Aldo Bressan

On Axiomatic Foundations Common to Classical Physics and Special Relativity

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_3_143_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Abstract. —
(i) The class of the axiomatic foundations mentioned in the title is called Ax Found; and its structure is treated in the introduction.
(ii) This consists of Parts A to G followed by the References.
(iii) In [17] Bressan’s modal logic is treated in a consciously non-rigorous way. Instead here, as well as Ax Found, it has a rigorous treatment. Such a treatment had been appreciated by the mathematical physicist C. Truesdell in [62].
(iv) In 1953 Truesdell had a remarkable intuition, whose correctness appeared only in 1962, from Bressan’s monograph [3].
(v) As a foreign member of the Lincei Academy, Truesdell supported some logical features, absent in his school, and he gave M. Pitteri a “confidential copy” involving this fact.
(vi) Since thus the present rigorous treatment of Bressan’s modal logic appears strongly supported by Truesdell, it was natural to dedicate the present work to his memory.
(vii) In the introduction one says to have proved certain results (whose proof does not appear there) concerning rational mechanics or Bressan’s modal logic treated rigorously.

Keywords: Axiomatic Foundations; Special Relativity; Classical Physics; Continuous Media.

Riassunto. — Sui fondamenti comuni alla fisica classica e alla relatività ristretta.
(i) La classe dei fondamenti assiomatici menzionati nel titolo è detta brevemente Ax Found; ed è trattata nell’introduzione.
(ii) Questa consiste nelle Parts A, . . . , G seguite dalle References.
(iii) In [17] la logica modale di Bressan è trattata in modo consciamente non rigoroso. Invece qui essa, al pari di Ax Found, ha una trattazione rigorosa. Una tale trattazione era stata apprezzata dal fisico matematico Truesdell in [62].
(v) Come Socio straniero dei Lincei, Truesdell sostenne degli aspetti logici, assenti nella sua scuola. Inoltre diede a M. Pitteri una “confidential copy” involgente tale fatto.
(vi) La presente trattazione rigorosa della logica modale di Bressan appare perciò fortemente sostenuta da Truesdell. Era quindi naturale dedicare alla sua memoria il lavoro inviato.
(vii) Nell’introduzione si dice di aver ottenuto certi risultati (la cui dimostrazione non appare ivi) concernenti la Meccanica razionale o la logica modale di Bressan trattata rigorosamente.

Contents

Part A: On the class of the axiomatic foundations mentioned in the title 144
Part B: Main reasons for changing some parts of Section 2 in (Br&Mont’ s=) [17]. A strange but lucky situation .. 145
Part C: Reasons for using “Ax Found” and for writing the present work in memory of Prof. C. Truesdell 145
Part D: Some results ready for inclusion in Ax Found. A very serious difficulty overcome by A. Zanardo 150

(*) Pervenuta in forma definitiva all’Accademia il 29 settembre 2005.
Part E: On Montanaro’s collaboration to Br&Mont, substantially within his degree thesis; and on his subsequent papers, in part very important or even surprising ... 151

Part F: Some technical preliminaries. How assertions can be referred to and how contents are used in the Introduction or in contributing works. On symbols used, e.g., in speaking in English about works written in Italian. On Abbreviations ... 151

PART A: ON THE CLASS OF THE AXIOMATIC FOUNDATIONS MENTIONED IN THE TITLE

There is a unique increasing series of instants \(\tau_0, \tau_1, \tau_2, \ldots \) such that, for \(r = 0, 1, \ldots \), at \(\tau_r \) some assertions belonging to axiomatic foundations begin to be known. These assertions constitute a work \(w_r \) called contribution to Ax Found. The works \(w_0, w_1, \ldots \) are briefly denoted by “Contr Ws” and for practical motives see AS\(_{2,3}\) and AS\(_{2,1}\) below. Of course, for \(r = 0, 1, 2, \ldots \), at \(\tau_r \) the contributing works \(w_{r+1}, w_{r+2}, \ldots \), are not known.

The study of Ax Found — see (i) in the Abstract — is strongly based on Br&Mont=\(D \) [7] — see (AS\(_{1,3}\) to AS\(_{1,7}\) and mainly) AS\(_{1,6}\) below — and aims at improving and amplifying [7].

