LUISA MOSCHINI, ALBERTO TESCI

Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_3_171_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Abstract. — In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation \(\partial_t u = \Delta u + \frac{c}{|x|^2} u \left(0 < c < \frac{(n-2)^2}{4} ; n \geq 3 \right) \). A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator \(Hu = -\Delta u - \frac{c}{|x|^2} u \) with the opposite of the weighted Laplacian \(A_2 v = \frac{1}{|x|^2} \text{div}(|x|^2 \nabla v) \) when \(\lambda = 2 - n + 2\sqrt{c_0 - c} \).

Key words: Harnack inequality; Moser iteration technique; Weighted Laplace-Beltrami operator; Sharp heat kernel estimate; Hardy potential.

Riassunto. — Disuguaglianza di Harnack e stime sul nucleo del calore per l’operatore di Schrödinger con potenziale di Hardy. In questa Nota preliminare si presentano alcuni risultati del successivo lavoro [11], riguardanti soluzioni positive dell’equazione \(\partial_t u = \Delta u + \frac{c}{|x|^2} u \left(0 < c < \frac{(n-2)^2}{4} ; n \geq 3 \right) \). Si dimostra una disuguaglianza di Harnack parabolica, che in particolare implica una stima bilatera sul nucleo del calore associato. Il nostro approccio si basa sull’equivalenza unitaria dell’operatore di Schrödinger \(Hu = -\Delta u - \frac{c}{|x|^2} u \) con l’opposto dell’operatore di Laplace pesato \(A_2 v = \frac{1}{|x|^2} \text{div}(|x|^2 \nabla v) \) quando \(\lambda = 2 - n + 2\sqrt{c_0 - c} \).

1. Introduction

We deal with positive solutions of the parabolic equation

\[
\partial_t u = \Delta u + \frac{c}{|x|^2} u
\]

in \(\mathbb{R}^n \times (0, T) \) \((n \geq 3) \); here \(c \in (0, c_0) \), \(c_0 := \frac{(n-2)^2}{4} \) denoting the best constant in the Hardy inequality. The main purpose of this Note is to present a parabolic Harnack inequality for equation (1.1). As is well known, a number of interesting consequences can be drawn from such inequality; in particular, we point out a sharp two-sided estimate for the associated heat kernel (see Theorem 4.3 below).

Our approach relies on the change of unknown \(u \rightarrow v := \frac{u}{\varphi} \), where \(\varphi(x) = |x|^{\frac{n}{2}} \) and

\[
\lambda_+ := 2 - n + 2\sqrt{c_0 - c} \in (2 - n, 0)
\]

(*) Nella seduta del 16 giugno 2005.
This recasts equation (1.1) into the form

\begin{equation}
\partial_t \nu = \frac{1}{|x|^{2+}} \text{div} \left(\frac{1}{|x|^{2+}} \nabla \nu \right)
\end{equation}

– namely, into the heat equation for the *weighted Laplacian* Δ_{k+} on the *weighted manifold* $(\mathbb{R}^n, |x|^{2+} \, dx)$. This suggests to derive results concerning equation (1.1) from those concerning heat semigroups on weighted manifolds (see [7] for an up-to-date account of the subject).

In particular, the implication $(ii) \Rightarrow (i)$ of Theorem 2.5 below suggests to prove both the doubling property and the Poincaré inequality in $(\mathbb{R}^n, |x|^{2+} \, dx)$, in order to demonstrate the parabolic Harnack inequality for equation (1.3), thus for equation (1.1). To do so, a technical obstruction is given by the lack of regularity of the weight $|x|^{2+}$; in fact, a standard assumption underlying Theorem 2.5 is that the weighted manifold (\mathcal{M}, μ) be endowed with a measure $d\mu = \varphi^2 \, dv$, where dv is the Riemannian measure and φ is a *smooth* positive function on \mathcal{M} (see Section 2).

However, checking the above implication in the present case offers no difficulties, since the Moser iteration technique applies to measurable coefficients (in this connection, see [13]). Hence we prove that the doubling property and the Poincaré inequality are satisfied; then the result follows.

