ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

Luisa Moschini, Alberto Tesei

Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. **16** (2005), n.3, p. 171–180.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_3_171_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Equazioni a derivate parziali. — Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential. Nota di Luisa Moschini e Alberto Tesei, presentata (*) dal Socio A. Tesei.

ABSTRACT. — In this preliminary *Note* we outline some results of the forthcoming paper [11], concerning positive solutions of the equation $\partial_t u = \Delta u + \frac{c}{|x|^2} u \left(0 < c < \frac{(n-2)^2}{4}; n \geq 3\right)$. A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator $Hu = -\Delta u - \frac{c}{|x|^2} u$ with the opposite of the weighted Laplacian $\Delta_\lambda v = \frac{1}{|x|^\lambda} div(|x|^\lambda \nabla v)$ when $\lambda = 2 - n + 2\sqrt{c_0 - c}$.

KEY WORDS: Harnack inequality; Moser iteration technique; Weighted Laplace-Beltrami operator; Sharp heat kernel estimate; Hardy potential.

RIASSUNTO. — Disuguaglianza di Harnack e stime sul nucleo del calore per l'operatore di Schrödinger con potenziale di Hardy. In questa Nota preliminare si presentano alcuni risultati del successivo lavoro [11], riguardanti soluzioni positive dell'equazione $\partial_t u = \Delta u + \frac{c}{|x|^2} u \left(0 < c < \frac{(n-2)^2}{4}; n \ge 3\right)$. Si dimostra una disuguaglianza di Harnack parabolica, che in particolare implica una stima bilatera sul nucleo del calore associato. Il nostro approccio si basa sull'equivalenza unitaria dell'operatore di Schrödinger $Hu = -\Delta u - \frac{c}{|x|^2} u$ con l'opposto dell'operatore di Laplace pesato $\Delta_{\lambda} v = \frac{1}{|x|^{\lambda}} div(|x|^{\lambda} \nabla v)$ quando $\lambda = 2 - n + 2\sqrt{c_0 - c}$.

1. Introduction

We deal with positive solutions of the parabolic equation

(1.1)
$$\partial_t u = \Delta u + \frac{c}{|x|^2} u$$

in $\mathbb{R}^n \times (0,T]$ $(n \ge 3)$; here $c \in (0,c_0)$, $c_0 := \frac{(n-2)^2}{4}$ denoting the best constant in the

Hardy inequality. The main purpose of this *Note* is to present a parabolic Harnack inequality for equation (1.1). As is well known, a number of interesting consequences can be drawn from such inequality; in particular, we point out a sharp two-sided estimate for the associated heat kernel (see Theorem 4.3 below).

Our approach relies on the change of unknown $u \to v := \frac{u}{\varphi}$, where $\varphi(x) = |x|^{\frac{\lambda_+}{2}}$ and

(1.2)
$$\lambda_{+} := 2 - n + 2\sqrt{c_0 - c} \in (2 - n, 0) .$$

This recasts equation (1.1) into the form

(1.3)
$$\partial_t v = \frac{1}{|x|^{\lambda_+}} div \Big(|x|^{\lambda_+} \nabla v \Big)$$

-namely, into the heat equation for the *weighted Laplacian* Δ_{λ_+} on the *weighted manifold* $(\mathbb{R}^n, |x|^{\lambda_+} dx)$. This suggests to derive results concerning equation (1.1) from those concerning heat semigroups on weighted manifolds (see [7] for an up-to-date account of the subject).

In particular, the implication $(ii) \Rightarrow (i)$ of Theorem 2.5 below suggests to prove both the *doubling property* and the *Poincaré inequality* in $(\mathbb{R}^n, |x|^{\lambda_+} dx)$, in order to demonstrate the parabolic Harnack inequality for equation (1.3), thus for equation (1.1). To do so, a technical obstruction is given by the lack of regularity of the weight $|x|^{\lambda_+}$; in fact, a standard assumption underlying Theorem 2.5 is that the weighted manifold (\mathcal{M}, μ) be endowed with a measure $d\mu = \varphi^2 dv$, where dv is the Riemannian measure and φ is a *smooth* positive function on \mathcal{M} (see Section 2).

