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Analisi funzionale. — The Gleason-Kahane-Zelazko theorem and function algebras.
Nota (*) del Socio EDOARDO VESENTINI.

AsstracT. — A theorem due to A. Gleason, J.-P. Kahane and W. Zelazko characterizes continuous
characters within the space of all continuous linear forms of a locally multiplicatively convex, sequentially
complete algebra. The present paper applies these results to investigate linear isometries of Banach algebras
(with particular attention to normal uniform algebras) and of some locally multiplicatively convex algebras. The
locally multiplicatively convex algebra of all holomorphic functions on a domain, will be investigated at the end
of the paper.

Key worps: Linear isometry; Character; Banach algebra; Locally multiplicatively convex algebra.

Riassunto. — 1l teorema di Gleason-Kahane-Zelazko e le algebre di funzioni. Un teorema dovuto a A.
Gleason, J.-P. Kahane e W. Zelazko determina i caratteri continui nello spazio di tutte le forme lineari continue
di un’algebra moltiplicativamente localmente convessa e sequenzialmente completa. Nel presente lavoro si
applicano questi risultati allo studio delle isometrie lineari di algebre di Banach (con particolare attenzione alle
algebre normali uniformi) e di algebre localmente moltiplicativamente convesse. Si studia infine I'algebra
localmente moltiplicativamente convessa delle funzioni olomorfe su un dominio.

A theorem first established by A. Gleason [2] and, in a more general setting, by J.-P.
Kahane and W. Zelazko [6, 17] characterizes the continuous characters (*) among the
continuous linear forms of a locally multiplicatively convex, unital and sequentially
complete algebra. Given two such algebras A and B and a map A € L(A, B) such that

(1) AA™Y c B!

(where A and B~! denote the sets of all invertible elements of A and B), the Gleason-
Kahane-Zelazko theorem yields a representation of A as a weighted composition
operator [15].

Let A and B be the unital commutative Banach algebras of all complex-valued,
continuous functions on two compact Hausdorff spaces M and N, and let A be a linear
isometry of A into B. It was shown in [15] that, if A maps all continuous unitary functions
in A (i.e., the continuous functions whose values have modulus one at all points of M) to
continuous unitary functions in B, then (1) holds and therefore A is a weighted
composition operator. According to [14] (see also [1] for a general view), if the linear
isometry A is surjective, the hypothesis concerning the behaviour of A on the unitary
functions on M and on N is satisfied, and the representation of A as a weighted
composition operator yields the classical Banach-Stone theorem.

In the first part of the present paper, after discussing an application of the Gleason-
Kahane-Zelazko theorem to the characters of a non-unital, locally multiplicatively convex,

(*) Pervenuta in forma definitiva all’ Accademia il 28 ottobre 2004.
(') Throughout this article, a character is a homomorphism of the algebra into the complex field.
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sequentially complete algebra, we will first assume A and B to be the sup-norm Banach
algebras of all continuous functions vanishing at infinity on two locally compact
Hausdorff spaces M and N, and further explore the connection between A being a
linear isometry and (1) (where now A~ and B! stand now for the sets of all quasi-
regular elements of A and B). In the case in which the linear isometry A is surjective, that
will yield a generalization of the Banach-Stone theorem to the case of algebras of
continuous functions vanishing at infinity on locally compact Hausdorff spaces.
Following a line of reasoning developed by W. Holsztyniski in a different context, we
will describe all linear isometries of all normal uniform algebras.

The final part of this paper concerns the multiplicatively convex algebra H(D) of
holomorphic functions on a domain of D C C”, endowed with the topology of uniform
convergence on compact sets of D. Extending some preliminary results established in
[15], we will investigate the continuous characters of H(D) in the cases in which D is
either a Runge domain in C” or any domain in C. These results yield a representation as a
weighted composition operator of any A € L(H(D), H(D)) mapping H(D) " into itself.
The case in which D is the open unit disc in C will be explored in greater detail.

1. THE GLEASON-KAHANE-ZELAZKO THEOREM

Let A be a locally multiplicatively convex and sequentially complete algebra (*) and let
/. be a continuous linear form on A.
The following theorem was established in [15].

TreoreM 1. Let the algebra A be unital. If ker A contains no invertible element of A,
there is a continuous character y of A such that

(e, 2) = (1, 4) (x, )
forall x € A

Assume now that A is not (necessarily) unital and that the continuous linear form 4 is
such that the affine space of equation (e, 2) = 1 contains no quasi-regular element of A,
ze. [11], A is such that (x, 1) # 1 whenever there is y € A for which

2) xy —x—y=0,x = yx.

Let A = A& C be the Banach algebra obtained by adjoining an identity, denoted by 1 or
14, to A, equipped with the norm

[l + |z = [Ix|[4 + L] (x € A, € O).
If  is a continuous linear form on A, / is the continuous linear form defined on A by
(24 01,2 = (, A) +¢
forallze Aand all { € C.

(%) Throughout this article, all algebras will be assumed to be associative.
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Lemma 1. The linear form A is different from zero on all invertible elements of A if, and
only if, (x,A) # 1 for every quasi-regular element x € A.

