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MAURO COSTANTINI - GIOVANNI ZACHER 

if-GROUPS AND WREATH PRODUCTS 

To Guido Zappa on the occasion of his 90* birthday 

ABSTRACT. — We give criteria for a wreath product to have complemented subgroup-lattice. 

KEY WORDS: Complemented group; Wreath product; Subgroup lattice. 

A group G is called a X-group if its subgroup lattice £(G) is a complemented lattice. 
For basic information concerning iC-groups we refer the reader to [9, §3 n. 1]. While 
finite simple groups are K-groups, [2], and while the structure of solvable X-groups is 
well understood [11], a characterization of all finite K-groups is still missing. The purpose 
of the present paper is to give a contribution in this direction, by establishing several 
criteria for a wreath product G of L by H, G = Li H, to be a X-group. 

The paper is divided in 4 sections. Section 1 contains preliminaries of general nature 
and shows how to reduce the classification of X-groups to the case where the solvable 
radical S(G) of G is trivial. In section 2, we give relevant structural information on the H-
invariant subgroups of the interval [B/AB], where B is the base group of G and AB is the 
diagonal subgroup of B: Propositions 2.3 and 2.4 are central for our applications. In 
section 3 and 4 are presented several criteria which guarantee that a wreath product is a 
iv-group; particular relevance in this regard have Theorems 3.2, 3.5, 3.8 and 4.2. 

The notation is mainly standard; in case of special symbols, we shall define them when 
first needed in the course of exposition. We emphasize that throughout the paper H 
stands for a transitive permutation group of degree n > 2 on a set Q whose elements are 
either the digits 1,2,..., n or the right cosets H;h with H/ the stabilizer of / and h £ H. 
All groups are meant to be finite. 

1. We recall that in a X-group G, an interval [E/D] is a complemented lattice as soon 
as D is a Dedekind subgroup ([9],-2.1) and E is a dual-Dedekind subgroup ([9], 2.4) of G; 
moreover if A < B < G with A normal in G and B subnormal in G, then the Frattini 
subgroup 0{B/A) is trivial. In particular the generalized Fitting subgroup F*(G) is a 
direct product of simple groups. Useful in this context is the well known statement: 

(1.1) Let Abe a nilpotent subnormal subgroup of a group G Then AG<P(G)/<P(G) is a 
direct product of minimal normal subgroups of G/0(G) and has a complement in G/0(G) 
[4,12]. 
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PROPOSITION 1.1. Let S be a solvable subnormal subgroup of G. Then G is a K-group if 
and only if GjSG is a K-group and <P(G/Fi(SG)) = 1 for all terms of the ascending Fitting 
series of SG. 

PROOF. The necessity is clear. Conversely, let G be a minimal counterexample. Then 
S ^ 1 and, since 0(G) = 1, by (1.1) we have G = F(SG) : C, where F(SG) is a direct 
product of minimal normal subgroups, while C = G/F(SG) is a K-group. But then, by [9] 
3.1.9, G itself is a K-group, a contradiction. • 

COROLLARY 1.2. The group G is a K-group if and only if 
i) G/S(G) is a K-group, and 
ii) 0(G/Fi(S(Q)) = 1 for all ïs. • 

As one may note, Corollary 1.2 reduces the study of K-groups essentially to the 
semisimple case. 

COROLLARY 1.3. Let G be a K-group and N *G Then N is a K-group if and only if 
N/S(N) is a K-group. 

PROOF. Assume N/S(N) a K-group and N a minimal counterexample. Then S(N) / 1 
and, since G/F(S(N)) is a K-group, such is N/F(S(N)). Moreover <2>(N) < 0(G) = 1 so 
that, by (1.1), N = F(S(N)) : C, with F(S(N)) a direct product of minimal normal 
subgroups of N, while C is a K-group. But then N is a K-group by [9] 3.1.9, a 
contradiction. • 