However, checking the above implication in the present case offers no difficulties, since the Moser iteration technique applies to measurable coefficients (in this connection, see [13]). Hence we prove that the doubling property and the Poincaré inequality are satisfied; then the result follows.

2. Mathematical framework

(a) Let $\Omega \subseteq \mathbb{R}^n$ be a domain containing the origin $(n \ge 3)$. The Schrödinger operator $H = -\Delta - \frac{c}{|x|^2}$ (with Dirichlet homogeneous boundary conditions if $\partial \Omega$ is nonempty; $c \in (0, c_0)$) is defined in $L^2(\Omega)$ as the generator of the symmetric form

$$\mathcal{H}[u_1, u_2] := \int\limits_{\Omega} \left(\nabla u_1 \nabla u_2 - \frac{c}{|x|^2} u_1 u_2 \right) dx$$

with domain $D(\mathcal{H}) := H_0^1(\Omega)$. In view of the Hardy inequality, the form \mathcal{H} is nonnegative and $C_0^\infty(\Omega \setminus \{0\})$ is a core for it. The operator H is nonnegative and self-adjoint, so that -H is the generator of a contraction holomorphic semigroup $\{e^{-Ht}\}_{t\geq 0}$ on $L^2(\Omega)$.

Let us recall the following well-known construction (e.g., see [1]). Let $\varphi \in C^{\infty}(\Omega \setminus \{0\})$, $\varphi > 0$; consider the weighted space $L^2_{\varphi}(\Omega) \equiv L^2(\Omega, \varphi^2 dx)$ and the unitary map

 $\varPhi: L^2_{\varphi}(\varOmega) \to L^2(\varOmega), \qquad \varPhi v := \varphi v \qquad (v \in L^2_{\varphi}(\varOmega)) \; .$

Define the nonnegative, self-adjoint operator

$$(2.1) H_{\varphi} := \Phi^* H \Phi .$$

in $L^2_{\omega}(\Omega)$. Clearly,

(2.2)
$$e^{-H_{\varphi}t} = \Phi^* e^{-Ht} \Phi \quad \text{ for any } t \ge 0 ,$$

 $\{e^{-H_{\varphi}t}\}_{t\geq 0}$ denoting the semigroup on $L_{\varphi}^2(\Omega)$ generated by $-H_{\varphi}$; moreover, H_{φ} is the

generator of the symmetric form

(2.3)
$$\begin{cases} D(\mathcal{H}_{\varphi}) := \left\{ v \in L_{\varphi}^{2}(\Omega) \middle| \Phi v \in H_{0}^{1}(\Omega) \right\} \\ \mathcal{H}_{\varphi}[v_{1}, v_{2}] := \mathcal{H}[\Phi v_{1}, \Phi v_{2}] . \end{cases}$$

Observe that $C_0^{\infty}(\Omega \setminus \{0\})$ is also a core of \mathcal{H}_{φ} . It is easily checked that on this core there holds:

$$(2.4) \quad \mathcal{H}_{\varphi}[v_1, v_2] := \int_{\Omega} \left\{ \nabla(\varphi v_1)(\nabla \varphi v_2) - \frac{c}{|x|^2} v_1 v_2 \varphi^2 \right\} dx =$$

$$= \int_{\Omega} \left\{ \nabla v_1 \nabla v_2 - \left(\frac{\Delta \varphi}{\varphi} + \frac{c}{|x|^2} \right) v_1 v_2 \right\} \varphi^2 dx .$$

Set $\varphi(x) = |x|^{\frac{\lambda_{+}}{2}}$ with λ_{+} defined in (1.2). Since $|x|^{\frac{\lambda_{+}}{2}}$ is a weak solution of the equation $\Delta \varphi + \frac{c}{|x|^{2}} \varphi = 0 \quad \text{in } \Omega ,$

the form (2.3) reads in this case:

