group. Moreover (Go(g'/”) : (w,)) t H acts
on (y,)" as H, hence (y,)" is a completely reducible (Go(g"/") : (w,)) t H-module. But
then, by [9, Lemma 3.1.91, Go(¢'/") () ¢ H is a K-group. Accerding to Proposition 1.5, G
is a K-group, a contradiction, - O

_ Note that if in the primitive group H one replaces H; with an R < H;, then
Gr = G Hg is still a K-group as.soon as (G/ Go)'HR ! is a completely reducible H-
module and H is a K-group: in fact still Theorem 3.2 applies in the proof.

_ Cororrary 3.9. Let Go = Golg) € &, g =p/ and w € (9). If G= Gy : (y), then
G = GlLA, (resp. G1S,) is a K-group if and only if |y | is square-free and (n,|y|) = 1.

By Theorem 3.8, G is a K-group if and only if (G/Go)” as an A,-group (resp. S,-
group) is a direct product of minimal normal subgroups, and this is the case if and only if
|w | is square-free and (|w |, #) = 1 [8,5.3.4]. a

4. In this last section we deal with the case L = S(L). Asusual G = L H.

Lemma 4.1. Let L be a solvable group and U a minimal normal subgroup of L. Denote
by U the base group of UVH. Then U is a minimal normal subgroup of G if and only if
U £ Z(L)..

Proor. If U < Z(L), then AU") <G, and A(U”) < U. Assume now U A Z(L) = 1.
If H=UHh;, by =1, then U=Ux U” x ... x Ub». Let N be a minimal normal
subgroup of G with N < U. Take a non-trivial element x € N, hence x = x1%2 - - - %,,,
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x; € U% for all 7’s, and without loss of generality we may assume x; # 1.
Pick a geL\CL(U); then A #x1, hence 1# xx7t =x6x"1 € NAU. Thus
(Ex; V! = U <N, hence UM =T <N. O

TueEOREM 4.2. Given a solvable group L, then G = LY H is a K-group if and only if L
and (L/L") VH are K-groups.

Proor. By Proposition 1.4 4), S(L) = L is a K-group, and so is G/(L')" = (L/L’) 1 H.
For the converse, let G be a minimal counterexample. Then L is not nilpotent, since
&(L) = 1 implies L' = 1. Let U be a minimal normal subgroup of L contained in L’ # 1.
If U is the base group of U H, G/U = (L/U)  H is a K-group for minimality reasons. If
U < Z(L),G=U x L/U 1 H is a K-group, a contradiction. So U A Z(L) = 1; by Lemma
4.1, U is a minimal normal subgroup of G and we get G = U: L/U 1 H, but then by [9,
3.1.9], G is a K-group, a contradiction. O

CoroLLARY 4.3. For a solvable group L, L1 A, (resp. L1S,,) is a K-group if and only if
L is a K-group and (|L/L'|,n) = 1.

Proor. The conditions (|L/L'|,#) =1 and L a K-group implies that (L/L')" is a
completely reducible A,-module (resp. S,-module) [8, 5.3.4]1. O

CoroLLARY 4.4. Any twisted wreath product G of the alternating group A,, by A, in
which A, is twisted by the point-stabilizer A, is a K-group, except when m =3 orm = 4
and 3 | n.

Proor. By [5,3.4], G=A,, 1 A, and the conclusion follows from Theorem 3.2, 3.5
and Corollary 4.3. O
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