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Equazioni a derivate parziali. — One-dimensional problem for heat and mass transport
in otl-wax solution. Nota (*) di RoBerto Giannt e ANNA G. PETROVA, presentata dal
Socio M. Primicerio.

AsstrACT. — A mathematical model of heat and mass transport in non-isothermal partially saturated oil-
wax solution was formulated by A. Fasano and M. Primicerio [1]. This paper is devoted to the study of a one-
dimensional problem in the framework of that model. The existence of classical solutions in a small time interval
is proved, based on the application of a fixed-point theorem to the constructed operator. The technique
employed is close to the one of [3] and [4].

Key worbs: Free boundary problems; Parabolic equations; Oil-wax solution; Wax segregation.

Riassunto. — Un problema mono-dimensionale per il trasporto di calore e di massa in petroli ricchi di cera.
Un modello per il trasporto di calore e di massa in idrocarburi pesanti, parzialmente saturi ¢ stato a suo tempo
proposto da A. Fasano and M. Primicerio in [1]. Questo articolo ¢ dedicato allo studio di un problema evolutivo
mono-dimensionale (costituito da un problema a frontiera libera per un sistema accoppiato di equazioni
paraboliche) sviluppato nel contesto di tale modello. Viene dimostrata I'esistenza e I'unicita, in un piccolo
intervallo di tempo, di una soluzione. La dimostrazione & ottenuta utilizzando il teorema delle contrazioni
applicato ad un opportuno operatore.

0. INTRODUCTION

In the last years an increasing interest has aroused on the study of the behaviour of
oil in pipeline, especially with regards to the rheological properties of the oil and how
they affect its flow. In particular when low grade oils are involved, namely the ones
with a great concentration of heavy hydrocarbons (generally called wax), a critical
phenomenon is observed, .. the wax is segregated and usually it migrates towards the
wall of the pipe coating it and preventing the oil from flowing freely. These kind of
studies are of particular importance nowadays when oil reserves are running short and
any kind of oil is of interest to the industries. A complete theoretical explanation of
wax migration is missing. However it has been proposed that it is due mainly to two
phenomena: the first one is wax crystals displacement (in completely saturated oil)
caused by the flow and precisely the presence of a shear rate; the second one is
diffusion to the wall due to a concentration gradient induced, in turn, by a thermal
gradient. The last effect can be obviously observed also in a static situation and then
easily checked experimental; for this reason in [1] A. Fasano and M. Primicerio
proposed a model for this peculiar situation (which was also analyzed in [2]). The
model, dealing with oil which is not flowing but under the effect of a thermal gradient,
is a free boundary problem for a parabolic system of two coupled equations: one for
the concentration of wax in oil and the other one for the temperature (which is the only

(*) Pervenuta in forma definitiva all’ Accademia il 29 settembre 2005.
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state variable taken into account). The free boundary appears naturally as the level set
for concentration being equal to a saturation concentration beyond which wax can not
stay dissolved in the liquid and starts to crystallize. From the mathematical point of
view what we get is a parabolic system of differential equations, coupled through the
main terms, for which a free boundary problem has to be solved. A weak formulation
for such problem was provided in [1], the study of which will be the subject of a
following paper. In this paper we devote ourselves to the proof of the well posedness of
the problem in the classical sense, in the one dimensional case. The solution thus found
has a regular free boundary and is defined just in a small time interval. The technique
employed relies on a linearization of the system which allows us to use the well known
results on linear parabolic system by Solonnikov (see [5]) enabling us to find the
solution of our problem via a contraction mapping which, in turns, ensures the
uniqueness of such solution. At the end of the paper in Section 5 we will concentrate
ourselves on self similar solutions, which are proved to exist under some assumptions
on the coefficients. Finally we want to stress the fact that throughout the paper the
notations, if not differently specified, are the ones of [1].