By Corollary 1.3, if Ris subnormal in S(G) and G is a K-group, then R is a K-group. 
Given a non-trivial group L, let LQ be the group of all functions of Q in L, group which 

can be identified with the direct product B of n copies of L, B = L\ x • • • x Ln. The 
position/^(co) =/(co^ ) defines a right action of h on LQ. The semidirect product G of B 
by H defined by (/, h)(f\, h\ ) — (g, hh\ ), with g=ff^ is called the wreath product of L by 
H and is denoted by G = LIH = B : H. The group B = LP is called the base group and 
the subgroup AB of constant functions is called the diagonal subgroup. The group H 
permutes the elements of {Liy..., L„} via conjugation according to the rule Lf- = L,b. We 
recall that HG = 1, CG(B) =Z(B), CG(H) = Z(H) x AB, NG(H) = H x AB, while H, is 
the normalizer as well as the centralizer of Lj in H. 

(1.2) Gâ*» G = L iH, m e S(L) ^ L. Tjfew 0(G) < S(G) = S(J3) ^ (S(L))*. 

PROOF. We have G/S(£) ^ (L/S(L)) IH and 5(G) HE = 5(B); hence S(G)/S&) < 
<CG/siB)(B/S(B))<B/S(B), since S(L)^L. • 

PROPOSITION 1.4. G«;e« G = LlH we have 
a) / /G /> <̂  K-group then (L/S(L)) X H, H andS(L) are K-group s. L itself is a K-group if 

(and only if) L/S(L) is a K-group. 
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b) G is a K-group if and only if(L/S(L)) IH is a K-group and <P((L/Fi(S(L)) IH) = 1 for 
all i}s. 

PROOF, a) Since G/S{B) = (L/S(L)) IH and H = G/B, they are K-groups and, by 
Corollary 1.3, such is S(B) and so is S(L). Also, again by Corollary 1.3, B is a K-group if 
and only if B/S(B) is a K-group, so that L is a K-group if and only i£L/S(L) is a K-group. 

b) By Proposition 1.1, G is a K-group if and only if G/S{B) is a K-group and 
<P(G/FMB))) = 1 for all i% and we are done since G/Fi(S(B)) ^ (L/Fi(S(L))) l H. D 

Given a group G and a subgroup X, the interval [G/X] is called monocoatomic with 
coatom M if M is the unique maximal subgroup of G containing X. For later references we 
recall the following criterion established in [2]. 

PROPOSITION 1.5. Let {[G/X/]};- be a family of monocoatomic intervals with {Mi}; the 
family of its coatoms. Then G is a K-group if each X/ is a K-group and ( f\ Mi)p(Q = 1, 
P(G) being the group of all autoprojectivities of G D 

2. Given G — LlH and a non-empty subset I of Q, set A\ — {(x\,..., xn) e B \ xt• = xj 
for all ij G I}. Thus A\ is the subgroup of B of all functions constant on I: we 
have Aj=A{ x Lk) x f[Lk 9É L^1^1 and, for heH, A\ = Alh = A( x Lk) x 

kel Hl kelh 

x Y[ Lk = A{ x Lfch) x Y[Lk. The following intersection formulas hold for non-

empty subsets I, / of Q 
(4uj i f I n / ^ 0 

(*) ALnAj= I A{xLk)xA{ xLk)x U Lk if In } = 0 
[ te teJ kpuj 

The map X\-^Xf]B defines an isomorphism of [G/H] onto the lattice [B/1]H of H-
invariant subgroups of B; in what follows we are mainly interested in describing the 
structure of maximal subgroups as well of maximal H-invariant subgroups of B. If one 
puts Li = {/ e LP | /(/') = 1}, then £,- < Li AB = B and X \-^ X n L,- defines an 
isomorphism of [B/AB] —» [£,71]^. For T < B we set Tu = x TKi, with %i : B —» L/ 

the projection map, and T^= x Ti, Ti = Li D T < T. T is called a standard subgroup of B 
/el 

if T = T*( = 7 )̂ and non-standard otherwise: since {AB)U — B, all elements of [B/AB] 
different from B are non-standard subgroups. Clearly a standard subgroup T of B is H-
invariant if and only if Tj = T,* for all z's and it is a maximal standard H-invariant 
subgroup of B if moreover T/<- L/. 

