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Meccanica statistica. — Local order at arbitrary distances in finite-dimensional spin-
glass models. Nota di Prerr.uict ConTuccr e FRANCESco UNGUENDOLL, presentata (*) dal

Socio S. Graffi.

Asstract. — For a finite dimensional spin-glass model we prove low temperature local order Ze. the
property of concentration of the overlap distribution close to the value 1. The theorem hold for both local
observables and for products of observables at arbitrary mutual distance: when the Hamiltonian includes the
Edwards-Anderson interaction we prove bond local order, when it includes the random-field interaction we
prove site local order.

Key worbs: Spin-glasses; Local order; Overlap distribution.

Riassunto. — Ordine locale a distanze arbitrarie nei modelli di vetri di spin in dimensione finita. Per un
modello di vetro di spin a dimensione finita dimostriamo la proprieta di ordine locale a bassa temperatura cio¢ la
concentrazione della distribuzione delle sovrapposizioni intorno al valore 1. 1l risultato dimostrato vale per
osservabili locali e per loro prodotti a distanze arbitrarie. Quando ’Hamiltoniana include I'interazione di
Edwards-Anderson proviamo I'ordine locale per lo spin di primo vicino, quando include I'interazione a campo
aleatorio proviamo I'ordine locale per lo spin di sito.

Spin-glass models in finite dimensions, in particular the nearest neighboor Edwards-
Anderson and the random-field model, are among the most intensely studied models in
condensed matter. Yet their low-temperature phase remains largely unknown not only
from a rigourous mathematical perspective but also from a theoretical physics point of
view [1-3].

In this letter we show a simple rigorous proof of the local order property, ze. the fact
that the overlap distribution concentrates close to one at low temperatures and at
arbitrary distances between local observables.

We consider models of Ising spin configurations arranged in the d-dimensional lattice
(for instance 7); each spin interacts with a random esternal field and with its nearest
neighboors so that on a finite box A the Hamiltonian is

(1) HA(O') = — Z]Z‘,/O'Z‘O'/' — Z/?,’O’l' ,

ijed €A
lijl=1

where the J; ; are iid. Gaussian random variables with Av(J;;) =0 and Av(J?)) = £,
the b, are i.i.d. Gaussian random variables with Av(h,;) = 0 and Av(h?) = I” 2 The hand |
are moreover mutually indipendent: Av(h;Jp;) =0 for all the 7,4,/. The model of
Hamiltonian (1) reduces to the standard Gaussian Edwards-Anderson [4] when
I'? =0 and to a pure random-field when 4 = 0. The (1) is an important special case
of the general Gaussian spin-glass model in which not only szzes and nearest-neighboors

(*) Nella seduta del 22 aprile 2005.
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bonds have direct interactions but all the subsets A of the lattice do have a polynomial
interaction through o4 = [],.4 0

(2) Hylo) = — Z]AUA ;
AcAa

where all the | are indipendent, centered, traslation invariantly distributed Gaussians.
The model of Hamiltonian (2) has been introduced in [5] in the spirit of the general
potentials of [6] and subsequently studied in [7]. The (1) is a special case of the (2) in
which only the first two types of terms (sites and bonds) give a contribution, but it also
represents an approximation of it when the effect of the large sets A (|A| > 3) is simplified
to a mean field one on each spin.

The local order is a concept introduced and developped within the classical models
without disorder in particular the ferromagnetic ones. For the Ising model it says that at
low temperatures (large f3) the Boltzmann-Gibbs expectation of the product of two sets of
spins 4 = [[;c4 and o5 = [];c5 0, is close to 1:

c

7

no matter how far the sets A and B are taken apart. In particular since the constant ¢ is
independent of both the volume of 4 and of the distance between the two sets the (3)
remains true when the thermodynamic limit is taken and successively the distance
between A and B is sent to infinity.

From such a property we know for instance that the equilibrium measure is
concentrated on those configurations in which two spins are allighed, no matter how
distant they are, and the lower the temperature the sharper the concentration will be.

In a spin-glass the equilibrium state is described by the quenched measure, 7.e. the
Gaussian expectation of the random correlation functions. Due to simmetry reasons
quantities like w(g;) or w(a;0;) have zero Gaussian average so that the relevant physical
quantities are the average of their even powers: Av(w?(a;)), Av(a?(a,0;)) etc.

Our main results are the following two theorems:

3) wloaop) > 1—

TreoOREM 1. The quenched state of Hamiltonian (1) fulfills the site local order property
at arbitrary distance when a random field is present (I' > 0): for all the m € A, n € A and
independently of their distance

51 53
(4) AV(C()Z(O'WO'n)) Z 1-— E - ﬂ_3 )
where for all the I' > 0
2 /2 1
(5) 51 = F E 5 52 = W .