AS\(_{1,2}\) The mentioned contributing works are consecutive in that they form a unique series (like if they were chapters or groups of chapters in a same book. This book is being constructed and its possible developments will generally be at most imperfectly known).

AS\(_{1,3}\) Different contributions might be published on different scientific journals.

AS\(_{1,4}\) I shall use (also but not only) ‘Pitteri 03’ as an abbreviation for Pitteri’s paper published on the Journal of Elasticity 72, 241-261, 2003. This fact also appears from [60].

AS\(_{1,5}\) In ref. (i.e. reference) [16] (on p. 261) of Pitteri 2003 it is shown how to obtain an extended version of it, which I shall denote by ‘ExtendPitt’ — e.g., in order to obtain Extend Pitt one can also see [61].

AS\(_{1,6}\) In some entries of the References of the present §1, some abbreviations are explicitly added within parentheses: e.g., such additions are performed in [3, 4] and [5] by means of ‘=\(D \) Met’, ‘=\(D \) GIMC’, and ‘=\(D \) Bressan 1974’ in order to respectively introduce the abbreviations ‘Met’, ‘GIMC’ and ‘Bressan 1974’.

AS\(_{1,7}\) Besides using ‘Br&Mont’ for [17], I can abbreviate [48] (on p. 27) in ExtendPitt, i.e., (the only) Truesdell’s 654 page book, by ‘Truesdell 1984’.

AS\(_{1,8}\) More details on abbreviations can be found in Part F.

AS\(_{1,8}\) Let us explicitly remark that, e.g., within AS\(_{2}\) or AS\(_{2,3}\), AS has to be read as assertion or subassertion respectively.

Furthermore I mean every such assertion as an assertion set or an assertion conjunction; and I regard every subassertion AS\(_{r,i}\) as an assertion headed by AS, (for instance belonging to AS\(_r\)).
Part B: Main reasons for changing some parts of

Section 2 in (Br&Mont’s=β [17]. A strange but lucky situation

\(\text{AS}_2 \) On the one hand, the article Br&Mont — see \(\text{AS}_{1,6} \) — treats particle systems (without constraints), is of the Mach-Painlevé type (\(^1\)), and is based on A. Bressan’s modal logic (although for practical motives this logic is sometimes consciously treated non-rigorously in Br&Mont — see fn. 7 on p. 168 there —).

\(\text{AS}_{2,1} \) Furthermore, I believe that the aforementioned conscious toleration of mistakes of modal logic was even compulsory in Br&Mont, in order not to compel, e.g., rigorous mathematical physicists interested in Br&Mont (as a work on mechanics) to know my (powerful but complex) theory of modal logic (presented in GIMC — see \(\text{AS}_{1,5} \) —).

\(\text{AS}_3 \) On the other hand, in the present work the logical modal calculus \(MC' \) presented in GIMC is instead carefully taken into account (and also with some useful results for mechanics appreciable by the well known mathematical physicist C. Truesdell — see \(\text{AS}_7 \) below in part C).

\(\text{AS}_4 \) However, in Ax Found — see \(\text{AS}_1 \) — a contributing work will perform some changes improving Br&Mont not only in connection with (modal) logic; and this holds especially for Def. 2.3 and the subsequent part of Sect. 2. Furthermore these changes are in accord with the proofs written in Sects. 3 to 8 for the theorems considered in Br&Mont, while these theorems as well as their proofs strongly contrast with the original version of Def. 2.3 and the subsequent part of Sect. 2. This is the (strange) situation mentioned in (Part B)’s title.

\(\text{AS}_{4,1} \) Neither Truesdell nor Pitteri attended any technical course on modal logic. However they used this logic intuitively and correctly.

\(\text{AS}_{4,2} \) In particular, in the year 2004 I noted a remarkable intuition of Truesdell that he wrote as contributor, within a (polemic) fn. in a paper appeared in 1953 — see \(\text{AS}_6 \) below in part C.

\(\text{AS}_{4,3} \) In spite of \(\text{AS}_3 \), by \(\text{AS}_4 \) to \(\text{AS}_{4,2} \) (hence \(\text{AS}_6 \)), I think that also readers not interested in modal logic may be interested in many contributions of mine to Ax Found.

Part C: Reasons for using “Ax Found” and for writing

the present work in memory of Prof. C. Truesdell.