2. Mathematical framework

(a) Let $\Omega \subseteq \mathbb{R}^n$ be a domain containing the origin $(n \geq 3)$. The Schrödinger operator $H = -\Delta - \frac{c}{|x|^2}$ (with Dirichlet homogeneous boundary conditions if $\partial \Omega$ is nonempty; $c \in (0, c_0)$) is defined in $L^2(\Omega)$ as the generator of the symmetric form

$$\mathcal{H}[u_1, u_2] := \int_{\Omega} \left(\nabla u_1 \nabla u_2 - \frac{c}{|x|^2} u_1 u_2 \right) \, dx$$

with domain $D(\mathcal{H}) := H^1_0(\Omega)$. In view of the Hardy inequality, the form \mathcal{H} is nonnegative and $C_0^\infty(\Omega \setminus \{0\})$ is a core for it. The operator H is nonnegative and self-adjoint, so that $-H$ is the generator of a contraction holomorphic semigroup $\{e^{-Ht}\}_{t \geq 0}$ on $L^2(\Omega)$.

Let us recall the following well-known construction (e.g., see [1]). Let $\varphi \in C^\infty(\Omega \setminus \{0\})$, $\varphi > 0$; consider the weighted space $L^2_\varphi(\Omega) \equiv L^2(\Omega, \varphi^2 \, dx)$ and the unitary map

$$\Phi : L^2_\varphi(\Omega) \rightarrow L^2(\Omega), \quad \Phi \nu := \varphi \nu \quad (\nu \in L^2_\varphi(\Omega)).$$

Define the nonnegative, self-adjoint operator

$$H_\varphi := \Phi^* H \Phi.$$

in $L^2_\varphi(\Omega).$ Clearly,

\begin{equation}
\Phi e^{-H_{\varphi t}} = e^{-H_{\varphi t}} \Phi \quad \text{for any} \ t \geq 0,
\end{equation}

$\{e^{-H_{\varphi t}}\}_{t \geq 0}$ denoting the semigroup on $L^2_\varphi(\Omega)$ generated by $-H_\varphi$; moreover, H_φ is the
generator of the symmetric form

\[
\begin{align*}
\mathcal{H}_\phi[v_1, v_2] & := \int_\Omega \left\{ -\frac{c}{|x|^2} \, v_1 \, v_2 \, \phi^2 \right\} \, dx = \\
& = \int_\Omega \left\{ \nabla v_1 \nabla v_2 - \left(\frac{\Delta \phi}{\phi} + \frac{c}{|x|^2} \right) \, v_1 v_2 \right\} \phi^2 \, dx.
\end{align*}
\]

Set \(\varphi(x) = |x|^{\frac{n}{2}} \) with \(\lambda_+ \) defined in (1.2). Since \(|x|^{\frac{n}{2}} \) is a weak solution of the equation

\[
\Delta \varphi + \frac{c}{|x|^2} \varphi = 0 \quad \text{in} \quad \Omega,
\]

the form (2.3) reads in this case:

\[
\begin{align*}
\mathcal{H}_{\lambda_+}[v_1, v_2] & := \int_\Omega \left\{ \nabla v_1 \nabla v_2 \, |x|^{\lambda_+} \right\} \, dx \\
\mathcal{H}_{\lambda_-}[v_1, v_2] & := \int_\Omega \left\{ \nabla v_1 \nabla v_2 \, |x|^{\lambda_-} \right\} \, dx
\end{align*}
\]

(here the subscript \(\lambda_+ \) instead of \(\phi \) has been used). Since \(C_0^\infty(\Omega \setminus \{0\}) \) is a core of the above form and the norm induced on this core is equivalent to the norm

\[
\|v\|_{\mathcal{H}_{\lambda_+}} := \left\{ \int_\Omega \left[|\nabla v|^2 + v^2 \right] |x|^{\lambda_+} \, dx \right\}^{\frac{1}{2}},
\]

the generator \(H_{\lambda_+} \) of the form (2.5) is the opposite of the weighted Laplacian \(A_{\lambda_+} \) on \(\Omega, |x|^{\lambda_+} \, dx \), which is defined as follows.

