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Equazioni a derivate parziali. — Harnack inequality and heat kernel estimates for the
Schrodinger operator with Hardy potential. Nota di Luisa MoscriNt e ALBERTO TESEI,
presentata (*) dal Socio A. Tesei.

Asstract. — In this preliminary Note we outline some results of the forthcoming paper [11], concerning

_2)
positive solutions of the equation 8,4 = Au + W u (0 <c< (u y )

is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach

s> 3). A parabolic Harnack inequality

relies on the unitary equivalence of the Schrédinger operator Hu = —Au — % u with the opposite of the
1 3

weighted Laplacian 4,0 = Wdz‘y(|x|}‘Vv) when =2 —-n+2/c0 —c.
o

Key worps: Harnack inequality; Moser iteration technique; Weighted Laplace-Beltrami operator; Sharp
heat kernel estimate; Hardy potential.

Riassunto. — Disuguaglianza di Harnack e stime sul nucleo del calore per l'operatore di Schrodinger con
potenziale di Hardy. In questa Nota preliminare si presentano alcuni risultati del successivo lavoro [11],

(n—2)?

riguardanti soluzioni positive dell’equazione d,u = Au +— | | (0 <c<
x
disuguaglianza di Harnack parabolica, che in particolare implica una stima bilatera sul nucleo del calore

n > 3). Si dimostra una

associato. Il nostro approccio si basa sull’equivalenza unitaria dell'operatore di Schrodinger Hu = —Au — ﬁ u
1 R X

con l'opposto dell’operatore di Laplace pesato 4,0 = Wdz‘v(\x\‘Vv) quando =2 —n+2,/c) —c.

x

1. INTRODUCTION
We deal with positive solutions of the parabolic equation
(1.1) Ou=AMu+—u
||
—2)?
in R” x (0, T] (# > 3); here ¢ € (0, ), co := —(ﬂ y )
Hardy inequality. The main purpose of this Noze is to present a parabolic Harnack
inequality for equation (1.1). As is well known, a number of interesting consequences can
be drawn from such inequality; in particular, we point out a sharp two-sided estimate for
the associated heat kernel (see Theorem 4.3 below).

denoting the best constant in the

Our approach relies on the change of unknown « — v := Z where ¢(x |x| * and
(1.2) Iy =2—n+2cg—c€2—n0)

(*) Nella seduta del 16 giugno 2005.
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This recasts equation (1.1) into the form

(1.3) O = L}dz'v(|x|i‘ Vv)

|
-namely, into the heat equation for the weighted Laplacian 4;, on the weighted manifold
(R”, |x[**dx). This suggests to derive results concerning equation (1.1) from those
concerning heat semigroups on weighted manifolds (see [7] for an up-to-date account
of the subject).

In particular, the implication (i) = (/) of Theorem 2.5 below suggests to prove both
the doubling property and the Poincaré inequality in (R”, |x|** dx), in order to demonstrate
the parabolic Harnack inequality for equation (1.3), thus for equation (1.1). To do so, a
technical obstruction is given by the lack of regularity of the weight |x|**; in fact, a
standard assumption underlying Theorem 2.5 is that the weighted manifold (M, u) be
endowed with a measure du = ¢?>dv, where dv is the Riemannian measure and ¢ is a
smooth positive function on M (see Section 2).

However, checking the above implication in the present case offers no difficulties,
since the Moser iteration technique applies to measurable coefficients (in this connection,
see [13]). Hence we prove that the doubling property and the Poincaré inequality are
satisfied; then the result follows.

2. MATHEMATICAL FRAMEWORK

(a) Let 2 C R” be a domain containing the origin ( > 3). The Schrédinger operator

H=—-4- W (with Dirichlet homogeneous boundary conditions if OQ is nonempty;
x

¢ € (0,¢p)) is defined in L*(Q) as the generator of the symmetric form

Hlw, ur] = /(VmVuz — #ul u2> dx
X

Q

with domain D(H) := H}(Q). In view of the Hardy inequality, the form H is nonnegative
and C(Q\ {0}) is a core for it. The operator H is nonnegative and self-adjoint, so that
—H is the generator of a contraction holomorphic semigroup {¢~#} . on L3(Q).

Let us recall the following well-known construction (e.g., see [1]). Let ¢ €
€ C*(2\ {0}), ¢ > 0; consider the weighted space L7 () = L[*(Q2, ¢*dx) and the unitary

map
D:Lp(Q) - [F(Q), Pvi=pw (ell(Q).