(1) In (Part B)’s title some changes needed by Br&Mont are mentioned, however together

\(^1\) (a) A book or paper, e.g. Met=β[3] is said to be à la Mach-Painlevé or of the Mach-Painlevé type, if in it notions such as mass and force (and possibly also, e.g., inertial space and (inertial) instant) are not regarded as primitives, unlike what happens in most works.

\(\beta \) E.g. Met is à la Mach-Painlevé at a high level, especially with respect to Painlevé 1922, i.e. \([59]\).
with a strange situation (explained in AS₄) that strongly weakens these changes’ importance.

(2) Hence Br&Mont substantially is, I think, the more advanced among our (published) articles on particle systems.

(3) I think that ElimPrF — see [16] in the References following Part F — is one among my best results of the Mach-Painlevé type (see fn. 1 placed on AS₂); it was found in Sept 04 and it is yet unpublished.

(4) The difference between the title of the present work (Ax Found) and Br&Mont’s is not substantial; but only in Ax Found both terms such as “kinematics” or “dynamics” fail to appear (essentially). Thus, briefly, (3) is asserted in that [16], abbreviated by ElimPrF and concerning PrF (propriété fisica, i.e., physical property), allows us to somehow effectively perform the elimination mentioned in [16] itself.

AS₄ Let me add that the notion of physical necessity, which (briefly) is a possible sense for the logical symbol \(N(\equiv_D \Box) \) of the language \(MC^0 \) (presented in GIMC) \((²)\) and which strongly affects many works of A. Bressan and, e.g. of his pupils, is important (e.g. in Met) within both kinematics and dynamics. Obviously it is also essential in ElimPrF.

AS₆ In 1953, Truesdell communicated an article, precisely reference [24] in ExtendPitt, and in a source footnote he expressed a complete disagreement (shared by G. Hamel) with this article; but Truesdell explained that “publication of this article may arouse the interest of students of mechanics and logic alike, thus perhaps leading to a proper solution of this outstanding but neglected problem”. I regarded the above phrase italicized by me, as a remarkable intuition because the first paper giving a particular solution to the above problem is my (long) 1962-article Met; and it totally complies with that phrase.

AS₇ Besides AS₆, let me note that in his 1986-letter (in Italian) to the Accademia dei Lincei, Truesdell supported a research program (already started by me); and he strongly appreciated the logical features of some articles of mine (or of my pupils). Hence the present work, which often (rigorously) deals with above logical features, appears strongly supported by him — see AS₇₂ —. Therefore I regard it correct to write it in memory of prof. C. Truesdell.

AS₇₁ (i) Truesdell gave to Pitteri a ‘confidential copy’ of his aforementioned 1986-letter (which is written in Italian) \((³)\). Furthermore its main part written by me below is substantially included in its version printed in item (D) on pp. 21-22 of ExtendPitt.

\((²)\) Physical necessity is a rigorous and strongly specified notion related to A.W. Burk’s notion of causal implication — see [18].

\((³)\) Much information related with this letter can be obtained in the following way. Consider \((¹)\) the notion of physical necessity — see the preceding footnote — \((²)\) the extended version of Pitteri 2003 — see [61] —. In this see in particular fn. 3 on p. 19, the second paragraph of Sect. 5 (on p. 19), furthermore (on pp. 19 to 21) the items (A), (B) and (D).
Remark that this strongly justifies what I have written here. Furthermore (ii) the aforementioned version printed in (D) belongs to the article Pitteri 2003 – see AS$_{1,3}$ – printed in ExtendPitt. (iii) Lastly I note that its main part written below gives us various useful information (possibly not directly related with Truesdell’s letter) even if it fails to be completed by ExtendPitt, so that it is not fully understandable.

AS$_{7,2}$ (i) Let me specify that the Memoria mentioned in assertion (a) below is the Memoria Lincea mentioned in [12] on p. 24 of ExtendPitt. In his 1986-letter Truesdell strongly supported this memoria as a starting point for the extension of Met to continuous media (4).