Proor. The equation (2) is equivalent to
(3) 1=x)1—3) =1=(1-01-x.
DIfu—al e A’l forue A, a e C, ‘e, if there are v € A and f € C such that
(al —)(f1 —v) =1=(f1 —v)(al — u),
then

wu —Pu—av =0, uww=vovu, af =1

1
showing that a # 0 and that P is quasi-regular. Hence
1
2w 1
(Zud) #1,

(u—al,2) = (u, 1) —a #0.

Thus Zjé 0 on every element of Al - )
2) Let A be different from zero on every point of A , and let A be the restriction of 1
to A:

ze.

(u, ) = (w+1,2), (weA.

If x € A is quasi-regular, ze, if (2) is satisfied by some y € A, then (3) holds.
Therefore

(1 —2x,1) #0,
and in conclusion

(0, 2y ={(x—1,2) +1#1 O

If x € A is quasi-regular, the element y € A in (2) is called the quasi-inverse of x.
The Gleason-Kahane-Zelazko theorem (see [15, Theorem 1]) yields now the following
theorem.

THEOREM 2. Let A be a continuous linear form on any locally multiplicatively convex,
sequentially complete algebra A. Then, A is a character of A if, and only if,

(4) (x,2) # 1

for every quasi-regular element x € A.

Proor. First of all,
(1,7) =1—1(0,2) = 1.
If (4) holds for every quasi regular element x € A, Lemma 1 and Theorem 1 of [15]
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imply that 4 is a character of A. Thus, for u,v € A,
(A=) —0),2) =(1 —u, 1)1 — 0, )
=(1 — (u, )1 — (v, 4))
=1—(u, ) — (v, A) + (0, 2) (v, ).
On the other hand,
(=) =), ) =1 —u—v+uv, 1)
=1—(u, ) — (v, A) + (uw, ).
Hence,
(uv, A) = (u, A) (v, 1y Y u,v € A.
Vice versa, if 4 is a character of A and (2) holds, then
(%, 4) (9, 4) = (x,2) = (9, 4) = 0,
ze.,
(e, 2) =D ((y,4) —1) = 1.
Hence, (x, A) # 1. O

Tueorem 3. Let A and B be two locally multiplicatively convex, sequentially complete
algebras, and let A € L(A, B).

If A maps all quasi-regular elements of A to quasi-regular elements of B, for any
continuous character y of B there is a continuous character ¢(y) of A such that

0) (Ax,7) = (x, ()  VxeA

If both A and B are unital and A maps all invertible elements of A to invertible elements
of B, for any continuous character y of B there is a continuous character ¢(y) of A such that

<Axv)f> = <A1A7X><X7 ¢(X)> Vx e A.

Proor. If both A and B are unital, and if A maps all invertible elements of A to
invertible elements of B, then, by Theorem 1, for any continuous character y of B the map

{Ax, x)

ASX A

is a continuous character of A.
As for the first part of the theorem, if y is any continuous character of B, by Theorem 2

(Au,y) # 1
for all quasi-regular elements # € A. Thus, A 3 x+ (Ax, y), is a continuous character,
say ¢(y), of A. O
Let A" and B’ be the topological duals of A and B, endowed with the topologies
defined by A and B, and let 2(A) C A" and X(B) C B’ be the sets of the continuous
characters of A and B, endowed with the relative topology.

Lemma 2. The map ¢ : X(B) — X(A) in Theorem 3 is continuous.
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Proor. Let y,x, € 2(B). If x tends to y,, for any x € A (Ax, y) tends to (Ax, xo).
Therefore (x, ¢(y)) tends to {x, $(x,))- O

CoroLLARY 1. If one of the following conditions holds for A € L(A, B):

1) A maps all quasi-regular elements of A to quasi-regular elements of B;

2) both A and B are unital, Al = 1g and A maps all invertible elements of A to
invertible elements of B,

then (5) holds.

2. LINEAR HOMOMORPHISMS OF BANACH ALGEBRAS

Let A be a unital Banach algebra. For x € A, a(x) or g.4(x) and p(x) or p 4(x) will
indicate respectively the spectrum and the spectral radius of x. As before, let A™" be the
set of all invertible elements of A.

We will denote by k(x) or r.4(x), and call inner spectral radius of x, the non-negative
real number

= inf{|{|: { € a(x)}.
Thus, k(x) = 0 if x is not invertible, or (by the spectral mapping theorem)
1
K(x) = o)

if xe A7

Let B be another unital Banach algebra, and let A € L(A, B). Then (1) holds if, and
only if,
(6) KA(x) > 0 = Kp(Ax) > 0.
Assume from now on, in the present section, both unital Banach algebras A and B to be
commutative (in which case the spectral radii define continuous seminorms in A and

B). Denoting again by 2(A) and X'(B) the sets of all (continuous) characters of A and B,
endowed with the Gelfand topology, Theorem 3 can be rephrased as follows:

Tueorem 4. If (6) holds, there is a continuous map ¢ : X(B)— 2 (A) such that
(7) (Ax, ) = (ALa, x) (x,9(0)
forall x € Aand all y € X(B).