According to [10, §1], to get a maximal subgroup F in [B/AB] one can proceed in the 
following way: consider in B an H-invariant standard subgroup S = S\ x • • • x Sn> 
S1-=Sih, with S{ maximal normal in L/, and set F = K x fj L^, « = {r,j}, 

R = CSV x £y)^(Ly x Ls). Then F is a maximal subgroup of B contaming AB. We are 
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now interested in determining the structure of F#. TO this end, we introduce the set U of 
all subsets of Q of cardinality 2. On U we define a relation ~ by setting 

( **) u ~ v if there exist sequences % , . . . , ut in U and h\,..., ht in H, t > 0, 

such that tfy_x = Ui and U{-\ C\Ui ^ 0 for all / > 0. 
Clearly ~ is an equivalence relation, and it is an H-congruence [3, Exercise 1.5.4], in 

the sense that u ~ v if and only if uh ~ vh\ hence H acts on the quotient space Uj ~. We 
note that u ~ v implies v = uh for some h G H. 

LEMMA 2.1. G/t>e« « G ZY, to V £e the congruence class of u and let VH = {Uf\ieI be 
the orbit of V in U/ ~. Then 

a) if{r, s} G Ui and {r,s'} G Uj, with i, j G I, then i — j \ 
b) for i G I, set Qi := x t> Ç Q. Then {Qì\iel is a complete system of (imprimitivity) 

VEUì 

blocks for H with Qi — Qj if and only if i = j , Hu,- = H&., 11 \ = \ H : HQì \, 
\Qi\ = \HQt:Hr\, reQ;. 

c) let i G I be such that u G Ui, and let r G u. Then Qi is the intersection of all blocks for 
H containing u or, equivalently, if u = {Hn Hrx}, then Qi = {Hrh \ h G (Hr, x)}; Qi is a 
minimal block [3, Example 1.5.1] if and only ifHr<- (Hnx). 

PROOF, a) Let heH be such that U\ —Uj.. Then {r,s}h ~ {r,V}, so that 
{r, / } = {r, 5} for a certain /?' G H; but then {r, s} ~ {r, / } , />. Uj = Ui, and/ = /. 

b) Assume r G Qi D Qj. Then {r, s} G ZY/, {r, / } G Wy for certain 5, / , so by a), / = / . 
Let h G Ho. and let U) = W/. Then D,• = ^ = U v = Q/7 so / = / , and U) '= Ui. 

c) Let Q be the intersection of all blocks containing «, and suppose Q C Qi. Then 
there exists av eUi such that z;0. Since u ~ v, there are sequences («/), (/?*•) as in ( * *). 
Hence there exists 7 such that Uj-\ G £2, but Uj £ Q, but this is a contradiction, since 
«/ = UjJ_v so that £2 H Q3 2 «y-i H «y 7̂  0. Therefore £2/ = £2. If r G « and we identify u 
with {HnHr%} (for a certain x G H\Hr), then the minimal block containing « has 
setwise stabilizer the subgroup (Hnx) G [H/Hr] [3, Theorem 1.5A], that is 
Qi — {Hrh I h G (Hrìx)}. The conclusion follows. D 

For simplicity and without loss of generality, further on we shall assume that 
u = {1, r} and call U\ the congruence class of u. 

LEMMA 2.2. Set Q\ — U v,F — Au. Then 
a) FHui =FHQI = AQl; 

b)F{HQi)h = Fh
HQi=A^. 

PROOF, a) We have HUl = HQX by Lemma 2.1 b). For h G H^1, we get Fh = Auh with 
u ~ «*; so if («/), (/?/) are sequences as in ( * *), using ( * ) we get 

F AFh > AUo=u A • • • A 4 w = ^ > 4oi-
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Since AQX is H^ r invariant, we get FHQI > AQl. But since Q\ = U uh, also the other 

inclusion holds. Ul 

b) Fm,)h = F(Hui)h A F = ( A F f = A& U 
1 l yeHUlh xeHUl

 l 

PROPOSITION 2.3. Set H = Ù HQJOU with h\ = 1, F = Au. Then 
\<i<m 

a)F H = x A( x Lk)^Lm, AB<FHi FHALi = l; 

b) there exists an order-inverting embedding <p of [H/Hi] into [B/AB]H such that 
X'ALi=lfi>ralli's,tfX.^H1. 

c) if h is simple non-abelian, then (FHH)G = 1. 

