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S A L V A T O R E R L O N E R O 

L2-STABILITY OF THE SOLUTIONS TO A NONLINEAR BINARY 
REACTION-DIFFUSION SYSTEM OF P.D.ES. 

To Guido Zappa on the occasion of his 90th birthday 

ABSTRACT. — The L2-stability (instability) of a binary nonlinear reaction diffusion system of P.D.Es. - either 
under Dirichlet or Neumann boundary data - is considered. Conditions allowing the reduction to a stability 
(instability) problem for a linear binary system of O.D.Es. are furnished. A peculiar Liapunov functional V 

linked (together with the time derivative along the solutions) by direct simple relations to the eigenvalues, is used. 

KEY WORDS: Nonlinear Stability; Liapunov Direct Method; Reaction - Diffusion Systems. 

1. INTRODUCTION 

Let Q C 5ft3 be a bounded smooth domain. The nonlinear stability analysis of an 
equilibrium state in Q of two «substances» diffusing in Q can be traced back to the 
nonlinear stability analysis of the zero solution of a dimensionless binary system of 
P.D.Es. like 

ut = a\u + ci2V + ylAu+f(u,v,Vu,Vv) 

vt — a^u -f atf) + y2Av + g(u, v, Vu, Vf) 
(i) 

with / and g nonlinear and 

( ai = const. (/ = 1,2,3,4) 

\ yi• = const. > 0(/ =1,2) 

(2) )(u = v = 0)=>f = g = 0 

u : (x, t) € Q x 3R+ —* u(x, t) € 9£ 

[v:(x,t) eQx$ì+ -> v(x,t) E R 

under Dirichlet boundary conditions 

(3) u = v = 0 o n 9 f i x » + 
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or Neumann boundary conditions (n being the unit outward normal to dQ) 

(4) du = d?L = ç)ondQx^ 
an an 

with the additional conditions 

(5) [ udQ= f vdQ = 0,\/te$l+, 
Q Q 

in the case (4). The stability problems (l)-(5) are encountered in many models of real 
world phenomena like fluid motion in porous media, heat conduction, spatial ecology 
(see [1-8] and references quoted therein). 

Denoting by 
(•, •) the scalar product in L2(Q); 
IMI theL2(£)-norm; 
HQ (Q) the Sobolev space such that 

(p e Hl
Q{Q) -» {cp2 + {V(pfe L(fi), <p = 0on dtiY, 

Hi (£2) the Sobolev space such that 

<p e Hi (fi) - • W + {Vcpfe L(Q),^ = 0 on dQ, f<pdQ = 0 I; 

the L2-stability of (#* = v* = 0) with respect to the perturbation (u,v) belonging, 
W G » + , to [H^(fi)]2 in the case (3) and to \H\(Q)]2 in the case (4)-(5), has been 
studied in [7, 8] under the assumptions 

(6) 

\f\\ + k\\=o[(\\u\\2 + \\v\\2)1/2 

hi = a\ — ayx < 0 

, 4̂ = a4 — ay2 < 0 

â being the positive constant appearing in the Poincaré - Wirtinger inequality C) 

(7) ||Vp||2>â|M|2 

holding both in the spaces HQ (£?), Hi (£2). As it is well known, a = a(Q) > 0 is the lowest 
eigenvalues k of 

i1) When Q is a «cell of periodicity» in three dimensions like 

Q : x = (x, y, z) <E Q => 0 < x < a, 0 < y < B, \z\ < -

with u and v periodic in x and y directions of period a and b respectively, then (3) (4) are required only on \z\ = -
([4, p. 237] and [5, pp. 387-388]). 
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respectively in H\{Q) and H\{Q) {i.e. the principal eigenvalue of —A). In the present 
paper we reconsider the problem requiring (6)1 and only b\ + £4 < 0. Our aim is to show 
that the stability (instability) of the critical point (#* = v* = 0) of (1) is implied by the 
stability (instability) of the critical point £* = rj* = 0 of the linear binary system of 
O.D.Es. 

(8) 
drj 

I dt 
••a3Ç + b4ri, 

without requiring a2 = #3, i.e. the symmetry of the linear operator acting in (1) [see iv) of 
Section 5]. 