Let \(\lambda \in (2 - n, 0) \). Consider the symmetric form in \(L^2(\Omega) \equiv L^2(\Omega, |x|^{\lambda} \, dx) \)

\[
\mathcal{H}_\lambda[v_1, v_2] := \int_\Omega \left\{ \nabla v_1 \nabla v_2 \, |x|^{\lambda} \right\} \, dx
\]

with domain \(\mathcal{D}(\mathcal{H}_\lambda) := H_{0,\lambda}^1(\Omega) \); the latter is defined as the closure of \(C_0^\infty(\Omega \setminus \{0\}) \) in the norm (2.6) (which coincides with the closure of \(C_0^\infty(\Omega) \) in the same norm, since \(\lambda > 2 - n \)). Then the weighted Laplacian \(A_\lambda \) (with Dirichlet homogeneous boundary conditions if \(\partial \Omega \) is nonempty) is defined in \(L^2_\lambda(\Omega) \) as the opposite of the generator of the form \(\mathcal{H}_\lambda \), namely:

\[
\begin{align*}
\mathcal{D}(A_\lambda) & := \left\{ v \in H^1_{0,\lambda}(\Omega) \left| \frac{1}{|x|^\lambda} \, \text{div} \left(|x|^{\lambda} \nabla v \right) \in L^2_\lambda(\Omega) \right. \right\} \\
A_\lambda v & := \frac{1}{|x|^\lambda} \, \text{div} \left(|x|^{\lambda} \nabla v \right) \quad \text{for any} \quad v \in \mathcal{D}(A_\lambda).
\end{align*}
\]
We shall denote by $\{e^{A_t}\}_{t \geq 0}$ the contraction holomorphic semigroup generated by A_t in $L^2(\Omega)$.

(β) Let us recall some relevant results concerning smoothly weighted manifolds (e.g., see [7]).

A weighted manifold $(\mathcal{M}, \mu) \equiv (\mathcal{M}, g, \mu)$ is a Riemannian manifold \mathcal{M} with metric g, endowed with a measure $d\mu = \varphi^2 dv$, where dv is the Riemannian measure and φ is a smooth positive function on \mathcal{M} (observe that the same definition makes sense if φ is measurable and positive). The weighted manifold (\mathcal{M}, μ) is complete if the metric space (\mathcal{M}, d), where d denotes the geodesic distance induced by the metric g, is complete.

The weighted Laplace-Beltrami operator on (\mathcal{M}, μ)

$$A_\mu v := \frac{1}{\varphi^2} \text{div}(\varphi^2 \nabla v) = \frac{1}{\varphi^2 \sqrt{\det g}} \sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(\varphi^2 \sqrt{|g|} g^{i,j} \frac{\partial v}{\partial x_j} \right),$$

(where $(x_1, ..., x_n)$ are local coordinates, $(g_{i,j}) = (g_{i,j})$, $|g| \equiv \det (g_{i,j})$ and $(g^{i,j}) \equiv (g_{i,j})^{-1}$) with initial domain $C_0^\infty(\mathcal{M})$ is symmetric and nonpositive, in view of the Green formulas with respect to the measure μ. Moreover, it has a self-adjoint extension (unique if the manifold \mathcal{M} is complete) in the weighted space $L^2(\mathcal{M}, \mu)$; hence the heat semigroup $\{e^{A_t}\}_{t \geq 0}$ is defined in $L^2(\mathcal{M}, \mu)$. It turns out to be a semigroup of integral operators – namely, there exists a smooth positive heat kernel $p_\mu(x, y, t)$ such that

$$(e^{A_t} \nu_0)(x) = \int_{\mathcal{M}} p_\mu(x, y, t) \nu_0(y) \, d\mu(y)$$

for any $\nu_0 \in L^2(\mathcal{M}, \mu)$, $x \in \mathcal{M}$ and $t > 0$.

Let $B(x_0, r)$ denote the geodesic ball of (\mathcal{M}, g) centered at x_0 with radius r; set $V_\mathcal{M}(x_0, r) := \mu(B(x_0, r))$. Let us recall the following definitions.

