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Analisi funzionale. — On weak Hessian determinants. Nota di Luict D’ONorrio,
Fravia GiannerTi e Luict Greco, presentata (*) dal Socio C. Sbordone.

AsstracT. — We consider and study several weak formulations of the Hessian determinant, arising by
formal integration by parts. Our main concern are their continuity properties. We also compare them with the
Hessian measure.

Key worps: Hessian determinant; Schwartz distributions; Hessian measure.

RiassUNTO. — Sui determinanti hessiani deboli. Consideriamo ed esaminiamo varie formulazioni deboli del
determinante hessiano, definite come distribuzioni di Schwartz mediante integrazione per parti, principalmente
riguardo alle loro proprieta di continuita. Confrontiamo inoltre tali formulazioni deboli con la misura hessiana.

1. INTRODUCTION

In this paper we discuss several weak formulations of the Hessian determinant which
still attract a great interest, see e.g. [3-5, 17, 10, 12]. We begin with the case of functions
of two variables. Let @ C R? be an open set and # be a function defined on Q with second
order derivatives. We denote by .7« the Hessian determinant

Uxx  Uxy

Tu=det D*u =

Uyx Uy
If u is sufficiently smooth, the following identities can be easily checked:

Tu = (u, ”yy)x — (ay ”xy)y = (Uy Uxx)y - (Z'fy Z'fxy)x

1 1
- 5 (U ”xx)yy + 5 (” Uyy)xx - (74 Zlxy )xy
1 1
- (”x uy)xy - 5 (”i)yy - 5 (ui )xx-

On the other hand, each of the above expressions can be used to define a Schwartz
distribution on Q, provided # belongs to an appropriate Sobolev space. The first one we
consider is the distribution of order zero defined by the rule

Toulpl = /.%/u(x,y)ga(x,y) dxdy
Q

for all test functions ¢ € Z(Q). Of course, the natural assumption for defining .77 yu is
u € W22(Q), as it implies that the Hessian determinant .7« is locally integrable on €.

(*) Nella seduta del 16 giugno 2005.
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Other distributions will result integrating formally by parts. Precisely, we define

o Fulpl = / (uxuxy(py — Uyttyy,) dx dy
Q

= / (Myuxy(”x - uyuxxwy) dx dy

Q

1
. szu[(p] = 5/ ( UsxPyy t Uty P — Zulztxy(ﬂxy) dxdy
Q

o 7% 1 2
o W ulpl = E/ Qatttypy — 11,0,y — ui(pxx) dxdy
Q
for all p € Z(Q).

In general, 771 is a distribution of order one. It is well defined for « € leog Indeed,

by Sobolev imbedding u,,u, € L} ., thus #,u,, and u,u,, are locally integrable and the
first integral in the definition of 714 converges. The same argument shows that the
second integral also converges for z € leof We remark that the two integrals give the
same distribution. Therefore, we can also write

) 1
Tulp] = —5/ [(px (thttyy — thythy) + @, (ththy — uxyux)] dxdy.
2

Remark 1.1. The definition of .77 u is related to the well-known concept of weak (or
distributional) Jacobian introduced by Ball [2]. Actually, .71 is precisely the weak
Jacobian of the gradient map Du.

To justify the definitions of .77,u and .77 5u we again use Sobolev imbeddings:

loc loc loc loc

4 -~ 0
(1.1) W22 c W« W2« W2 ¢ {C

where we denoted by leocl the space of Wﬁ)’j -functions whose second order distributional

derivatives are Radon measures on Q. Therefore, clearly .77, makes sense for « € leocl ,

or even for u € VNVlzocl (with obvious interpretation of #,y, #,, and #,, Radon measures).
Surprisingly, .775u makes sense for u € Wlloé and does not require second order
derivatives.
Thus, we are imposing weaker and weaker conditions on «. It will be clear that, if we
are in a position to define two of the above expressions, they yield the same distribution.

For example, if € V~VIZOL1 , we can define both . 7754 and .775u, and we have

(1.2) T oulpl = T 5ulp]
for all p € Z(Q).
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1.1. Weak Hessian in R".

To deal with functions of several variables, we will use the formalism of differential
forms which is quite effective. Let Q C R” be an open subset and let z € C*°(). The
Hessian determinant .77 = det D?x induces a #-form:

Hudx =duy, N+ Nduy, .