(ii) Truesdell’s appreciation of Bressan appears on p. 259 of the work Pitteri 2003 – see AS$_{1,3}$ – from line -14 to line -6, as well as from (D) on p. 21 of ExtendPitt (mainly from (D)’s part (e)). Furthermore (iii) for his appreciation of Bressan in general, one can see Truesdell 1984 – see AS$_{1,7}$ – and, e.g., item 14 in the Contents on its p. 503. There ‘Fear of Real Work in Formal Logic’ is mentioned; and the mentioned work is performed by Bressan. Incidentally, to see N. Belnap’s observation in 10 within page xxiv of GIMC’s preface may be useful too.

(iv) Lastly Truesdell’s appreciation of Bressan also appears from (some parts of) the pp. 533 to 534 in Truesdell 1984. (He knew, e.g. fn. 7 on p. 19 of ExtendPitt).

The so called Truesdell’s volume is the volume on which Pitteri 2003 is published, i.e. the volume containing the following Symposium on recent advances and new directions in Mechanics, Continuum Thermodynamics, and Kinetic Theory in Memory of Clifford A. Truesdell III, within the 14th U.S.A. National Congress of Applied Mechanics, Blacksburg, June 23-28, 2002.

AS$_{7,3}$ Below is our main part (a) to (h) of Truesdell’s 1986-letter: the main points (a) to (f) (on which fnns. (a) to (c) are placed for explanations) and Truesdell’s additions, mainly (g) to (h).

(a) The subject of this Memoria belongs to Hilbert’s sixth problem, ‘Mathematische Behandlung der Axiome der Physik . . .’, which presently is only partially solved. Truesdell mentions the remarkable contributions given to its solution by Noll, Williams, Gurtin, Appleby, Šilhavý, Ziemer, Matolcsi, among others; then he adds:

(b) All of them have used only the procedure of mathematical analysis. Their axioms are proposed as necessary conditions to construct mathematical structures fit for consistent and clear applications to physical systems and present-day technology . . .

(4) On p. 19 of ExtendPitt see the 1st paragraph of the text and fn. 3 (where ’[12]’ just refers to the above Memoria).
(c) In 1962 prof. Bressan, considering only mass-point systems, in a deep work of well known difficulty, reached an impeccable solution in the sense of mathematical logic and he was the first to do so.

(d) In his more recent studies he treats classical mechanics in a universe that contains mathematical objects called ‘observers’, and

(d’) he adds a suitable existence axiom that was lacking \(^5\).

(e) In addition, he constructs a formal concept of physical possibility which abstractly represents a physical experiment \(^6\).

(f) Presently prof. Bressan is completing his logical axiomatization of mechanics with some of his pupils (Montanaro, Pitteri, etc.), and in a way capable of including the mechanics of continuous media in the sense of Noll and his followers.

(g) After a digression Truesdell recommends the publication of a Bressan’s paper, the one that appeared in 1987 as [10], because ‘it carries out a remarkable step’ in the program mentioned in (f), the main circumstances relevant for it having been sketched in (a) to (e).

(h) Lastly Truesdell adds that Bressan is the unique person (as far as he knows) capable of mastering mathematical logic, rational mechanics, electromagnetism and special relativity; in his opinion Italy and the Accademia dei Lincei can be proud of him.

* * *

Here, and as well as in his book Truesdell 1984, Truesdell mentions fields outside physics, like logic and philosophy of science. His remarks about Bressan’s high standing in these fields get a very authoritative support by earlier assertions of the philosopher of science N. Belnap in his Foreword to GIMC, […] \(^7\).

\(^5\) The lacking axiom is Ammisione 10.2 in Met, p. 106 (also recalled in GIMC, footnote 3 on pp. 110-111). This is framed as a possibility condition, but (d’), where existence axiom substantially stands for possibility axiom, is correct because of some peculiar technical features of Met; and this shows that Truesdell had grasped the main technical semantic features of that paper.

\(^6\) This construction, performed in Met and refined later in GIMC and Bressan 1985, agrees with the views of Hamel 1908 and Hamel 1927.

\(^7\) In his foreword, pp. xiii to xxv of GIMC, Belnap preliminary says that GIMC ‘is the most important contribution to date concerning the introduction of quantifiers into modal logic. It surpasses any article or book in the generality of its conceptions, the degree of their development and the profundity of their analysis’ (p. xiii, line 3). Belnap especially points out Bressan’s ‘new analysis of predication’ (p. xiv, line 10).