Definition 2.1. (\mathcal{M}, μ) satisfies the doubling property if there exists $C_D > 0$ such that

$$V_\mathcal{M}(x_0, 2r) \leq C_D V_\mathcal{M}(x_0, r)$$

for any $x_0 \in \mathcal{M}$, $r > 0$.

Definition 2.2. (\mathcal{M}, μ) satisfies the Poincaré inequality with parameter $\delta \in (0, 1]$ and constant $C_p > 0$ if

$$\inf_{\xi \in \mathbb{R}} \int_{B(x_0, \delta r)} |f - \xi|^2 \, d\mu \leq C_p \ r^2 \ \int_{B(x_0, r)} |\nabla f|^2 \, d\mu$$

for any $x_0 \in \mathcal{M}$, $r > 0$ and $f \in C^1(B(x_0, r))$.

Definition 2.3. (\mathcal{M}, μ) satisfies the parabolic Harnack inequality if there exists $C_H > 0$ such that, for any $x_0 \in \mathcal{M}$, $r > 0$, $s \in \mathbb{R}$, any positive solution ν to the heat equation

$$\partial_t \nu = A_\mu \nu$$

satisfies the inequality

$$\frac{\nu(x_0 + s, t + r)}{\nu(x_0, t)} \leq C_H \frac{\nu(x_0 + s, t)}{\nu(x_0, t)}$$
in \(Q \equiv Q(x_0, r) := B(x_0, r) \times (0, r^2) \) satisfies
\[
\text{ess sup}_{(x,t) \in Q_-} \nu(x,t) \leq C_H \text{ess inf}_{(x,t) \in Q_+} \nu(x,t),
\]
where
\[
Q_- \equiv Q_- (x_0, r) := B \left(x_0, \frac{r}{2} \right) \times \left(\frac{r^2}{4}, \frac{r^2}{2} \right),
\]
\[
Q_+ \equiv Q_+ (x_0, r) := B \left(x_0, \frac{r}{2} \right) \times \left(\frac{3}{4} r^2, r^2 \right).
\]

Definition 2.4. The heat kernel on \((\mathcal{M}, \mu)\) satisfies the Li-Yau estimate if there exist \(C_1, C_2 > 0 \) such that
\[
\frac{C_1 e^{-C_2 \frac{d^2(x_0)}{r}}}{V_M(x, \sqrt{t}) V_M(y, \sqrt{t})} \leq p_\mu(t, x, y) \leq \frac{C_2 e^{-C_1 \frac{d^2(x_0)}{r}}}{V_M(x, \sqrt{t}) V_M(y, \sqrt{t})}
\]
for any \(x, y \in \mathcal{M} \) and \(t > 0 \).

The following result can be proved (see [8, Theorem 2.7]).

Theorem 2.5. For any complete weighted manifold \((\mathcal{M}, \mu)\) the following properties are equivalent:
(i) \((\mathcal{M}, \mu)\) satisfies the parabolic Harnack inequality;
(ii) \((\mathcal{M}, \mu)\) satisfies the doubling property and the Poincaré inequality for some \(\delta \in (0, 1] \);
(iii) the heat kernel on \((\mathcal{M}, \mu)\) satisfies the Li-Yau estimate.

The main part of Theorem 2.5 is implication \((ii) \Rightarrow (i)\), which was proved independently in [6, 12] (the inverse implication \((i) \Rightarrow (ii)\) was proved in [12]). The equivalence \((i) \Leftrightarrow (iii)\) goes back to [5].

3. **Parabolic Harnack Inequality**

The results of this section make use of the methods of the latter subsection in the present non-smooth case. Let \(B(x_0, r) := \{ x \in \mathbb{R}^n \mid |x - x_0| < r \}, \ Q \equiv Q(x_0, r) := B(x_0, r) \times (0, r^2) \ (x_0 \in \mathbb{R}^n, r > 0) \). Set
\[
V(x_0, r) := \int_{B(x_0, r)} |y|^2 dy \quad (x_0 \in \mathbb{R}^n, r > 0).
\]
The complete weighted manifold \((\mathbb{R}^n, |x|^2 dx) \ (\lambda \in (-n, 0))\) satisfies both the doubling property and the Poincaré inequality; this is the content of the following

