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Analisi funzionale. — Quasi-periodic oscillations for wave equations under periodic
forcing. Nota di MassimiLiaNo BerTi e MicHELA ProcEst, presentata (*) dal Socio A.
Ambrosetti.

AsstracT. — Existence of quasi-periodic solutions with two frequencies of completely resonant,
periodically forced, nonlinear wave equations with periodic spatial boundary conditions is established. We
consider both the cases the forcing frequency is (Case A) a rational number and (Case B) an irrational number.

Key worbs: Nonlinear wave equation; Quasi-periodic solutions; Variational methods; Lyapunov-Schmidt
reduction; Infinite dimensional Hamiltonian systems.

Riassunto. — Oscillazioni quasi periodiche per equazioni delle onde con forzante periodica. Si dimostra
Pesistenza di soluzioni quasi periodiche con due frequenze per una classe di equazioni delle onde non lineari
completamente risonanti aventi un termine forzante periodico. Consideriamo che la frequenza forzante sia un
numero razionale (Caso A), sia irrazionale (Caso B).

1. INTRODUCTION

We present in this Note the results of [7] concerning existence of small amplitude
quasi-periodic solutions for completely resonant forced nonlinear wave equations like

Vit — Uxx +f(601i,11) =0
(1.1) { o(t, x) = v(t, x + 27)

where the nonlinear forcing term

Flont,v) = alonH*4 + 0@, d>1,deN"
is 27/ w;-periodic in time and the forcing frequency is:
o A) w € Q

e B) w; e R\ Q.

Existence of periodic solutions for completely resonant forced wave equations was
first proved in the pioneering paper [10] (with Dirichlet boundary conditions) if the
forcing frequency is a rational number (w; = 1 in [10]). This requires to solve an infinite
dimensional bifurcation equation which lacks compactness property; see [4] and
references therein for other results. If the forcing frequency is an irrational number
existence of periodic solutions has been proved in [8]: here the bifurcation equation is
trivial but a «small divisors problem» appears.

To prove existence of small amplitude quasi-periodic solutions for completely
resonant PDE’s like (1.1) one has to deal both with a small divisor problem and with
an infinite dimensional bifurcation equation. A major point is to understand from which
periodic solutions of the linearized equation

Uﬁ_vxx:()a

(*) Nella seduta del 22 aprile 2005.
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the quasi-periodic solutions branch-off: indeed such linear equation possesses only 27-
periodic solutions of the form g, (¢ + x)+ g_ (¢ — x).

For completely resonant autonomous PDE’s, existence of quasi-periodic solutions
with 2-frequencies have been recently obtained in [9] for the specific nonlinearities
f =’ + O@’). Here the bifurcation equation is solved by ODE methods.

In [7] we prove existence of quasi-periodic solutions with two frequencies w;, w, for
the completely resonant forced equation (1.1) in both the two cases A) and B).

The more interesting case is @; € Q (case A) when the forcing frequency w; enters in
resonance with the linear frequency 1. To find out from which solutions of the linearized
equation quasi-periodic solutions of (1.1) branch-off, requires to solve an infinite
dimensional bifurcation equation which can not be solved in general by ODE techniques
(it is a system of integro-differential equations). However, exploiting the variational
nature of equation (1.1) like in [5], the bifurcation problem can be reduced to finding
critical points of a suitable action functional which, in this case, possesses the infinite
dimensional linking geometry [3].

On the other hand, we avoid the inherent small divisor problem by restricting the
parameters to uncountable zero-measure sets as, e.g., in [9, 51.