Forj=1,...,n,setw; =duy N--- Ndu A --- A\ du,,, where du is at the j-th factor in the
wedge product, while for 7 #  the 7-th factor is du,.. Then

13}
e Y =dte N Ndu N - A duy,
;
(13) o dug N Nt A A du,
+ooo b dug Ao NduN--- N,
The first term in the right hand side (assuming 7 # 1) will appear also in e O but with
X1

opposite sign because du,,,, = du,,, and du are exchanged to each other. Similarly for
the other terms in the right hand side of (1.3), except for

dite N Ndug N+ N\ duy, = Hudsx.

Hence we have

"\ 0
E %a}/:nduxl/M--/\duxﬂ,
' =1 9%
that is

1 n

(1.4) duiey N+ Ndu,, == 0 duy N Ndu N+ Nduy, .

2o

7=1

Identity (1.4) yields the definition of the distribution .77 1. We multiply both sides by a
test function ¢ and integrate by parts in the right hand side:

(1.5) Tulp] = ——Z/(ox du, N Ndu N -+ Nduy, .

Using Laplace theorem for determinants, this is easily seen to equal

T ulp] = ——Z/ux dyy N Ndo N+ Nduy, .

As above, dg is the j-th factor.
We proceed further from (1.4). One way is to notice that for eachj = 1, ..., 7 we have

w = (— Y dudug, A--- A duy,  Ndug,, N--- Nduy,) .
Inserting this into (1.4), multiplying by the test function ¢ and integrating by parts twice
will lead to the definition of .7, u:

(1.6) T oulp] = /uduxl “Ndug, N, Ndus, N N dus,
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To define . 75u, for i # j we write
wj = (=1 dug, dug, N---Ndu N Nduy | Ndug, | N Ndu,) .

Now we sum with respect to 7 and insert into (1.4). In a routine manner, this gives

(1.7) n(n—1)75ulp] =

=3[ wgdug Ao Ndun - Ny Ndo, N, NN da,
i# g

We recall that in each term du is the j-th factor and dg, is the i-th factor of the wedge
product. P

Now we consider functions # in Sobolev spaces. If « € WIZOF (Q), then clearly the
minors of order # — 1 of D?u are locally integrable with exponent #?/(#* — 1), while by
Sobolev imbedding theorem the first order derivatives of # are locally integrable with
exponent #°. Noticing that these exponents are Holder conjugate, we easily see that .77 1
makes sense:

”2
T W (@) — 7'(Q).

For .%>u we recall that functions in Wliffl(Q) are continuous (actually, Holder

continuous with exponent (z—2)/(n —1) if n>2). For 75u we remark that if
ue le ’”,%(Q), then the minors of order # — 2 of D% and the first order derivatives of

oc
u are locally integrable respectively with exponents 72 /(#*> — 4) and #? /2. Therefore,

T WENQ) = 1Q),  Hu W@ — 7(Q).

loc

We notice that in dimension 7 > 2 the definition of .775u requires that « has second order
derivatives.

1.2. The Hessian measure.

Another concept of weak Hessian is classically introduced for defining generalized
solutions of the Monge-Ampére equation, see [9] and references therein; see also [18] for
further developments. Now, we assume that Q C R” is a convex set and # is a real-valued
convex function defined on Q. We denote by du the subdifferential (also called normal
mapping) of # and by d«(E) the image by this multifunction of the subset E C Q:

Ou(E) = | J 0ulx).

x€E

The Hessian measure of #, which we denote by Mu, is a Borel measure on Q defined
by

(1.8) Mu(E) = " (0u(E))

for each Borel subset E. 4" is the Lebesgue measure in R”. It is well known that for
u € C?(Q) the Hessian measure coincides with the Hessian determinant .7 % in the
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sense that the following equality holds

(1.9) /deu:/¢J7,/fudx,

Q Q

for all continuous ¢ with compact support.

We recall that a convex function # is locally Lipschitz and its gradient Du has locally
bounded variation, see [6]. Hence # € V~Vlzocl and in dimension 2 we can consider .77>u. In
the following theorem we compare these notions.

