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Equazioni a derivate parziali. — Periodic solutions of nonlinear wave equations with

non-monotone forcing terms. Nota (*) di MassimiLiano Berti e Luca Biasco, presentata
dal Socio A. Ambrosetti.

AsstrACT. — Existence and regularity of periodic solutions of nonlinear, completely resonant, forced wave
equations is proved for a large class of non-monotone forcing terms. Our approach is based on a variational
Lyapunov-Schmidt reduction. The corresponding infinite dimensional bifurcation equation exhibits an intrinsic
lack of compactness. This difficulty is overcome finding a-priori estimates for the constrained minimizers of the
reduced action functional, through techniques inspired by regularity theory as in [10].

Key worps: Wave equation; Periodic solutions; Variational methods; A-priori estimates; Lyapunov-
Schmidt reduction.

RiassunTO. — Soluzioni periodiche dell equazione delle onde non lineari con termini forzanti non monotoni.
Presentiamo risultati di esistenza ed unicita di soluzioni periodiche per equazioni delle onde nonlineari,
completamente risonanti e periodicamente forzate nel tempo, per un’ampia classe di termini forzanti non
monotoni. Il nostro approccio si basa su una riduzione variazionale di tipo Lyapunov-Schmidt. La corrispon-
dente equazione di biforcazione manca radicalmente di proprieta di compattezza. Questa difficolta viene
superata trovando opportune stime a-priori per i minimi vincolati del funzionale di azione ridotto, mediante
tecniche ispirate alla teoria della regolarita di [10].

1. INTRODUCTION AND RESULTS

We outline in this Note the recent results obtained in [2] concerning existence and
regularity of nontrivial time-periodic solutions for completely resonant, nonlinear, forced
wave equations like

(1.1) Ou=ef(¢,x,u;€)
with Dirichlet boundary conditions
(1.2) u(2,0) =u(t,m) =0

where 00 := 8, — Oy is the D’Alembertian operator, ¢ is a small parameter and the
nonlinear forcing term f (¢, x, #; &) is T-periodic in time. We consider the case when T is a
rational multiple of 27 and, for simplicity of exposition, we assume

T =2m.
We look for 27-periodic in time solutions of (1.1)-(1.2), namely « satisfying
(1.3) u(t 4 2m,x) = u(t,x) .
For ¢ =0, (1.1)-(1.2) reduces to the linear homogeneous wave equation
Ou =0
(14) {u(z‘,O) — u(t,m) = 0

(*) Pervenuta in forma definitiva all’ Accademia il 3 novembre 2004.
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which possesses an zi2finite dimensional space of solutions which are 27-periodic in time
and of the form »(z,x) = 5(¢ + x)— 0(¢ — x) for any 27-periodic function #( - ). For this
reason equation (1.1)-(1.2) is called completely resonant.

The main difficulty for proving existence of solutions of (1.1)-(1.2)-(1.3) for & # 0 is to
find from which periodic orbits of the linear equation (1.4) the solutions of the nonlinear
equation (1.1) branch off. This requires to solve an infinite dimensional bifurcation
equation with an intrinsic lack of compactness.

The first breakthrough regarding problem (1.1)-(1.2)-(1.3) was achieved by
Rabinowitz in [10] where existence and regularity of solutions was proved for
nonlinearities satisfying the strongly monotone assumption (9,f)(¢,x,4) > f > 0.
Using methods inspired by the theory of elliptic regularity, [10] proved the existence
of a unique curve of smooth solutions for ¢ small. Other existence results have been
obtained, still for strongly monotone £’s, in [5, 7].

Subsequently, Rabinowitz [11] was able to prove existence of weak solutions of (1.1)-
(1.2)-(1.3) for weakly monotone nonlinearities like £(z, x,u) = #***' + G(¢, x, u) where
G(t,x,u3) > G(t,%,u1) if uz > uy. Actually, in [11] the bifurcation of a global continuum
branch of weak solutions is proved.

In all the quoted papers the monotonicity assumption (strong or weak) is the key property
for overcoming the lack of compactness in the infinite dimensional bifurcation equation.