1.1. Main results. We look for quasi-periodic solutions v(t, ) of (1.1) of the form

v(t, z) = wlwt, wot + x)
ulpy + 2ki17, 9o + 2kom) = ul@y, @), Vki, ko € Z

with frequencies
o = (w,w;) = (w,1+¢€)

imposing the frequency w; = 1 + ¢ to be close to the linear frequency 1. Therefore we get
(12) (0307, + (2 — 1), + 201020, Dy, Vi) +f (p1,4) = 0.
We assume that the forcing term f : T'x R — R

Flpy,u) = arg_1(p)e? 1 + 062,  deNT, d>1

is analytic in # but has only finite regularity in ¢,. More precisely

0]

o (H) f(py,u) := Z ap(p)u,d € N, d > 1 and the coefficients a(p,) € HX(T)
k=2d-1

o0
verify, for some r > 0, Z |ap| 7 < c0. The function f(¢;, %) is not identically con-
stant in ¢;. k=2d-1
We look for solutions # of (1.2) in the multiplicative Banach algebra

Hes = {u((ﬂ) = Z e iy =iy and |u|,, = Z |yl 1] < +oo}

le7? le7?
where [/1] := max{|/;|,1} and ¢ > 0, s > 0.
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In [7] we prove the following theorems.

TueoreM A. Let wy =n/m € Q. Assume that [ satisfies assumption (H) and
a4-1(p)) # 0, Vo, € 1. Let B, be the uncountable zero-measure Cantor set

By = {56(—60,60) : |Z1+El2|> vll7[2€Z\{0}}

where 0 <y < 1/6.
There exist constants G >0, 5>2, € >0, C > 0, such that Ve € B,, ||yt < &/n?,

there exists a classical solution u(e,p) € Hzs of (1.2) with (wy,w,) = (n/m,1+ €)
satisfying
2
(13) e, )~ 7)< TZ0 e
G5 y(,()i

for an appropriate function G. € Hys \ {0} of the form g-(9) = G, (9,)+ G- Q2mp, — np,).

As a consequence, equation (1.1) admits the quasi-periodic solution v(e,t,x) :=
ule,mit,x + wyt) with two frequencies (w1,w;) = (n/m,1+¢) and the map
t — vle,t,-) € H°(T) has the form (*)

1 2 2d—1
vie, t,x) — e T[g(x + (1 + €)8) + - (1 — &) nt — nx)] ‘Hﬂ"r) = O(ym_w3 |5|z<§n> .
- 1

Remark that the bifurcation of quasi-periodic solutions # occurs both for w, > 1 and
w; < 1; actually both B, N (0, &) and B, N ( — £, 0) are uncountable Ve, > 0.

At the first order the quasi-periodic solution v(e, #,x) of equation (1.1) is the
superposition of two waves traveling in opposite directions (in general, both components
g+, g— are non trivial).

The bifurcation of quasi-periodic solutions looks quite different if w, is irrational.

2n
TreoreMm B. Ler wy € R\ Q. Assume that f satisfies assumption (H), / arg_1(p1)do,
# 0 and f(py,u) € H(T), s > 1, for all u. 0

Let C, C D = (—eg,e0) x (1,2) be the uncountable zero-measure Cantor set

. (@ & ()
(6,0)1)€D. CU1¢CQ7 0)2¢Q7 |601[1+6[2|>|Z| |Z|

14) C, :=
e V1 e 7\ {0}

Y
L+Qtobl>—1
|1y + 2 + e)bs| TAESTA

Fix any 0 < 5 < s — 1/2. There exist positive constants g, C, & > 0, such that, ¥(c, w,) € C,
2r

with |ely™t <& and E/ arg_1(p)dop, >0, there exists a nontrivial solution
0

(") We denote H(T) := {ulp) = 3ycq "+ |tlggorry = Sy, i < +o0}.
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ule,9) € Hzs of equation (1.2) with (wy,w,) = (w1, 1 + €) satisfying
(1.5) ue,p) — |7 (p,)|__ < C% Bza

G5
for some function G_(p,) € H°(T) \ {0}.
As a consequence, equation (1.1) admits the non-trivial quasi-periodic solution
v(e, t,x) == ule,wit,x + wrt) with two frequencies (w1, w,;) = (w1, 1+ ¢) and the map
t — vle, t,-) € H°(T) has the form

vle, 1, %) — |G (x + (1 + E)L‘)‘H_(T) - o(ﬂqﬁ).