In the subsequent sections 1 to 8 Belnap details and motivates his preliminary assertions. For instance he says (p. xiv, sect. 1, line 3): ‘… that [Bressan’s modal language] \(\mathcal{ML}\) is — uniquely among modal logics — a complete type theory with no upper limit on its types, is extremely important’. Indeed, as is broadly mentioned on p. xvii, line -9, by the lack of this limit GIMC solves positively the problem considered in Carnap 1954 — see [19] —, pp. 195 to 196. Among Bressan’s ‘distinctive semantic features’ (pp. xviar xxi) Belnap mentions attributes, lambda abstraction, and definite descriptions. Furthermore, in New Directions (p. xxiv, lines 1 to 6), Belnap especially points out Bressan’s notion of absolute attribute, and says: ‘The articulation and deployment of this notion is extremely important to Bressan’s enterprise …’. This is
AS$_{7,4}$ The work ElimPrF – see [16] – , mentioned above AS$_{5}$, is strongly related with Met, in Italian; and incidentally Br&Mont (written in English) appears, e.g., in the contents at the outset of the present §1. Then it is useful, first, to give the information on Met in AS$_{4}$ below, and second, to write (in AS$_{8}$ below) an Italian-English translation followed by certain comments on some features that I believe important – see AS$_{8,1}$ –.

AS$_{7,5}$ My long article Met belongs to classical physics and deals with particle systems (mainly) without constraints; and it is written in an unusual extensional part of the Italian language, but it can deal with (the modal notion of) causal possibility (8). Furthermore, it is à la Mach-Painlevé – see ft. 1 placed on AS$_{2}$ (in part B) –. By using these features, in Met (certain) rigorous foundations of classical particle mechanics à la Mach-Painlevé have been stated.

AS$_{7,6}$ Truesdell strongly supported a research program (already started by A. Bressan) to extend Met to continuous systems. As was in part already noted, this can be easily seen from (i) above Pitteri’s confidential copy in AS$_{7,1}$, or (ii) from Section 5 of Pitteri 2003 – see AS$_{1,3}$ –, p. 18, or better (iii) from its extended version: see ft. 3 on p. 19 of ExtendPitt (and the part of Sect. 5 on pp. 18 to 19).

AS$_{8}$ Here is the aforementioned (Italian-English) translation related to some symbols used in Met.

1) PE (punto evento, or cronotopo) EP (event point, or space time)
2) PM (punto materiale, or particle) MP (mass point, or particle)
3) CMP (caso meccanicamente possibile) MPC (mechanically possible case)
4) Ist (istante) Inst (instant)
5) PEO(M, γ) (punto evento occupato dal punto materiale M nel CMP-caso γ, pensato come funzione PEO di M e γ) EPO(M, γ) (event point occupied by the mass point M in the MPC-case γ, regarded as a function EPO of M and γ)
6) Preced (relazione di precedenza temporale fra punti eventi) Preced (relation of time precedence between event points)
7) PrF (proprietà fisica non cinematica e concernente un punto materiale ad un istante ed in un CMP-caso) PrF (non-kinematic physical property for a particle at an instant and in an MPC-case)

AS$_{8,1}$ Let us now emphasize that the above translations 5) to 7) are chosen suitably,

confirmed, for instance, by Bacon 1980. Lastly, let us note that the citesmanship assertion in Truesdell 1984 – see AS$_{1,7}$ –, p. 532, line -12, is supported by Section 16, p. xxiv, line -13 in GIMC, where Belnap says that GIMC ‘does not itself contain an axiomatization of physics (Bressan has written on this elsewhere in a somewhat different form . . .)’ (he refers to Met, where modalities are phrased in a rather unusual but extensional language).

(8) Causal possibility is considered in ft. 17 on p. 22 of ExtendPitt. (See also item (E) on the same page).
looking forward to a simplified version of Met. Actually, Met contains much more complex definitions analogous to above 1) to 7).\(^{(4)}\)

PART D: SOME RESULTS READY FOR INCLUSION IN AX FOUND.

A very serious difficulty overcome by A. Zanardo

\(A_{S_9}\) I have (intuitively) characterized (certain) primitive notions common to classical physics and special relativity. Thus a relevant lack in Br&Mont has a (yet unpublished) remedy.