PROOF, a) FH = A FHo h.= AFhA = AAhA = x A( x Lk)^Lm using 

Lemma 22 b). ^ ' ' * ' ' * f W 
b) For X e [H/Hi] consider the imprimitivity system {&j}\<j<m determined by X. 

Then the map cp : X\-^ x A( x_ I4 ) has the required properties. 
\<j<m keQj 

c) Set N = (FHH)G. Then N AB = 1, hence N<CG(B) = 1. D 

COROLLARY 2.4. L ^ T fe ^^ element of [B/AB]H such that Li = Li/Lj A T is simple 

non-abelian. Then T is a maximal element in [B/AB]H if and only if 

T/Ti = x A( x L A where m = \ H : HQ1 \ and{Qi\ is a complete system of minimal 
\<i<m keQj 

blocks for H, afforded by an Re [H/Hi] such that H\<- R. 

PROOF. The sufficiency is clear from our previous discussion. Assume now that T is a 

maximal element in [B/AB]H. Since T ^ B, there exists u = {l1r} such that 

T/T£< F/T£ = AUT£/TI = AQLIX Lr) x I j Lk<>B/T£. So T < FH e [B/AB]H implies 

k<£u 
T = FH and T/T£ has the indicated structure by Proposition 2.3 a). Moreover, since T is 

maximal H-invariant, according to Lemma 2.1c), Q\ = {H\h \ h G R} , with Hi <• R. The 

conclusion follows. • 

COROLLARY 2.5. Let F = Au, u= {Hi,H\x}. Then 

a) F H = ^ # if and only if H = (Hnx) i.e. x £ UM/, Hi < Mi<-H. 

b) z /H is primitive and L is a non-abelian simple group then [B/AB]H has length 1. 

PROOF, a) By Proposition 2.3 a), FH = AB if and only if HQ1 = (Hr, x) = H. 

b) follows from Corollary 2.4. • 

REMARK 2.1. We note that in general if [B/AB]H has length 1, then H is primitive and 

L is simple, since then, by Proposition 2.3 b), we have H i < - H and, if S<L, then 

SlH e [B/AB]H- However, in the other direction, if L is not assumed to be non-abelian, 
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then [B/AB]H may have length greater than 1. Consider the following example: let 
L = Cp, H = ((12 . . . n)). Tfien Hi = {1}<- H if and only if n is prime. Assume now 
n — 3. Then the cardinality h of [B/AB]H is 

( 3 ifp = 3 
A=±= < 2 if p = —1 mod 3 

[ 4 if p = 1 mod 3 

and [B/JB]jf has length 1 if and only if p = —1 mod3. 
In general, if n is an odd prime q, then [B/AB]H has length 1 if and only if q is a 

primitive divisor oipq~l — 1, that is if and only iiq^p and # does not divide / / — 1 for 
\<i <q-l (see [6]). D 

To the expression FH = L\ x • • • x L^ in Proposition 2.3 #), where L/ stands for 
zf( x L^) we can associate, via conjugation, the transitive permutation representation 

9 : H —> Sym(^) of degree m. In the next lemma we collect some useful properties of 9. 

LEMMA 2.6. We have: 

a)ker9 = (HQl)H and, if H = H/ker9, then G = FHH/ker9 = FH : H = LlH, 
with H a transitive permutation group of degree deg H = \H : HQ1 \ < deg H acting on 
the complete system of blocks {fif} for H on Q. 

b) if<P(G) = 1 and H is a K-group, then for any normal subgroup N ofF^H contained 
inker9, <P(FHH/N) = 1. 

PROOF, a) We have H ô = 1 and N^(L^) = C^iU), so that G = LlH. 
b) Set M = {X<-FHH I N < X}, M H , N = {X<H \ N < X} and M = {FHX \ X e 

e MH,N}^nFHX<-FHHyFHXAH = ïmàM C M.Thus A Y < ker# A (A Y) < 
<HA(AY)= A Y = Nsince<£(H/N) = l. M M D 

THEOREM 2.7. Given a group L consider G = Li H. Let Si be a maximal normal 
subgroup of Li with Li = Li/Si non-abelian, S\ = S{h for each i and S — S\ x • • • x S„. 
Then a T in [B/SAB] is H4nvariant if and only ifT = Bor there exists a complete system of 
blocks {Qi\\<•;<•», for H on Q such that TIS = x A( x LL). 