TueoreM 1.2. If u is in the domain of two of the above weak formulations of the
Hessian, these formulation coincide.

As an illustration, in dimension #» =2 if « is convex, then Mu = 7 u = 7 5u.
Theorem 1.2 will be an easy consequence of the continuity properties we discuss in the
next section.

2. CONTINUITY PROPERTIES

One of our concern is to elucidate on the continuity properties of those weak
formulations of the Hessian. First, we note trivially that .77, .77, and .77 are continuous
in their corresponding domains with respect to the strong convergences. More precisely:

2

N . C .

o Ifu, — uin W', then H# up — J7 u in the sense of distributions. This means
that 7 u,lp] — 77 1ulgp], for all p € Z(Q);

o Ifu, — uin W>"!

=", then 7>u;, — 77,u in the sense of distributions.

. . 12
o Forn=2,itu, — uin W,

. 2
o Forn>2itu, — uin W,

then 75u;, — J75u in the sense of distributions.

2 then .7 5u;, — 7 5u in the sense of distributions.
It is also easy to prove convergence in &’ of the weak Hessians of #; coupling a
suitable weak convergence of the minors of the Hessian matrix D?x;, with a strong

convergence of the function #, or its first order derivatives Du;,. As an example, we have

w2
e If Duj, — Du strongly in L and (for # > 2) the minors of order 7 — 2 of D?u,

2
n2—4

converge to corresponding minors of D? weakly in L,

sense of distributions.

then .77 5u;, — 7/ 5uin the

Next, we examine continuity properties with respect to weak convergences. It is
enough to consider the weakest formulation; z.e..775. We first consider the case » = 2. In
[10] it is shown by an example that .77 is not continuous with respect to weak

.l
convergence in W 7.

Here we present another simple example of this type.
ExampLE 2.1. The functions

up = up(x,y) = %sinb(x2 +97)
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clearly converge uniformly to zero and Dz, weakly * in L. On the other hand, 775, are
not converging to zero in the sense of distributions. To see this we consider a test function
¢ supported in the unit disk D C R?, and compute

T uplp] = / (4xyp,, — 2x2(pyy —2y%p,,) cos® h(s? + ) dxdy.
D

Integrating in polar co-ordinates and then by parts, we find that

liin T 5uplp] = / 2xy9,, — xzqoyy —y*p, )dxdy =2 / pdxdy.
D D

The above example and the following arguments indicate clearly that in order to

7 L2
ensure convergence of .775uy to .77 5u one really needs strong convergence in W, 7.

Traeorem 2.2. Let uy € W2, h=1,2,..., and u € leocl be given. Then the dis-

loc”
tribution Fyuy, = I 5uy, converge to W u = FH yu under each of the assumptions below:

(@) up — u weakly in leocl ;
(b) the sequence {uy} is bounded in leocl and converges to u uniformly on compact

subsets.

The proof follows easily when we realize that both assumptions (4) and (5) yield

uy, — u strongly in W2

or - Actually, we have

Lemma 2.3. (a) = (b) = uy — u strongly in W2,

We remark that both imbeddings of W' ¢ C° and W2! ¢ W2 are not compact, in
8 loc loc loc p

the sense that bounded sequences in leocl may not have subsequences converging locally

uniformly, or strongly in Wllof

ExampLE 2.4. Given a function in « € W?'(R?) with # # 0 and lim u(z) = 0, we
Z—00
define u,(z) = u(hz), Yh € N. Then u,(z) — 0, Vze R* — {0}, Duy —0 in L,
[D2up||, = ||D?ul|, for all b € N and D?u, — Co weakly in the sense of measures, with
C a constant matrix. Moreover {#;} has no subsequence converging locally uniformly
and, as | Duyl|, = ||Dul|, > 0 for all A, no subsequence strongly converging in W2,

On the other hand, the assumption of weak convergence in W' is essentially stronger
than mere boundedness. By Ascoli-Arzela theorem, under assumption (4) we can prove
uniform convergence %, — « on compact subsets, hence condition () holds.