\(A_{S_{10}}\) In Sect. 3 on p. 169 of Br&Mont, the assertion involving (3.3) is a non-trivial theorem, whose proof is not even hinted at. Now, among other things, a (yet unpublished) rigorous version of it is written in Italian (\textit{i.e.} ElimPrF).

\(A_{S_{11}}\) From the title of Part B, (explained in \(A_{S_4}\)), it is obvious that the proof of some theorems asserted in Sects. 3 to 8 of Br&Mont – see \(A_{S_4}\) – need a (rigorous) completion taking into account the changes of Definition 2.3 considered in \(A_{X_\text{Found}}\). Now in some sense this completion is ready.

\(A_{S_{12}}\) On p. 47 of GIMC, it is said that “… one might object that AS12.21 [accepted in the logical calculus MC^*] is confusing [for certain reasons concerning descriptions and hinted on p. 47 of GIMC, at line 2” and that it would be better to replace it with AS12.21” [which is incompatible with AS12.21]. However, AS12.21 was preferred because, \textit{e.g.}, “It is more useful for … showing” the validity of Theorem 63.1 (a main result in GIMC). Unfortunately, later, Bressan noted a serious non-acceptable consequence of AS12.21 – see, \textit{e.g.}, (a) in the part (c) of Zanardo 2004 and the part of its p. 10 below line 10 –. Furthermore, the (practically) only way seen by Bressan to overcome this difficulty was to ask A. Zanardo (who professionally was a logician) whether some previous results of him could be extended in a certain way. In Zanardo 2004 a very satisfactory answer could be given, by which the last difficulty completely disappeared as well as those related (above) to descriptions and AS12.21.

\(^{(4)}\) (a) In the last 10 or 20 years I elaborated a relevant simplification of Met (also with broader hypotheses and briefer notations) but practically as efficient as its original version in connection with (possible evolutions of) the real world. Furthermore,

\((\beta)\) In 2004 Pitteri delivered a conference on Met at the Dip. of Structural Engineering of the University of Pisa (Official laboratory for experiments on building materials); and he was successful. In fact in a letter of 19/ VII/2004 Piero Villaggio wrote to me to be much impressed by the ideas presented in Met and their coherence; furthermore he suggested me to publish an English version of Met (1962) on some well known scientific journal, regretting that Met was little known.

\((\gamma)\) In my reply I agreed that Met was little known to rigorous mathematical physicists (and for reasonable motives also valid for Br&Mont – see \(A_{S_2}\) and \(A_{S_{2,1}}\) –). However I stressed that Met was appreciated by different scientific communities. (Obviously Villaggio ignored, \textit{e.g.}, Sect. 5 of ExtendPitt)

\((\delta)\) Obviously, in my reply I considered (a). However I had not yet known my work ElimPrF, mentioned above \(A_{S_6}\) in §1 and strongly related with Met.
PART E: ON MONTANARO’S COLLABORATION TO BR&MONT, SUBSTANTIALLY WITHIN HIS DEGREE THESIS; AND ON HIS SUBSEQUENT PAPERS, IN PART VERY IMPORTANT OR EVEN SURPRISING

Since Ax Found is strongly based on Br&Mont to which A. Montanaro collaborated, (especially the end of) the title of Part E renders it natural to reserve a whole part of our Introduction for him.

AS$_{13}$ When the subject of a degree thesis is very complex, like the one of Br&Mont, it is natural to receive many suggestions.

AS$_{13,1}$ However, let us now specify that among Montanaro’s papers without my collaboration, e.g., [29] to [30], [33] and [55] are (at least) important, [51] to [53] are very important, [34] is surprising, and [48] is most important (I note that my long monograph Met — see AS$_{7,5}$ — is cited in its references), and Montanaro’s result obtained in [33] is even surprising.

AS$_{13,2}$ More specifically, I want to emphasize that, while Br&Mont is a work of mechanics (or mathematical physics) à la Mach-Painlevé — see footnote 1 on AS$_2$ — Montanaro’s “surprising results” were not even known in their versions belonging to the usual mechanics (not à la Mach-Painlevé).

