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Analisi matematica. — On the multiplicity of brake orbits and homoclinics in
Riemannian manifolds. Nota di RosertOo Gramso, Fasio Giannoni e PaoLo
PicCIONE, presentata (*) dal Socio A. Ambrosetti.

AsstracT. — Let (M, g) be a complete Riemannian manifold, 2 C M an open subset whose closure is
diffeomorphic to an annulus. If 2 is smooth and it satisfies a strong concavity assumption, then it is possible to
prove that there are at least two geometrically distinct geodesics in @ = Q| O starting orthogonally to one
connected component of OQ and arriving orthogonally onto the other one. The results given in [5] allow to
obtain a proof of the existence of two distinct homoclinic orbits for an autonomous Lagrangian system
emanating from a nondegenerate maximum point of the potential energy, and a proof of the existence of two
distinct brake orbits for a class of Hamiltonian systems. Under a further symmetry assumption, it is possible to
show the existence of at least dim(M) pairs of geometrically distinct geodesics as above, brake orbits and
homoclinics.

Key worps: Brake orbits; Homoclinics; Variational methods.

Riassunto. — Molteplicita di brake orbits e curve omocline su varieta Riemanniane. Sia (M, g) una varieta
Riemanniana completa, e Q C M un aperto la cui chiusura ¢ omeomorfa ad un anello. Se 9Q ¢ liscio e soddisfa
un’ipotesi di concavita forte, ¢ possibile dimostrare che esistono almeno due geodetiche geometricamente
distinte in @ = Q|J9Q, aventi gli estremi su componenti connesse distinte di dQ, e velocita iniziale e finale
ortogonali a 9Q. I risultati di [5] permettono di ottenere una dimostrazione, nel caso di un sistema Lagrangiano
autonomo, dell’esistenza di due distinte curve omocline partenti da un punto di massimo non degenere
dell’energia potenziale, e una dimostrazione dell’esistenza di due distinte brake orbits per una classe di sistemi
Hamiltoniani. Sotto ulteriori ipotesi di simmetria, si ottiene I'esistenza di almeno dim(M) coppie di geodetiche
geometricamente distinte, di brake orbits e di curve omocline.

In this Note we will describe a version of the Ljusternik-Schnirelman theory that can
be used to prove the existence of multiple orthogonal geodesic chords in Riemannian
manifolds with boundary. This fact, together with the results in [5], gives a multiplicity
result for homoclinics and brake orbits of a class of Hamiltonian systems.

1. GEODESICS IN RIEMANNIAN MANIFOLDS WITH BOUNDARY

Let (M, g) be a C?>-Riemannian manifold with dim(M) = # > 2. The symbol V will
denote the covariant derivative of the Levi-Civita connection of g, as well as the gradient
differential operator for smooth maps on M. The Hessian H/(g) of a smooth map
Ff:M—R at a point g€ M is the symmetric bilinear fozrrn H (¢)(v, w) =

d
= g((V,V£)(g),w) for all v,w € T.M; equivalently, H (9)(v,v) = FE _Of(y(s)), where
y: ] —¢ el — M is the unique (affinely parameterized) geodesic in M with y(0) = ¢ and

(*) Nella seduta dell’11 marzo 2005.
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: . D . o .
7(0) = v. We will denote by T the covariant derivative along a curve, in such a way that

gj/ = 0 is the equation of the geodesics. A basic reference on the background material
for Riemannian geometry is [4].

Let Q C M be an open subset; 2 = Q| J 92 will denote its closure. There are several
notion of convexity and concavity in Riemannian geometry, extending the usual ones for
subsets of the Euclidean space R”. In this paper we will use a somewhat strong concavity
assumption for compact subsets of M, that we will call «strong concavity» below, and
which is stable by C?-small perturbations of the boundary. Let us first recall the following:

DeriniTION 1.1, Q is said to be convex if every geodesic y : [4,b] — Q whose end-
points p(a) and y(b) are in Q has image entirely contained in Q. Likewise, Q2 is said to be
concave if its complement M \ Q is convex.

If 6Q is a smooth embedded submanifold of M, let [,,(x) : T,(02) x T,(0Q2) — R
denote the second fundamental form of 02 in the normal direction n € T(0Q)". Recall
that I,,(x) is a symmetric bilinear form on T,(02) defined by:

(%)@, w) = g(V,W,n), v,w e T (09Q),

where W is any local extension of w to a smooth vector field along 9.

