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Fisica matematica. — Identification of a localized source in an interstellar cloud: an
inverse problem. Nota(*) di Mert List e Smvia ToTaro, presentata dal Socio M.
Primicerio.

Asstract. — We study an inverse problem for photon transport in an interstellar cloud. In particular, we
evaluate the position xq of a localized source g(x) = god(x — xp), inside a nebula (for example, a star). We
assume that the photon transport phenomenon is one-dimensional. Since a nebula moves slowly in time, the
number of photons U inside the cloud changes slowly in time. For this reason, we consider the so-called quasi-
static approximation « to the exact solution U. By using semigroup theory, we prove existence and uniqueness of
u. Because of some monotonic properties of the operator which describes « as a function of g, the «position» of
the source can be evaluated.

Key worps: Inverse problems; Quasi-static approximation; Semigroup theory.

RiassunTto. — Identificazione di una sorgente in una nube interstellare: un problema inverso. Viene studiato
un problema inverso per il trasporto di fotoni in una nube interstellare. In particolare, & valutata la posizione x,
di una sorgente g(x) = god(x — xp), localizzata all’interno della nube (per esempio, una stella). Nel fare cio, si
suppone che il fenomeno del trasporto di fotoni sia monodimensionale. Inoltre, poiché la nube si muove
lentamente, anche il numero di fotoni U al suo interno cambia lentamente nel tempo. Per questo motivo, &
possibile considerare la cosiddetta approssimazione quasi-statica # della soluzione esatta U e, per mezzo della
teoria dei semigruppi, dimostrare l'esistenza e 'unicitd di «. Grazie ad alcune proprieta di monotonia
dell’operatore che descrive # come una funzione di ¢, ¢ infine possibile valutare la «posizione» della sorgente.

1. INTRODUCTION

Inverse problems are very relevant in order to compute many physical quantities
which cannot be obtained by direct measurements (see, for instance, [4, 7, 10] and the
references quoted therein).

In fact, the general nature of an inverse problem is to deduce a cause from an effect.
Consider a physical system, depending on a collection of parameters, in which one can
speak of inputs to the system and outputs from the system. If all of the parameters were
known perfectly, then, for a given input, we could predict the output. It may happen,
however, that some of the parameters characterizing the system are not known, being
inaccessible to direct measurement. If it is important to know what these parameters are,
in order to understand the system as completely as possible, we might try to infer them by
observing the outputs from the system corresponding to special inputs. Thus, we seek the
cause (the system parameters) given the effect (the output of the system for a given input).

(*) Pervenuta in forma definitiva all’Accademia il 25 giugno 2005.
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Problems of this type arise in several applications areas, such as geophysics, optics,
quantum mechanics, astronomy, medical imaging and materials testing. In particular, we
are going to study an inverse problem in astrophysics (see, for instance, [1, 5] and the
references quoted therein), in order to compute some physical quantities which cannot be
obtained by direct measurements.

Interstellar clouds are mainly composed by molecular gases (90% hydrogen), by more
complex molecules and by grains of «dust» of silicon and carbonates. The dimension of
an interstellar cloud (nebula) is of the order of ten light years, ze., between 107! and 10
parsec (one parsec is about 3 - 10" kilometres). We note that the diameter of the solar
system is of the order of 10* parsec, [3].

The numerical density of the particles inside an interstellar cloud ranges from 10° to
10° particles per cubic centimetre, (earth atmosphere density, at sea level, is
approximately 10'° particles per cubic centimetre, whereas in the intergalactic vacuum
one can find 10° particles/cm’?).

There are many kind of interstellar clouds: dark nebulae, nebulae which reflect light
and nebulae which emit light.

Let us consider this last type of nebulae. They are «able» to emit light, because one or
more photon sources (for example, some stars) are present inside the clouds. An example
of this kind of nebulae is given by the Orion Nebula.

By means of some astronomical instruments, it is possible to make a «direct
measurement» of the light emitted from a cloud of this kind, 7.e., the intensity of the
unknown sources («far field measures»), but it is not possible to localize the position of
the sources. In this contest, inverse problems are very relevant.