1. STATEMENT OF A PROBLEM
In the spirit of what was said in the introduction and using the same notations of [1]

we will consider the following problem: find five functions #;(x, ¢), Ti(x, ¢), ( = 1,2), s(¢)
such, that:

8%1 o 82 Tl ale
(11) E DG Ql[T] alw, 0<X<S(f),
Ouy uy or, 0T, ,
(1.2) v Di - Q,[T1], 5 =2 g s() <x < 1;

with conditions at the interface x = s(z)
w =0, uy =0, Ty =15,

8%1 6%2 o BTZ ’ 3T1 8T1 o 8T2 i
(1.3) DG@*Da D¢ (Tz) Dcx(Tl)Wv alafaza
The conditions at the fixed boundarles are
Oup e,
DGW——(l—X)Da, Tl bl() x =0,
Ouy O, B

and the initial conditions are
5(0) = 50, w1(x,0) = u10(x), Ti(x,0) = T1o(x), 0<x< s,

(1.5) ur(x,0) = ur0(x), To(x,0) = Toplx), 5o <x<1.
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In (1.1), (1.2) Q,[T] are operators acting on the function T'(x, #) defined as follows:

2
. 2T, .
(1.6) QT = 4(1})(‘% _p? Tl) — D/(T)) <8TZ> =12

ot Ox? Ox

Through (1.6) we have the coupling of the equations for #; and T;.

The function ¢,(T) is a given, increasing, sufficiently smooth function; D, Dg, a1, a,
are positive constants, and 0 < y < 1. Note that, in this context, the latent heat of the
segregated phase is assumed to be negligible (as it is the case in most physical situations).

We now state the main result of the paper, ze. a local in time classical existence
theorem for problem (1.1)-(1.5)

Trueorem 1.1, Assume that the following hypotheses are satisfied for some positive
and a € (0, 1):
a) h; € H*([0,7]), (7 = 1,2); Ty 0(x) € ([0, 50]), T2,0(x) € H>**([s0, 11);

u10(x) € ([0, 501),
w20(x) € H**([50,11);0 < 50 < Lad;o(s0) <0, (2 = 1,2);

(1.7) hi(2) < ba(2), (2 € [0,7]);211,0(x) > 0,(0 < 5 < 50);212,0(x) <0, (59 < x < 1).

b) The function c,(T) possesses continuous derivatives up to 4-th order satisfying inequalities
|c§k)(T)| <M;,0 < k<4 forT such that

(1.8) min{ inf A(s), inf Tyox)} <T < max{sup h(#), sup Tro(x)};
t€[0,7] x€[0,5] tel0,7] x€[s0,11 ’
c) All the needed compatibility conditions necessary to have solutions having continuous
second order derivatives in space and first order in time are satisfied.
d) The inequality corresponding to the complementing condition (see § 611, Chapter 7 of
[5]) applied to the boundary value problem for the parabolic system obtained linearizing
our problem is satisfied, i.e.:

VD¢ -vD (vDgai +D)/(\/ai +vDg) —VD

0 0 NG NG
(19) det| 3 W ; Vi | 0
0 (D-DeW)/D 1 1
with
o d’ul‘o duz,o
W= W(SO)/W(SO)'

Then there exists a time interval [0, %], t* < 1, such that the one-dimensional problem
(1.1)-(1.6) has a unique solution (uy,uz, T1, T2, s(¢)) such that:

3+ta 3ta

w(x,2) € HPT42([0,5()] x [0,£]), w(x,2) € H T2 ([s(2), 1] x [0, #]),
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Ti(x,7) € FPY34([0,5(0] x [0,£°), Ta(x,#) € P77 ([s(¢), 11 x [0, £]);

s(2) €

3+1

7 ([0, ).

Remark 1.1. In the simplest physical meaningful case a; = a, = x > D > Dg
condition (1.9) takes form

\F (vDgr + D) (vk = vVD)(vVD — VDg)
<2\/D_G DW+DVD+D- m +DeW - N0 )%o

and is obviously fulfilled.

2. FORMULATION OF THE MODIFIED PROBLEM

In order to prove Theorem 1.1 we will transform problem (1.1)-(1.6) in an equivalent
one in which an explicit differential equation for s(¢) is present. This will be done by
differentiating formally equation (1.1), (1.2) with respect to x and making use of the
following relations easily obtained from (1.1), (1.2) together with (1.6):

2
QLT = &(T)(a; — D) 2L "m(aT) i=1.2.

Ox? Ox
Letting:
Ou; . 0Ty 0T,
v; = ax (Z 12) 7)3—57 U4—E.
We have that such functions satisfy the following system of differential equations:
o Po & vs
81‘ =Dc——> Ox2 7C}(Tl)(a1 -D)- Ox2
(2.1) +d(T1)BD — a1)vs % +De!"(Ty)v3, 0 < x < s(2),
(91)2 . 621)2 ’ 82114
b DW —¢(T2) a2 — D)W+
(2.2) +!(T2)3D — az)vy -% + D" (Th)wy, s(t) < x < 1,
(2.3) %:a ~%, 0 < x < s(2),
2
(2.4) %zaz%, s(1) < x < 1.