(2.5)
$$\begin{cases} D(\mathcal{H}_{\lambda_{+}}) := \{ v \in L_{\lambda_{+}}^{2}(\Omega) \mid |x|^{\frac{\lambda_{+}}{2}} v \in H_{0}^{1}(\Omega) \} \\ \mathcal{H}_{\lambda_{+}}[v_{1}, v_{2}] := \int_{\Omega} \nabla v_{1} \nabla v_{2} |x|^{\lambda_{+}} dx \end{cases}$$

(here the subscript λ_+ instead of φ has been used). Since $C_0^{\infty}(\Omega \setminus \{0\})$ is a core of the above form and the norm induced on this core is equivalent to the norm

(2.6)
$$v \to ||v||_{H^1_{\lambda_+}} := \left\{ \int_{\Omega} \left(|\nabla v|^2 + v^2 \right) |x|^{\lambda_+} \, dx \right\}^{\frac{1}{2}},$$

the generator H_{λ_+} of the form (2.5) is the opposite of the weighted Laplacian Δ_{λ_+} on $(\Omega, |x|^{\lambda_+} dx)$, which is defined as follows.

Let $\lambda \in (2 - n, 0)$. Consider the symmetric form in $L^2_{\lambda}(\Omega) \equiv L^2(\Omega, |x|^{\lambda} dx)$

$$\mathcal{H}_{\lambda}[v_1, v_2] := \int\limits_{\Omega} \nabla v_1 \nabla v_2 |x|^{\lambda} dx$$

with domain $D(\mathcal{H}_{\lambda}) := H^1_{0,\lambda}(\Omega)$; the latter is defined as the closure of $C_0^{\infty}(\Omega \setminus \{0\})$ in the norm (2.6) (which coincides with the closure of $C_0^{\infty}(\Omega)$ in the same norm, since $\lambda > 2 - n$). Then the weighted Laplacian \mathcal{A}_{λ} (with Dirichlet homogeneous boundary conditions if $\partial \Omega$ is nonempty) is defined in $L^2_{\lambda}(\Omega)$ as the opposite of the generator of the form \mathcal{H}_{λ} , namely:

(2.7)
$$\begin{cases} D(\Delta_{\lambda}) := \left\{ v \in H_{0,\lambda}^{1}(\Omega) \left| \frac{1}{|x|^{\lambda}} \operatorname{div}\left(|x|^{\lambda} \nabla v\right) \in L_{\lambda}^{2}(\Omega) \right. \right\} \\ \Delta_{\lambda}v := \frac{1}{|x|^{\lambda}} \operatorname{div}\left(|x|^{\lambda} \nabla v\right) & \text{for any } v \in D(\Delta_{\lambda}) . \end{cases}$$

We shall denote by $\{e^{\Delta_{\lambda}t}\}_{t\geq 0}$ the contraction holomorphic semigroup generated by Δ_{λ} in $L^2_1(\Omega)$.

 (β) Let us recall some relevant results concerning smoothly weighted manifolds (*e.g.*, see [7]).

A weighted manifold $(\mathcal{M}, \mu) \equiv (\mathcal{M}, g, \mu)$ is a Riemannian manifold \mathcal{M} with metric g, endowed with a measure $d\mu = \varphi^2 dv$, where dv is the Riemannian measure and φ is a smooth positive function on \mathcal{M} (observe that the same definition makes sense if φ is measurable and positive). The weighted manifold (\mathcal{M}, μ) is complete if the metric space (\mathcal{M}, d) , where d denotes the geodesic distance induced by the metric g, is complete.

The weighted Laplace-Beltrami operator on (\mathcal{M}, μ)

$$\Delta_{\mu}v := \frac{1}{\varphi^2} div (\varphi^2 \nabla v) = \frac{1}{\varphi^2 \sqrt{|g|}} \sum_{i,j=1}^n \frac{\partial}{\partial x_i} \left(\varphi^2 \sqrt{|g|} \, g^{i,j} \frac{\partial v}{\partial x_j} \right) \,,$$