Remark 1.2. Assume that it is given a smooth function ¢ : M — R with the property
that @ =¢'(] - 00,0[) and 9Q = ¢ '(0), with dg# 0 on 9Q("). The following
equality between the Hessian H? and the second fundamental form (%) of 02 holds:

(1.1) H(x0)(0,0) = ~lgg0(0)(@,0), x € 92, v € T,(0Q);

Namely, if x € 0Q, v € T,(02) and V is a local extension around x of v to a vector field
which is tangent to 92, then v(g(V¢g, V)) = 0 on 92, and thus:

H¢(x)(v, v) = v(g(qu, V)) —g(Ve,V, V) = ~lyg0 (%) (v, 0).

Note that the second fundamental form is defined intrinsically, while there is general
no natural choice for a function ¢ describing the boundary of Q as above.

DeriniTioN 1.3, We will say that Q is strongly concave if 1,,(x) is negative definite for
all x € 9Q and all inward pointing normal direction 1.

Observe that if Q is strongly concave, geodesics 7 starting tangentially to 02 move
inside Q, as we see looking at Taylor expansion of s—@(y(s)).

(*) For example one can choose ¢ such that |¢(g)| = dist(g, d€2) for all  in a (closed) neighborhood of Q.
(%) Observe that, with our definition of ¢, then V¢ is a normal vector to dQ pointing outwards from Q.
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ReEMARK 1.4. Strong concavity is evidently a C>-open condition. Then, by 1.1, if Q is
compact, we deduce the existence of dy >0 such that H?(x)(v,0) <0 for all
x € gffl([ - 50,50]) and for all v € T,M, v # 0, such that g(V¢(x),v) = 0, (moreover
Vo #0Yx € ¢ ([ — o, d))).

The main objects of our study are geodesics in M having image in Q and with
endpoints orthogonal to 9, that will be called orthogonal geodesic chords:

DermniTioN 1.5. A geodesic 7 : [a,6] — M is called a geodesic chord in Q if
y(la,b0) C 2 and yla), y(b) € 02; by a weak geodesic chord we will mean a geodesic
v : [a,b] — M with image in Q and endpoints y(a), y(b) € Q. A (weak) geodesic chord is
called orthogonal if J(a*) € (T,,»0R)" and (b) € (T,,)0R)", where 7(-* ) denote the
lateral derivatives. An orthogonal geodesic chord in Q whose endpoints belong to distinct
connected components of 9Q will be called a crossing orthogonal geodesic chord in Q.

For shortness, we will write OGC for «orthogonal geodesic chord» and WOGC for
«weak orthogonal geodesic chord». Although the general class of weak orthogonal
geodesic chords are perfectly acceptable solutions of our initial geometrical problem,
our suggested construction of a variational setup works well only in a situation where one
can exclude a priori the existence in Q of orthogonal geodesic chords y : [4,5] — Q for
which there exists sg € la, [ such that y(sy) € 02.

One does not lose generality in assuming that there are no such WOGC’s in Q by
recalling the following result from [5, Proposition 2.6]:

PropPOSITION 1.6. Let Q C M be an open set whose boundary 0Q is smooth and
compact and with Q strongly concave. Assume that there are only a finite number of crossing
orthogonal geodesic chords in Q. Then, there exists an open subset Q' C Q with the fol-
lowing properties:

(1) @ is diffeomorphic to Q and it has smooth boundary;

(2) @ is strongly concave; o

(3) the number of crossing OGC'’s in Q' is less than or equal to the number of crossing
OGC’s in Q; o o

(4) every crossing WOGC in Q' is a crossing OGC in &'

The central result described in this Note is a lower estimate on the number of distinct
orthogonal geodesic chords under the strong concavity condition given in Definition 1.3.
Concerning the convex case we recall that, in [2], Bos proved that if 9 is smooth, Q
convex and homeomorphic to the 7-dimensional disk, then there are at least #z distinct
OGC’s for Q. Such a result is a generalization of a classical result by Ljusternik and
Schnirelman (see [11]), where the same result was proven for convex subsets of R”
endowed with the Euclidean metric. Always in the convex case in [7] it was studied the
dependence of the number of the OGC’s by the topology of the domain Q.