The plan of the paper is as follows. In Section 2 we introduce a suitable rescaling 

transformation for u and v and a basic Liapunov functional V such that the sign of -1-
dt 

along the solutions of (1) is linked directly to the eigenvalues of (8). Section 3 is dedicated 
to the stability, while the instability is considered in Section 4. The paper ends with some 
final remarks (Section 5). 

2. PRELIMINARIES 

(10) 

(11) 

Denoting by a and /? two rescaling constants to be chosen suitably later, and 
setting 

(9) u = àû, v = pv, /* = yx(Au + a«), g* = y2{Av + av), 

in view of (1), we obtain 

{ % = biû + b2v +f +f 

vt = b3û + b^v + g* + g 

with 

{u=au) " 
T=-r 

a (v=pv) 
, b2=-a2 a 

r-y-(u=aû) P (v=J3v) P 

In the sequel we will use essentially the following peculiar Liapunov functional 

(12) V(u, v) = l- [^(||«||2 + \vf) + \\biv - b)ii\f + \\b2v - b ^ 

with 

(13) A = b\b4 — b2bi = b\b4 — a2a},I = b\+ £4. 
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(15) 

By virtue of 

(14) -£= (A + b2 + b2
4)(û,ût).+ (4 + ^ 4 - ^ ) ( ^ ^ > - ( * i * 3 + feM(« ,« f ) + (^^>) . 

taking into account that along the solutions of (10) one immediately obtains 

(«, Ut) * b\ («, «,) + £2 («, *>) + («,7 +7) 

(F, P,) = bj, («, £) + 4̂ (*>, *>) + (î>, I* +1) 

(v, ut) = b\ (a, v) + b2 (v, v) + (v,f* + / ) 

I («, ^ ) = £3 («, «,) + £4 («, V) + («, g* + g) , 

by straightforward calculations it turns out that along the solution of (10) 

(16) 

with 

W* — (aiti — ayvj ) + (a2v — ayû,g*) 

W = (più — ayûj) + (a2v — ayù,~g) 

ai=A + b2 + b2, a2=A + b2 + b2 

W = MM2 + \\v\\2) + ¥*+¥ 

(17) 

, a3 = b\bj, + b2b4. 

REMARK 1. We observe that 
i) the eigenvalues of (8) are given by 

(18) 

hence 

IVP - 4A 

(19) \ A = hX2 

k i4 I=Ui+A 2 UiA 2 . 

Therefore 

(20) I < 0 

imply the asymptotic exponential stability of the null solution of (8), while either 

(21) I > 0 • 
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or 

(22) A < 0, 

imply the instability. In fact let (22) hold. Then the eigenvalues of (8) are real positive 
numbers. Analogously when (21) hold with A > 0, at least one of the eigenvalues of (8) is 
a real positive number (case I > 4A), or has positive real part (case I < 4A). 

it) The rescaling {u = dû, v — pv) does not influence A and I. 

LEMMA 1. Let 

(23) 

The 

(24) 

3 . L2(Q) -STABILITY 

ïl = Ï2 

A>0. 

W* < 0 . 
PROOF. In view of (17) and (22)2 it follows that 

(25) a.i>0 * = 1,2. 

(26) Y*(Q)=yiai [-||V^||2+â||iï||2]+y2a2[-||Vlî||2+â||tï||2]+(y1+y2)a3[<Vtî,V«>-â{«,y>]. 

For y1=y2 = y, it follows that 

[-^[||V«||2 + ||V^2-â(N|2 + ||l;||2)] 

(27) ¥*{Q) = y\\Mb.iû + hv)\r-â\\biû + b3v\\l\ + 

y\\\X7{b2Û + b4v)\\2 -â\\b2û + b4v\\ 

Let 7j 7̂  y2 and assume, for the sake of concreteness, yx < y2. Then the following Lemmas 
hold. 

LEMMA 2. Let 

(28) 

If exists a constant // such that choosing 

(29) 

A>0. 

a 
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it turns out that 

(30) 

then (24) holds. 

PROOF. (30) i 

(31) 

or 

(32) 

with 

mplies 

N 

either 

(ïl + 72)«3 

(7l + 72)«3 

< 2 v n / 2 , 
71+72 

= ±2y/y1y2aia2 

= ±2^/y1yaia2 

S. RIONERO 

(33) 7i < y = 
tyl+VlM <y2. 

<0 . 