Remark 1. Imposing in the definition of C, the condition wy/w; = w1 /(1 +¢) € Q
we obtain, by Theorem B, the existence of periodic solutions of equation (1.1). They are
reminiscent, in this completely resonant context, of the Birkhoff-Lewis periodic orbits
with large minimal period accumulating at the origin, see [2].

In Theorem B, existence of quasi-periodic solutions could follow by other hypotheses
on f. However the hypothesis that the leading term in the nonlinearity f is an odd power
of u is not of technical nature. Actually, the following non-existence result holds:

2n
Turorem C (Non-existence). Let (g, u) = alp,)uP with D even and /d(gol)
1 0
dp, #0. YR > 0 there exists €y > 0 such that Yo >0, 5> 5 — > V(e, ) € Cy with

le| < eo, equation (1.2) does not possess solutions u € Hy in the ball |u|,; < Rle|V/P=Y.

Theorem C also highlights that the existence of periodic solutions of nonlinear wave
equations in the case of even powers, see [5], is due to the boundary effects imposed by
the Dirichlet conditions.

2. SKETCH OF THE PROOF OF THEOREM A

We sketch now the proof of (the more difficult) Theorem A. To simplify notations we
assume w; = 1, ¢ > 0 and ay,_,(p;) > 0.

Instead of looking for solutions of equation (1.2) in a shrinking neighborhood of 0, it is
a convenient devise to perform the rescaling

u — ou with S = |€|1/2(d—1)

enhancing the relation between the amplitude J and the frequency w, =1 +¢. We
obtain the equation

(2.1) Lou+ef(p,u,0)=0
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where

Loi= |0 +20,,0,,| +|@2+ 02 +20,,0,,] = Lo +eLy

and

;0 _
f@y,u,0) :=f ;fjdf)‘) = (azd_l((ol)uz"l Y Oarg ()P + .. )

Equation (2.1) is the Euler-Lagrange equation of the Lagrangian action functional

Y. € C1(M,,, R) defined by

e +¢)

V() = / 200102 + (0, (00 + 2

T2

@y, )" + (D, u)(Dy,u) — eF gy, u, )

=Yow) + el (u,0)

where Flpy, #,0) = [ f(py,& 0)d¢ and
0

Wolu) = / Oy, 0? + (8, (0,0

T2

2+e)
[(,0) = / 2 Doy + (D )0y, ) — Flpy,0,0).
T2
To find critical points of ¥. we perform a variational Lyapunov-Schmidt reduction
inspired to [5], see also [1].
The unperturbed functional ¥ : H,; — R possesses an infinite dimensional linear
space Q of critical points which are the solutions ¢ of the equation
Log = Oy, (8, +20,,)a =0 .
The space Q can be written as
Q={g=>"ae" € Moy | 41=0 for hih+2b)#0}
le7?
and, in view of the variational linking argument used for the bifurcation equation, we split Q as

Q=090 ®0-

2

where (%)
{q €Q:g=0for = O} = {q+ =qg4(p,) € Hg(T)}
{40 € R}

{q €Q: ¢ =0for [ +25 = 0} = {qf =q-Q2¢; —9y), q-(-) € HS"(T)}.

Q-:

(*) H§(T) denotes the functions of H?(T) with zero average. H™* (1) := {ulgp) = 3")c, #ye" : uf =u_y,
[ot] ooy = Dose |ule” NI < +oo} and HY (1) its functions with zero average.
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We shall also use in Q the H!-norm | - | which is the natural norm for applying
variational methods to the bifurcation equation.

In order to prove analyticity (in ¢,) of the solutions and to highlight the compactness of the
problem we perform a finite dimensional Lyapunov-Schmidt reduction [6], decomposing

Hey =01 @ ®P
where
Q=0 ={q=> ad" 0}, ©=0N ={4=3 4" c 0}
= SN

and

P ::{p =S 5 € Moy | =0 for h2h+1h) = o} .

lez?