By an mz-dimensional annulus we mean a topological space homeomorphic to
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topological product "~ ! x [0, 1], that can be thought as the subset of R”:
A={peR”: 1< p| <2}

Our central result is the following:

TreoREM 1.7. Let Q be an open subset of M with smooth boundary 0, such that Q is
strongly concave and homeomorphic to an annulus. Suppose there are no crossing WOGC in Q.
Then there are at least two geometrically distinct () crossing orthogonal geodesic chords in Q.

2. THE CLASS OF ADMISSIBLE DEFORMATIONS AND THE USED FUNCTIONAL

Multiplicity of OGC'’s in the case of compact manifolds having convex boundary is
typically proven by applying a curve-shortening argument. From an abstract viewpoint,
the curve-shortening process can be seen as the construction of a flow in the space of
paths, along whose trajectories the length or energy functional is decreasing.

Shortening a curve having image in a closed convex subset Q of a Riemannian
manifold produces another curve in ©; in this sense, we think of the shortening flow as
being «inward pushing» in the convex case. As opposite to the convex case, the
shortening flow in the concave case will be «outwards pushing», and this fact requires
the one should consider only those portions of a curve that remain inside  when it is
stretched outwards.

«Variational criticality» relatively to the energy functional can be defined in terms of
«outwards pushing» infinitesimal deformations of the path space as follows.

For x € H'([0, 1], R™), let V* (x) denote the following cone in T.H' ([0, 11, R"):

(2.1) Vi) = {V € Tle([O, 1],Rm) :g(V(s),Vqﬁ(x(s))) >0 for x(s) € ¢ ’1(0)};

vector fields in V' (x) are interpreted as infinitesimal variations of x by curves stretching
outwards from the set Q. Similarly, for x € H! ([0, 1], R”) we define the cone:

(22) V (x)={V e T.H'([0,11,R”) : g(V(s), V§(x(s))) <0 for x(s) €¢ ' (0)}.

DeriNniTion 2.1. Let x € H'([0,1], R”) and [4, 4] C [0, 1]; we will say that X[,p 52
variationally critical portion of x if x|y, ;) is not constant and if

b
(2.3) /g(x,gv> dt>0, VVeVy.

a

The integral in (2.3) gives precisely the first variation of the geodesic action functional
b

1
> / g(%, %) ds in (M, g) along x{, ,;. Hence, variationally critical portions are interpreted

a

() By geometrically distinct curves we mean curves having distinct images as subsets of Q.
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as those curves x|, ,; whose geodesic energy is 70t decreased after infinitesimal variations
by curves stretching outwards from the set Q. The motivation for using outwards
pushing infinitesimal variations is due to the concavity of Q. In the convex case it is
customary to use infinitesimal variations of x in V™ (x) (keeping the endpoints of x on
09Q); the corresponding notion of criticality in the convex case gives orthogonal geodesic
chords in Q.

Unfortunately in the concave case the situation is much more complicated. Indeed the
class of variationally critical portions contains properly the set of portions consisting of
crossing OGC’s; such curves can be defined as «geometrically critical» paths. In order to
construct the shortening flow, an accurate analysis of all possible variationally critical
paths is required, and the concavity condition guarantees that such paths are well behaved
as pointed out by the following results.

Let Jg be as in Remark 1.4.

Lemma22. Letx € H'([0,11,R"™) be fixed, and let [a,b] C [0, 1] be such that I
is a (non-constant) variationally critical portion of x, with x(a),x(b) € 9Q and
x([a,b]) C Q. Then:

(1) x~Y0R) N [a, b] consists of a finite number of cZoxed intervals and isolated points;

(2) x 75 constant on each connected component of x~1(082) N [a, b1,

X|1p) 5 precewise C2, and the discontinuities of % may occur only at points in 9,

G)
(4) each C? portzon of x|, 5 a geodesic in ©;
(5) inf{@(x(s)) : s € [a,b]} < — do.

PROPOSITION 2.3. Assume that there are not crossing WOGC’s in the set Q. Let
x € H'([0,11,R™) and [a,b] C [0,1] such that x|, ,, is a variationally critical portion of
x, with x(a), x(b) in different connected components of Q2 and x([a,b]) C Q. Suppose that
the restriction of x to [a, b is of class C'. Then, x|y, ) #s a crossing orthogonal geodesic chord
in Q with x(la, bl) C Q.