47i«ia2 

Then in view of (31) one obtains 

(34) W* = - WViy/a^û^ y/a2y2v)\\ -^y/â^û^â^/â^v^ 

Analogously - in the case (32) - setting 

e = y2-y 

it follows that 

(35) V* = -ea2 [|| V |̂|2 - âp||2] - [|| v(V5m« T V*&) t =F «|| V ^ ^ W ^ | | 2 ] <0. 

LEMMA 3. L ^ (28) and 

(36) b\a2a^,b^ < 0 

ÂoW. T^/z choosing 

(37) 

(24) /&o£fc. 

A 
^2^4 

#1*3 

PROOF. In fact (37) implies GC3 = 0 and (24) is immediately implied by (26). 

(38) 

or 

LEMMA 4. Let (28) #«J «tóer 

Yi + 72 

IWi 
<2 y/Â+% 

(39) 

hold. Then (24) holds. 

Vnfî v 
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PROOF. (30) - in view of (29) - can be written 

(40) \ha^ + a2bA | < - ^ J(A + v24 + %) [/* (A + %) + aj]. 
V-i ~T~ Vn ' ft+ft 

Therefore (38) implies that (40) is verified strictly as inequality for ju = 0, hence exists 
a fa such that ju < fa implies that (40) is verified. Analogously (39) implies that (40) is 
verified strictly as inequality in the limit // —• oo. Therefore exists a fa such that for 
ju > fa Lemma 2 holds. 

THEOREM 1. Let (6)i and (24) hold. Then 

J < 0 
(41) 

A>0 

imply the (local) L2 -asymptotic exponential stability of the null solution of(l). 

(42) 

PROOF. In view of (16), it follows that 

dV 

dt 
<-AI^2 + \\v\\2\ + Y. 

By virtue of (41)2, V is positive definite, further from (12) it easily follows that V is a 
measure equivalent to the L2 (Q)-norm. In fact (12) implies 

(43) 

with 

(44) 

h (INI2 + H 2 ) < v < k2 (INI2 + I H 2 ) 

h=-A 

^ i 

On the other hand - by virtue of (6) - it follows that exist two positive constant k and S 
such that 

(45) 

hence 

(46) 

+ INI2 + IN2) 
M 

(aiii-ayvj) < <?(ai + |a3 | )( |N|2 + ||ï>||2) 

(a2v-a3û,g) < S(a2 + M M I N I 2 + ||^||2) 

[v<Si^2 + P\\2) 

l+k 

l+k 

A+k 



234 S. RIONERO 

with 

(47) ôi = ômax(ai + |a3 |,a2 + |a3|). 

Therefore (42)-(47) imply 

dV 
(48) 

with 

(49) 

It follows that 

(50) 

implies 

(5i) 

with 

(52) 

and hence 

(53) 

^r- < -dv + dxv
l+k 

dt ~ 

d = m d,= Sl V1+k 

k2'
1 k\+k • 

Vk<-Vo<d1 

dV 
-dJ<-r]V 

n = ^-djvl) 

VKVoe-i'. 

4. INSTABILITY 

We consider now the linear instability of the null solution of (1). Precisely, let 
{an, cpn}, (n = 1,2, ..;a = a\) be the sequence of the eigenvalues (with the associated 
eigenfunctions in HQ(Q) and H\(Q) according to (3) and (4)-(5), respectively) of (1). We 
study the instability of the null solution of 

(54) 
uit — a\u + a2v + yxAu 

Vj = aj,u + a^v + y2Av 

with respect to the perturbations 

( 00 00 

n=l n—\ 

Un = Xn(t)(pn , Vn = Y„(t)ç>„ 

[Xn eOW+), YneClm). 

(55) 
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Then, by virtue of the linearity and 

(56) A<pn = - a n <pn 

(8) gives 

(57) 

with 

(58) 

Setting 

(59) 

-j- = b\nXn + a2Yn 

I dt 
• a^X„ 4- b4nYn 

bin —a\- yxan 

b4n = a4 - y2an 

{ An = binb4n - a2aj, 

h = bu + b4n 

it follows that (for y2 > y1? y2 = ïi + 0 

An=Ai + [y[(an - a) + Qanyx - a\) - yjiiiân - a) 

In=h- (Vi + Jiifan - a). 
(60) 

THEOREM 2. The linear instability of the null solution of {I) is implied by each n such 
that either 

(61) 

or 

(62) 

I„>0 

An<0. 