(where $(x_1,...,x_n)$ are local coordinates, $(g_{i,j}) = (g_{j,i})$, $|g| \equiv det(g_{i,j})$ and $(g^{i,j}) \equiv (g_{i,j})^{-1}$) with initial domain $C_0^{\infty}(\mathcal{M})$ is symmetric and nonpositive, in view of the Green formulas with respect to the measure μ . Moreover, it has a self-adjoint extension (unique if the manifold \mathcal{M} is complete) in the weighted space $L^2(\mathcal{M},\mu)$; hence the *heat semigroup* $\{e^{A_\mu t}\}_{t\geq 0}$ is defined in $L^2(\mathcal{M},\mu)$. It turns out to be a semigroup of integral operators – namely, there exists a smooth positive *heat kernel* $p_\mu(x,y,t)$ such that

$$(e^{A_{\mu}t}v_0)(x) = \int_{M} p_{\mu}(x, y, t)v_0(y) d\mu(y)$$

for any $v_0 \in L^2(\mathcal{M}, \mu)$, $x \in \mathcal{M}$ and t > 0.

Let $B(x_0, r)$ denote the geodesic ball of (\mathcal{M}, g) centered at x_0 with radius r; set $V_{\mathcal{M}}(x_0, r) := \mu(B(x_0, r))$. Let us recall the following definitions.

Definition 2.1. (\mathcal{M}, μ) satisfies the doubling property if there exists $C_D > 0$ such that

$$V_{\mathcal{M}}(x_0, 2r) \leq C_D V_{\mathcal{M}}(x_0, r)$$

for any $x_0 \in \mathcal{M}$, r > 0.

Definition 2.2. (\mathcal{M}, μ) satisfies the Poincaré inequality with parameter $\delta \in (0, 1]$ and constant $C_P > 0$ if

$$\inf_{\xi \in \mathbb{R}} \int_{B(x_0, \delta r)} |f - \xi|^2 d\mu \le C_P r^2 \int_{B(x_0, r)} |\nabla f|^2 d\mu$$

for any $x_0 \in \mathcal{M}$, r > 0 and $f \in C^1(\overline{B(x_0, r)})$.

DEFINITION 2.3. (\mathcal{M}, μ) satisfies the parabolic Harnack inequality if there exists $C_H > 0$ such that, for any $x_0 \in \mathcal{M}, r > 0$, $s \in \mathbb{R}$, any positive solution v to the heat equation

$$\partial_t v = \Delta_\mu v$$

in
$$Q \equiv Q(x_0, r) := B(x_0, r) \times (0, r^2)$$
 satisfies

$$\operatorname{ess\,sup}_{(x,t)\in Q_{-}}v(x,t) \leq C_{H}\operatorname{ess\,inf}_{(x,t)\in Q_{+}}v(x,t),$$

where

$$Q_{-} \equiv Q_{-}(x_{0}, r) := B\left(x_{0}, \frac{r}{2}\right) \times \left(\frac{r^{2}}{4}, \frac{r^{2}}{2}\right),$$

$$Q_{+} \equiv Q_{+}(x_{0}, r) := B\left(x_{0}, \frac{r}{2}\right) \times \left(\frac{3}{4}r^{2}, r^{2}\right).$$

Definition 2.4. The heat kernel on (\mathcal{M}, μ) satisfies the Li-Yau estimate if there exist $C_1, C_2 > 0$ such that

$$\frac{C_1 \ e^{-C_2 \frac{d^2(x,y)}{t}}}{V_{\mathcal{M}}(x,\sqrt{t})^{\frac{1}{2}} V_{\mathcal{M}}(y,\sqrt{t})^{\frac{1}{2}}} \leq p_{\mu}(t,x,y) \leq \frac{C_2 \ e^{-C_1 \frac{d^2(x,y)}{t}}}{V_{\mathcal{M}}(x,\sqrt{t})^{\frac{1}{2}} V_{\mathcal{M}}(y,\sqrt{t})^{\frac{1}{2}}}$$

for any $x, y \in \mathcal{M}$ and t > 0.

The following result can be proved (see [8, Theorem 2.7]).

