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Equazioni a derivate parziali. — Characterization of the interior regularity for parabolic
systems with discontinuous coefficients. Nota di Dian K. ParacacHev e Lusomira G.
SoFTOVA, presentata (*) dal Socio G. Da Prato.

AsstraCT. — We deal in this Note with linear parabolic (in sense of Petrovskij) systems of order 24 with
discontinuous principal coefficients belonging to VMO N L. By means of a priori estimates in Sobolev-Morrey
spaces we give a precise characterization of the Morrey, BMO and Hélder regularity of the solutions and their
derivatives up to order 25 — 1.

Key worbs: Parabolic systems; A priori estimates; Morrey spaces; Holder regularity; VMO.

Riassunto. — Caratterizzazione della regolarita all'interno per sistemi parabolici con coefficienti discontinui.
In questa Nota si studiano dei sistemi lineari parabolici (in senso di Petrovskij) di ordine 25 con coefficienti
principali appartenenti a VMO N L. Per mezzo di stime a priori negli spazi di Sobolev-Morrey si propone una
caratterizzazione precisa della regolarita (Morrey, BMO e Hélder) all’interno delle soluzioni e le loro derivate
fino all’ordine 26 — 1.

1. INTRODUCTION

A celebrated 1958’s paper by J. Nash asserts Holder continuity of weak solutions to
second-order, divergence form linear parabolic equations with measurable and essentially
bounded coefficients, providing this way for a parabolic counterpart to the famous elliptic
result of E. De Giorgi. By employing completely different technique, N.V. Krylov and
M.V. Safonov proved in the beginning of 1980’s Hélder continuity of the strong solutions
to second-order, non-divergence form equations with L™ coefficients. Their results opened
the way for the current blossom of the theory of fully nonlinear equations with all its
applications in differential geometry, stochastic control, nonlinear optimization, etc. On
the other hand, it is well known that this kind of results cannor hold, in general, neither for
systems nor for single equations of order greater than 2 if the principal coefficients are
merely bounded. A notable exception is given by operators for which the eigenvalues of
the principal part do not scatter too much — a condition originally introduced by
H.O. Cordes (see [12, and the references therein]).

It turns out that appropriate regularity of the principal coefficients not only
guarantees Holder’s continuity of strong solutions but even permits to develop a
relevant theory of elliptic/parabolic systems in Sobolev classes built on I for p > 1.
The background for these results is ensured by the possibility to estimate a priori the
L?-norms of solution’s highest order derivatives (say D*’u) by means of the data. The
method, associated to the names of A. Calderén and A. Zygmund, uses explicit
representation formulas for D?’u in terms of singular integral acting on the known
right-hand side plus another one acting on the very same derivatives D??u. Fortunately,

(*) Nella seduta del 14 gennaio 2005.
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these derivatives appear in a singular commutator the norm of which can be made
small if the coefficients have s#zall oscillation over small balls. This way, continuity of
the principal coefficients is a sufficient condition ensuring boundedness of the singular
integral operators and therefore validity of the [” a priori estimate. The desired
regularity of # then follows by known embeddings between Sobolev and Holder spaces
for suitable values of p. We refer the reader to the seminal works [1, 2, 6] for what
concerns elliptic systems, and to [7, 9, 15] in the case of parabolic operators. A relevant
L-theory of uniformly elliptic systems with discontinuous principal coefficients was
developed in [4]. The discontinuity is expressed in terms of appartenance to the class
of functions with vanishing mean oscillation VMO which contains as a proper subset
the space of uniformly continuous functions.

This Note deals with linear systems of order 2/ which are parabolic in sense of Petrovskij.
Our aim is to extend the aforementioned results to such systems with discontinuous
principal coefficients ¥ (x,#). We deal with strong solutions belonging to Sobolev-
Morrey’s class W;i’ioc(Q) where Q is a cylindrical domain in R” x R,. It is proved that
a%(x,1) € VMO N L™ is a sufficient condition ensuring local Hélder regularity of such
solutions and all their spatial derivatives up to order 26 — 1 for appropriate values of p and A.