Thus, for any x € A,

(8) p(Ax) =inf{|(Ax, )| : y € Z(B)}
=inf{|[(AL4, 1) (x, $0))| : x € 2(B)}
>inf{[{Ala, )| : x € XB)} inf{|{x, d(x))| : x € Z(B)}
>inf{|{Al4, )| : x € 2B} int{|{x, x)| : x € Z(A)}
=rp(Al4) kalx).
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The following proposition is a direct consequence of the previous considerations.

ProprosITION 1. If (6) is satisfied, A is a continuous bhomomorphism of A into B if, and
only if, Aly=1p. The homomorphism A is surjective if, and only if, ¢ is a home-
omorphism.

If A is a continuous homomorphism of A into B, condition (6) is satisfied, in which
case (5) holds for all x € A and all y € Z'(B).

Lemma 3. If A is a continuous homomorphism of A into B such that pg(Ax) = p 4(x) for
all invertible elements x € A, then kp(Ax) = K 4(x) whenever x € A7\

Proor. If x € A7,

1 1
A =
) = ) el
1
oD T ). O

Let A be, as before, a unital, commutative Banach algebra and let A € £(A) be such
that A(A™') ¢ A™"'. Then A is represented, for all x € A and all y € Z(A), by (7), where
¢ is a continuous map of X(A) into itself.

Forallx € A
©) plAx) = sup{[(Ax, x)| : x € 2(A)}
=sup{[(AL, 1)| [{x, $(0)| : x € 2(A)}
<sup{[(A1, )| : x € Z(A)} sup{[{x,$(0))| : x € Z(A)}
<Sup{\< 1/>\ x € (A} sup{[(x, 1)| : x € 2(A)}
=p(A1) p(x) < ||AL]] ||x]]
for all x € A.

Since, for # > 2,
(A", 1) =(AA" %, 1) = (AL, 2) (A", (2)
=(AL, 1) (AL (A" 2,87 () = (AL, 2)* (A" %, 8 (1)
=...= (AL )" (x,¢"(),
then
p(A"x) < p(A1)" p(x) V x € A.
If { € Oa(A), then (" € Oa(A”) for all positive integers #. For any such # there is a
sequence {x,} in A such that |[|x,|| = 1 for all v, and
lim (A”x, — {"x,) = 0.

D—00
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Since p is a continuous seminorm in the commutative Banach algebra A, then
lim p(A”x, —{"x,) =0,
D— 00

and therefore
lim |p(A"5) = [¢["plaw)] = 0.

Thus, for any ¢ > 0 there is vy (depending on 7 and on ¢) such that
pA"x) > ['p(x) =& Vv = oo
hence, by (9),
(10) P(AD)"> |{"p(xy) — & Yo > .
Let the image of A by the Gelfand transform be closed in the space C(X(A)) of all
continuous functions on 2(A) endowed with the uniform norm (which is equivalent to

the existence of a constant ¢ > 0 with ||x||* < ¢[|x?|| for all x € A). Then there is a
constant £ € (0, 1] such that

(11) Flxll < plx) < |lxl]  Vxe A

Thus, by (10),
o () <o

which implies that |{] < max (1, p(A1)) and proves the following

Tueorem 5. If A is a unital, commutative, Banach algebra whose image by the Gelfand
transform is closed in the space C(X(A)), and if A € L(A) is such that A(A™") c A, the
spectrum a(A) of A is contained in the closed disc in C with center O and radius
max{1, p(A1)}.

Let 4 be the open unit disc of C.

CorOLLARY 2. If A is a homomorphism ) A — A, then a(A) C A.
If A is an automorphism, then a(A) C 0.

Remarks. 2) When A is an automorphism, the proof of Theorem 5 simplifies. Indeed,
if A is an automorphism, ¢ is a homeomorphism of X(A) onto itself, and therefore (5)
yields

p(Ax) =sup{|(x, ¢(x))| : x € 2(A)}
=sup{|(x, x)| : x € 2(A)} = plx)
forall x € A.

(%) Since A is semisimple, A is continuous, see, e.g., [11].
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Thus, with the same notations as above, if { € g(A), the equation
tim p(Ax) — [clp()] =0
yields
1= 1] lim ple) = O,
and therefore, by (11), |1 — ||| = 0.

b) If A is a homomorphism, Corollary 2 can be established without appealing to the
Gleason-Kahane-Zelazko theorem. Here is a proof.

LemMma 4. Let A be a complex Banach space, and let A € L(A). If there is a sequence
{x,} in A such that ||x,|| = 1 for all v and
(12) (AX,) - C,xu) =0,

lim
v—+400
then { € a(A).

Proor. If { & a(A), then
Xy = (A - éI)il(A - CI)X,) = (A - gI)il(Axn - Z:xn) —0

as b — +o0. O
Let A satisfy the hypotheses of Theorem 5 and let A : A — A be a homomorphism.
If [Joll = 1,

192]] = p(x2) = plx* = B|[xl]” = .