Theorem 2.5. For any complete weighted manifold (\mathcal{M}, μ) the following properties are equivalent:

- (i) (\mathcal{M}, μ) satisfies the parabolic Harnack inequality;
- (ii) (\mathcal{M}, μ) satisfies the doubling property and the Poincaré inequality for some $\delta \in (0, 1]$;
 - (iii) the heat kernel on (\mathcal{M}, μ) satisfies the Li-Yau estimate.

The main part of Theorem 2.5 is implication $(ii) \Rightarrow (i)$, which was proved independently in [6, 12] (the inverse implication $(i) \Rightarrow (ii)$ was proved in [12]). The equivalence $(i) \Leftrightarrow (iii)$ goes back to [5].

3. Parabolic Harnack inequality

The results of this section make use of the methods of the latter subsection in the present non-smooth case. Let $B(x_0,r):=\{x\in\mathbb{R}^n|\,|x-x_0|< r\},\ Q\equiv Q(x_0,r):=:=B(x_0,r)\times(0,r^2)\ (x_0\in\mathbb{R}^n,r>0).$ Set

$$V(x_0,r) := \int_{B(x_0,r)} |y|^{\lambda} dy \qquad (x_0 \in \mathbb{R}^n, r > 0) .$$

The complete weighted manifold $(\mathbb{R}^n, |x|^{\lambda} dx)$ $(\lambda \in (-n, 0))$ satisfies both the doubling property and the Poincaré inequality; this is the content of the following

Theorem 3.1. Let $\lambda \in (-n, 0)$. Then:

(i) there exists $C_D > 0$ such that

$$(3.1) V(x_0, 2r) \le C_D V(x_0, r)$$

for any $x_0 \in \mathbb{R}^n$, r > 0;

(ii) there exist $\delta \in (0, 1]$, $C_P > 0$ such that

(3.2)
$$\int_{B(x_0, \delta r)} |f(y) - \hat{f}|^2 |y|^{\lambda} dy \le C_P r^2 \int_{B(x_0, r)} |\nabla f|^2 (y) |y|^{\lambda} dy$$

for any $x_0 \in \mathbb{R}^n$, r > 0 and $f \in C^1(\overline{B(x_0, r)})$; here

$$\hat{f} := \frac{1}{V(x_0, \delta r)} \int_{B(x_0, \delta r)} f(y) |y|^{\lambda} dy.$$

Let us make the following definitions.

Definition 3.2. By a *solution* to equation (1.3) in Q we mean any $v \in C^1((0, r^2); L^2_{\lambda}(B(x_0, r))) \cap C((0, r^2); H^1_{\lambda}(B(x_0, r)))$ such that $\partial_t v, \nabla v \in L^2(Q, |x|^{\lambda} dx dt)$ and there holds

$$\iint\limits_{O} \left\{ \partial_{t} v \chi + \nabla v \nabla \chi \right\} |x|^{\lambda} dx dt = 0$$

for any $\chi \in C([0, r^2]; C_0^{\infty}(B(x_0, r)))$.

DEFINITION 3.3. By a *solution* to equation (1.1) in Q we mean any $u \in C^1((0, r^2); L^2(B(x_0, r))) \cap C((0, r^2); H^1(B(x_0, r)))$ such that $\partial_t u$, ∇u , $\frac{u}{|x|^2} \in L^2(Q, dx dt)$ and there holds

$$\iint\limits_{O} \left\{ \partial_{t} u \chi + \nabla u \nabla \chi - \frac{c}{|x|^{2}} u \chi \right\} dx dt = 0$$

for any $\chi \in C([0, r^2]; C_0^{\infty}(B(x_0, r)))$.

Remark 3.4. Observe that Definition 3.3 excludes stationary solutions of (1.1) in $\mathcal{D}'(\mathbb{R}^n)$, which behave like $|x|^{\frac{k-2}{2}}$ with

$$\lambda_- := 2 - n - 2\sqrt{c_0 - c}$$

as $|x| \rightarrow 0$ (see [2]).