Our approach makes use of the Calderén-Zygmund method of expressing highest order
solution’s derivatives in terms of Gaussian-type potentials. These turn out to be singular
integrals with &ernels of mixed homogeneity of degree —n — 2b (strongly defined by the
system itself) and their commutators with the multiplication by the VMO functions a%
which have swall integral oscillation over small cylinders. Employing results on
boundedness of these singular integral operators in L** (recently proven by the authors
in [13]), we derive a priori bounds of Caccioppoli type which yield estimates for the strong
solutions in W;%OC(Q) by means of the L{’(;i(Q) norm of the right-hand side plus a weaker
norm of the solution itself. By virtue of embedding properties of the Sobolev-Morrey spaces
into Holder ones, these a priori bounds lead to a complete characterization of the Morrey,
BMO and Hélder regularity of the solution and its spatial derivatives up to order 25 — 1.

2. MAIN RESULTS

Let Q € R”, n > 2, be a domain and define Q = Q x (0, T) with T > 0. We consider
the linear system

(1) Lu = Dau(x,t) — Z Ay (x, 0D u(x, ) =f(x, )

la]=25

for the vector-valued function u:Q — R” given by the transpose wu(x,?) =
= (ul(x, £,y thy(x, t))T, f=W,... Jn)¥, where Ag(x,t) is the 2 x m matrix
{@¥(x, l‘)};;:l of the measurable coefficients #*: Q — R. Hereafter 5 > 1 is a fixed
integer, a = (ay,...,a,), D, :==0/0t and D* = D% :=D{'...D% with D; := 0/9x;.
Later on, Du := (D"uy, ... ,D“MM)T and D’u substitutes any derivative Du with
la| =5 € N.
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Suppose the system (1) is unzformly parabolic in sense of Petrovskij (see [7,9, 15]). That is,
for a.a. (x,7) € Q and any & € R” set py(x,2,&), s =1,...,m, for the eigenvalues of the
m X m matrix (— 1) Z\a\:sza(X7 1)E" where & = 11 E? - - &% Then parabolicity of (1)
means

(2)  36>0: Repilx,t,8) < —6|&? aa. (x,) €Q, VEER", Vs=1,....,m

Endow R"™ = R” x R, with the parabolic metric p(x,) = max{|x], ¢]'?"} and
consider the collection of parabolic cylinders
(3) C,(x0, t0) := B,(x0) X (tg — #?*.49), B, (x0) := {x e R": |x — x| < r}
each having Lebesgue measure |C,| comparable to 772

Derinirion 2.1, Set Q, := C,(xo, o) N Q and suppose there is a positive constant A
such that |Q,| > Ar"*?* whenever (xo, %) € Q (for example, this is clearly verified if Q
has the interior cone property). Let p € (1,00) and 4 € (0,# +2b). The function
u € 17(Q) belongs to the parabolic Morrey space L*(Q) if

1/p
1 P
all, ;.0 = | sup sup — [ [ulx, ) dxdt | < oo.

>0 (x0,t0)€Q 7

r

The Sobolev- Morrey space W (Q) consists of all functions z: Q — R belonging to the
Sobolev space W 1(Q) with derlvatlves D,u, D%u, |a| < 2b, lying in L/*(Q). The norm in

b,
WZ 1(Q) is given by ”””W;’il HDt””p; ot Z; 0 Z|a\_3 D% ””p} 0

For the sake of brevity, we denote the cross-product of 72 copies of I*(Q) by the
same symbol. Thus, # = (1, ..., u,)" € [?(Q) means u, € [P(Q) forall k=1,....m

and [u]|, .0 == Y7 luell, 10- Further on, u € W51 (Q) if w € W51 (@ x (0, T)) for
any Q' € Q.

For an integrable function f/: Q — R define

(R = sup sup o / £, 0 —fo

7<R (x0,t0)€Q

dydt VR >0,

where /¢, is the average |Q,|” f ST dydr Then:
e f € BMO(Q) (cf. [10]) if ||f|| 0 = supg 717(R) < oo
o f e VMO(Q)(see [14]) if f € BMO(Q) and limg o 777(R) = 0. The quantity 7(R) is
referred to as VM O-modulus of #.
Our main result provides an a priori estimate in the Sobolev-Morrey scale for each
strong solution of the system (1) with zero initial trace on {# = 0}.

TrrorEM 2.2. Suppose (2), ¢ € VMO(Q) N L¥(Q), p € (1,00), 4 € (0,7 + 2b) and

letu € W;é }OC(Q) be a strong solution to (1) such that u(x,0) = 0.