In this paper, we consider a rod model of a homogeneous cloud, containing a localized
source. In particular, we shall study a one-dimensional particle transport problem in a
homogeneous rod of thickness 2a, with a localized photon source ¢(x,#) inside and
surrounded by vacuum, z.e., we assume that the photon number density U depends on
the space variable x and on time #, [8].

We note that the rod model is a very naive picture of an interstellar cloud. This means
that our results just give some general hints on what happens in the real world.

However, it is a first approach to this kind of problems. The study of a slab model is in
progress, while the three-dimensional case model is one of our future aims.

According to our model, photons are monocromatic and can be captured or scattered
by the particles of the nebula.

The paper is organized as follows. In Section 2, we shall study the mathematical
problem in the Banach spaces setting, by considering the so called quasi-static equation.
In Section 3, the inverse problem is investigated and we shall prove the monotonicity of a
suitable operator.
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2. THE MATHEMATICAL PROBLEM

There are many aspects concerning the physics of interstellar clouds which lead to
mathematical models of kinetic type. The most classical among these is certainly radiative
transport, [8], both because the radiation field (especially ultraviolet) within the clouds
induces reactions which affect their chemical evolution, and because earth-based
observations of the spectral lines yield informations on the chemical composition of
the cloud itself.

Since the boundaries of an interstellar cloud move slowly in time [9], an appreciable
movement takes many years to occur and the critical conditions, which bring a cloud to
collapse, are reached after about a million of years.

This means that the boundaries of the cloud can be considered slowly varying
functions of time. Thus, it is reasonable to assume that the number of photons inside
the cloud changes slowly in time. Of course, photon sources are assumed to be slowly
varying in time.

Thus, we can consider the so called quasi-static approximation « to the exact solution
U of the transport equation, [5, 6]:

0= —% —our(x,8) + ogu_(x,1) + g+ (x, 1),
x
(1) o
0= Qu-{xt) _ ou_(x,t) + oy (x, 1) + g (x, 1),

Ox

where u(x,¢) = <Z+E§: 2) € X and ¢g(x,¢) = (Z+Ez: 2) is the source.

In particular, «, (x, ¢) represents the density of those particles which move from left to
right in the rod, whereas #_(x, #) represents the density of those particles which move
from right to left in the rod. Moreover ¢ and o, are, respectively, the total and the
scattering cross sections of the particles in the nebula (¢ > g, > 0).

Note that « still depends on # because of the presence of g(x, 2).

Associated with the previous system, we consider the non-reentry boundary
conditions:

t>0.

Ui (—a,t) =0,
u_(+a,t) =0,

In order to study the problem, let us consider the Banach space
X = L' (—a,a) x L' (—a,a), with the norm

1/ l= / )l + / s = (4 ) ex.

Following the classical ideas of [2] and multiplying the first equation of system (1) by
exp(ox) and the second equation by exp(—ox), we obtain:
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0=— % [t04(x,2) exp(ox)] + o, exp(ox)u_(x, ) + exp(ox)q (x,¢),

0= % [t—(x, 1) exp(—ox)] + g, exp(—ox)uy(x, 1) + exp(—ox)g_(x, ).

Integrating with respect to x, the first equation between —a and x, and the second
equation between x and 4, we obtain:

wn(t) = | exploo(e— o (¥, 1) + g+ (<, )},

(2) .
u(x,t) = [expl=o(x' — x)llowu (¥, 2) +q-(+,2)]dy,

because of the boundary conditions.
If we define

[ expl—a(x — ¥)]g. (¥)d
6) o= ()1 ' ,
G0 Fesploot - vlg ()i

system (2) reads as follows:
(4) u(t) = (Ku)(2) + Q(2),

where K : X — X is the following operator:

| expl=a(x — )|/ (¥)d’
(KA)(x) =ac| . VfeX.
Jexpl—a(x' — )], (<)dv

It is easy to prove that
o
K <Z <1,
o

Hence

5) w(t) = (I - K)~'Q(),
where # may be considered as a «parameter».