Theorem 3.1. Let \(\lambda \in (-n, 0) \). Then:
(i) there exists \(C_D > 0 \) such that
\[
V(x_0, 2r) \leq C_D V(x_0, r)
\]
for any \(x_0 \in \mathbb{R}^n, r > 0; \)
(ii) there exist $\delta \in (0, 1]$, $C_p > 0$ such that
\begin{equation}
\int_{B(x_0, \delta r)} |f(y) - \hat{f}|^2 |y|^4 \, dy \leq C_p r^2 \int_{B(x_0, r)} |\nabla f|^2(y) |y|^4 \, dy
\end{equation}
for any $x_0 \in \mathbb{R}^n$, $r > 0$ and $f \in C^1(\bar{B}(x_0, r))$; here
\[
\hat{f} := \frac{1}{V(x_0, \delta r)} \int_{B(x_0, \delta r)} f(y) |y|^4 \, dy.
\]
Let us make the following definitions.

Definition 3.2. By a solution to equation (1.3) in Q we mean any $v \in C^1((0, r^2); L^2(B(x_0, r))) \cap C((0, r^2); H^1(B(x_0, r)))$ such that $\partial_t v$, ∇v $\in L^2(Q, |x|^2 \, dx \, dt)$ and there holds
\[
\iint_Q \left\{ \partial_t v \chi + \nabla v \nabla \chi \right\} |x|^2 \, dx \, dt = 0
\]
for any $\chi \in C([0, r^2]; C^\infty_0(B(x_0, r)))$.

Definition 3.3. By a solution to equation (1.1) in Q we mean any $u \in C^1((0, r^2); L^2(B(x_0, r))) \cap C((0, r^2); H^1(B(x_0, r)))$ such that $\partial_t u$, ∇u, $\frac{u}{|x|^2} \in L^2(Q, dx \, dt)$ and there holds
\[
\iint_Q \left\{ \partial_t u \chi + \nabla u \nabla \chi - \frac{c}{|x|^2} u \chi \right\} \, dx \, dt = 0
\]
for any $\chi \in C([0, r^2]; C^\infty_0(B(x_0, r)))$.

Remark 3.4. Observe that Definition 3.3 excludes stationary solutions of (1.1) in $\mathcal{D}'(\mathbb{R}^n)$, which behave like $|x|^{\frac{2}{\lambda_-}}$ with
\[
\lambda_- := 2n - 2\sqrt{c_0 - c}
\]
as $|x| \to 0$ (see [2]).

Theorem 3.1 entails the Harnack inequality in $(\mathbb{R}^n, |x|^2 \, dx)$. This is the content of the following

Theorem 3.5. Let $\lambda \in (-n, 0)$. Then there exists $C_H > 0$ such that, for any $x_0 \in \mathbb{R}^n$, $r > 0$, any positive solution v to equation (1.3) in $Q(x_0, r)$ satisfies
\[
\text{ess sup}_{(x,t) \in Q_-} v(x,t) \leq C_H \text{ess inf}_{(x,t) \in Q_+} v(x,t),
\]
where
\[
Q_- \equiv Q_-(x_0, r) := B(x_0, r) \times \left(\frac{r^2}{4}, \frac{r^2}{2} \right),
\]
\[
Q_+ \equiv Q_+(x_0, r) := B \left(x_0, \frac{r}{2} \right) \times \left(\frac{3}{4} r^2, r^2 \right).
\]

As a consequence of Theorem 3.5, we have:

Theorem 3.6. Let \(c \in (0, c_0) \). Then there exists \(C_{H} > 0 \) such that, for any ball \(B(x_0, r) \), any positive solution \(u \) to equation (1.1) in \(Q(x_0, r) \) satisfies the inequality

\[
\text{ess sup}_{(x, t) \in Q_-} \left(|x|^{\frac{\lambda}{2}} u(x, t) \right) \leq C_{H} \text{ ess inf}_{(x, t) \in Q_+} \left(|x|^{\frac{\lambda}{2}} u(x, t) \right),
\]

where

\[
Q_- \equiv Q_-(x_0, r) := B \left(x_0, \frac{r}{2} \right) \times \left(\frac{r^2}{4}, r^2 \right),
\]

\[
Q_+ \equiv Q_+(x_0, r) := B \left(x_0, \frac{r}{2} \right) \times \left(\frac{3}{4} r^2, r^2 \right).
\]