PROOF. See i) of Remark 1. 

REMARK 2. 

i) Generally the coefficients ai depend on some dimensionless parameters char­
acteristic of the phenomenon at hands. Assuming that the parameters are only two and 
denoted by R and C, (61)-(62) can be written: 

(63) l(nìRìC) = bln + b4„ > 0 

(64) A(n, R, C) = binb4n - a2a3 < 0 

respectively. Let (63)-(64) imply respectively 

(65) R<F(n,C) 

(66) R<G(n,C) 
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and set 

(67) 

fR^=ìn£F(n,Q 
c N+ 

R<2) =ìn£G(n,C) 
c N+ 

Then the critical value R(c) of R guaranteeing that R> Rç implies instability is given by 

(68) R ^ i n f t R ^ R f ) . 

iî) By virtue of (60)2, ln is a decreasing function of an — a. Hence exists an n such that 

0 < h , h+i < 0, 

which implies 

R[1} = inf F(/z,C). 
n<n 

Analogously, in view of (60) 1, it follows that exists a n* such that 

A* < 0, i4„.+i > 0 

which imply 

R<2) = inf G ( « , 0 . 

wï) In the case ^ 7̂  y2
 t n e destabilizing effect of diffusion can appear. We refer to [7-

8] for the details. 

5. FINAL REMARKS 

Î) The L2-asymptotic stability implies the analogous stability with respect to the es­
sential sup, in the weak sense of the asymptotic (Lebesgue) measure stability. In fact de­
noting by Q(e, \<p(x, t)\) the largest subdomain of Q on each point of which, at time t, \<p\ is 
bigger than s > 0 and by /z(e, \<p(x, t) \) the Lebesgue measure of Q,forp > 1, the following 
inequality holds [9] 

(69) AC^II^OKT,^!!^, |^Car,^)|^ < > 0. 

In particular for p = 2, it follows that 

(70) ?(lbU,rt|lll^,rt|)<ll^,rt|| 

and hence 

(71) V £ > 0 , lim||pGM)|| = 0 =» ]imÏL(e,\<p(x,t)\) = 0. 

//') If y < 0, then Theorem 1 guarantees global L2-asymptotic exponential stability. 
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(72) 

Hi) The stability-instability theorems 1 -2 continue to hold for the more general system 

{ ut = a\u + aiv + e • Vu + yxAu +f 

vt = ^3^/ + ^ f + # • Vf -f- y 2 ^ + £ 

with e and Jb divergence free vectors, at least when either a?> = 0 or e =h in the case (3 ). In 
dV 

fact the contribution of e • Vu, e • Vf to —r- is 
dt 

(a\u — a?,v,e • Vu) + (a2f — o ^ i b • Vf) = 

= - [(ai,e • Vz/2) + («,* • Vf)] = 

= —aj,(v, (e — h) • V«). 

In the case (4), the additional conditions e-n=h-n = 0on dQ are needed. 
iv) By virtue of theorems 1 -2 it turns out that either when Lemma 1 or Lemma 3 hold, 

the coincidence between the condition of linear and nonlinear stability is reached without 
restriction on yli y2. This coincidence - without restriction on yli y2- can be obtained also 
in the case 

(73) a2a^ > 0 

by choosing as Liapunov functional £ = - [||«|| + ||f || ] with a suitable choice of-. In 

fact (1), in view of (9)i, (9)2 can be written 

(74) ût = Cû+J\fû 

with 

/ 

(75) C = 

P' 

a\ + yxA 
a 

(76) N = 

a 

7 

U4 + y2A 

0 

In the case (73) the linear operator C can be symmetrized by choosing 

i=(s)"2 

This choice allows to obtain the coincidence between linear and nonlinear stability in the 
L2(£2)-norm (we refer to [4, pp. 80-82] for the proof). Further from 

idtt (78) 
2dt" 

=< CM, U > + < ATu, u > , 
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it follows that if 

(79) < Mû, û><0 

then one obtains the global stability. This happens for instance in the case 

(80) f = e-Vu, g = e-Vv 

with e divergence free vector depending on («, v), under the additional condition 
e • n = 0 on dQ when (4) hold. In fact it follows that 

(81) < Mû, û >= X- < e, Vte2 + v2) >= 0. 
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