Variationally critical portions x|, ;) of class C' will be called regular variationally
critical portions; those critical portions that do not belong to this class will be called
irregular. Irregular variationally critical portions of curves x € H'([0, 11, R”) are further
divided into two subclasses, described below.

ProposiTioN 2.4, Let x € H' ([0, 11, R™) and let [a,b] C [0,1] be such that x|y, ;, is
an irregular variationally critical portion of x with x(a),x(b) in different connected com-
ponents of 02 and x([a, b]) C Q. Then, there exists a subinterval [a, 1 C [a, b] such that
X|(g.q1 and x| ) are constant (in 0Q), 5(a™) € T (02", 2(B7) € Typ(0R)", and one of
the two mutually exclusive situations occurs:

(1) there exists a finite number of intervals [t1,1,] C la, Bl such that x([t, 1) C 0Q
and that are maximal with respect to this property; moreover, x is constant on each such
interval (1, ], and x(¢]) # x();

(2) x|y, p) 25 a crossing OGC in Q.
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Thanks to the above results it is possible to move far away from critical portions which
are not crossing OGC'’s, using «inward pushing» infinitesimal deformations (cf. (2.2)) for
irregular variational critical portions. Indeed irregular variational critical portions are not
of class C', while critical portions with respect to (2.2) are of class C'. Then the only
portions of curves which are critical with respect either (2.1) or (2.2) are crossing OGC’s,
and this is the key to avoid irregular variational critical portions by our flows.

The shortening flow is constructed locally around portions which are not crossing
OGC, and then patched together obtaining homotopies included in the following class
that we are going to describe.

Let y : A — Q a homeomorphism and take

C={yoy:y6)=1+sqq€R" [q]=1},
where || - || denotes Euclidean norm in R”. Using piecewise geodesics the curves in ¢’
can be regularized to curves in H', obtaining a set €& homeomorphic to S”~! and
consisting of curves y € H'([0, 11, Q), such that (0) € D; and y(1) € D5, where D; and
D, are the two connected components of 9.

Let dy be as in Remark 1.4 and denote by D; the connected components of
qﬁfl([O, 0o]) that contains D;. Set

M = {x € H'([0,1],¢ '] — 00,60[)) : x(0) € Dy, x(1) € D1}
Note that € C 9. For all x € M, let Z, denote the following collection of closed
subintervals of [0, 1]:

T, = {la,b] C [0,1] : x([a,b]) C Q, and [a, b] is maximal w.r.t. this property}.
If x € P and [4, b] € T, we say that [a, b] is a crossing interval of Q for x if x(a) € Dy and
x(b) € D,, and we set

Ty ={la,b] € I, : [a,b]is a crossing interval of Q for x}.

A crucial notion is the one of h-genuine interval:

DeriNtTioN 2.5, Let D C €, let 5 : [0,1] x D — I be a continuous map, y € D,
and 7 € [0,1]. We say that an interval [a;, b1 € T, is h-genuine if for all 0 < 7' <7
there exists [ay, by] € Ty, such that [a;, b1 C lay, by] (see fig. 1).

1
Let My = max{ / glx,x)ds : xe€ € } where g is the Riemannian structure of Jt. The

class H of admissible homotopies consists of the maps 4 : [0, 1] x D — It (with D closed
subset of M) such that:

e /(0,-)is the inclusion D < J)¢;

e/ sends outside Q the pieces of curves which are outside ;

e any h-genuine interval [a;,b;] related to x=Ah(r,y) is such that
by

/%g(o’c,a‘c) ds < My;

ac
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This portion corresponds
to a non genuine h-interval

Fig. 1. — The dotted curves in the figure represent part of the «evolution» of the curve y by the homotopy &. A
portion of h(z,7) corresponds to a crossing interval of h(z, p) which is 7ot h-genuine. It arises from a non crossing
interval of 7.

e ) moves far from variationally critical portions of curves (w.r.t. outward pushing
infinitesimal deformations) that are not crossing OGC.

Along these homotopies, we define the functional

br
Fh,t,y) = sup{(bfz;df)/ glx,x)ds : x = h(1,y), lar, b.] € Ty is b—gemuine}7

ar

where h € H, 7 € [0,1],and y € D.