Let us briefly discuss the proof of the above results. Theorem 3.5 follows from Theorem 3.1 using the Moser iteration technique as in [12]. In turn, Theorem 3.6 follows from Theorem 3.5 by the transformation \(u(x, t) \to v(x, t) = |x|^{\frac{\lambda}{2}} u(x, t) \) discussed at length in Section 2. Concerning Theorem 3.1, claim (i) follows from the following estimates:

\[
D_1 r^{\lambda+n} \leq V(x, r) \leq D_2 r^{\lambda+n} \quad \text{if } |x| < 2r,
\]

\[
D_1 r^{\lambda} (|x| + r)^{\lambda} \leq V(x, r) \leq D_2 r^{\lambda} (|x| + r)^{\lambda} \quad \text{if } |x| \geq 2r,
\]

which are proved to hold, for \(\lambda \in (-n, 0) \) and suitable \(D_1, D_2 > 0 \), for any \(x \in \mathbb{R}^n \) and \(r > 0 \). As for claim (ii), we first prove it both for anchored balls \(B(0, r) \) and for remote balls \(B(x, r), |x| \geq 2r \), for any \(r > 0 \); then the general case follows as in Proposition 4.2 in [8].

It is worth pointing out a slightly different way to reach the same conclusions. In view of estimates (3.5)-(3.6), it is easily seen that the weight \(|x|^\lambda, \lambda \in (-n, 0) \) belongs to the Muckenhoupt class \(A_2 \) (the same is true for \(\lambda \in (0, n) \)); thus the parabolic Harnack inequality for equation (1.3) follows from the results in [3]. Although more direct, this approach applies to a more restricted class of weights.

Remark 3.7. In view of the perturbative arguments in [8] (see also [13]), inequality (3.3) is seen to hold for positive solutions in \(Q \) to the more general equation

\[
\partial_t u = \frac{1}{|x|^2} \sum_{i,j=1}^n \partial_{x_i} \left(p_{ij}(x) |x|^\lambda \partial_{x_j} u \right),
\]

where: (i) \(p \equiv (p_{ij}) = (p_{ij}) : \mathbb{R}^n \to \mathbb{R}^{2n} \) is measurable; (ii) there exist \(0 < a \leq \beta < \infty \) such that \(a|\xi|^2 \leq \sum_{i,j=1}^n p_{ij}(x) \xi_i \xi_j \leq \beta|\xi|^2 \) for any \(x \in \mathbb{R}^n, \xi \equiv (\xi_1, \ldots, \xi_n) \in \mathbb{R}^n \).
4. TWO-SIDED HEAT KERNEL ESTIMATES

The following result shows that \(\{e^{-\lambda t}\}_{t \geq 0}, \{e^{\lambda t}\}_{t \geq 0} \) are semigroups of integral operators.

Theorem 4.1. (i) Let \(\lambda \in (2 - n, 0) \). Then there exists a positive function
\(K_\lambda = K_\lambda(x, y, t) = K_\lambda(y, x, t) \) \((x, y \in \Omega, t > 0)\) such that
\[
(e^{\lambda t} v_0)(x) = \int_{\Omega} K_\lambda(x, y, t) v_0(y)|y|^{\frac{\lambda}{2}} \, dy \quad (x \in \Omega)
\]
for any \(v_0 \in L^2_\lambda(\Omega) \).