Equation (5) represents the quasi-static transport equation with a generic source term.
In our particular case, we want to consider a localized source, for example a source
situated in the point x;.

Thus, it can be modelled as follows:

(6) q+(x) = qo0(x — x0) = g-(x),
where go = go(¢) is a positive quantity and Jd(x — xo) is the Dirac delta functional at

X = X0.
Hence, because of the properties of the Dirac delta functional at x = x,, we have from
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definition of Q (see (3)):

qgoexp[—a(x —xo)], x> xo,

(7) Q+(x) = 1 9o, X = Xo,
0, x < X0,
and
0, X > X0,
(8) Q-(x) = § 9o, X = X,

goexp[—a(xo — x)], x < Xo.

Remark 2.1, We can notice that, in the case of a localized source (6), the integration
made in (2) with respect to x is essential, because of the presence of the Dirac delta
functional . In fact, whereas ¢ does not belong to X, because it is a functional, its integral
belongs to X. By making this procedure, we are able to study the quasi-static equation in
the Banach spaces settings. Otherwise, we should embed the space X, for example, into a
space of distributions and extend the problem to this space (see [6], for details). O

3. THE INVERSE PROBLEM

Now, since we want to identify the position of the localized source g (see (6)), that is
we want to find the point xy belonging to (—a, 4+4), we have to prove the monotonicity of
the operator

©) T=(I-K"0Q

with respect to xg.
We may assume that the radiation produced by the cloud is measured at x = a.
Since, from (5), we obtain:

(10) u=(1-K)'Q=0+KQ+KQ+..,

we study the operators Q, KQ, K?Q and so on.
First of all, from relations (7) and (8), we have that:

d Qla) = (gﬁ;) _ ( “ exp[~a(a - Xo)])
dQ. (a)
dx

Now, we have to compute KQ, ze.,

= oqpexp|—a(a — xp)] > 0.

J expl—o(x — ¥)]Q_ (')’
KO)(x
KO — (( o) >+> :

Jexpl=a(x' — 0)]Q. (¥)d
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After many computations, for x > xj, we obtain:
{exp[—0(x — x0)] — exp[—0(2a + x + x0)]}

(KQ(x) = 2=
{exp[—a(x — x9)] — exp[—0d(2a — x — x9)]}

whereas for x < xg, we have:
{exp[—a(xo — x)] — exp[—a(2a + x + x0)]}

KQ)(x) =5 —
2o {exp[—a(x0 — x)] — exp[—0(2a — x — x0)]}

In particular, for x = 4, we obtain from the above considerations:
o,
B2 fexpl-o(a — %)) — exp[-0(3a + )]}

(KQ)a)=| 27
0
Hence
HKQa.

We can do the same thing for K*Q and we obtain:

(KZQ) (4)7: 0,

d(K*Q)(a),,
T > 0.

Thus, we have:

d
e [(KQ)(a),+(K*Q)(a),] > 0.
Going on with this procedure, because of the form of (K”Q)(a), for any 7, we are able

to prove the monotonicity of T with respect to xo.
Hence, the operator T~! is defined and we have:

Xo = T_l(u).

Remark 3.1. We have to notice that computations made to obtain Q, KQ, K2Q, and
so on, become more and more complicated. Another way to prove the monotonicity of
the operator T is to derivate directly equations of system (2) with respect to xj.

. . . . . o
By means of this tecnique, we are also able to obtain an estimate of the ratio —. We
1%

0,12 1
have that [—S} <=
g 2
It is also interesting to note that the depencence of the quantity K”Q on xg vanishes as
7 increases. This means that its influence on the sum (10), which defines the operator T,

decreases as 7 increases.
From a physical point of view, we can interpret this fact, noting that, in some sense,
the presence of the localized source on the photon transport affects mostly the so called
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«first-flight» photons, Ze., those ones wich are directly emitted from the source itself or
which have not undergone any scattering events. O

By a direct measurement of the light z, it is possible to identify the position Xq
belonging to the real interval (—a,4).

A simple procedure based, for example, on a sort of bisection method may permit to
identify the position xo of the localized source 4.
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