Proor oF LEmma 2.3. There is no loss of generality in assuming # = 0, otherwise we
consider the functions z; — u.
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Let us prove (@) = (b). For simplicity, we assume Q = 10, 1[%. For ¢ € C5°(Q), we
define v, = puy,, h = 1,2, ..., and we have

Doy, = u,Dg + ¢Du, ,

D?v, = uD?¢ + Do @ Duy, + Duy, @ Do + pD?uy, |

hence v, — 0 weakly in W21(Q).

The point is that weak convergence of {#,,} gives equi-integrability of {Du; }. It is well
known that W?!(Q) is continuously imbedded into C(Q), see [1, p. 100]. If v is a
continuous function of class W?'!(2) vanishing on 92, then for all (x;, ;) and (x2,,) in

Q, we have
X1 Y1 X1 ¥2
/dx /vxy(s, £ dt /ds /vxy(s, t)dt
0 X2 0

¥2

+

[o(x1,91) — v(x2, 92)| <

In particular,
9]l < N2yl -

These inequalities yield equiboundedness and equicontinuity of any bounded family of
functions in W3 (Q) with equi-integrable second order derivatives. We are in a position
to apply Ascoli-Arzela theorem and get v, — 0 uniformly in Q. This implies uniform
convergence #, — 0 on compact subsets of Q. If K C Q is compact, it suffices to choose
p=1onK.

Now we assume that condition (b) holds and prove strong convergence in W% (). If
v e Wg 1(Q), integrating by parts we find

/ IDof? = — / v o< o]l 1D
Q Q

Therefore, defining v, = pu; as above, we see that v, — 0 strongly in W'2(Q). To
deduce from this strong convergence of #; on an arbitrary compact K C , as before we
only need to take p = 1 on K.

Notice that (b) implies strong convergence of {u,} in W can be seen also as a
consequence of inequality (1.16) of [13]. a

Theorem 2.2 can be slightly generalized.

Tueorem 2.5. Let {uy} be a sequence bounded in @12001 and converging to u uniformly
on compact subsets. Then u € W' and T yu, = I 3u;, converge to T yu = Hsu in the
sense of distributions.

Now we assume 7 > 2. We have the following continuity property.

THEOREM 2.6. [fuy — uweakly in WP for some p > %, then 70 5u;, — F5u in the
sense of distributions.



166 L. D'ONOFRIO ET AL.

2
PrOOF. As p>- the imbedding W2 C W, is compact. Then Duj — Du

strongly in L2 On the other hand, the minors of order # — 2 of D?u) converge to

correspondmg minors of D?x in the sense of distributions, see [11, Theorem 8.2.1,
2

p. 1731, and are bounded in Lloc’ where we notice that " f p > /—_4 > 1, hence they
are weakly converging in L" 2 and therefore we can pass to the limit in the expression
defining . 775 ulp]. O

Remark 2.7. In [5] it is shown that the condition p > n;:— 3 in Theorem 2.6 is sharp, in

the sense that the conclusion cannot be drawn in general (in dimension 7 > 2) assuming

(2.1) up — u  weakly in Wl ”*2.
2
With this condition, we still have weak convergence in L” -+ of the minors of order n—2

of D?uy, but we need to reinforce (2.1) to guarantee the strong convergence in L2 of first
derivatives. ;
For1 < 5 <7 <nwe have the Sobolev imbeddings

cWy g’

oc oc

Wiee

oc

neither of which is compact. Clearly, if #, — « strongly in WloL , then it converges also
strongly in the Holder space. On the other hand, by the interpolation inequality (5) of
[16], for a bounded sequence {#;} in leocr the convergence in the Holder space implies
strong convergence of first derivatives, that is, the two convergences are equivalent. For
=i e have the following generalization of Theorem 2.6, in the spirit of
n
Theorem 2.5:

.. . . 012
Let condition (2.1) hold together with u, — u strongly in C_ . Then ¢ 5uy converge
to W 5u in the sense of distributions.

We conclude this section by recalling some continuity properties of the Hessian
measure, see [9].

Treorem 2.8. Let up, h = 1,2,. .., and u be convex functions and let the sequence u,
converge to u uniformly on compact subsets. Then Muy, converges to Mu weakly * in the

sense of measure, that is,
/(odMub —>/de¢¢
Q

Q

for all continuous functions ¢ with compact support.