Let € do(A), and let {x,} be a sequence in A with ||x,|| = 1 for all v, and satisfying
(12).
Because A is commutative and A is a homomorphism, then

Ax,? — Px,% = (Ax,))*=x2 = (Ax, — Cx) (Axy + Cxy),
and therefore
14x.7 = Cx2[| < [|Ax, = Col| [|Ax, + x|
Since,
1A%, + G| < || Ax[[ + <] ol | < [1A]] +1E1,
then, by (12),
Ax,? = Px, — 0

as v — + oo. Thus, setting y, = (1/|]x,2|])x,%,

1
|[Ay, — Czyv” =T

o 4
1))

1
S E ||AX,)2 - £2X1)2|| - 0

as v — 4o00.



THE GLEASON-KAHANE-ZELAZKO THEOREM AND FUNCTION ALGEBRAS 95
2 . . .
Hence, by Lemma 4, {* € g(A). Iteration of this argument yields

Lemma 5. If € Oa(A), for any n = 1,2, ... there exists a sequence {u,} in A with
|| = 1 for all v, and

lim (Au,) — Cznu,,) =0.

D——+00
COROLLARY 3. If { € a(A), then &' € a(A) forn=1,2,. ...

In [7] (see also [13]), H. Kamowitz and S. Scheinberg have investigated the case of an
automorphism A of a commutative, semisimple Banach algebra A, and have shown that
either A? = I for some integer p, in which case o(A) consists of a finite union of finite
subgroups of 94, or else 94 C a(A). As a consequence of this result, Corollary 2 yields

CorOLLARY 4. Let A satisfy the hypotheses of Theorem 5 and let A : A — A be an
automorphism. If, and only if, AP # 1 for all integers p # 0, then a(A) = 0.

If A? = I for some integer p # 0, g(A) is described in [7].

3. LINEAR ISOMETRIES OF BANACH ALGEBRAS

If the unital Banach algebra A is a normal uniform algebra on a compact Hausdorff
space M, then [3, Theorem, p. 190] M = X(A) = A, the Shilov boundary of A. If
4 € A is different from zero on any invertible element of A, there is a (unique) point
t € M such that

(x,A) = (1, ) x(t) VteM.
Thus, the following theorem holds:

THEOREM 6. If A and B are normal uniform algebras on two compact Hausdorff spaces
M and N, and if A € L(A, B) satisfies (6), there is a continuous map ¢ : N — M such that

(13) (Ax)(s) = (A1 4)(s9) x($(s)) Vx € A, s € N.

Let now A = C(M) and B = C(N) be the uniform algebras of all complex-valued
continuous functions on two compact Hausdorff spaces M and N. As in [15], let

OA) ={uec A:|uls)| =1 Vs e M},
OB)={veB: || =1 Ve N}.
If A € L(A, B) is an isometry such that
(14) Kkp(Ax) = 14(x) Yxe AL,
then, for x € O(A),
1= ||x]| = [|Ax[| = sup {|(Ax)(s)| : s € N},
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and also
1 =K 4(x) = kg(Ax) = inf{|(Ax)(s)| : s € N}.

Hence |(Ax)(s)] = 1 foralls € N, z.e., Ax € O(B), proving thereby the first part of the
following lemma.

Lemma 6. If A € L(A, B) is an isometry, then

(15) A(O(A) C O(B)
if, and only if, (14) holds.

Proor. It was shown in [15] that (15) implies (1), Ze.,
Kalx) > 0 = Kkp(Ax) > 0.
Since, by (15), k(A 14) = 1, (8) yields
(16) kp(Ax) > Kkalx) ¥V x € CM).
On the other hand, if x € A7, then x () = 1/x(¢) for all # € M, and therefore

-1 __ 1 . 1 .
] =llAG ] = sup{—x( S N}

1
< o i =[x~
_SUP{|x(t) l‘EM} x|

Hence
1 1
sup{m (s € N} = SUP{W S M},
that s,
inf{|x(¢(s))| : s € N} = inf{|x(?)| : # € M},
showing that (16) implies (14). O

Theorem 4 yields then the Banach-Stone theorem, [14, 1].

THEOREM 7. 1) If the isometry A € L(A, B) satisfies (15), there is a continuous surjective
map ¢ : N — M such that

(17) (Ax)(s) = (AL4)(s) x((s)

forall x € Aand all s € N.
i) If an isometry A is expressed by (17), and if Al 4 € O(B), then (15) holds.

Proor. 7) The existence of a continuous map ¢ : N — M satisfying (17) for all x € A
and all s € N is a consequence of Theorem 4. Since ¢ is continuous, ¢(N) is compact in M.
Thus, A being an isometry implies that $(N) = M.

The proof of #) is trivial. O
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Remark. Since ¢ is surjective, (17) implies that (14) holds for all x € A.

Aswas noted, e.g., in [14], if the linear isometry A is surjective, (17) holds. If that is the
case, ¢ is a homeomorphism of N onto M which defines a topological isomorphism of .4
onto B, as was remarked by M. Nagasawa in [10].

If the linear isometry A : C(M) — C(N) is not surjective, 6(4) = 4 and 4 is contained
in the residual spectrum of A (see, e.g., [16, Corollary 1.12.10 and Lemma 1.12.11]). If
the isometry A is surjective, then 6(A) C d4. According to Corollary 4, if the isometry A is
an isomorphism, either A? = I for some integer p # 0, and a(A) is a finite set in 94, or
AP £ [ for all integers p # 0, and o(A) = 04.