To obtain the boundary conditions at x = s(z) for the new functions we rewrite 4-th and
5-th equality of (1.3) in terms of v; and differentiate the first three equality of (1.3) with
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respect to #, obtaining:

(2.5) Dgvy — Dv, = Del(T)(vg — v3),
(2.6) a1v3 = Gavy,
avl / 603 /" 2 /
(2.7) Dg——— | i(T1)(a1 — D)——=— D¢/ (T)vs | + v15'(¢) = 0,
Ox J Ox s
v, ’ Ovy " 2 /
(2.8) D—=— [ d(T2)(a; — D) —— — D! (To)vy | + va2s'(2) = 0,
Ox s Ox s
(2.9) a O +035'(t) = a3 Ov4 + 045’ (2).
Ox Ox
Now we express §(¢) from equation (2.8):
(2.8 S = ()" fD% + (Tr)ap — D)% — D(Ty)e? |,
Ox N Ox J
and, with the use of (2.5) and (2.6), rewrite conditions (2.7), (2.9) in the form
@7) D2 p%2 Ty - D) 22 4 (T — D)L =
Ox vy Ox ox v Ox
!
— DTy — eI (Lo
2
D — Dcvl/ﬂz Ovy Ovs D? + DG((IZ — D)Z)l/vz Ovy
/ _—_— ¢ — - —_— ¢« — =
@9) c(Ty) ox T M ox D Ox

B (Dv, — DG”l)C;'(Tz)Uﬁ
v2¢l(T3)

Boundary conditions at x = 0 and x = 1 are obtained in similar way. Namely:
at x = 0 we get:

(210) DG711 — D(l —){)c;(/ol)m = 0,
81)3 g

(2.11) aj '%‘bl(t)’

and at x = 1:

(2.12) vy + C;(]Jz)l)z; =0,
Ov ,

(2.13) aza—; = By ().

The initial conditions are clearly:

v1(x,0) = 2} 4(x), v3(x,0) = T} 5 (%), (0 < x < s9);

(2.14) 2(x,0) = 2 (%), 04(x,0) = T5 4 (%), (5o < x < 1).
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For the sake of brevity, in notations ¢/(T;), ¢/ (T;) and ¢!"(T}) the functions T} stand for

x 1

Ti(x, 1) = / o, Ddt+b(0),  Tolx, ) = — / v, Ot + bo(2),

0 x

so that, in fact, the new problem thus obtained is a integro-differential problem.
System (2.1)-(2.14) will be named modified problem (MP).

3. FORMULATION OF THE AUXILIARY PROBLEM

We now introduce the auxiliary problem which will be used to prove the existence
theorem. To this purpose first we perform a change of coordinates passing to the space
variable ¢ = x/s(¢) in the domain 0 < x < s(#) and to & = (1 — x)/(1 — 5(#)) in the domain
s(#) < x < 1. Then we set w;(&,#) = v;(x, t) ({ = 1,2), replace s(¢) with given function r(¢)
everywhere except of (2.8’), replace ws,w4 in the nonlinear terms of the parabolic
equations with new, given functions 0,(&, ¢), 6,(&, ) and replace w1, w; in the nonlinear
terms of boundary conditions at ¢ = 1 with given Vi, V> . Thus we get the system of
equations:

3101 o DG 82w1 c;(Tl)(al —D) 62w3 f ’ Bwl
(3.1) W—m 852 - 20 : 852 +m'7(l‘)'875+
c(Ty) Ows
+W(3D —a1)0; - 8—f + A0,
(32) OJwy D w, B c(T>)(a; — D) _ Pwy ¢ -r’(t)%—
T I I N B 1) R T B () 0¢
d(T2)3D — ap) Owy
—1_—7(1) : 928—6 + /(& 0),
Ows . 82w3 ¢ , Ows
(3.3) W*al'a—éz+m'7(f)a—éa
(3.4) Oy _ a0y O

o  (1—re}) dZ 1—r) O
(.5) §(f) = V2‘1<L-%—M~%—ch(irz)0§>.
Boundary conditions at & = 1:

(3.6) Dgwy — Dwy — DA(T)(wy —ws3) =0 at &=1,

(3.7) a1ws —awy =0 at E=1.
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DG 8w1 V1 D sz C;(Tl)(al—D) 8w3

T R L A By R ) N
V1 1 , 8LU4 -
,Vz.m~cs(’r2)(a2 *D)aif - ¢3,
D - DGV1/V2 % ay % D? +DG(a2 — Vl/Vz 6w4 .
B9 TG ) oE A 9 T D) =%
Boundary conditions at & = 0:
(3.10) Dgw; — D(1 — y)cl(by)vs = 0,
a ' !

(3.11) %3%3:% = —Ded (b6 + B,(0),
(3.12) wy + C;(})z)w4 =0,

ay  Owy o Y

Initial conditions:

w1(&,0) = 4y o(E - 50), w(&,0) = a5 5 (1 — &+ (1 — 50)),

(3.14) wy(E,0) = T} (& 50),  wal&0) = Tho(l — - (1 — ).
In problem (3.1)-(3.14)
h =D"(T)0,, f»=D"(T>)0;,
and

D (To(1,6)03(1, )V

¢y = —Dc!(T1(1,1)07(1,¢) + % :
2

p _ (DV, — DV (To(1,)05(1,
e Vad(T(1, 1)

For the sake of brevity in this new system we have maintained the same notation T; as
arguments for the functions ¢, and its derivatives. However in this framework

¢
Tl(é,t):/r(t)~91(57t)dt+bl(t) and To(&,0) = [ (1 —7(2)) - 02(E,0)dt + ho(2).
0

o\
AN

Thanks to such auxiliary problem an operator § acting on
(r(2), V1(2), V2(2), 0:(&, 1), 0,(E, 1)) € H(T)
with:
H(x) = H'3([0,7]) x H#([0,7]) x H#([0,'])

lta 1ia

x H"2([0,1] x [0,7]) x H'™2°([0, 1] x [0, 7])
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can be defined as follows:

S(r(0), Vi(2), Va(0), 01(E, ), 0-(E,0) = (5(0), Vi(2), Va(2), 01(E, 1), B2(E, ),

where:

50 = so+

+/< D ow )4BHJM@—DMM”1ﬁD¥UﬂLM%Hﬁ>%

J Va-no T T Vo0 ) o V0

Vie) = wi(1,0),( = 1,2), 01,0 =ws(&0), 0,(E,8) = walé, 1),

and w;(&, ¢) is the solution of the auxiliary problem.

Obviously the previous definition makes sense if the auxiliary problem admits a
unique classical solution. This will be proved in the following section.

We will prove the existence of a fixed point for the operator § in the closed convex
subset M« € H(#*) made of the elements of H(#*) having norm bounded by a suitable
constant M and satisfying the conditions:

1ta

w#) € HY2([0, #1), Vi(e) € HZ([0, £°]), 0,(E, £) € H2([0, 1] x [0, £]), (¢ = 1,2),

r(0) =50, V1i(0) = 2/ 4(s0),  V2(0) = 2} (o),

(3.15) 01(£,0) = T1 o(& - 50),  02(£,0) = T55(1 =&+ (1 = 50));
(3.16) a10,(1,2) = ax0,(1,1), t€0,r];

(3.17) |#(t) — 50| <3, & < max{sy,1—so}, ¢€l0,];
(3.18) Va(@)] > [er(s0)] /2, ¢ €10,£7;

satisfying the compatibility conditions for the auxiliary problem and also the following
condition:

vDg —vD (vVDga1 +D)/(Ja1 +Dg) —vD
0 0 Va1 ~@z
(3.19)  det . v,/ V(0 0 ) £0
0 1— DGVI(l‘)/DV2(l‘) 1 1

for ¢ € [0, #*].