Then, forany Q' = @ x (0,T) and Q" = Q" x (0, T), Q€ Q"€ Q, there is a constant
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C=Cln,mb,o,p, A, ||ag€||oo;Q, n ., dist (', 0Q")) such that
(4) IIMIIWIg{;g(@ < C([|1%u|l, 0r + lleell, s 00)-

As consequence of (4) we obtain a precise characterization of the Morrey, BMO and
Hélder regularity of the derivatives D'u with s € {0, 1,..., 26 — 1}. Namely,

CororrLary 2.3. Under the hypotheses of Theorem 2.2 set Ky, ;.crm) == |||, .00+
+ul|, ;.o and fix an s € {0,1,...,2b — 1}. There is a constant C such that:

. +2b- 1 ~
A re (1’;¢2T> then Du € LP3=0Q) and |D'u Ip2b-pri0 <
< CKyp s )
‘ +2b—2 _ _
D) ifp =" then Du € BMOQ) and | Du| gy < CKp 0
2b— 2 2b— 2
oif pe s 2 + (") then Dm e Co%/2(Q) with o, =2b—
2b—5s ' 2b—s5—1
2b— A D’ —D'u(x, ¢
e sup [Dul, 1) u(l ;Z ) < CKy .00 @).
p 0, Qi) (Jx — x| + [ — 7] /2byos '
A

0 1 n+2b n+ 2b n+ 2b n—+2b p
2b 2b—s 2b—s—1

(*) This inclusion rewrites as p € (z +2b — /., 00) when s = 2b — 1.
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The picture illustrates geometrically the results of Corollary 2.3 with the couple (p, 1)
lying in the semistrip {(p,A): p > 1, 0 <A <n+2b} and s € {0,1,...,2b —1}. The
points B, on the p-axis are B; = <Zb+21;,0), B=1(1,0), and A, = (1,7 + ) is the
intersection of the line passing through (0, 2 + 25) and B; with the vertical line {p = 1}.

We have D'u € [7?=9+4(()) if (p, ) belongs to the open right triangle BB,A,
(case a)). In particular, (p, 1) € ABByA, yields u € LP20+4(Q).

Let s€{0,...,26—2} and take (p,4) in the interior of the quadrilateral
R, := B;B,;1A;:1A;. Then the spatial derivatives D'u are Holder continuous with
exponent o (case ¢)), while D**lu € [7?P=s=Dr+4((Y'). Moreover, o, is the length |CA,|
of the segment CA; where C = C(p, ) is the intersection of the vertical line {p = 1} with
the line connecting the points (p, 2) and (0, 7 + 25). If (p, 1) € A,B; (the open line segment)
we have D'u € BMO(Q') (case b)), whereas (p, ) € A, 1B, implies D'*'u € BMO(Q').

Similarly, let R,,_; be the shadowed wunbounded region on the picture. Then
(', 7)) € Ryy_y gives that D**~'u are Holder continuous with exponent oy, ; =
= |C'Ay_y|, C'=C'(p', 7)), while (¢, ) € Ayy_1B,y_; yields D**~lu € BMO(Q').

3. SKETCH OF THE PROOFS

Prooror THEOREM 2.2. Set I' for the fundamental matrix of the operator & given by
(see [7, 15])
1 H(yr-1/2b. 1) o £)E
/ JOTEOHCYD L Auent 4E for T >0,

7n/2b
Iy, t9,0) = { 0T

R”

0 for 7 <0.

Let v € C*(R""!) be a vector-valued function which is compactly supported in x and
v(x,0) = 0. Employing standard arguments (freezing 47’s at a point (xo, %) € suppv,
expressing v as a Gaussian potential, taking the D?*-derivatives of v and then unfreezing
the coefficients, cf. [1, 2, 4, 6] in case of elliptic systems and [7, 9, 12, 15] in the parabolic
case), it is not hard to get the representation

(5) Dl(x,t) =p.. / DI (x,t;x — v, t — 1)y, T)dydz

Rﬂ+1

=: §,()

+Y po. [ DT tx—y,t— D (Aw(y, 1) —Ag(x,0) Div(y, Ddyde

R;1+1

= G,[A4,,D"v]