Remark 2.6. Note that by the definition of H, € and I, for any 4, , y there exists at
least one A-genuine interval [a;, b:] € J (.. Note also that the number of such intervals

is finite. Moreover it should be pointed out that any
1

—4) / g(9,9) dt coincides with

1 . ) .. .
3 / 20ap,ap) dt, where v, is the affine reparameterization of y on the interval [0, 1].

0
If p, = inf{dist(x1,x2) : x1 € D1,% € Dy} (where dist denotes the distance induced
by the Riemann structure g), it is

1
(2.4) F(h,t,7) Zzp(z), Vvh e H,VyeD,Vrel0,1].
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Moreover, if [4;, b,] is any interval where the supremum in the definition of F is attained,
b

1
since it satisfied /Eg(a'c, x)ds < My, setting x = h(z,7), it is

ar

b,
(2.5) F(h,t,7) —(bfz_dr)/g(k,k) dt < (b —a.)

ar

3. THE DEFORMATIONS RESULTS
We say that c is a geometrically critical value if there exists a crossing OGC y such that
1

1
5 / 4(9,9) ds = ¢. Otherwise c is called geometrically regular value. It is important to note

th%t, thanks to transversality condition satisfied by OGC'’s at their endpoints, it is easy to
prove that different geometrically critical values corresponds to geometrically distinct
crossing OGC'’s. Therefore, the central issue becomes a problem of proving multiplicity
of geometrically critical values. Towards this goal, the following deformation results can
be proved.

ProposiTioN 3.1 (First Deformation Lemma). Let ¢ be a geometrically regular value of
F. There exists ¢ = &(c) > 0 such that for all compact subset D C € and for all h € H with

F(h,1,D) C 11— o0,c+el,

there exists a continuous map 1 € C°([0,1] x h(1,D), M) such that n*h € H (here * is
the homotopies concatenation operator) and

Fnxh,1,D) C]—o00,c—el
Let now 7. > 0 be fixed and let us consider the set:

u, = {x € M : exists [a,b] € J,{and an OGC y: [4,b] — Q from D; to D;

(3.1) such that rr%azg] dist(x(s),7([0,1])) < r*}.

sela,

Note that U, is open in . Assume now that the number of OGC’s from D; to D, is
finite; then, 7, can be chosen small enough so that the following two facts hold true:

(3.2) forall x e U, , {for all [4,b] € J, there exists at most one y satisfying (3.1).

and

(3.3) the set {A € Dy : [JA —y(0)|| < 27, for some y OGC from D; to Dz}

is contractible in Dy,

(here || - || denotes the norm induced by g).
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ProprosiTION 3.2 (Second Deformation Lemma). Let ¢ be a geometrically critical value.
Then, there exists e, = &,(c) > 0 such that, for all compact subset D C € and for all h € H
with

F(h,1,D) C]—o00,c+ e,

there exists a continuous map n € C°([0,11 x h(1,D), M) such that nx b € H and:
f(ﬂ*/?, 17D \ b(la ')71(1/{;**)) - ] — 00, C — 8*].
PROPOSITION 3.3. Assume that there are only a finite number of OGC’s from D; to D,,

and assume that r, is a small positive number for which (3.2) and (3.3) are satisfied. Then,
for all b € H there exists an open set A of €, A > h(1,)"" (U,.), that is contractible in C.

To prove Theorem 1.7, we set
I''={DcC : Dis closed and cats(D) > 7}

where cat is the classical Ljusternik-Schnirelman category, and

¢ = inf (sup]—'(b,Lx)).

Del’,ﬁbeH xeD
Note that I'y, I'; # () since cats(€) = catgr 18! = 2.
M
By (2.4) ¢ > %2, while by (2.5), ¢; < 70 ( = 1,2). Finally, using classical arguments

(cf. e.g. [12, 17]), thanks to Propositions 3.1, 3.2 and 3.3, we see that any ¢; is a
geometrically critical value and if the number of crossing OGC’s is finite then ¢; < ¢,
obtaining the existence of two geometrically distinct crossing OGC’s.

4. BRAKE AND HOMOCLINIC ORBITS OF HAMILTONIAN SYSTEMS

The result of Theorem 1.7 can be applied to prove a multiplicity result for brake
orbits and homoclinic orbits, as follows.