Note that the fixed point which we will obtain is also a solution of our original
free boundary problem since it solves a system of equations which can easily be
obtained from (2.1)-(2.6), (2.7'),(2.8),(2.9'), (2.10)-(2.14) passing to the new space
variables ¢ = x/s(¢) in the domain 0 < x < s(#) and ¢ = (1 —x)/(1 —s(#)) in the
domain s(#) < x < 1.
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4. SOLVABILITY OF THE AUXILIARY PROBLEM

LemMa 4.1, If problen: (1.1)-(1.5) possesses a classical solution uy,uz, s, T1, Tz, then T;
(£ = 1,2) satisfy inequality (1.8).

Proor orF LEmMmaA 4.1. It is a standard application of maximum principle for scalar
parabolic equations (applied to the equations for T;) as can be found in Theorem 2.9 p. 23
of [5]. In this regard we use the boundary conditions at the free boundary to rule out the
possibility that a maximum or a minimum appears on x = s(z).

LemMa 4.2, Let conditions (1.7)-(1.9) be fulfilled. Then for any choice of
(r(2), V1(2), V2(2), 01 (S, 1), 02(E, 1)) € M e
the auxiliary problen: (3.1)-(3.4), (3.6)-(3.14) has a unique solution w;(&, 1) € H>*%1+%/2,

and this solution satisfies the inequality:

2+a
4.1) Z|wz|[o+1]x[o;] < CM,#") <Z V16 110,01+

1+ 14+a)/2 (2 (2 (2 (2
+Z(|¢,+z\m;‘ + wilios?) + ot ol + 1ol + 1T ol + T3l ;r)

while s(t) satisfies, using equation (3.5), the following inequality:

(4.2) Islio 5 < M, ).

These two inequalities in fact prove the compactness of the operator. This fact allows
us to write down easily an inequality of the following form:

@3) (|60, Vi), Va0), 01, 0), 02(E,0) [y, <
< Cll(r(@), Vi), Va(2), 00(&, 2, 02, D)lag,. () + C

for some positive ¢ and constants C, C;, depending only on the boundary data and known
coefficients.

Proor or LEmma 4.2. Immediately follows from Theorem 10.1 [5] if we note that
Lopatinski condition is obviously fulfilled at £ = 0 (see § 611, Chapter 7 of [5] and [6]).
Moreover, condition (3.19) is nothing but Lopatinski condition at £ = 1.

Lemma 4.3. Operator 8 is continuous compact, contractive operator transforming M s
into itself.

Proor or LEmMA 4.3. The compactness of § follows from inequalities (4.1), (4.2).
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Operator § is easily proved to be Lipschitz continuous from the metric space M
endowed with its norm to a more regular one compactly embedded in M, (see (4.1) and
(4.2)). In fact, working as we did to get (4.3), we can prove:

@4) 5" =52, vl =23, ol =03, 0 — 0], 0y — By, <

<Clrt =7 vi—vf, vy, 001, 0=l

Conditions (3.15)-(3.19) are obviously fulfilled for images HA,-, \//; and 5 of 0,,V, and r
respectively, at least for small #; and estimate (4.3) easily implies that SM,.) C M, at
least for a suitable large M and small #*. Note in this regard that the equations satisfied by
the difference of two solutions corresponding to two different entries are linear and with
zero initial data. Obviously (4.4) implies the contractiveness of the operator.

Proor orF THeorem 1.1. It suffices to note that the fixed point of § is the unique
solution of the modified problem (M.P.) (2.1)-(2.6), (2.7), (2.8"), (2.9'), (2.10)-(2.14) after
it has undergone the change of coordinates defined at beginning of Section 3, namely

& =x/s(t) for 0 < x < s(¢) and € = (1 — %) /(1 — 5(2)) for s(2) < x < 1.

Finally the result follows observing that (M.P.) and Problem (1.1)-(1.6) are equivalent,

once we set

X

1
Ty(x, ) = /v;(x,t)dx—l— Ty0), Tol,s) /124 %, 0)dx + To(0),
0
s(2)
w(x,t) = 7/ v1(x, £)dx, / vy (x

X (1)

The only fact we have to ensure is that #; and T; (/=1,2) belong to H’ +als Actually, if
we differentiate the first of conditions (1.3) with respect to ¢, we obtain

s(2)
B)
(0,8) = =5/ () - 01 (s(2), ) — %

X

Ou
a—; (%, t)dx.