+ / DF (s, 13y, Doda @, 1) Va:|a] = 26
J
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where the derivatives D*I'(-,-;-,-) are taken with respect to the third variable,
p=1(ay,...,a;_1,0, — 1,041,...,a,) and v, stands for the s-th entry of the outward
normal to the unit Euclidean sphere S” := {(x,7) € R"': |x|* + # = 1}. Further on,
DI (x, t; uy, 1?27) = 1= "D (x, ;9,7) Yu >0 and | D*I'(x,2;9,7)do,) =0

whence each entry of the 7z x 7 matrix D*I'(x, #;y,7) is a variable kernel of Calderén-
Zygmund type with mixed homogeneity (see [8, 13]). The singular integral operators &,
and ,[A4,, -] are bounded on I7(Q) because of A, € L=(Q) (cf. [8]) and therefore the
representation formula (5) still holds true (a.e. in Q) for comzpactly supported in x functions
vE ng’l such that v(x,0) = 0. Moreover, &, and €,[A,, ] act continuously from
L7%(Q) into itself and the norm of the commutator €,[4, -] is comparable to 7 [y
(see [13, Theorem 2.1, Corollary 2.7]).

Fix an arbitrary point (xo, £5) € Q and consider the parabolic cylinder C, := C,(xy, o)
(cf. 3)). Letw € W;i'l(C,), suppv C C, and v(x,#y — %) = 0. Since A, € VMO, the
norm ||€,[A4,, D*v]|| »..c, can be made arbitrary small if C, shrinks to (xo, Z). Therefore,
for each &> 0 there is an 7y depending on ¢ and on the VMO-moduli 74, of the
coefficients, such that ||D2bv||p,/l;& < C(||1%0]], ;.c, —|—£HDZZ’vHP7/1;Cr) whenever » < 7y (cf.
[13, Corollary 2.8]). Hence, choosing ¢ small enough we get

(6) ||D2bv||p,/l;C,. < C||53”||p,;.;c,-

Let 7€ (0,7), 0€(0,1), @ =03 —0)/2>0 and define the cut-off function
plx,2) == 0, (x)p,5 (1), 0 < ¢ < 1, with ¢; € CF(B,(x)) and ¢, € C*(R) such that

1 x € By (xo) 1 tely— (97’)2177 tol
¢1(x) = p,(t) =
0 x¢ By,(x) 0 t<t— (@0

Since 0 — 0 = 0(1 — 0)/2, we have |D’g| < C(s)[0(1 — 0)r]* for any 1 < s < 2b and
ID,p| < CLO(1 — 0)r17%. Thus, applying (6) to v := gu, we obtain

2b—1
@25 S C<72b|8up,/1;cr + Z @x + @0>7
s=1

where O, stands for the Morrey seminorm @;:= sup [0(1 —O)rI'||Dul|, ¢,
0<0<1
5s€{0,...,2b}. Now interpolate the intermediate seminorms above (cf. [15, eq. (5.6)]

and [13, Proposition 3.2]) and fix 0 = 1/2, in order to get the next Caccioppoli-type
estimate

(7) ID?ull, s, < CUInll, 0, + Cr 2Nl ),

2 —
which holds for [|Da||, 3G,y 38 well by virtue of the parabolic structure of (1).

Therefore (7) implies (4) by means of a finite covering of Q by cylinders C,,,
r < dist (2, 0Q").

Remark 3.1. Employing the representation formula (5) and suitable homotopy
arguments (cf. [13, Section 3]) it is possible to prove also that the operator & imzproves
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integrability. Namely, being in the framework of Theorem 2.2 let ¢ € [p, o0) and suppose
u € W1 (0) be a strong solution of (1) such that u(x,0) = 0. Then L € L (Q)

g.loc
implies u € W221 (Q)
p p,,loc '
Proor oF CoroLLARy 2.3. It relies on the next result which is a parabolic version of
the classical Poincaré inequality.

LEmmA 3.2. Letu € Wﬁb*l(c,) where C, is any parabolic cylinder (3). Then for each
s€{0,1,...,2b — 1} there is a constant C = C(p,m, n,s) such that

5 b—s b s
/ ID'u(x,) — (D), "dxds < CG2> P (|D*ul], ) + Dl ) + 2 1D a7 ).
C,

To begin with, let s = 25 — 1. Direct calculations based on Lemma 3.2 lead to

L / Do, ) — (Dl [ dedr < CIDPu]? o, + (Dl ).
(0

1o+ Q! Q!
where Q, = C, N Q with 2r < dist (2, 0Q"), O’ = @ x (0, T) and Q'€ Q'€ Q". Taking
the supremum with respect to 7 above we get the Campanato seminorm of D**~'u on the
left-hand side which, in view of (4), turns out to be bounded by the Morrey norms of %
and u in Q. Now, employing the embedding properties of Campanato classes on spaces
of homogeneous type recently proved in [11] (cf. also [3, 5] in the case 5/ = 1) we obtain
as follows. If p + 1. < n 4 2b then D?*~'u € [P*+4(Q) and || D?*~'u |y is controlled
in terms of ||Xul|, ;. o and |lul|, ;.- I p+ 24 > 7+ 25 then D?Ply € Conrom1/2b(()
2b - ;\-