PROOF. Assume T to be H-invariant in [B/SAB], and T ^ B. We have Sj < Ti, hence 
S = Ti < T < Tu = B and by Corollary 2.4 there exists F = SAU, with u = {Hi,Hi*} 
and Hi <• (Hn x) such that FH is a maximal element of [B/AB]H, T/S < FH/S = x L/, 

\<i<.m 

where U = A( x Lk)^ L. By Lemma 2.6, (FH/S) :H = LlH = G, m = degH = 
keQi 

= \H : HQ1 I < degH. Let G be a counterexample with H of minimal degree. If 
m = 1, then T/S — L\, a contradiction. Hence m > 2. In G = LlH we have 
AB <T <TU —B i.e. T is a proper element of [B/AB]H. By minimality, there exists a 
complete system of blocks {fiy}^.^ for H,s < m such that T/S = x J ( x L^). Let J 
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be the cardinality of Qj. Then each block Qj is the union of d convenient blocks of {£2*}: 
Qj = Ù OH and so Qj (thought as a subset of Q) is a block Qj for H with 

_ \<i<d l 

\Qj\ = d\HQ1 : Hi | and T/S = x zl( x L^)= L*, a contradiction. The converse is 
clear by Proposition 2.3 b). 1Sf~s keù] D 

(2.1) Given G = L\H, we have {AB x H)G = \ if and only ifZ(L) = 1. 

PROOF. Z(L) ^ Z(AB) < AB x H and since Z(AB) < G, (AB xH)G ^ 1 if Z(L)Y 1. 
Assume now Z(L) = 1 and (AB x H)G = N ^ 1. If N A B. = 1 we get N < CG(B) < B, 
i.e. N < Z(B), a contradiction. So D = N A B ^ 1 and since N < AB x H w;e have 
D < (zIB x H) A E = ziB and D < G. Take a non-trivial element ( J , . . . , d) G D and pick 
1 ^ (*!, 1,..., 1) e B. Then (£b 1,..., i r V , . . . J)(£u 1,..., 1) = WV,...,d) e D, 
/.<?. i^i = J for all £i G L so d £ Z(L) = 1, a contradiction. Therefore N = 1. D 

3. We begin with -

LEMMA 3.1. Le£ L ^ a simple non-abelian group and assume that H has a maximal core-
free subgroup MQ, For R < Mo, let HR denote the (faithful) right coset representation of H 
afforded by R. Then GR = L\HR is a K-group if and only if H is a K-group. 

PROOF. We begin with R = Mo. By Corollary 2.5 b), AB is a maximal element in 
[B/AB]H, hence AB xH is a maximal K-subgroup of GR, since AB = L. By (2.1) 
(AB x H)G = 1, hence by Proposition 1.5, G is a K-group. For R < M0, assume that 
GR is a counterexample and choose R with | H : R \ ^ 1 minimal. Thus R 7̂  Mo and we 
can take u '=• {R, Rx} with R<- (Hr, x) = A < M0. Then for F = Àu% FHR is, by Corollary 
2.4, a maximal element in LB/ZIJB]HR, hence FHRHR<-G. According to Lemma 2.6, 
F H R H R ^LlH, with H ^ H since ker6 = AH = 1 and degH = |H : A | < 
< IH : R\ = deg HR. By the minimality assumption, LlH is a K-group and by 
Proposition 2.3 c), (FHRHR)G = 1. But then by Proposition 1.5, GR is a K-group, a 
contradiction. • 

THEOREM 3.2. Let L be a given group such that L/S(L) is a direct product of simple 
groups and let H be a group with a maximal core-free subgroup MQ. Then for every R < Mo, 
GR is a K-group if and only if H is a K-group and <£>(G / Fj(S(B))) = 1 for all i}s. 