(ii) Let \(c \in (0, c_0) \). Then there exists a positive function \(K = K(x, y, t) = K(y, x, t) \) \((x, y \in \Omega, t > 0)\) such that
\[
(e^{-\lambda t} u_0)(x) = \int_{\Omega} K(x, y, t) u_0(y)dy \quad (x \in \Omega)
\]
for any \(u_0 \in L^2(\Omega) \). Moreover,
\[
(4.1) \quad K(x, y, t) = |xy|^{\frac{\lambda}{2}} K_\lambda(x, y, t) \quad (x, y \in \Omega, t > 0).
\]

The proof of the above theorem relies on the ultracontractivity of the semigroup generated by \(H_\psi = \Psi^* H \Psi \) in the weighted space \(L^2_\psi(\Omega) \equiv L^2(\Omega, \psi^2 dx) \); here \(\Psi \) is the unitary map
\[
\Psi : L^2_\psi(\Omega) \rightarrow L^2(\Omega), \quad u = \Psi w := \psi w,
\]
\(\psi \) being a suitable truncation of \(|x|^{\frac{\lambda}{2}}\) (see [4, Theorem 2.4.6] and [9] for details). Then the claims follow by the unitary equivalence of the semigroups under consideration.

The functions \(K_\lambda, K \) are referred to as the heat kernel of the semigroup \(\{e^{\lambda t}\}_{t \geq 0} \), respectively \(\{e^{-\lambda t}\}_{t \geq 0} \). As in the proof of the equivalence \((i) \Leftrightarrow (iii)\) of Theorem 2.5 (e.g., see [14]), from Theorem 3.5 and estimates (3.5)-(3.6) we obtain the following two-sided heat kernel estimate.

Theorem 4.2. Let \(\lambda \in (2 - n, 0) \); let \(K_\lambda \) be the heat kernel of the semigroup \(\{e^{\lambda t}\}_{t \geq 0} \) in \(L^2_\lambda(\mathbb{R}^n) \). Then there exist \(C_1, C_2 > 0 \) such that
\[
(4.2) \quad C_1 t^{-\frac{n}{2}} e^{-\frac{C_2 |x-y|^2}{t}} k_\lambda(x, t) k_\lambda(y, t) \leq K_\lambda(x, y, t) \leq C_2 t^{-\frac{n}{2}} e^{-\frac{C_2 |x-y|^2}{t}} k_\lambda(x, t) k_\lambda(y, t),
\]
where \(k_\lambda(x, t) := \bar{t} V(x, \sqrt{t})^{-\frac{1}{2}} \) \((x, y \in \mathbb{R}^n, t > 0)\). Moreover,
\[
k_\lambda(x, t) \sim \begin{cases}
(\frac{|x| + \sqrt{t}|}{t})^{\frac{n}{4}} & \text{if } |x| \geq 2\sqrt{t} , \\
\bar{t}^{|x|} & \text{if } |x| < 2\sqrt{t}.
\end{cases}
\]
The counterpart of the above result for equation (1.1) is the following

Theorem 4.3. Let $c \in (0, c_0)$; let K be the heat kernel of the semigroup $\{e^{-Ht}\}_{t \geq 0}$ in $L^2(\mathbb{R}^n)$. Then there exist $C_1, C_2 > 0$ such that

$$
(4.3) \quad C_1 t^{-\frac{n}{2}} e^{-C_2\frac{|x-y|^2}{t}} k(x, t) k(y, t) \leq K(x, y, t) \leq C_2 t^{-\frac{n}{2}} e^{-C_1\frac{|x-y|^2}{t}} k(x, t) k(y, t),
$$

where $k(x, t) := |x|^{\frac{n}{2}} t^{\frac{n-1}{2}} V(x, \sqrt{t})^{-1} (x, y \in \mathbb{R}^n, t > 0)$. Moreover,

$$
k(x, t) \sim \begin{cases}
\left(1 + \frac{\sqrt{t}}{|x|}\right)^{n+1} & \text{if } |x| \geq 2\sqrt{t}, \\
\left(\frac{\sqrt{t}}{|x|}\right)^{n+1} & \text{if } |x| < 2\sqrt{t}.
\end{cases}
$$

Acknowledgements

The work has been partially supported by RTN Contract HPRN-CT-2002-00274.

After the above results were obtained, we learned about the paper [10], where estimates like (4.3) are proved by different methods.

References

Pervenuta il 25 aprile 2005,
in forma definitiva il 19 maggio 2005.

Dipartimento di Matematica «G. Castelnuovo»
Università degli Studi di Roma «La Sapienza»
Piazzale A. Moro, 5 - 00185 ROMA
moschini@mat.uniroma1.it
tesei@mat.uniroma1.it