with g55_1 =1 — ntib—4 P (cf. [11, Corollary 1]). Finally, if p + A = # + 2b we first
apply the Holder inequality to ||D?*~'u — (D?*~'u)c || 11(0, and then Lemma 3.2 in order
to get D?**~lu € BMO(Q').

The proof of Corollary 2.3 completes in the same manner, running induction for
decreasing values of s.

Remark 3.3. The above results are easily extendable, modulo unessential
technicalities, to parabolic systems with lower order terms

Du — Z A, (x,)D*u + Z Bg(x, HDu =f(x,t)

/=25 1B1<25-1

with Bg(x, 1) = {bﬁj(x, z‘)}ZZJ:1 and b? belonging to suitable Morrey classes.

REFERENCES

[1]1 S. AcmoN - A. DoucLs - L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial dif-
ferential equations satisfying general boundary conditions. 1. Comm. Pure Appl. Math., vol. 12, 1959, 623-727.
[2] S. AcmoN - A. DoucLs - L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial dif-
ferential equations satisfying general boundary conditions. II. Comm. Pure Appl. Math., vol. 17, 1964, 35-92.



132

[3]

(4]

bl
[6]

[71

(8]

9]

[10]

(11]
[12]

[13]

[14]
[15]

D.K. PALAGACHEYV - L.G. SOFTOVA

S. CAMPANATO, Proprieta di Holderianita di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa, vol. 17,
1963, 175-188.

F. Chiarenza - M. Franciost - M. Frasca, LP-Estimates for linear elliptic systems with discontinuous
coefficients. Rend. Mat. Acc. Lincei, s. 9, vol. 5, 1994, 27-32.

G. Da Prato, Spazi £2°(Q,6) e loro proprieta. Ann. Mat. Pura Appl., vol. 69, 1965, 383-392.

A. DoucLis - L. NIRENBERG, Interior estimates for elliptic systems of partial differential equations. Comm.
Pure Appl. Math., vol. 8, 1955, 503-538.

S.D. EypEL’MAN, Parabolic Equations. In: Yu.V. EGorov - M.A. SuuBIN (eds.), Partial Differential
Equations VI: Elliptic and Parabolic Operators. Encycl. Math. Sci., vol. 63, Springer-Verlag, Berlin 1994,
203-316.

E.B. Fases - N. Rwviere, Singular integrals with mixed homogeneity. Studia Math., vol. 27, 1966, 19-38.
A. FriepmaN, Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, N.J.,
1964.

F.Jonn - L. NIReNBERG, On functions of bounded mean oscillation. Comm. Pure Appl. Math., vol. 14,
1961, 415-426.

M. KroNz, Somee function spaces on spaces of homogeneous type. Manuscr. Math., vol. 106, 2001, 219-248.
A. Maucert - D.K. Pacacachev - L.G. Sorrova, Elliptic and Parabolic Equations with Discontinuous
Coefficients. Wiley-VCH, Berlin 2000.

D.K. Paracacuev - L.G. Sorrova, Singular integral operators, Morrey spaces and fine regularity of
solutions to PDE’s. Potential Anal., vol. 20, 2004, 237-263.

D. SarasoN, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., vol. 207, 1975, 391-405.
V.A. SoLoNNIKOV, On the boundary value problems for linear parabolic systems of differential equations of
general form. Proc. Steklov Inst. Math., vol. 83, 1965 (in Russian); English translation: O.A.
LapyzueNskAYa (ed.), Boundary Value Problems of Mathematical Physics III. Amer. Math. Soc.,
Providence, R.1., 1967.

Pervenuta il 22 novembre 2004,
in forma definitiva il 30 dicembre 2004.

D.K. Palagachev:

Dipartimento di Matematica
Politecnico di Bari

Via E. Orabona, 4 - 70125 Bart
dian@dm.uniba.it

L.G. Softova:

Bulgarian Academy of Sciences

Institute of Mathematics and Informatics
Soria (Bulgaria)

luba@dm.uniba.it