Define the nonnegative, self-adjoint operator

2.1) H,:=®*HP .
in Lé (Q). Cleatly,
(2.2) et = @ e H'p forany 1> 0,

{e Hot }150 denoting the semigroup on Lé(Q) generated by —H,,; moreover, H, is the
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generator of the symmetric form
. 2 1
o) D(H,) i= {v € 12(@)| @v € Hy(@)}
H(p[vlv Z)Z] = H[¢Z)17 4502] .

Observe that C*(2\ {0}) is also a core of H,,. It is easily checked that on this core there
holds:

24) Hylvi,00] = /{V((pvl)(V(pvz) —# V102 gpz} dx =
X

Q
A
z/ Vo1V, — —(p—i—% Vs p@Pdx .
Y

: Q )
Set p(x) = |x|7 with 4, defined in (1.2). Since |x|T+ is a weak solution of the equation
Ap + Lz p=0 nQ,
||

the form (2.3) reads in this case:
D(H;,) = {v € I2 ()| |x/7v € H)(Q)}
(2.5) ;
H; [v1,02] = /Vvaz || dx
o

(here the subscript 4, instead of ¢ has been used). Since C3°(2\ {0}) is a core of the

above form and the norm induced on this core is equivalent to the norm
1

(2.6) o= ol = {/(|Vv|2 +vz>|x|'1* dx} ,

Q
the generator H,, of the form (2.5) is the opposite of the weighted Laplacian 4,, on
(@, |x|* dx), which is defined as follows.
Let 4 € (2 — #,0). Consider the symmetric form in L3(Q) = L*(Q, |x|*dx)

H,lv1,02] := /V111sz |x|* dx
Q
with domain D(H;) := Hj ,(€); the latter is defined as the closure of C5°(€2 \ {0}) in the
norm (2.6) (which coincides with the closure of Ci°(2) in the same norm, since
4> 2 —mn). Then the weighted Laplacian 4; (with Dirichlet homogeneous boundary
conditions if O is nonempty) is defined in L?(£2) as the opposite of the generator of the
form H;, namely:

x|

D(4) = {v € H;,(Q)

% dz'z/(|x|i Vv) IS Li(Q)}
2.7)
1

Aiv = 7
Ix*

dz’v(|x|’1 Vv) for any v € D(4;) .
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We shall denote by {e%'} ., the contraction holomorphic semigroup generated by 4, in
2. :

(B) Let us recall some relevant results concerning smoothly weighted manifolds (e.g.,
see [7]).

A weighted manifold (M, 1) = (M, g, 1) is a Riemannian manifold M with metric g,
endowed with a measure du = ¢?>dv, where dv is the Riemannian measure and ¢ is a
smooth positive function on M (observe that the same definition makes sense if ¢ is
measurable and positive). The weighted manifold (M, u) is complete if the metric space
(M, d), where d denotes the geodesic distance induced by the metric g, is complete.

The weighted Laplace-Beltrami operator on (M, u)

1 1 " 9 - Ov
A U::—dli} zvl/ :— —< 2 l“’/—) ;

(where (x1, .., x,) are local coordinates, (g,-_,]) (g.0), |g| = det (g;;) and (g"/) = (gi1/‘)71)
with initial domain C§°(M) is symmetric and nonpositive, in view of the Green formulas
with respect to the measure u. Moreover, it has a self-adjoint extension (unique if the
manifold M is complete) in the weighted space L?(M, u); hence the heat semigroup
{eM'},., is defined in L2(M, p2). It turns out to be a semigroup of integral operators -
namely, there exists a smooth positive heat kernel p,(x, y, t) such that

(e™v0)(x) = /Pu(x’y?t)v()(y) duy)

M

for any vy € L*>(M, ), x € M and ¢ > 0.
Let B(xg,r) denote the geodesic ball of (M, g) centered at xy with radius r; set
Va(xo,7) := u(Blxo, ). Let us recall the following definitions.

DEeFINITION 2.1, (M, 1) satisfies the doubling property if there exists Cp > 0 such
that

Vm(xo,2r) < CpVaqlxo, 7)
for any xo € M, » > 0.

DEFINITION 2.2. (M, ) satisfies the Poincaré inequality with parameter 6 € (0, 1] and
constant Cp > 0 if

iof [ 1/ ePdu< Gor? / 9/ Py
" Blxo.07) Blxo.7)

for any xg € M, r > 0 and f € C( Bl(xo, 7)).