ProPOSITION 2. Let M be a compact metric space. A surjective map A € L(A, B) such
that A(A_l) C B~ is an isometry if, and only if,

(18) o(Aly) = (A1)(N) C 4.

Proor. If this latter condition holds, then
[(Ax)(s)| = |x(¢(s)| Vs € N,
and therefore
[|Ax|| = max{|x(¢(s))| : s € N} = max{|x(#)| : € M} = ||x]|

because ¢ is surjective.

Vice versa, if A is an isometry, then 6(A14) C A. If a(A1) ¢ 94, there is sy € N such
that [(A14)(s0)] < 1.

Let o = ¢(so) and let x € C(M) be such that

|x(D)] < |x(20)| ¥ ¢ M\{t}
Since
|(Ax) (s0)| = [(ALa) (s0)[ [¥((s0))| < [x(B(s0))] = [[],
and (if (A14)(s) # 0)
|(Ax) )] =|(AL2) ()] [x($()] < |[(AL4) ()] |x(20)]
<|x(20)] = I,

then ||Ax|| < ||x||. O

We will now extend the Banach-Stone theorem to the algebras of all continuous
functions vanishing at infinity on locally compact Hausdorff spaces.

Let M be a locally compact Hausdorff space, and let A = C,(M) be the function
algebra of all continuous functions vanishing at infinity on M. We will denote by Z(A) the
set all quasi-regular elements in C,(M) whose quasi-inverses are their conjugates:

Z(A) = {x € C,(M) : |x(1)]> = 2Rx(r) =0 V ¢ € M},

ze.,

A ={xeCM:|x(t)—1] =1 Vre M}
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Forx € A, let ¥ ¢ A= A® C be defined by
x(¢) = x(t) — 1.
Then
(19) x € BE(A)<=% € O(A).

Let N be a locally compact Hausdorff space, and let B = C,(N) be the function
algebra of all continuous functions vanishing at infinity on N. For A € L(A, B), let
A € L(A, B) be defined on x +{ € A® C by

Alx+0) =Ax+ ¢

If, and only if, A is an isometry, A is an isometry. Hence, (19) and Theorem 7 yield

Tueorem 8. If A is a linear isometry of A = C,(M) into B = C,(N) such that
(20) A(E(A)) C Z(B),

then A is a continuous homomorphism of the algebra A into the algebra B which is ex-
pressed on any x € A by

Ax=xo0¢,

where ¢ is a continuous map of N onto M.

By (19) and Lemma 1 in [14], if A is surjective, (20) holds, implying the following

CorOLLARY 5. If the linear isometry A in Theorem 8 is surjective, then ¢ is a home-
omorphism of N onto M, and A is a continuous isomorphism.

In the case in which M and N are compact, the action of a7y linear isometry of C(M)
into C(N) was described by W. Holsztyfiski in [4]. Holsztyniski’s results will now be
extended to linear isometries of normal uniform algebras into unital commutative Banach
algebras.

Let A be a unital, commutative Banach algebra. As before let X(A) be the space of all
characters of A endowed with the Gelfand topology, and let 9.4 C 2(A) be its Shilov
boundary. For y € 0.A, let

QA ) ={x € A: [(x, )| = |Ix[| = 1}.

If B is a unital, commutative Banach algebra, and A € L(A, B) is an isometry, for
7 € 0A let

Y(B,y) ={A€dB: |{Ax, )| = ||x|| = 1V x € Q(A, »)}.
Lemma 7. For any g, € A, Y(B, x,) # 0.

Proor. [4] For #n > 1 and x1,...,x, € Q(A, x,), let

n

x =D (%, 20)%:-

=1
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For y € 0A,
(6 7) =Y (5000 (52 0)-
J=1
Since
(%, 20)| = 1 for j=1,...,n,
then

n n
e 01 < 1 01 < gl =,
=1 =1

- 2
[, o) = D i o) P =,
7=1

and therefore ||x|| = 7.
There is Ay € 9B for which
|(Ax, Z0)| = [|Ax|| = 7.
Hence,

n

<X/vXO> <Ax/’/10>

=1

< Q) _I(Ax;, Ao)l

=1

n n
D Al =D llxll =2,
=1 =1

n =

and therefore
{(Ax/-,/10>|:1 for j=1,...,n.
Thus, for any 7 > 1 and any choice of x, ...,x, € Q(A, x,), the set
{AedB: |[(Ax;, )| =1 for j=1,...n}
is not empty. Since 9B is compact, then
{2 €0B: [{Ax,A)| =1 Vx € QA, y,)} # 0. O

We assume now A to be a normal function algebra on a compact, Hausdorff space M.

Then, [3, Theorem, p. 190], M = X(A) = dA.

LemMa 8. If x € A\{0} and if (x, ) = 0 for every x in an open neighbourhood U of
2o € OA in OA, then (Ax, L) = 0 for every 2 € Y(B, x,).