Theorem 3.1 entails the Harnack inequality in $(\mathbb{R}^n, |x|^{\lambda} dx)$. This is the content of the following

THEOREM 3.5. Let $\lambda \in (-n, 0)$. Then there exists $C_H > 0$ such that, for any $x_0 \in \mathbb{R}^n$, r > 0, any positive solution v to equation (1.3) in $Q(x_0, r)$ satisfies

$$\operatorname{ess \, sup}_{(x,t) \in Q_{-}} v(x,t) \leq C_{H} \operatorname{ess \, inf}_{(x,t) \in Q_{+}} v(x,t),$$

where

$$Q_{-} \equiv Q_{-}(x_{0}, r) := B\left(x_{0}, \frac{r}{2}\right) \times \left(\frac{r^{2}}{4}, \frac{r^{2}}{2}\right),$$

$$Q_{+} \equiv Q_{+}(x_{0}, r) := B\left(x_{0}, \frac{r}{2}\right) \times \left(\frac{3}{4}r^{2}, r^{2}\right).$$

As a consequence of Theorem 3.5, we have:

THEOREM 3.6. Let $c \in (0, c_0)$. Then there exists $C_H > 0$ such that, for any ball $B(x_0, r)$, any positive solution u to equation (1.1) in $Q(x_0, r)$ satisfies the inequality

$$(3.4) \qquad \operatorname{ess\,sup}_{(x,t)\in O_{-}}\left(|x|^{\frac{|\lambda_{+}|}{2}}u(x,t)\right) \leq C_{H}\operatorname{ess\,inf}_{(x,t)\in Q_{+}}\left(|x|^{\frac{|\lambda_{+}|}{2}}u(x,t)\right),$$

where

$$Q_{-} \equiv Q_{-}(x_{0}, r) := B\left(x_{0}, \frac{r}{2}\right) \times \left(\frac{r^{2}}{4}, \frac{r^{2}}{2}\right),$$

$$Q_{+} \equiv Q_{+}(x_{0}, r) := B\left(x_{0}, \frac{r}{2}\right) \times \left(\frac{3}{4}r^{2}, r^{2}\right).$$

Let us briefly discuss the proof of the above results. Theorem 3.5 follows from Theorem 3.1 using the Moser iteration technique as in [12]. In turn, Theorem 3.6 follows

from Theorem 3.5 by the transformation $u(x,t) \to v(x,t) = |x|^{\frac{|\lambda_+|}{2}} u(x,t)$ discussed at length in Section 2. Concerning Theorem 3.1, claim (*i*) follows from the following estimates:

(3.5)
$$D_1 r^{\lambda+n} < V(x,r) < D_2 r^{\lambda+n}$$
 if $|x| < 2r$,

(3.6)
$$D_1 r^n (|x| + r)^{\lambda} \le V(x, r) \le D_2 r^n (|x| + r)^{\lambda}$$
 if $|x| \ge 2r$,

which are proved to hold, for $\lambda \in (-n, 0)$ and suitable $D_1, D_2 > 0$, for any $x \in \mathbb{R}^n$ and r > 0. As for claim (ii), we first prove it both for *anchored balls* B(0, r) and for *remote balls* B(x, r), $|x| \ge 2r$, for any r > 0; then the general case follows as in Proposition 4.2 in [8].

It is worth pointing out a slightly different way to reach the same conclusions. In view of estimates (3.5)-(3.6), it is easily seen that the weight $|x|^{\lambda}$, $\lambda \in (-n,0)$ belongs to the Muckenhoupt class A_2 (the same is true for $\lambda \in (0,n)$); thus the parabolic Harnack inequality for equation (1.3) follows from the results in [3]. Although more direct, this approach applies to a more restricted class of weights.

Remark 3.7. In view of the perturbative arguments in [8] (see also [13]), inequality (3.3) is seen to hold for positive solutions in Q to the more general equation

$$\partial_t v = \frac{1}{|x|^{\lambda}} \sum_{i,j=1}^n \partial_{x_i} \left(p_{ij}(x) |x|^{\lambda} \partial_{x_j} v \right) ,$$

where: (i) $p \equiv (p_{jj}) = (p_{ji}) : \mathbb{R}^n \to \mathbb{R}^{2n}$ is measurable; (ii) there exist $0 < a \le \beta < \infty$ such that $a|\xi|^2 \le \sum_{i,j=1}^n p_{ij}(x)\xi_i\xi_j \le \beta|\xi|^2$ for any $x \in \mathbb{R}^n$, $\xi \equiv (\xi_1, ..., \xi_n) \in \mathbb{R}^n$.