We underline that, in general, the weak solutions obtained in [11] are only continuous
functions. Concerning regularity, Brézis and Nirenberg [5] proved — but only for strongly
monotone nonlinearities — that any L>-solution of (1.1)-(1.2)-(1.3) is smooth, even in the
nonperturbative case ¢ = 1, whenever f is smooth.

On the other hand, very little is known about existence and regularity of solutions if
we drop the monotonicity assumption on the forcing term f. Willem [12], Hofer [8] and
Coron [6] have considered the class of equations (1.1)-(1.2) where f(z,x,u4) =
= g(u) + h(¢t,x), e =1, and g(u) satisfies suitable linear growth conditions. Existence
of weak solutions is proved, in [8, 12], for a set of » dense in L?, although explicit criteria
that characterize such 5 are not provided. The infinite dimensional bifurcation problem is
overcome by assuming non-resonance hypothesis between the asymptotic behaviour of
g(u) and the spectrum of . On the other side, Coron [6] finds weak solutions assuming
the additional symmetry h(¢,x) = h(¢ + 7, m — x) and restricting to the space of functions
satisfying (¢, x) = u(t + m,m — x), where the Kernel of the d’Alembertian operator [J
reduces to 0.

Let us now present the results obtained in [2] on existence and regularity of solutions
of (1.1)-(1.2)-(1.3) for a large class of nonmonotone forcing terms f (2, x, u).

We look for solutions # : 2 — R of (1.1)-(1.2)-(1.3) in the Banach space

E:=H'@)NnC @), Q:=Tx(0,nr)

where H'(Q) is the usual Sobolev space and Cé/ %(Q) is the space of all the 1/2-Holder
continuous functions # : Q— R satisfying (1.2), endowed with norm

|M‘E = |”|H1(Q) + |”|C1/2(§)
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2 2 2 2
where [t o) = [ulr2 o)+ txlr2(0)F #2120 and

|2, %) — u(ty, 1)
() (£ = t1] + |x = xa])/?

|”|c1/2(§) = ‘”|CO(Q) +
Critical points of the Lagrangian action functional ¥ € C'(E, R)

2 2
(15) 10 ;:/[%—%+8F(;7x7u;s)] dedsx |
Q

where F(¢,x,u;¢€) := 7}‘(1‘, x, & €)d&, are weak solutions of (1.1)-(1.2)-(1.3).
0

For ¢ = 0, the critical points of ¥ in E reduce to the solutions of the linear equation
(1.4) and form the subspace V := N N H!(Q) where

(1.6) N:= { v(t,x) = 0(t +x) — d(t —x) | » € L*(T) and /ﬁ(s) ds=0 }
0

Note that V ={v(¢,x) = d(¢ +x) — (¢t —x) € N | » € H'('[")} C E since any function
» € HY(T) is 1/2-Hslder continuous.
Let Nt :={he*(Q)| [hv=0, Vv € N} denote the L*-orthogonal of N which
Q

coincides with the range of O in [?(Q).

In [2] we prove the following Theorem:

Taeorem 1. Let f(t,x,u) = fu?* + h(t,x) and h € N* satisfies h(t,x) >0 (or
h(t,x) <0) a.e. in Q. Then, for ¢ small enough, there exists at least one weak solution
u€E of (1.1)-(1.2)-(13) with |uly < Cle|. If, moreover, h € H/(Q)NC1(Q), j > 1,
then u € H1(Q) N CJ(Q) with |ulyy- ) t 4l cig) < Clel and therefore, forj > 2, uisa
classical solution.

Theorem 1 is a Corollary of the following more general result which enables to deal
with non-monotone nonlinearities like, for example, f(¢,x,u) = (sinx) ** + h(¢,x),
Ft,x,u) = P + P+ b(2,x).