DerFINTION 2.3. (M, 1) satisfies the parabolic Harnack inequality if there exists
Cy > 0 such that, for any xy € M,r >0, s € R, any positive solution v to the heat
equation

o = Aw
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in Q = Q(xo,7) := Blxo, 7) x (0,7?) satisfies

esssupv(x,2) < Cpessinf v(x, 1),
(x,eQ- (x,)€Q

where
2 2
o =0« (53
3
Q= Q.. 7) 1= B(x0,5) x <4,z7,z) .

DEerINITION 2.4, The heat kernel on (M, u) satisfies the Li-Yau estimate if there exist
C1,Cy > 0 such that

Ci €7C2M G e*CIM
1 1 Sp/l(tvxvy) g 1 1
Ve, VO Vauly, V272 Vi, VERVa(y, V/2)?

for any x,y € M and ¢ > 0.
The following result can be proved (see [8, Theorem 2.7]).

TueoreM 2.5. For any complete weighted manifold (M, y) the following properties are
equivalent:

() (M, ) satisfies the parabolic Harnack inequality;

(i) (M,u) satisfies the doubling property and the Poincaré inequality for some
€ (0,17

(iii) the heat kernel on (M, u) satisfies the Li-Yau estimate.

The main part of Theorem 2.5 is implication (zZ) = (7), which was proved
independently in [6, 12] (the inverse implication () = (zZ) was proved in [12]). The
equivalence (7) < (i) goes back to [5].

3. ParaBoLIC HARNACK INEQUALITY

The results of this section make use of the methods of the latter subsection in the
present non-smooth case. Let Blxp,7) :={x € R"||x — x| <7}, Q= Qlxo,r) :=
:= B(xg,7) x (0,72) (xo € R”,7 > 0). Set

Vixg,r) := / Iy|*dy (xo € R",r>0).
Blxo,r)

The complete weighted manifold (R”, |x|*dx) (1 € (— 1,0)) satisfies both the doubling
property and the Poincaré inequality; this is the content of the following

Treorem 3.1. Let A € ( — #,0). Then:

(i) there exists Cp > 0 such that
(3.1) V(xo,2r) < CpV(xo,7)
for any xo € R”, r > 0;
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(ii) there exist 0 € (0,1], Cp > 0 such that

3.2) / £ ) — 12 by < Cor? / VFPO) [ dy

Blxg,0r) Blxo,r)
for any xo € R”, r > 0 and f € CY( B(xo,r) ); here

P | ot

Blxo,0r)

Let us make the following definitions.

DerFINTTION 3.2, By a solution to equation (1.3) in Q we mean any v € C'((0,7?);
L2(B(xo,7)) N C((0,72); H} (B(xo, 7)) such that d,v, Vo € L*(Q, |x|*dx d#) and there holds

/ Oy + VUV;(} x|*"dxdt = 0

for any € C([0,7%]; C*(B(xo, 7))).

DEerINITION 3.3. By a solution to equation (1.1) in Q we mean any « € C1((0,7?);
L2(B(xo, 7)) N C((0, 72); H (B(xo, 7)) such that du, Va, # € [(Q, dxds) and there
X

holds
//{8tux+VuV)(#ux} dxdt = 0
X
Q

for any y € C([0, 7°1; C* (B(xo, 7))).

ReMARK 3.4. Observe that Definition 3.3 excludes stationary solutions of (1.1) in
D'(R”), which behave like |x|Z with

Ao=2—n—2cg—c¢

as |x| — 0 (see [2]).

Theorem 3.1 entails the Harnack inequality in (R”, |x|*dx). This is the content of the
following

TreorREM 3.5. Let 4 € (— 1,0). Then there exists Cy > 0 such that, for any xo € R”,
r > 0, any positive solution v to equation (1.3) in Qlxo, r) satisfies

esssup o(x,t) < Cyessinf v(x,?),
(x,Ne0_ (x,)€Q4

where
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Q. = Q4 lxo,7) := B(xoé) X (%rz,rz) )

As a consequence of Theorem 3.5, we have:

THEOREM 3.6. Let ¢ € (0,cy). Then there exists Cy > 0 such that, for any ball B(xq, r),
any positive solution u to equation (1.1) in Qxo, r) satisfies the inequality

g | |y
(3.4) ess sup(|x|Tu(x, t)) < Cpessinf (|x|Tu(x, t)) ,
(x,2)€Q- (x,1)€Q4

)« (55).