PART F: SOME TECHNICAL PRELIMINARIES. HOW ASSERTIONS CAN BE REFERRED TO AND HOW CONTENTS ARE USED IN THE INTRODUCTION OR IN CONTRIBUTING WORKS. ON SYMBOLS USED, E.G., IN SPEAKING IN ENGLISH ABOUT WORKS WRITTEN IN ITALIAN. ON ABBREVIATIONS

AS$_{14}$ Here, in Ax Found, we use the notations of GIMC — see AS$_{1,5}$ and/or [4] after Part F, and also ftm. 1(a) placed on AS$_2$ — added
(a) with set notations very customary in (extensional) mathematics but possibly including modal logic, and with
(b) division dots (following Zanardo 1981 or better Zanardo 2004).
(c) Following above Zanardo’s papers here we (often) weaken the admissibility conditions used in GIMC on every universe for the extensional v-sorted language EL^v (i.e. the extensional part of the modal language ML^v constructed in N3 of GIMC) (10).

(10) (a) The extensional semantics is based on v sets D_1 to D_v to be called individual domains — see in GIMC from p. 18, line 15 to formula (9) p. 21 —. On p. 18, line -10 D_i is assumed to have at least two objects, one of which, d_i', represents the non-existing object ($i = 1, \ldots, v$). Furthermore, D_v is identified with the class I of elementary possible cases for ML^{v-1} — see p. 18, line -2 and N5 p. 16, line 4 to line 8.
(d) The semantics for \mathcal{ML}^ν is based on the extensional semantics for $\mathcal{EL}^{\nu+1}$, on the extensional correspondent $t \vdash t'$, $(t \in \tau)$, and on formula (9) on p. 21. In connection with the new weakest admissibility conditions for $\mathcal{EL}^{\nu+1}$, this semantics turns out to be extensional (while in GIMC, line -1, p. 18, it ought to be essentially modal); I now regard as advantageous the possibility of treating modal and extensional semantics uniformly following Zanardo 1981 and Zanardo 2004 (i.e., [63] and [66]).

AS$_{15}$ In the present introduction we have used a unique series AS$_1$, AS$_2$, . . ., to mark some relevant parts of it. E.g., AS$_r$ has exactly one entry written in bold character; in the part marked by it not yet known explications are introduced. For obvious motives AS$_s$ has some entries both after and before it. The latter show readers where they can find a help to understand yet unclear writings. The same holds for the possible parts AS$_{r,s}$, $(s = 1, 2, \ldots)$ of every element AS$_r$ of above series.

AS$_{15,1}$ In the initial pages of this introduction its contents is included. The analogue can be done in any contributing work. (Each of these has a series of, e.g., AS, starting with $r = 1$).

AS$_{15,2}$ Any contributing work is divided in sections marked by ($\S r$) (briefly sections ($\S r$)), and ($\S r$) is divided in numbers (1), (2), . . ., and each number (s) in items (i), (ii), . . . E.g. the sub-item (ii_s) (if it exists) can be used instead of (ii) for greater precision.

AS$_{15,3}$ E.g. in ($\S r$) “see (s)(ii)” or in ($\S r$)(s) “see (ii)” means: see ($\S r$)(s)(ii).

AS$_{15,4}$ For more clarity, one can be superabundant both in placing (above) marks for sections, numbers, and items (in bold character) and in referring to them (in normal character).

AS$_{16}$ E.g., by ‘Bressan 19RS’ I abbreviate the unique Bressan’s paper appeared in the year 19RS (provided such paper exists). If in that year a number $\nu > 0$ of Bressan’s papers appeared, then (being $\nu < +\infty$) I label them with the indexes a_1 to a_ν and I abbreviate them by ‘Bressan$_{a1}$ 19RS’ ($i = 1, \ldots, \nu$).

(11) (a) The class \mathcal{QI} of \mathcal{QI}s (quasi intensions) of type $t \in \tau^\nu$ – see N2 at p. 40 of GIMC – is determined by

(12) (1) (b) Here we mention two corrections to be done in GIMC:

(1) See p. 47 of Zanardo 1981, from line 7 to line 10. They are improved, within Zanardo 2004, by Definition 1.1, Remark (e) and Definition 1.2 in part (A). These definitions allow us to embody extensional logic into the logical calculus \mathcal{MC}^ν after having weakened, following Zanardo, the requirement $\text{card} \mathcal{I} \geq 2$ used in GIMC into $\text{card} \mathcal{I} \geq 1$.