Tueorem 2. Let f(t,x,u) = g(t,x,u) + h(¢,x), b(¢,x) € N* and

g(t,x%,u) = B(x)i’* + R(t,x,u)
where R, O/R, 9,R € C(Q x R, R) satisfy (*)
(17) |R(v ”)'C(ﬁ) = 0(”2k) ) |8;R(, u)'c(ﬁ) = O(”Zk) ) |auR(7 ”)|C(§) = O(quil) )

and f € C([0, 7], R) verifies, for x € (0,7), f(x) > 0 (or f(x) < 0) and f(r — x) = P(x).
(1) (Existence). Assume there exists a weak solution H € E of TOH = b such that

(") The notation f(2) = o(z*), p € N, means that £(z)|z]’ — 0 as 2 — 0. f(z) = O(z”) means that there
exists a constant C > 0 such that | f(z)| < Clz[ for all z in a neighborhood of 0.



120 M. BERTI - L. BIASCO

(1.8) H(t,x) >0 (or H(#,x) < 0) V(t,x) € 2.

Then, for ¢ small enough, there exists at least one weak solution u € E of (1.1)-(1.2)-(1.3)
satisfying |u|p < Cle|.

(ii) (Regularity). If, moreover, b € H/(.Q) NC-4Q), pe H/((O,n))) R, O/R, O,R
€ C/(Q x R),j > 1, then u € H*Y(Q) N C)(Q) and, for j > 2, u is a classical solution.

Note that Theorem 2 does not require any growth condition on g at infinity. In
particular it applies for any analytic function g(u) satisfying g(0) =¢'(0)=...=
= 2¥1(0) = 0 and g?*(0) # 0.

We now collect some comments on the previous results.

Remark 1.1. The assumption » € Nt is not of technical nature both in Theorem 1
and in Theorem 2 (at least if g = g(x,u) = g(x, —u) = g(n — x,u)). Actually one can
prove that, if 5¢ N+, periodic solutions of problem (1.1)-(1.2)-(1.3) do not exist in any
fixed ball {|#|;~ <R}, R > 0, for & small.

Remark 1.2. In Theorem 2 hypothesis (1.8) and > 0 (or f < 0) are assumed to
prove the existence of a minimum of the «reduced action functional» @, see (1.17). A
sufficient condition implying (1.18) is 4 > 0 a.e. in Q. This follows by the «maximum
principle» proposition
(19) heN*-, h>0aein® = 3TFHEE solving OH =5 with H > 0.

This is the key step to derive Theorem 1 from Theorem 2.

Remark 1.3 (Regularity). It is not at all obvious that the weak solution # of Theorems
1, 2 is actually smooth. Indeed, while regularity always holds true for strictly monotone
nonlinearities (see [10, 5]), yet for weakly monotone f it is not proved in general, unless
the weak solution « verifies |ITnu|;. > C > 0 (see [11]). Note, on the contrary, that the
weak solution # of Theorem 2 satisfies |IIyu|,. = O(g). Moreover, assuming

(110) [ 07 9 Ry = Ot ),
VO<I,n<;j+1,0<m<; l+m+n<;j+1

we can also prove the estimate
(1.11) |”|H7+1(Q) + ‘”|cz(§) < Clel.

RemARk 1.4 (Multiplicity). For nonmonotone nonlinearities f one can NOT in general
expect unicity of the solutions. Actually, for f(¢,x,4) = g(x,u) + h(¢,x) with
glx,u) = g(x,—u), g(r — x,u) = g(x,u), there exist infinitely many » € N* for which
problem (1.1)-(1.2)-(1.3) has (at least) 3 solutions.

Remark 1.5 (Mimimal period). If 5(#,x) has minimal period 27 w.r.t time, then also
the solution #(#, x) has minimal period 2.

Finally, we extend the result of [10] proving existence of periodic solutions for
nonmonotone nonlinearities f(¢,x,#) obtained adding to a nonlinearity f(¢,x, ) as in



PERIODIC SOLUTIONS OF NONLINEAR WAVE EQUATIONS ... 121

[10] (e O, ; > f > 0) any nonmonotone term a(x, #) satisfying

(1.12) a(x,—u) = a(x,u), a(m — x,u) = a(x, u)
(1.13) a(x,—u) = —a(x,u) , a(m—x,u) = —a(x,u) .