4. Two-sided heat kernel estimates

The following result shows that $\{e^{-Ht}\}_{t\geq 0}$, $\{e^{A_{\lambda}t}\}_{t\geq 0}$ are semigroups of integral operators.

Theorem 4.1. (i) Let $\lambda \in (2-n,0)$. Then there exists a positive function $K_{\lambda} = K_{\lambda}(x,y,t) = K_{\lambda}(y,x,t)$ $(x,y \in \Omega; t > 0)$ such that

$$\left(e^{A_{\lambda}t}v_0\right)(x) = \int\limits_{\Omega} K_{\lambda}(x, y, t)v_0(y) \left|y\right|^{\lambda} dy \qquad (x \in \Omega)$$

for any $v_0 \in L^2_{\lambda}(\Omega)$.

(ii) Let $c \in (0, c_0)$. Then there exists a positive function K = K(x, y, t) = K(y, x, t) $(x, y \in \Omega; t > 0)$ such that

$$(e^{-Ht} u_0)(x) = \int_{\Omega} K(x, y, t) u_0(y) dy \qquad (x \in \Omega)$$

for any $u_0 \in L^2(\Omega)$. Moreover,

(4.1)
$$K(x, y, t) = |xy|^{\frac{\lambda_{+}}{2}} K_{\lambda_{+}}(x, y, t) \qquad (x, y \in \Omega, t > 0).$$

The proof of the above theorem relies on the ultracontractivity of the semigroup generated by $H_{\Psi} = \Psi^* H \Psi$ in the weighted space $L^2_{\Psi}(\Omega) \equiv L^2(\Omega, \psi^2 dx)$; here Ψ is the unitary map

$$\Psi: L^2_w(\Omega) \to L^2(\Omega), \qquad u = \Psi w := \psi w,$$

 ψ being a suitable truncation of $|x|^{\frac{\lambda_{+}}{2}}$ (see [4, Theorem 2.4.6] and [9] for details). Then the claims follow by the unitary equivalence of the semigroups under consideration.

The functions K_{λ} , K are referred to as the heat kernel of the semigroup $\{e^{A_{\lambda}t}\}_{t\geq 0}$, respectively $\{e^{-Ht}\}_{t\geq 0}$. As in the proof of the equivalence $(i)\Leftrightarrow (iii)$ of Theorem 2.5 (e.g., see [14]), from Theorem 3.5 and estimates (3.5)-(3.6) we obtain the following two-sided heat kernel estimate.

Theorem 4.2. Let $\lambda \in (2-n,0)$; let K_{λ} be the heat kernel of the semigroup $\{e^{\Delta_{\lambda}t}\}_{t\geq 0}$ in $L^2_{\lambda}(\mathbb{R}^n)$. Then there exist $C_1, C_2 > 0$ such that

$$(4.2) C_1 t^{-\frac{n}{2}} e^{-C_2 \frac{|x-y|^2}{t}} k_{\lambda}(x,t) k_{\lambda}(y,t) \leq K_{\lambda}(x,y,t) \leq C_2 t^{-\frac{n}{2}} e^{-C_1 \frac{|x-y|^2}{t}} k_{\lambda}(x,t) k_{\lambda}(y,t),$$

where $k_{\lambda}(x,t) := t^{\frac{n}{4}}V(x,\sqrt{t})^{-\frac{1}{2}}$ $(x,y \in \mathbb{R}^n, t > 0)$. Moreover,

$$k_{\lambda}(x,t) \sim \left\{ egin{array}{ll} (|x|+\sqrt{t})^{rac{|\lambda|}{2}} & if \quad |x| \geq 2\sqrt{t} \,, \ t^{rac{|\lambda|}{4}} & if \quad |x| < 2\sqrt{t} \,. \end{array}
ight.$$