Q. = Q. (x0,7) ::B(xo,g) X (%rz,rz) )

where

Q- =Q_(xo,7) := B(Xo,

N~

Let us briefly discuss the proof of the above results. Theorem 3.5 follows from
Theorem 3.1 using the Moser iteration technique as in [12]. In turn, Theorem 3.6 follows

Vi |
from Theorem 3.5 by the transformation u(x,#) — v(x,#) = \x|7+u(x7 t) discussed at
length in Section 2. Concerning Theorem 3.1, claim (/) follows from the following
estimates:

(3.5) Dyt

IN

Vix,7) < Dyr*t" it |x] <2r,

(3.6) Dy (x| + " < Vix,r) < Dar(Jx| + ) if |x| >2r,

which are proved to hold, for 4 € ( — #,0) and suitable D;, D, > 0, for any x € R” and
r > 0. As for claim (i), we first prove it both for anchored balls B(0, r) and for remote balls
B(x,7), |x| > 2r, for any r > 0; then the general case follows as in Proposition 4.2 in [8].

It is worth pointing out a slightly different way to reach the same conclusions. In view
of estimates (3.5)-(3.6), it is easily seen that the weight |x|*, 2 € ( — 7,0) belongs to the
Muckenhoupt class A, (the same is true for A € (0,7)); thus the parabolic Harnack
inequality for equation (1.3) follows from the results in [3]. Although more direct, this
approach applies to a more restricted class of weights.

Remark 3.7. In view of the perturbative arguments in [8] (see also [13]), inequality
(3.3) is seen to hold for positive solutions in Q to the more general equation

1 & p
0w = 320 (sl 0,0

where: (i) p = (p;) = (p) : R” — R*" is measurable; (ii) there exist 0 < a < f < oo such
that alé> <> pi(0&& < BIE for any x € R, E= (&, .., E,) € R

ij=1
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4. TwoO-SIDED HEAT KERNEL ESTIMATES

The following result shows that {e™H},o, {e%'},., are semigroups of integral
operators.

Treorem 4.1. (i) Let A€ (2 —n,0). Then there exists a positive function
K, =K;(x,y,t) = K;(y,x,8) (x,y € Q;¢ > 0) such that

(e""v0)(x) = /K,l(x,%l‘)vo(y) pl'dy  (xeQ
Q

for any vy € L3(Q).
(i) Let c¢€(0,c9). Then there exists a positive function K = K(x,y,t) =
= K(y,x,2) (x,y € Q;¢ > 0) such that

(e_Hf 1) (x) = /K(x,y,t)uo(y)dy (x € Q)
Q

for any uy € L2(Q). Moreover,

4.1) K(x,y,t) = \xy|%Kg+(x,y,t) (x,y€Q,t>0).

The proof of the above theorem relies on the ultracontractivity of the semigroup
generated by H, = Y*HY in the weighted space Lﬁ,(Q) = [2(Q,y?dx); here ¥ is the
unitary map

VL (Q — [A(Q), u=%w:=yw,

w being a suitable truncation of |x|/7+ (see [4, Theorem 2.4.6] and [9] for details). Then the
claims follow by the unitary equivalence of the semigroups under consideration.

The functions K;,K are referred to as the heat kernel of the semigroup {e%/},.,
respectively {¢ 7}, . As in the proof of the equivalence (?) < (i7) of Theorem 2.5 (e.g.,
see [14]), from Theorem 3.5 and estimates (3.5)-(3.6) we obtain the following two-sided
heat kernel estimate.

TheOREM 4.2, Let A € (2 — 1,0); let K; be the heat kernel of the semigroup {e'} >0 1
L2(R"). Then there exist C1,Cy > 0 such that

b=

(42) C tie @ fﬂzkg(X, Dk(y, 1) < Ky(x,9,6) < Cy 172 €7Cl@h(9€, 1) ky(y, 1),

where ky(x, 1) == £V (x, \/z_‘)f% (x,y € R”, ¢t > 0). Moreover,

(x| + VDT i |x] > 2v7,
ki(x, i) ~ "
£ if x| <2yt
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The counterpart of the above result for equation (1.1) is the following

TreOREM 4.3. Let ¢ € (0,cy); let K be the heat kernel of the semigroup {e=H Yiso i1
L2(R”). Then there exist C1,Cy > 0 such that

lx=y2

4.3) Cy 173 e 7 ke, 0) by, 1) < K(x,9,0) < Cy £7% €7C1¢k(9€7 1) k(y, 1),

where k(x,t) == |x|%t%V(x, \/Z)f% (x,y € R”, ¢t > 0). Moreover,

g |

<1+|—‘[|t) if x| >2vt,
X
kx,t) ~ .
(ﬁ> if x| <2Vr.
||
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