A prototype nonlinearity is £ (¢, x, u) = u** +f(t, x, #) with 8%]72 B> 0.

Treorem 3. Let f(t,x,u) :j7(t, x,u) + a(x,u) where f, 0,f, 8,f are continuous,
Ouf > B> 0and a(x, u) satisfy (1.12) or (1.13). Then, for ¢ small enough, (1.1)-(1.2)-(1.3)
bas at least one w_eak solution u € E. If moreover f, O,f, 0,f € C/(Q x R), j > 1, then
u € H(Q) N C{(Q).

In the next subsection we describe the method followed in [2] to prove Theorems 1,
2, 3. We anticipate that such approach is not merely a sharpening of the ideas of [10, 11]
which, to deal with non monotone nonlinearities, require a significant change of
prospective.

1.1. Sketch of the Proof-

We look for critical points of the Lagrangian action functional ¥ : E — R defined in
(1.5) performing a variational Lyapunov-Schmidt reduction. We decompose the space E
as

E=VaeWw
where
V:=NNH'(Q) and W:=N"nH'(Q)NC®@).

Setting# = v+ wwithv € V,w € W and denoting by I7y and ITy. the projectors from
L2(Q) onto N and N* respectively, Problem (1.1)-(1.2)-(1.3) is equivalent to solve the
bifurcation equation

(1.14) IINf(v+w,e) =0
and the range equation
(1.15) w=eO Iy fv+w,e)

where 07! : Nt — N+ is the inverse of [J and f(«,¢) denotes the Nemitski operator
associated to f, namely
[f (u, &)](2, %) == f (2, x,u,¢).

The usual approach of [10, 7, 11] is to find, first, by the monotonicity of £, the unique
solution v = v(w) of the bifurcation equation (1.14) and, next, to solve the range equation
(1.15). On the other hand, for non-monotone forcing terms, one can 7ot in general solve
uniquely the equation (1.14) — recall by Remark 1.4 that in general unicity of solutions
does not hold. Therefore, to deal with non monotone nonlinearities, we must solve first
the range equation and thereafter the bifurcation equation. For other applications of this
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approach to perturbation problems in critical point theory, see e.g. the forthcoming
monograph by Ambrosetti and Malchiodi [1].

We find a solution w := w(v, &) € W of the range equation (1.15) satistying |w(v, €)|p =
= O(¢) by means of a quantitative version of the Implicit Function Theorem. Here no
serious difficulties arise since (1! acting on W is a compact operator, due to the assumption
T = 27 (actually [T~/ < Clf]p2, Vf € L?, see [5]).

RemaRrk 1.6. More in general, (I7! is compact on the orthogonal complement of
ker(d) whenever T is a rational multiple of 2. On the contrary, if T is an irrational
multiple of 27, then (07! is, in general, unbounded (a «small divisor» problem appears),
but the kernel of O reduces to 0 (there is no bifurcation equation). For existence of
periodic solutions in the case T/27 is irrational see e.g. [9].

Once the range equation (1.15) has been solved by w(v, &) € W it remains the infinite
dimensional bifurcation equation

(1.16) IINf (v + w(v,¢),6) =0

which, by the Lyapunov-Schmidt reduction procedure, turns out to be the Euler-
Lagrange equation of the reduced Lagrangian action functional

(1.17) ®:V—R D(v) =¥ (v +we) .

Since @ lacks compactness properties, we can not rely on critical point theory, unlike the
autonomous case considered in [3, 4] where, thanks to the «viscous term» \vﬁ{l, existence
and regularity of solutions is proved through the Mountain Pass Theorem and standard
elliptic regularity theory.

We attempt to minimize @. We do not try to apply the direct methods of the calculus
of variations because @, even though it could possess some coercivity property, will not be
convex (being  non monotone). Moreover, without assuming any growth condition on
the nonlinearity f, the functional @ could neither be well defined on any L?-space.