It is clear that in the two-dimensional context Theorem 2.8 follows from
Theorem 2.5.
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3. Tue L'-parT OF THE HESSIAN

One concern of the study of the weak formulations of Jacobian and Hessian
determinant is to relate them with the point-wise definitions. In [14] it is proved that
the point-wise Jacobian coincides with the distributional one, provided the latter is a
locally integrable function. More generally, assuming that the distributional Jacobian is a
Radon measure, then the point-wise Jacobian is the density of its absolutely continuous
part with respect to the Lebesgue measure. In a different direction, in [8] the identity
between distributional and point-wise Jacobian is established without assuming a priori
that the former is a distribution of order 0, but under suitable integrability conditions for
the differential matrix.

We mention also that in [15] examples are given showing that the support of the
singular part of the distributional Jacobian in R” can be a set of any prescribed Hausdorff
dimension less than 7.

The result of [14] immediately gives that the point-wise Hessian is the density of the

absolutely continuous part of .7 1u for u € leofﬁ, assuming that .7« is a measure. This
is generalized in [10] showing that the point-wise Hessian is the regular part of the
distribution .775u. A further extension is given in [12] for .775u. Here we remark that an
analogous result holds for the Hessian measure Mz. Given a Radon measure x on ©, we
denote by u, the density of its absolutely continuous part with respect to Lebesgue

measure. We recall that

U, (x) = lilryn,u xpplx), forae x€Q,

where {p,} is a sequence of mollifiers. If # is a convex function, its second order
derivative D« is a (matrix-valued) measure.

Trreorem 3.1. For every convex function u the density of the absolutely continuous part
of the Hessian measure Mu is det (D?u),, that is

(3.1) (M), = det (D?u), .

In particular, det (D?u), is locally integrable.

Denoting Mu by det D?«, we formally rewrite (3.1) as
(det D), = det (D?w), .

Therefore, we can state the result of Theorem 3.1 by saying that the two operations of
computing the Hessian determinant and of passing to the density of the absolutely
continuous part commute.

To prove Theorem 3.1, we begin with a lemma.

LemMa 3.2. Let f, € Li (Q), h=1,2,..., be functions verifying f,>0, Vb,

loc

1) = f(x) a.e. and f, = i weakly in the sense of measures. Then we bave f(x) < u,(x)
a.e. in Q.
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Proor. For any continuous function ¢ > 0 with compact support, by Fatou lemma we

find
/gﬂfdxélizn/gnfbdx:/gnd,u.
Q

Q Q

This inequality with arbitrary ¢ implies that / € L{ (2). Moreover, considering a
sequence {p,} of mollifiers, for a.e. x € Q we have

flx) = liznf * pp(x) < lizn,u * pp(x) = w,(x) .
O
More generally, if 1, h = 1,2, . . ., are nonnegative Radon measures and y1, — g, then

lim}]inf )<y, -

Proor oF THeorEM 3.1. By convolution, we can find a sequence of smooth convex
functions #, such that #;, — « uniformly on compact subsets of Q, D?u;, — (D?u), a.e. in
Q and hence also det D?xj, — det (D?u), a.e.in Q. Notice that for all 5 we have
Muy, = det D?uy,. Recalling the continuity property of Theorem 2.8, by Lemma 3.2 we
get

det (D?u), <(Mu),, ae.in Q.

To prove the opposite inequality, we use the change of variable formula, see [7,
Theorem 1, p. 72]. Accordingly, there exists a Borel set R, C Q such that # is twice
differentiable in R,, #”"(2\ R,) =0, and

(3.2) / det (D?u), dx = / N,(y. A) dy,
A R
for every measurable subset A of Q. Here N, (y, A) denotes the Banach’s indicatrix
N,y,A)=#{ xe€ ANR, : Dulx) =y }.
From (3.2) we deduce

/ det (D), dx> 7" (DulANR,)) = MulANR,),
A
which clearly implies
det (D?u), = (Mu), .
O

Remark 3.3. Taking into account the continuity property of Hessian measures stated in
Theorem 2.8, it is interesting to notice that weak * convergence of measures does not
imply point-wise convergence of the densities of absolutely continuous parts. As an
example, we recall that the Lebesgue integral of a continuous function is the limit of
integral sums, which can be considered as integrals with respect to purely atomic measures.
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