AS\textsubscript{16.1} If the year 19RS is not earlier than 2000, then in the cases \(v = 1\) and \(v > 1\) I regard Bressan \(RS = \text{Bressan} 19RS\) and Bressan\(_{i}\) \(RS = \text{Bressan}_{i} 19RS\) (\(i = 1, \ldots, v\)) respectively.

AS\textsubscript{16.2} The above rules, when \(v = 1\), include [5] and more generally [1, 2] and AS\textsubscript{17} too; and when \(v > 1\) they include [9] and [10].

AS\textsubscript{16.3} Note that [9] and [10] are the only cases with labels whose abbreviations are explicitly mentioned in our references.

AS\textsubscript{17} The series of works called Ax Found includes the present Introduction, which is classified by §1 — see below the preceding Contents.

AS\textsubscript{17.1} Usually a paragraph of a given page is meant as a certain set of lines.

AS\textsubscript{17.2} I state that in every contributing work (to Ax Found), the bold entry of any paragraph of the form §\(t_{1}\) — see AS\textsubscript{15} — must be printed at the line where this paragraph starts. Furthermore, (a) following a University of Torino (Turin), the not bold AS\(_{r}\) [AS\(_{r,1}\)] can (everywhere) be used to mention the bold AS\(_{r}\) [AS\(_{r,1}\)] — cf. AS\textsubscript{15}. Hence, in order to mention a particular occurrence of AS\(_{r}\) [AS\(_{r,1}\)], one has to specify it by using: “AS\(_{r}\)” [“AS\(_{r,1}\)”].

AS\textsubscript{18} The works interesting Ax Found, e.g., contributing works, form a book being constructed — see AS\textsubscript{1.1} —. Furthermore

AS\textsubscript{18.1} generally they mainly have certain features hinted at in AS\textsubscript{1} to AS\textsubscript{1.2}, and more clearly shown in AS\textsubscript{2} to AS\textsubscript{3}, AS\textsubscript{4.3}, AS\textsubscript{7.3} (especially in (g)), in AS\textsubscript{7.5}, and lastly in (the remark) AS\textsubscript{7.6} dealing with my long article Met.

AS\textsubscript{18.2} (a) In AS\textsubscript{1} one speaks, e.g., of a book being constructed, with developments imperfectly known.

(β) In the present paper the notations §\(1\), §\(2\), etc., are meant, I think, in a manner wider than the usual one, and hence different from this.

(γ) By (a) the analogues of the properties considered for the sequence AS\textsubscript{1,1}, \ldots, AS\textsubscript{1,8} in §\(1\) hold for every similar sequence AS\textsubscript{1,1}, \ldots, AS\textsubscript{1,\(t\)}, \ldots, written in any paper later than §\(1\), (e.g., called §\(2\).)

(δ) Assume now that §\(2\) has been printed. Then

(δ\textsubscript{1}) an arbitrary mark AS\(_{t}\) or AS\(_{t,\(i\)}\), written in §\(1\) determines the pages of §\(2\) where it has been printed. Furthermore

(δ\textsubscript{2}) the following advantages appear: (1\(°\)) this mark gives information more precise than the one given by the pages where the mark is printed; (2\(°\)) it may be used, e.g., in the paper §\(2\) (even if in §\(2\) this mark is not used) — cf. the point (3) above AS\(_{t}\) in §\(1\) —.

(δ\textsubscript{3}) Now fix an arbitrary \(s \in \mathbb{Z}_{>0}\) and consider the analogue for paper §\(s\), of what has been said about §\(1\) (the paper §\(s\) is being supposed to exist).

(δ\textsubscript{4}) Thus, briefly, a sequence of papers §\(1\), §\(2\), §\(3\), \ldots similar to §\(2\) can be considered.
ACKNOWLEDGEMENTS

This paper is dedicated to the memory of Prof. C. Truesdell.

REFERENCES

[16] A. Bressan, Elimination of the only primitive dynamic notion PrF in Met by means of kinematic notions. (Now it is written only in Italian; and it is likely to be improved and shortened). (=D ElimPrF)

Pervenuta il 16 agosto 2005,
in forma definitiva il 29 settembre 2005.

Dipartimento di Matematica Pura e Applicata
Università degli Studi di Padova
Via Belzoni, 7 - 35131 PADOVA