Let p=(p,), ¢ =(4) be coordinates on R*”, and let us consider a natural
Hamiltonian function H € C? (RZ’”, R), i.e., a function of the form

1N,
(4.1) Hip.g) =5 > ' @pip; + V(9.

i,7=1

where V € C?(R”,R) and A(g) = (a”(q)) is a positive definite quadratic form on R":
> @pip; = v(glq
by

for some continuous function v : R” — R™ and for all (p,q) € R*”.
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The corresponding Hamiltonian system is:

0H

g
0H
o
where the dot denotes differentiation with respect to time.

Forallg € R™, denote by L(g) : R” — R™ the linear isomorphism whose matrix with

respect to the canonical basis is (4;/(g)), the inverse of (a”(g)); it is easily seen that, if (p, g)
is a solution of class C! of (4.2), then g is actually a map of class C? and

(4.3) p = L(g)g.

With a slight abuse of language, we will say that a C?>-map ¢ : [ — R” is a solution of (4.2) if
(p, q) is asolution of (4.2) where p is given by (4.3). Since the system (4.2) is autonomous, z.e.,
time independent, then the function H is constant along each solution, and it represents the
total energy of the solution of the dynamical system. There exists a large amount of literature
concerning the study of periodic solutions of autonomous Hamiltonian systems having
energy H prescribed (see for instance [9] and the references therein).

We consider here a special kind of periodic solutions of (4.2), called brake orbits.
A brake orbit for the system (4.2) is a non constant periodic solution
R 2 ¢ (pt),q(t)) € R¥ of class C? with the property that p(0) = p(T) = 0 for some
T > 0. Since H is even in the variable p, a brake orbit (p, ¢) is 2T-periodic, with p odd
and ¢ even about # = 0 and about # = T. Clearly, if E is the energy of a brake orbit
(p,q), then V(4(0)) = V(¢(T)) = E.

The link between brake orbits and orthogonal geodesic chords is obtained in [5,
Theorem 5.9] working on the closure of the open set

(4.2)
q’ =

(4.4) Qpr =V ~00,El) = {xeR": V(x) < E}
endowed with the Jacob: metric

(45) 26 = (E— V) golie )

where go(x, X) %Z x) dx’ dx”.

i,7=1
More precisely for all x € Qf consider
1
a’E(y)::inf{/((E — Vi(x)go (5;, g’c))l/zdz‘ cxeH! ([07 1],@5), x(0)=y, x(1) € 6_(2}
0

which is attained in a unique curve if y is sufficiently close to 27! (E). In [5] the following
result is proved:

TureorEM 4.1, Let dp : Q — [0, +ool be the map defined above, and assume that Qf is
compact. There exists a positive number 0, such that, setting:

Q*:{XG.QE dE >5}
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the following statements hold:

(1) 0, is of class C?;

(2) Q. is homeomorphic to Qg;

(3) Q. is strongly concave relatively to the Jacobi metric gg;

(4) ifx : [0,1] — Q, isan orthogonal geodesic chord in Q, relatively to the Jacobi metric
gg, then there exists [a,f1 D [0,1] and a unique extension X : [a,f] — Q of x with
x € H'([a, f1, Q) satisfying:

o x(s) € dg*(1—0.,0[) for all s € 1a, 0L UL, B;
o V(x(a)) = V(%(B)) = E;

o X can be reparameterized to a brake orbit (Maupertuis Principle).
Using Theorem 4.1 and Theorem 1.7, we get immediately the following:

TreoreMm 4.2. Let H € C? (Rzm, R) be a natural Hamiltonian function as in (4.1),

E e R and
QE = Vﬁl(] - OO,E[)

Assume that AV (x) # 0 for all x € 0Qg and that Q is homeomorphic to an m-dimensional
annulus. Then, the Hamiltonian system (4.2) has at least two geometrically distinct brake
orbits having energy E and endpoints in different connected components of V"(E).

Let us now go back to our Riemannian manifold (M, g) and assume that we are given a
map V € C?(M, R); the corresponding second order Hamiltonian system is the equation:

D .
(4.6) L4+ VV@ =0
When M = R” and g is the Riemannian metric

1 o
_ 2 } i doe/
(4.7) g= 2”2:1 a;;(x) dx’ dx/,

where the coefficients a;; are as above, then equation (4.6) is equivalent to (4.2), in the sense
that x is a solution of (4.6) if and only if the pair g = x and p = L(x)x is a solution of (4.2).