The first term of right-hand part obviously belongs to H'"*'z*, Taking into account (2.1),
the second integral term can be written as

Do 58”1 (x,2) — G% (s(2), 2) + ¢(Ty(s())ar = D) % (s(e)—
—DC;/(Tl (S(l‘)))vg(s(t)) — C;(Tl(x))(al — D) %Z:: ( ) + DCN(Tl(x))U3( )

where every term belongs to H'**'2*, Analogously, du, /8¢, 9T,/dt, 9T/t belong
to H'***, Thus the existence and uniqueness theorem is proved.
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5. SELF-SIMILAR SOLUTIONS

Governing equations.

Let us consider problem (1.1)-(1.6) in the semi-infinite space interval and suppose
that:

wilx, 1) = u&), T, 0) = THE), &= % s = pVe.

Denoting
Qi(&) = ¢§<Tl-)(—§ir;<é) — DT/(9)) = DTHTHOY,

we obtain the self-similar version of the one-dimensional problem (1.1)-(1.6):
5.1) ~Sd =D~ Qi 0<i<h
(5.2) —gT{ =a 17, 0<&<p,
(5.3) fgu;:Du'Z/sz, B < &< oo,
5.4) —%Té:aﬂg, B << oo,
(5.5) T\(f) = To(p),
(5.6) ai T} (B) = e T5(P),
(5.7) u(B) = ur(p) = 0,
(5.8) D (B) + DTy (B)T}(B) = Dady(B) + D (To (BT (B),
(5.9) T1(0) = Ty,
(5.10) Tr(c0) = Ty,
(5.11) D, (0) = —(1 — x)DE(T)T(0), (7 = const,0 < z < 1),
(5.12) #(00) + ¢,(T') = oo,

where a;, D, D¢, are given positive constants.
To give the problem physical meaning we should suppose that

(5.13) 0<Ty< Ty, 0<cy <1

Also we assume that the function ¢(T) is a continuously differentiable, nonnegative
function with positive derivative, satisfying inequality

(5.14) e(To) < oo < €5(Tao).

We will denote by (SS) problem (5.1)-(5.12), with data satisfying conditions (5.13), (5.14).
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Together with problem (SS) we consider problem (SS*), which differs from (SS) in the
boundary condition (5.11) which now takes the form:

(5.11%) Dgu}(0) = —(1 — (1 (0))De;(To) 5 (0),

The coefficient y represents the fraction of incoming mass to the wall x = 0 which leaves
the system as solid deposit. It seems to be quite natural to consider this fraction as
positive, nondecreasing continuous function of concentration of solid wax #;(0) on the
wall x = 0, equal to zero at #1(0) < 0 and not exceeding 1.

We define self similar solutions of problem (1.1)-(1.5) the solution f, T;(&), #;(&) of
(SS) or (SS*), such that f > 0 and

u1(&) € [0,1 — ¢(T1(&))] for ¢ € [0,5]; 41(0) > 0;
(5.15) —¢(T2(8)) < u2(¢) <0 for ¢ € [B,00).

Note that conditions (5.15) are imposed by the physical meaning of the problem.

In fact, as we will see later, problem (SS*) appears to be more physical, since its
solution #; is automatically between zero and 1 — ¢,(T); while in the case of problem (SS)
this natural bound can be only obtained imposing some extra assumption on data which
are not natural.

The simplest case.

To point out the peculiarities of the problem, caused by condition (5.11) and by the
properties of function ¢,(T), we consider the case of equal diffusivities: Dg = D = a; =
= ap = a. In this case the temperature in both phases is given by the formula:

¢
T(é) = T —To / exp (— & /4a)dé + To,
0

Jra

and the total concentration by:
(5.16) u+¢(T) = coo — yc(To)(To — T(E)).

Here we stipulate that T; = T, 4; = u, both if £ € [0, ) and if ¢ € (8, 00). The unknown
constant f§ is determined as the root of eq. u=0, that is:

o — &(T(B))

(5.17) xc(Ty) = W’
T -T, |
where T(f) =~ / exp (— & /4a)dé + To.