PROOF. The necessity follows from Proposition 1.4 a); actually, in our case, L itself is a 
K-group by Corollary 1.3, since L/S(L) is a K-group by [2]. Conversely, by Proposition 
1.4 b), we may assume S(L) = 1, i.e. L = S\ x - • • x St, S/s simple non-abelian groups. 
We have to investigate GR = LîHR= B : HR = (BI X • • • x Bt) : HR, BJ the base group 
of Si I HR, with H a K-group. If t = 1, the conclusion follows by Lemma 3.1. We assume 
now t > 1 and use induction on t. Thus Bj : HR is a K-group for all z's, where 
Bj = B\ x • • • x Bi x • • • x Bt. Assume, to begin, R = M0 and set Fj — ABj x BJHR. 
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Since, by Corollary 2.5, ABj x HR<- BìHR, Fi is a maximal K-subgroup of GR. NOW by 
(2.1) {Fì)G = Bi, so A (Ft)a = A-B* = 1 and therefore by Proposition 1.5, GR is a K-
group. For a contradiction, assume that there exists an R <MQ such that GR is not a K-
group; choose R such that | H : R | is minimal. From what just seen, R ^ M0. Let x be 
an element of Mo such that R<- (Hrix) =A < MQ; set u = {R,Rx} and for a fixed 
1 < i < ty consider M,- = Au<- B{ and define M/ = M,- x JB/. Then M/<- J5 and (M,-)HR is 
a maximal element of [B/AB\ x • • • x / IBJHR (see Propositon 2.3 and Corollary 2.4), 
thus (Mî)HRHR<-G. According to Lemma 2,6, (M/^H^/ker 0/ &LlH, L^L; here 
ker Qi = AH — 1 and degH = | H : A | < | H : J R | . So, by the minimality assumption, 
X/ = (MJ)HRHR is a maximal X-subgroup of GR. Since; by Proposition 2.3 c), 
((M;)HRHR)G = % and t\% = 1, by Proposition 1.5, GR is a K-group, a contra­
diction. * • 

We recall that given a permutation group L on a set JT, the group G = LlH becomes 
a permutation group on rQ via the product action by setting p^^ico) = (pio^'1)/ 
The group G turns out to be a primitive group as soon as L is primitive not regular (see [3, 
2.7A]). 

COROLLARY 3.3. Let {Hj}l<i<t, t>2, he a family of simple non-ahelian primitive 
permutation groups on the sets Qi and let Li = Hi x H/ he the primitive permutation group 
on the set r , = {A(Hi x Hï)h \ h e Li}. Then 

a) H = Hi I (H2 I (H3 l '•-)'") in its product action is a primitive K^group; 
b) H = L\ I (L2 \{Lj, I" -)" -) in its product action is a primitive K-group. 

PROOF, a) for t — 2 the primitive group Hi IH2 is a .K-group by Lemma 3.1. Using 
induction, H2 I {Hj, I • • • ) is a primitive iC-group, hence the primitive group H is also a K-
group by Theorem 3.2. 

b) Li is a primitive K-group, since A(Hi x H/)<-L/. Thus, by Theorem 3.2, Li 1L2 
is a X-group and, as in case a), with an induction argument, one reaches the con­
clusion. • 

We like to point out that Corollary 3.3 in combination with Theorem 3.2 allows to 
construct further examples of K-groups. 

PROPOSITION 3.4. Let Lbea group such that L/S(L) is simple and H a direct product of 
sfmple groups. Then G — LlH is a K-group if and only if0(L/Fi(S(L)) IH) — 1 for all is. 

PROOF. The necessity follows from Proposition 1.4 b). For the converse, we note that 
H is a K-group and by Proposition 1.4 b), we may assume S(L) = 1. P|ck u = {1, r}, 
F = AUì so that F<- B and FHH<- G. For a contradiction, assume that G is hot a K-group, 
and take a counterexample with minimal degH. Applying Lemma 2.6, we get 
FHH = LlH x ker9, since H = ker6 x R, and degH < degH. By minimality reasons, 
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LlH is a K-group, hence FHH itself and by Proposition 2.3 c) (MHH)G = 1. SO by 
Proposition 1.5, G is a K-group, a contradiction. . • . 