Treorem 2. The quenched state of Hamiltonian (1) fulfills the bond local order
property at arbitrary distance when the two-body interaction is present (4 > 0): for all the
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i jeANi—jl=1,kl€eA |k—I|=1 and independently of the distance between the
two bonds

by b
(6) AV(@P (o, j0p)) > 1— fl - ﬂ—i :
where for all the 4 > 0

2 /2 1
7 b :-%, by — L
@) " aVz ? 27l

It was soon realised [1, 9] that all the relevant quantities in the spin-glass models are
suitable expectations of the site-overlap
(8) g =07,
or the bond overlap
) qi; = 00,77 -
Denoting by Q the random Boltzmann-Gibbs state over identical copies and defining the
quenched measure by (—) = Av(Q( —)) we have in fact
(10) Av(@?(a,)) =Av(w(o;)o(t,) =

:AV(Q(U;’TZ')) == <ql> 5
and analogously
(11) Av(wz(azﬂj)) = (9:) -

According to this notation the (4) and (6) tell us that the two quantities (¢,,¢,) and (g, ;qz ;)
are close to 1 at low temperature no matter how far the two spins (bonds) are taken.

The proof of the two theorems is computationally elementary and only uses the
integration by parts formula for centered Gaussian variables: let Av({?) = V; and f a
function of {, then

d
(12) AVEFQ) = V. Av (iﬁ) |

Let us carry out the proof for the general Hamiltonian (2) and then we will apply it to the
(1). We introduce the convenient notation

Z aAefﬁHA(U)
a

—pH
E(}_g BH (o)

and for every J4 with Av(J3) = 54 > 0 we apply integration by parts to the quantity
Av(Jawa)

(13) wyg =

(14) Av(Jaws) = E4B(1 — Av(a?)) .

Since an elementary estimate of the Gaussian integral gives (for Z4 = {/Av(J3))
2

(15) Av(Jawa) < Av(|Ja]) = Eay/=,

T
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we deduce from (14) that

(16) (ga) = Avl@}) > 1-
Zap
The previous formula says that the overlap distribuition of the set A does concentrates
close to 1 at low temperatures (see [10]).

To obtain the local order at arbitrary distances we proceed as follows: let consider two
subset A and B of A, and the notation:

(17) A-B=AUB—-AnNB
we have
(18) 0A0B = 0A.B

because the sites 7 in the intersections of A and B appear twice 67 = 1. Moreover
(19) 0 < Av((wap — wa0p)) =

= Av(a ) + AV 0h) — 2Av(wa pwawp)

so that
(20) AV p) > 2Av(wapwawp) — Av(w)of) .
We apply then twice the (12) to the positive quantity
(21) 0 <Av(J3(l — 0})) =
:EiAv(l — wB —2p°5 Av (wsp — wawp)?)

—4p°F Av a)Aa)B + 44 A_JAAV(Q)A BWAWR) ,

from which
(22) 2Av(wg.pwamp) — Av(a)ia)fg) > Av(a)ia)f;) + Av((wap — wawp)?)+

1 1 1
-~ _Av(l = 2>A 22_—A 1— 2>A 22_77

where in the second inequality we have eliminated a positive term and in the third we
applied the (16). Concatenating the (20) to the (22) we get

(23) Aviady) > Avicad) — m ,

We may then use the elementary inequality which states that foralla < 1,5 <1
(24) (1-a(1-b) =ab—a—-b+1 > 0;

it implies

(25) Av(ejwp) > Av(wf) + Av(wf) — 1,
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which together with (16) gives

(26)

1 111 /2
Av(@wl) > 1— {H—"‘H—}— —.
ATB | ZB ﬁ /A

Putting together the (23) with (26) we obtain

(27)

AV(CUi.B) >

1 {lJrl}l 2 1 1
Ea Ep|pVr V2mZiEpp

201

The previous formula gives immediately Theorems 1 and 2 when applied to sites or to

bonds.

It is interesting to observe that while for the ferromagnetic Ising model with zero

magnetic field the property (3) is related to the phase transition of the model and is called
long range order (see [6] for a general definition and [8] for its proof in the 4 = 2 Ising
model), in the case of spin glasses our result is not directly related to a phase transitions. A
possible way to detect the existence of a phase transition in a spin glass model would be in
fact to bound from below the quantity Av(e?(s,,0,)) indipendently of I, which our
Theorem 1 fails to achieve. The method of integration by parts which we exploit here can
of course be iterated to two spins at distance £ but an easy computation show that it leads

to a bound Av(a?(g10p) > 1 — % where the quantity ¢ diverges for large £.
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