The counterpart of the above result for equation (1.1) is the following

THEOREM 4.3. Let $c \in (0, c_0)$; let K be the heat kernel of the semigroup $\{e^{-Ht}\}_{t\geq 0}$ in $L^2(\mathbb{R}^n)$. Then there exist $C_1, C_2 > 0$ such that

(4.3)
$$C_1 t^{-\frac{n}{2}} e^{-C_2 \frac{|x-y|^2}{t}} k(x,t) k(y,t) \leq K(x,y,t) \leq C_2 t^{-\frac{n}{2}} e^{-C_1 \frac{|x-y|^2}{t}} k(x,t) k(y,t),$$
where $k(x,t) := |x|^{\frac{\lambda_+}{2}} t^{\frac{n}{4}} V(x,\sqrt{t})^{-\frac{1}{2}} (x,y \in \mathbb{R}^n, t > 0).$ Moreover,

$$k(x,t) \sim \begin{cases} \left(1 + \frac{\sqrt{t}}{|x|}\right)^{\frac{|\lambda_{+}|}{2}} & \text{if} \quad |x| \ge 2\sqrt{t}, \\ \left(\frac{\sqrt{t}}{|x|}\right)^{\frac{|\lambda_{+}|}{2}} & \text{if} \quad |x| < 2\sqrt{t}. \end{cases}$$

Acknowledgements

The work has been partially supported by RTN Contract HPRN-CT-2002-00274.

After the above results were obtained, we learned about the paper [10], where estimates like (4.3) are proved by different methods.

References

- G. BARBATIS S. FILIPPAS A. TERTIKAS, Critical heat kernel estimates for Schrödinger operators via Hardy-Sobolev inequalities. J. Funct. Anal., 208, 2004, 1-30.
- [2] H. Brezis L. Dupaigne A. Tesei, On a semilinear elliptic equation with inverse-square potential. Selecta Math., 11, 2005, 1-7.
- [3] F.M. CHIARENZA R.P. SERAPIONI, A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova, 73, 1985, 179-190.
- [4] E.B. Davies, Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989.
- [5] E.D. Fabes D.W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Rat. Mech. Anal., 96, 1986, 327-338.
- [6] A. GRIGORYAN, The heat equation on non-compact Riemannian manifolds. Mat. Sb., 182, 1991, 55-87 (in Russian); Engl. transl.: Math. USSR Sb., 72, 1992, 47-77.
- [7] A. GRIGORYAN, Heat kernels on weighted manifolds and applications. Cont. Math., to appear; http://www.ma.ic.ac.uk/~grigor/wma.pdf
- [8] A. GRIGORYAN L. SALOFF-COSTE, Stability results for Harnack inequalities. Ann. Inst. Fourier (Grenoble), 55, 2005, to appear; http://www.ma.ic.ac.uk/~grigor/vc1eps.pdf
- [9] P.D. MILMAN Y.A. SEMENOV, Heat kernel bounds and desingularizing weights. J. Funct. Anal., 202, 2003, 1-24.
- [10] P.D. MILMAN Y.A. SEMENOV, Global heat kernel bounds via desingularizing weights. J. Funct. Anal., 212, 2004, 373-398.
- [11] L. Moschini A. Tesei, *Parabolic Harnack Inequality for the Heat Equation with Inverse-Square Potential.*Forum Math., to appear.

[12] L. SALOFF-COSTE, A note on Poincaré, Sobolev and Harnack inequalities. Int. Math. Res. Notes, 2, 1992, 27-38

- [13] L. SALOFF-COSTE, Parabolic Harnack inequality for divergence form second order differential operators. Potential Anal., 4, 1995, 429-467.
- [14] L. Saloff-Coste, Aspects of Sobolev-Type Inequalities. London Math. Soc. Lecture Notes, 289, Cambridge University Press, 2002.

Pervenuta il 25 aprile 2005, in forma definitiva il 19 maggio 2005.

> Dipartimento di Matematica «G. Castelnuovo» Università degli Studi di Roma «La Sapienza» Piazzale A. Moro, 5 - 00185 Roma moschini@mat.uniroma1.it tesei@mat.uniroma1.it