THEOREM 3.5. Let L be a group such that L/S{L) is simple and H be a group whose 
proper normal subgroups are solvable. Then G = LlH is a K-group if and only if H is a K-
group and @(G/Fi(S(B))) = 1 for all is. 

PROOF. The necessity follows from Corollary 1.2 and (1.2). For the converse, by 
Proposition 1.4 b), we may assume L simple non-abelian. For a contradiction assume G is 
a counterexample with degH minimal and pick u = {1, r} such that AB < F — AU<B 
and FHH<- G. Since by Lemma 2.6 FHH/ker 0^LlH,L^Lmd deg H < deg H, by 
minimality reasons FnH/ker 9 is a K-group. Since S(L IH) = S(B) by (1.2) and S(B) = 1, 
we get #(L * H) = 1, (FHH)G = S(FHH) = ker 0, hence <P(FHH) < ker 9. But now by 
Lemma 2.6 b) &(FHH/Fì(ker 0)) = 1 for all z's and so by Proposition 1.1, FHH is a 
maximal K-subgroiïp of G. Since (FHH)G — 1 by Proposition 2.3 c), by Proposition 1.5 G 
is a K-group, a contradiction (note that in the case H = ker#, i.e. F H — AB, then 
AB x H<-B : H md AB x H ^ L x H is a K-group). • 

We recall that a transitive permutation group H is |-transitive if the stabilizer Hi has 
orbits of the same length on Q \ {1}. By a theorem of Wielandt [7, Theorem 3.1 tf] a |-
transitive group is either primitive, or a Frobenius group. 

COROLLARY 3.6. Let L be a group such that L/S(L) is simple and H a ^-transitive 
permutation group. Then G = LlH is a K-group if and only if H is a K-group and 
<P(G/Fi{S(B))) = lforalli,s. 

PROOF. This follows from Theorems 3.2 and 3.5, since a Frobenius K-group is 
necessarily solvable (if the Frobenius complement has even order, then it has exactly one 
element of order 2 [3, Theorem 3.4A]). • 

Let us denote with X the class of (simple) groups of Lie type such that G{q) G X, 
# = / / , / > 1, if for each divisor d of / and each prime divisor r of dy the interval 
[G{pd)/G{pdlr]\ is monocoatomic and G{pdlr) is simple (non-abelian). In [1] one can find 
a list of groups which are members of the class X. In the following we shall denote by <p 
the field automorphism of G{q) induced by x i—• xp. 

LEMMA 3.7. Given Go = G0(q) G X and y/ G {q>), set G = G0 : (if/). If r is a prime 

divisor of f and G0(q
1/r) < M< G0(q\ then the interval [GlH/Go(qlhnH(y/)n] is 

monocoatomic with coatom MnH(\f/)n. 

PROOF. GlH = G0(q)n(y/)n : H. Since W = M , [G0(q)(y/)/Go(q1/r)(¥)i is 
monocoatomic with coatom M (if/); but then [GoiqT (y/)n /Goiq1^)" y/nÌH is monocoatomic 
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with coatom Mn{y)\ hence [G0(qT(y/)n : H/G0(q
1/r)n(y/)n ' H] is monocoatomic with 

coatom Mn (y/)n :H. D 

THEOREM 3.8. Given GQ = Goiq) G X, q = pf, let y/ be an element of ((p), where (p is 
the field automorphism of Go induced by x^-*xp and set G = GQ : {y/), G = Gl H where H 
is either primitive, or a group with all its proper normal subgroups solvable. Then G is a K-
group if and only if{G/Go)n is a direct product of minimal H-invariant subgroups and H is a 
K-group. 