Let xo € M be a critical point of V, Z.e., such that VV(xy) = 0. A homoclinic orbit for
the system (4.6) emanating from x is a solution ¢ € C*(R, M) of (4.6) such that:

(4.8) lliznoo q(t) = [ligrnx q(t) = xo,
49) )=l 100

Multiplicity results for homoclinic orbits of (4.6) by variational methods were
established mostly in the non autonomous periodic case (see for instance [3, 8, 15,
16]). The autonomous case is somewhat harder to treat, and, to the knowledge of the
authors, the only results available in the literature are:

e [1], where it is considered a potential in R” satisfying a pinching property, a su-
perquadraticity condition and a suitable assumption on the second derivative;

e [13], where the results of [1] are improved taking off the superquadraticity con-
dition and the assumption on the second derivative of the potential;
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e [14], where the author considers the case of a potential in R” periodic in all
variables;
e [18], where it is considered a small perturbation of a radial potential.

Let (M,g) be a Riemannian manifold, V € C*(M,R) and let xp € M be a non-
degenerate maximum point of V, with V(xy) = E. Assume that:

(@) V711 = oo, EL) [U{wo} is homeomorphic to an open ball of R™;
(b) AV(x) # O for allx € V-XE) \ {0}

Using again the Jacobi metric (considering also the distance from the nondegenerate
maximum point with respect to the Jacobi metric) in [5, Theorem 5.19] it is shown that
the study of the multiplicity of homoclinics under assumptions (2) and (5) can be reduced
to the study of the multiplicity of crossing OGC’s on a strongly concave domain
homeomorphic to an annulus. Therefore by Theorem 1.7, we have the following
Theorem, which gives a generalization of the results in [1] and in [18]:

Tueorem4.3. Let (M, g) be a Riemannian manifold, V- € C*(M, R) and let xo € M be
a nondegenerate maximum point of V, with V(xy) = E. Assume that (a) and (b) above are
satisfied. Then, there are at least two geometrically distinct homoclinic orbits for the system
(4.6) emanating from xo and reaching V=1E) \ {xo}.

Finally, we consider the case of orthogonal geodesic chords in an annulus under a
further central symmetry assumption. We will say that a subset A of a Riemannian
manifold (M, g) is centrally symmetric around the point xo € M if there exists an isometry
I : M — M with I? = Id whose unique fixed point is x, and such that I(4) = A. Observe
that if 7 : [4,6] — M is a geodesic, then [ oy is also a geodesic in (M, g), and if y is
orthogonal at the endpoints at some hypersurface ' C M, then [ o y is orthogonal at the
endpoints to the hypersurface 1(X).

Tueorem 4.4. Under the hypotheses of Theorem 1.7, assume further that Q is centrally
symmetric around a point yo € M\ Q. Suppose there are not crossing WOGC in Q. Then
there are at least m crossing orthogonal geodesic chords yy, . .. ,7,, in Q such that each y; is
geometrically distinct from y; and 1 oy, Vi # J.

To prove the above result we use the category of the projective space P77
Accordingly, using again the results of [5] about Jacobi metric, we get similar multiplicity
results for brake orbits and for homoclinic orbits under a central symmetry assumption.

TreoreMm 4.5. Under the assumptions of Theorem 4.2, assume further that the func-
tions a; and V are centrally symmetric around some point yo ¢ V(1 — 00, E]). Then
there are at least m brake orbits y,, . ..,y,, of energy E for the Hamiltonian system (4.2),
having extreme points in different connected components of V~1E) and such that each y; is
geometrically distinct from y; and 1 oy, ¥i # j.

TreoREM 4.6. Under the assumptions of Theorem 4.3, if (M, g) is centrally symmetric
relatively to xo and the map V is also centrally symmetric around xo, then there are at least m
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homoclinic orbits y,, . . .7, for the system (4.6) emanating from xy and such that each y; is
geometrically distinct from y; and 1 oy, Vi # J.

Note that in Theorem 4.5 the hypersuface H~*(E) is not the boundary of a convex set.
So we can not compare this result with the results of [10] where H~!(E) is symmetric with
respect to the origin and bounding a convex compact set.
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