Proor. Since x # 0, there is y € 0.A for which (x, ) # 0. As a consequence, U # 0.A,
and there is t € V := 9.A\U such that (x,7) = ||x||.
Normalize x such that ||x|| = 1, and let z € A\{0} be such that Suppz C U and

(2 20) = llal] = [|x[] = 1.
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Then (1/]]z|]) z € 2(A, x,), and therefore
[(Az, 2)| = ||z|| ¥V 4 € Y(B, x)-
Let { € 4 and let
w={x+2z (€.

If ye U,
(w, 1) = L) + (0 = (220,
and, if t € V,
(w, Ty = {x, 1) + (2, 1) = {{x, 7).
Hence,
[leol] = max {|C] ||x]], [|z][} = [lz]]
and

(w, x0) = L% 20) + (2, 20) = Izl = [lel].
As a consequence,
|(Aw, )| = |[w]| = |lz|| = [{Az, A)],
ze.,
|{{Ax, 2) + (Az, )| = [(Az, 4)]|
for all { € 4. Thus,
(Ax, 2y =0 V1€ Y(B,y,). O

Lemma 9. If (x, x0) = 0 for some yy € OA, then (Ax, o) = 0 for all Ay € Y(B, o).

Proor. Let ¢ > 0, and let U be the open neighbourhood of y, in 9.A defined by
U={ye€dA:|x,y) <e}
Let u € A. Denoting by z the Gelfand transform of #, let « be such that: ||«|| = 1,
Supp # C U and such that z = 1 in a neighbourhood V of y, in 0.A.
If v = ux,
ol =l|zx]] < sup{|(ux, x)| : x € OA} = sup{[{ux, 7)| : x € U}
<sup{|[{x, )| : x € OA} <,
and therefore
[(Av, Z0)| < [|Av]| = [lol| <.
Let w =x— v = (1 — u)x. Since, for any y € V,
(w,0) = (1=, 7) (x,%) =0,
by Lemma 8, (Aw, 49) =0, ‘e,
(Ax, Ao) = (Av, do).
Thus, [(Ax, 20)| < ¢ for all ¢ > 0, and, in conclusion, {(Ax, 1o} = 0. |
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For x1,% € A and y € OA, set
x = (x2, x)x1 — {x1,)%2-
Then, (x, x) = 0, and therefore, for any 1 € Y(B, y), (Ax, 1) =0, ie.,
(x2, ) (Ax1, 2) = (w1, 1) (Ax2, 4).
If x; € Q(A, y), then
[(Ax1, )] = [{x1, 20| = 1,
and therefore
(o2, 01 = (2, 01 [{Ax1, )| = [(Axz, A)]-
That proves

ProprosITION 3. If y € OA and A € Y(B, y), then
[(Ax, 1)| = |(x, )]
forall x € A

Let
Y(B) = J{Y(B,x) : 1 € OA}.

CoroLLARY 6. If A € L(A, B) is an isometry, then
(1) (Ax, ) #0
forall x € A" and all }. € Y(B),

Proor. For A € Y(B), let y € A be such that A € Y(B,y). Because (1/||x||)x €

Q(A, 7), then (21) holds. ]
By Theorem 1, for every A € Y(B), the linear form
, (Ax, 2)
o) A>x (A1)

is a character of A.

Trueorem 9. Let A be a normal uniform algebra on a compact Hausdorff space, and let
B be a unital, commutative Banach algebra. If A is a linear isometry of A into B, there exist a
closed set Y(B) C OB and a continuous surjective map ¢ : Y(B) — OA such that

(Ax, 2) = (A1, 2) (x,$(A)
forall x € A and all 1 € Y(B).

Proor. In view of Corollary 6 and of Theorem 3 what is left to prove is the continuity
of ¢ and the fact that Y(B) is closed.
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As for the continuity of ¢, let 4,4y € Y(B). If A — /g for the weak-star topology, for
every x € A, (A1, ) tends to (A1, Ag) and (Ax, 2) tends to (Ax, A). Thus, (x, $(1)) tends
to (x, (4o)).

If 2 € Y(B), for every x € A there is a sequence {4,, »=1,2,...}, with
Jw € Y(B, 1), x, € OA such that

{4, 20) — (A, 2] <
(A, Ja) — (AL, 2,) (5, 80 )) | <
and
[(A1, Ao) — (AL, 2,)||{x, ¢(4,))] <%
forn=1,2,....

Because 0.A is compact, there exists a subsequence of {$(4,)} — which we will assume
to be the entire sequence {$(4,)} — converging to some character y, of A. Forevery¢ > 0
there is a neighbourhood U of y, in A such that, if y € U, then

(AL, 20)] [(x, 20) — (%, 00| <.
If n > 1/e, then

[(Ax, 20) — (AL, Zo) (x, xo)| <|(Ax, do) — (AL, ) (x, $(20))|+

(AL, 20) | (2, §(4n)) = (%, 70))

1 1
<—+-—-4+¢&<3e
n n

Since ¢ > 0 is arbitrary, then
(22) <AX, )"0> = <A17/10> <X7X0>

for all x € A.
Because 1 € Q(A, x,) and 4, € Y(B, x,), then (A1, 4,) € A for all n > 1.
Since

(A1, 4) = lir+n (A1, 2,),
then |(A1, Ao)| = 1, and (22) yields
|(Ax, do)| = [(x, 20)|
for all x € A. Hence, if x € Q(A, x,), then
[(Ax, do)| = [IxI],
showing that
Ao € Y(B, xy) C Y(B). O
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Remark. The condition Y(B) = 9B is equivalent to requiring that, for every A € B
there exists y € O.A such that, if ||x|| = |{x, x}| = 1, then [{Ax, 1})| = 1.