PROOF. If G is a iC-group, then G/GQ ^ (y/)\H is a X;-group; in particular 
<P((y/) lH) = 1 and so the necessity follows from (1.1). Conversely, since {G/GoT is a 
direct product of minimal H-invariant subgroups, \y/\ is square-free. Let G be a 
counterexample with minimal q. Let r be a prime divisor of \y/\. By Lemma 3.6, 
[G/G0(q

1/r)n(y/)nHl is monocoatomic with coatom Mn{y/)nH. Now {Mn{y/)nH)ò A 
A G 0 ( # = 1 and since Cô(G

n)= Z(G*) = 1, we get (Mn(y/)nH)ô = 1. We claim that 
Go(q1^r){y/)nHis a K-groxip. Set {y/) — (y/)r x {y/)^, with y/r of order r. By minimality and 
Theorems 3.2, 3.5, (Goiq1^) : (y//))l H is a K-group. Moreover (Goiq1^) : (y//)) IH acts 
on (y/r)

n as H, hence (^r)* is a completely reducible ( G o ^ O : (y/rf)) ?H-module. But 
then, by [9, Lemma 3.1.9], Go(q^^iw) IH is aiC-group. According to Proposition 1.5, G 
is a X-group, a contradiction. D 

Note that if in the primitive group H one replaces Hi with an R < Hiy then 
GR = GIHR is still a iC-group as soon as (G/Go)' ' ' is a completely reducible H-
module and H is a ^C-group: in fact still Theorem 3.2 applies in the proof. 

COROLLARY 3.9. Let Go =. Go(q) € X, q = pf and y/ G {(p). If G = Go : (y/), then 
G — G\An (resp. GI Sn) is a K-group if and only if\y/\ is square-free and (n, \ y/1) = 1. 

By Theorem 3.8, G is a .K-group if and only if {G/Go)n as an An-group (resp. Sn-
group) is a direct product of minimal normal subgroups, and this is the case if and only if 
|y/1 is square-free and (|y/\,n) = 1 [8, 5.3.4]. • 

4. In this last section we deal with the case L =• S(L). As usual G = LlH. 

LEMMA 4.1. Let L be a solvable group and U a minimal normal subgroup ofL. Denote 
by U the base group ofUl H. Then U is a minimal normal subgroup of G if and only if 
c/.^zg^) ..' 

PROOF. If U < Z(L), then A(U") < G, and A(U") < Û. Assume now U A Z(L) = 1. 

If H = ÙHihi, hi .= 1, then Û = U x Uh2 x. • • • x Uh\ Let N be a minimal normal 

subgroup of G with N < U. Take a non-trivial element x G N, hence x = xi^2 • • • #», 
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Xi G Uhi for all z's, and without loss of generality we may assume x\^\. 
Pick a g £ L \ CL{U); then xf + xu hence 1 ^ xfx^1 = xgx~l G N A 17.' Thus 
(4xîl)L = U<N, hence UH = Û < N. D 

THEOREM 4.2. G/#e« # solvable group L, then G = LlH is a K-group if and only ifL 
and (L/L;) IH are K-group s. 

PROOF. By Proposition 1.4 a\ S{L) = L is a K-group, and so is G/(L')n ^ (L/L') ? H. 
For the converse, let G be a minimal counterexample. Then L is not nilpotent, since 
<P(L) = 1 implies L' = 1. Let U be a minimal normal subgroup of L contained in 1/ 7̂  1. 
If Û is the base group of 171 H, G/Û = (L/U) IH is a K-group for minimality reasons. If 
77 < Z(L), G =U x L/U IH is a K-group, a contradiction. So 77 A Z(L) = 1; by Lemma 
4.1, U is a minimal normal subgroup of G and we get G = 77 : L/U IH, but then by [9, 
3.1.9], G is a K-group, a contradiction. • 

COROLLARY 4.3. For a solvable group L,LlAn (resp. L ? S J zi a K-group if and only if 
L is a K-group and (| L/L' |, n) = 1. 

PROOF. The conditions (\L/Lf |,«) = 1 and L a K-group implies that (L/L')n is a 
completely reducible i4^-module (resp. 5„-module) [8, 5.3.4]. • 

COROLLARY 4.4. A«y twisted wreath product G of the alternating group Am by An in 
which Am is twisted by the point-stabilizer An-\ is a K-group, except when m = 3̂  or m — 4 
and 3 | n. 

PROOF. By [5, 3.4], G = Am \An and the conclusion follows from Theorem 3.2, 3.5 
and Corollary 4.3. • 
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