We minimize @ constrained in Bg := {v eV, vl < R}, VR > 0. By standard
compactness arguments @ attains minimum at, say, o € Bg. Since o could belong to
the boundary 9By we can only conclude the variational inequality

(1.18) D.o(@)lp] = [ f(o+ (5,59 <0
Q

for any admissible variation ¢ €V, i.e. if o+ 0p € By, V0 < 0 sufficiently small.

The heart of the existence proof of the weak solution # of Theorem 1, Theorem 2 and
Theorem 3 is to obtain, choosing suitable admissible variations the a-priori estimate
9]0 < R for some R > 0, Ze. to show that  is an {inner} minimum point of @ in Bg.

The strong monotonicity assumption (9, f)(¢,x,%) > f > 0 would allow here to get
such a-priori estimates by arguments similar to [10]. On the contrary, the main difficulty
for proving Theorems 1, 2 and 3 which deal with non-monotone nonlinearities is to
obtain such a priori-estimates for 2.

The most difficult cases are the proof of Theorems 1 and 2. To understand the
problem, let consider the particular nonlinearity £ (¢, x, ) = «** + h(¢, x) of Theorem 1.
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The even term #2* does not give any contribution into the variational inequality (1.18) at
the 0%-order in &, since the right hand side of (1.18) reduces, for ¢ = 0, to

/ (17% + h(z, x))¢ =0, VpeV
Q

since. h€N* and [#%#9=0 by the specific form 7 =(¢+ x)—(t — x),

Q
¢ = (¢t +x) — ¢(¢ — x) of the functions of V.
Therefore, for deriving, if ever possible, the required a-priori estimates, we have to
develop the variational inequality (1.18) at higher orders in &. We obtain

(1.19) 0> / 221 10(5,6) + O(u? (5, 8)) — / ¢ 267 L0 L (b + ) + O(2)
Q Q
because w(p, &) = &0 (% + h) + o(e) (recall that 7%%, h € N*).
We now sketch how the ¢-order term in the variational inequality (1.19) allows to
prove an L?*-estimate for 7. Inserting the admissible variation ¢ := 7 in (1.19) we get

(1.20) / Hi?* + 7 071%%* < O(e)

where H is a weak solution of O0H = b which verifies H(z,x) > 0 in Q (H exists by the
«maximum principle» proposition (1.9)).
The crucial fact is that the first term in (1.20) satisfies the coercivity inequality

(1.21) /Hy% > ¢(H) /02/6, VoeV
Q Q

for some constant ¢(H) > 0. We remark that (1.21) is not trivial because H vanishes at the
boundary (H(¢,0) = H(¢,7) = 0) and, indeed, its proof relies on the specific form
v(t,x) = 0(t + x)— 0(¢ — x) of the functions of V. The second term fz?zklj’l_% will be

negligible, &-close to the origin, with respect to f Hv?* and (1.20)-(1. 21) will provide the
L% _estimate for 7.

Next, we can obtain an L®-estimate and the required H'-estimate for 7 inserting
further admissible variations ¢ (inspired by [10]) into (1.19) and using inequalities
similar to (1.21). In this way we prove the existence of a weak solution # in the interior
of some Bg.

The regularity of the solution # — fact not at all obvious for non-monotone
nonlinearities — is proved using similar techniques inspired to regularity theory. We
insert suitable variations ¢ in D,®(9)[p] = 0 and, using inequalities like (1.21), we get
estimates for the L™ and H'-norm of the higher order derivatives of .

Theorem 2 is proved developing such ideas and a careful analysis of the further term R.

Finally, the proof of Theorem 3 is easier than for Theorems 1 and 2. Indeed the
additional term 4(x, ) does not contribute into the variational inequality (1.18) at the 0%-
order in ¢ because [a(x,2)p =0, Vp € V. Therefore the dominant term in the

Q
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variational inequality (1.18) is provided by the monotone forcing term f and the required
a-priori estimates are obtained with arguments similar to [10].

This work was supported by MIUR Variational Methods and Nonlinear Differential Equations.
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