4. HOLOMORPHIC FUNCTIONS

Let D be a domain in C” (% > 1), and let H(D) be the locally multiplicatively convex,
sequentially complete, unital algebra of all holomorphic functions on D, endowed with
the topology of uniform convergence on all compact subsets of D (with respect to which it
is a Fréchet space). The topological dual H(D)" of H(D) is the space of all linear analytic
functionals on D.

A similar argument to the proof of Lemma 6 in [15] yields

Lemma 10. If D is a Runge domain in C”, any continuous character y of H(D) is a point
evaluation.

ProoF. As a consequence of the Hahn-Banach theorem [8, Proposition 1.1, pp. 9-10],
there is a compactly supported measure 4 on D such that

(¢, 7) :/xd,u Vx € H(D).
Let s!,...,s” be the cartesian coordinates of s € D C C” let1,...,1, € H(D) be the
coordinate functions: ;(s) =5/, =1,...,%. Let
S =X (s ) € C.
Since D is a Runge domain, every x € H(D) can be approximated by polynomials
uniformly on every compact subset of D, [5]. Hence, there is a sequence {P,} of

polynomials P, on C” converging to x uniformly on the support of .
Since (P,, x) = P,(s;), then

(23) (x, %) =lim / P, du = lim(P,, x)

=1lim P,(s;) = x(s,). 0

Let now # = 1 and let R be a rational function on C: R = g , with P, Q polynomials
and Q # 0 at all points of D. Since P = QR, with R € H(D), then

P(S;{) = <P7X> = <Q7X> <R5X>

=Q05) (R, 7).

and therefore
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If E C C is a set which has one point in each connected component of C\D, there is a
sequence {R,} of rational functions, with poles only in E, converging to x uniformly on
every compact subset of D. Since (23) holds with P, replaced by R,, the following
proposition has been established.

ProprosiTiON 4. If 7 > 1 and D is a Runge domain in C”, or if n = 1 and D is a domain
in C, every analytic character of H(D) is a point evaluation.

Theorem 1 yields then

Treorem 10. Let n > 1 and D be a Runge domain in C”, or let n =1 and D be any
domain in C. If A is a linear analytic functional on D such that ker A contains no invertible
element of H(D), there is a (unique) point s € D such that

<X, )‘> = <17l> X(S)
for all x € H(D).

Let D; be a domain in C”'. In the following, both D and D; will be tacitly assumed to
satisfy the conditions stated for D in Theorem 10.
Theorem 3 yields

Treorem 11. Any A € LIH(D), H(Dy)) such that
(24) A(HD) ™) € (H(Dy) ™
is the weighted composition operator expressed by
(25) (Ax)(0) = (A1) x((2))
for all x € H(D) and all t € Dy, where the map ¢ : Dy — D is holomorphic.
CoroLLARY 7. The operator A € L(H(D), H(D:)) is a homomorphism of the algebra

H(D) into the algebra H(Dy) if and only if, A1 = 1 and (24) holds. If these conditions are
satisfied, there is a holomorphic map ¢ : Dy — D such that

(26) Ax=x0¢
for all x € H(D).

Let {x,, v=1,2,...} be a sequence in H(D) ' uniformly convergent on all compact
sets in D to x € H(D). According to a theorem of Hurwitz, either x € H(D) ™" or x = 0.
That proves

Lemma 11. If A is injective, a sufficient condition for (24) to hold is the existence of a
dense subset of H(D)™" whose image by A is contained in (H(Dy)) ™.
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If D; = C” and D is bounded, by the Liouville theorem there is a point so € D such
that ¢(D;) = {so}. Thus, (25) yields

x(s0)Ay = y(s0)Ax ¥ x,9 € H(D),

and the following proposition holds.

ProprosITION 5. If Dy = C™, D is bounded and (24) holds, then the range of A consists
of the scalar multiples of an entire function.

Consider now the Banach algebras H>*(D) and H>(D;) of all bounded holomorphic
functions on D and on D; endowed with the sup-norm. The following theorem is a direct
consequence of (25).

Treorem 12. If (24) holds, then A(H®(D)) € H®(D) #f, and only if A1 € H*(Dy).
If these conditions are satisfied, A|H*(D) is a continuous linear map of H*®(D) into
H>(Dy) whose norm does not exceed ||A1||p,)-

CoroLLary 8. If A is a continuous homomorphism of H(D) into H(Dy), and if
A(H>(D)) C H*®(Dy), the restriction of A to H®(D) is a continuous Banach algebra
homomorphism of H®(D) into H®(Dy).

The same argument as in the proof of Theorem 6 of [15] yields the following

Treorem 13. If A € LIH(D), H(D)) is bijective and satisfies (24), then n = m, ¢ is a
biholomorphic homeomorphism of Dy onto D, A is expressed by (25), and
1

TV e )
A e’ W

(A~)(s)
forally € H(Dy) and all s € D.