0
To guarantee the existence of a solution f fulfilling the second requirement of (5.15),
we must impose the restriction:

Coo — C.V(TO)

/
(5.18) 2(To) < S
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on the data. However, the physical meaning of the problem does not impose such
restriction which, for this reason, looks unnatural. Nevertheless it can be dropped if we
study problem (SS*). Namely, it follows from eq. (5.16) that

”(0) + ){(%(O))C;(TO)(TOO - TO) = Cxo — C:(TO)'
This equation has a unique root 0 < #(0) < 1 — ¢,(Ty) satisfying

oo = &(To) — u(0)
To)(Too — To)

consequently inequality (5.18) is automatically fulfilled. The rest of requirements (5.15)
are satisfied provided eq. (5.17) has only one root. This means that the curve ¢,(T), when
considered for T € [Ty, To 1, must intersect the straight line

Coo — 2(To)(Too — T) in an unique point

7 (@(0)) =

T

B
o — 1
TT( - / exp (— &/40)dE + To.
0

This is surely the case if the function ¢,(T) does not change the sign of convexity in
[To, To] and inequalities (5.14), (5.18) are fulfilled. Thus we obtained

ProPOSITION 5.1. Iz the case, when Dg = D = a; = a; = a and c¢,(T) does not change
the sign of convexity in [Ty, Tsol, problem: (SS*) has an unique solution.

If, in addition, inequality (5.18) is fulfilled for given constant y, then also problen: (SS)
has an unigue solution.

The general case.

Let us begin with finding the temperature solving (5.2), (5.4), (5.5), (5.6), (5.9), (5.10)
for a given f# > 0.

Lemma 5.1, For every > 0 there exist twice differentiable monotonously increasing
functions T;(&),( = 1,2), continuously depending on P, being the solution for the

following problen:
¢

2
<
2
T:(p) = T2(B), aT{(B) = ax T5(B),
T1(0) = To,

(5.19) T5(00) = T,

aT/+2T1=0, 0<&E<p

Ty +=2T5=0, f<&< o,

i.e. problem (5.2), (5.4), (5.5), (5.6), (5.9), (5.10).
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Proor. It is easy to obtain from (5.19) that

B ¢
Ty [ exp (— & /40,)dé + B [ exp ( — & J4ay)dé
¢ 0

(5.20) Ty (&) = ;
[exp (=& /4a))dé
0
and
T B ;
(5.21) Th(f) = =2 - [ exp(— & /4a2)dé + B,

f exp( — 52/4(12)0«75 B
B

where B = T1() = T2(f) is the unique root of equation

exp (— f2/4a;) TGXP (— & /4a2)dé - exp (B /4as)
ap - (Too - B) ﬂ

(5.22) BTy

:al.

B
[exp (— & [4a,)d¢
0

Obviously, Ty < B < T..

Prorosition 5.2. Let D > D¢ and
vD,\/a;

Coo — Cx(TO) ,
N T T

Then problem (5.1)-(5.12) adwits at least one solution with 0 < f < [, where f* is the
unique root of equation ¢(T(f)) = cx.

Proor. By integrating (5.1) and (5.3) we obtain

_£ 1 _ g2 <
0 -en i) 5 n(5) [ o
0

2

1,(&) = Az exp (;—g) — (T T5().

It follows from condition (5.11) that
DcAy = —(1 — x)DC(T,) T} (0)
and from (5.7), (5.10), (5.12) that

DA, =D oo — (T2(f))
[ exp (— & /4D)d¢
p
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So condition (5.8) takes the form

¢D-Dg

(5.23) ){Cﬁ(To)T{(O)+/c§(T(5))T{(§)2T)GeXp (&*/4D¢)dé =

0

o — o(To(P)) exp (fA(D — D¢)/4DDg),

[ exp(— &/4D)dé
B

where (see (5.20)-(5.22))
az(Too — T()) CXp( — 52/4(11)

p o) ’
ay [exp (— & [4a1)dE + ay exp (— B /4ay + B 4az) [ exp (— & [4ar)dé
0 p

T1(&) =

The existence of a solution f§ of equation (5.23) such, that 0 < f# < 8 can be obtained
with the use of simple analysis of the formula, taking into account conditions of
Proposition 5.2 and making use of the elementary Weistrass theorem.

Remark 5.2. The fulfillment of requirements (5.15) in this more general case is
still an open question. The release of condition (5.15) lead to appearance of
«supersaturated» or «undersaturated» zones whose physical meaning is unclear.
Similarly it remains an open question whether the solution is unique at least in the
case when the coefficients of diffusion differ.
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