CoroLLArY 9. If A € LIH(D), H(Dy)) is an isomorphism of the algebra H(D) onto the
algebra H(D,), then n = m, ¢ is a biholomorphic homeomorphism of Dy onto D such that A
and A™" are expressed by (26) and by

(A719)(s) = 3¢~ (s)
for all y € H(Dy) and all s € D.
CoroLLary 10. If D is a Runge domain in C”" or a domain in C, the group of all linear

automorphisms of the algebra H(D) is isomorphic to the group of all holomorphic auto-
morphisms of D.

For any point 7 in D or in Dy, d, will be, as before, the point evaluation at .
The following statement characterizes the case in which (24) holds.
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Tueorem 14. If, and only if, for every t € D there exist ¢ € C\{0} and s € D such that
(27) A'd, = cdy,
then (24) holds.

Proor. If (24) is satisfied, then
(x,A'8,) =(Ax,8,) = (Ax)(¢t)
=(A 1)) x(p(2)) = (x, (A 1)(#)dg())

for all x € H(D), which implies (27).

Vice versa, if, given ¢ € Dy, (27) holds for some s € D and some ¢ € C\{0}, then, for
any x € (H(D) ™,

(Ax)() =(x,A'd,) = ¢ (x,0)
=cx(s) # 0,

showing that Ax € (H(D)) ™. O

Let now # = m = 1, and, as before, let A € L(H(D), H(D;)) satisfy (24).
Since ¢ is either constant or an open map, (25) yields

Lemma 12. The holomorphic map ¢ : D1 — D is constant if, and only if, Ax is a scalar
multiple of Al for all x € H(D).

The linear map A is injective if, and only if, ¢ is not constant, if, and only if,
dimc A(H(D)) > 1.

If D; = C, the map ¢ of Theorem 11 is an entire function. By the Picard theorem,
either D D C\{s0} for some 59 € C, or ¢(C) = {c} with ¢ € C.

Let D = Dy = C. It is easily seen, [15], that, if A is surjective, there are 2 € C\{0}
and b € C such that ¢(¢) = at + b forall t € C.

We will consider now the case in whichz = m = 1,D = D; = 4, A € L(H(4)) is such
that

(28) A(HWU) ™) € (H) ™

The linear map A is represented by (25), where ¢ : 4 — 4 is holomorphic, and therefore
is either constant or an open map.

Suppose that ¢ is not constant. There is measurable set K C 94, with Lebesgue
measure 72(K) = 2z, such that, for every £ € K, the non-tangential limit

}irrk} () == ¢* (k)

exists, and ¢ (k) € A.

If ¢(4) # D, there exists a measurable set L C 94 such that / =m(L) > 0 and
¢"(L) C D. By the Lusin theorem, for every & > 0 there exists a measurable set L, C L
with 7(L;) <& and a continuous function w:9d4 — C satisfying the following
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conditions:
sup{|w(?)| : € K} = sup{|¢"(#)| : £ € K};
letting
Lo:={teK: ) #¢ 1)},
then

m(L,) < e.
Since L, C L, then m(L,) < / and
m(L\L,) > [ —e.

For every § > 0 there exist an open set V and a closed set F in 94 such that
FCI\L, CV and m(V\F) < ¢. If F is a finite set, m(V\F) = m(V) > [ — &. Hence,
choosing ¢ > 0 sufficiently small, F contains infinite points. Furthermore, being

m(I\Ly) — m(F) < m((L\L\F) < m(V\F) < ,

if 0 is sufficiently small, then #2(F) > 0.

Because the holomorphic function ¢ is not constant, ¢*(F) = w(F) is a compact subset
of 4 containing infinite points. Let Z be an infinite, countable subset of F whose image by
¢" is an infinite subset of the compact set w(F) C 4. By the Fatou theorem, [3], there is a
function y, holomorphic on 4, continuous on 4, whose zero-set is Z. On the other hand,
the holomorphic function y o ¢ vanishes on the set ¢"(Z) C 4, and therefore vanishes
identically in 4, contradicting the fact that - ¢ being non-constant - A is injective. That
proves

TreOREM 15. Let A € L(H(A)) satisfy (28), and therefore be represented by (25). The
map ¢ : A — A is either constant, or an inner function.

Denote now H*(4) by H® and let the restriction of A € L(H(4)) to H® be a
surjective isometry of the Banach space H* onto itself. As was shown by K. Hoffman
[3, p. 147], there exist a constant ¢ € 4 and a Moebius transformation ¢ of 4 such that

(Au)(2) = cul(@(s))

for all # € 4 and all # € H*. Note that ¢ = Al.
Let now x € H(A). For any a € (0, 1), the function x, : 4 > s—x(as) is contained in
H*>, and therefore

(29) (Ax)() = (A1) x(ag(2)) ¥V x € H(A), ¢ € 4.

Asa 71, x, — x, uniformly on all compact sets in 4, and therefore Ax, — Ax. Thus, (29)
yields (25), and the following proposition holds.

ProrostTion 6. If A|H™ is a Banach space-isometry mapping H* onto itself, then (24)
holds.
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