Projecting equation (2.1) onto the closed subspaces Q; ( =1,2) and P, setting
=g+ g, +p with ¢; € Q; and p € P, we obtain

L1[41]+HQ1[/[((P1741+42 +p,01=0 (O1)
Lilg2] 4+ 1o, [f (91,91 + g2 +p, )] =0 (Q)
L.pl + ellplf(py,q1 + 92 +p,0)] =0 (P)

where ITg, : H, — Q; are the projectors onto Q; and ITp : H,; — P is the projector
onto P.

Step 1 (Solution of the (Q,)-(P)-equations). For ¢ € B,, L. restricted to P has a

bounded inverse satisfying |£;1[b]|ﬂ_ﬁ < |hl,;y7" . Moreover, also the operator
L : O, — Q5 is invertible and \Ll’l[b]|m < |/9|MN’2.
Fixed points of the nonlinear operator G : Q> ® P — Q, @ P defined by

G(g2,p;q1) = ( — Lo f(py,q1 + g2+ p,0), =L Tpf (91, q1 + ¢ +p,5))

are solutions of the (Q,)-(P)-equations.
Using the Contraction Mapping Theorem, we can prove that VR > 0 there exist an
integer No(R) € N and positive constants £¢(R) > 0, Co(R) > 0 such that:

Vigil;p < 2R, Ve €B,, |€|y_1 <gR), VN>No(R) : 0<oN<1,
there exists a unique solution
(g2(91), p(q1)) := (q2(e, N, q1),p(e,N,q1)) € Q2 © P
< C(RIN2  and

gs =

of the (Q,)-(P)-equations which satisfies |g2(e, N, q1)|
p(e, N, g1, < CoR)lely™.

Step 2 (Solution of the (Q1)-equation). There remains to solve the finite dimensional
(Q1)-equation
(2.2) Lilg ] + o f(p1,q1 + g2(q1) + plg1),0) = 0.

Actually (see [5, 1]) the bifurcation equation (2.2) is the Euler-Lagrange equation of the
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reduced Lagrangian action functional
&N :Bpr C Q) = R, D.N(g1) ==V (g1 + g2(q1) + plqr))
which can be written as
@ N(g1) = const + e(I'(q1) + R-n(g1))

where

2 2d
rg) = / (%E) Oosts? + 0 ) Do) — a0 () 0
w[~2

is the «Poincaré-Melnikov» function [1] and the remainder

Renlqr) == / F(py,91,0 = 0) = Flpy, q1 + 92(q1) + p(q1),0)
V-Fz

1
+5f((p1, a1 + q2(q1) + p(q1),0)(q2(q1) + p(q1))

satisfies |R.n(g1)| < C1(R)(J + |ely~! + N72) for some C;(R) > Co(R).
The problem of finding non-trivial solutions of the (Q;)-equation reduces to find non-
trivial critical points in Byg of the rescaled functional (still denoted @, )
qu
Poxta) = (Ala) — [ alop D) + Restan

T.z

1
where the quadratic form A(g) := / 5(2 + 5)(8¢2q)2—|— (9y,9)(0y,9) is positive definite on
T2

Q., negative definite on Q_ and zero-definite on Q. For g1 = ¢ + g0 +¢9_ € Q1,
O+ 2 a— 2
Alg1) = 7|€7+|H1 T |g—[tn

for suitable positive constants a, , a_, bounded away from 0 by constants independent of ¢.
The geometry of @, y suggests to look for critical points of «linking type». However
we can not directly apply the linking theorem because @, y is defined only in Byg. To
overcome this difficulty we extend @,y to the whole space in such a way that the
extension &%,N coincides with I"(¢1) outside B,z and so verifies the global hypothesis of
the linking theorem.
The final step is to prove (exploiting the homogeneity of the term [ a5, 1437) that

IR, > 0 independent on R, e, N,y

and functions 0 < £;(R) < &¢(R), N1(R) > No(R) such that V|e|y~! < &1(R), N > N;(R)
the functional
213571\] possesses a non trivial critical point g, € Q; with [7,[5 <R..
Fix R := R, + 1, take |¢|y™! <Z:=&(R) and 0 < ¢ < 1/N,(R). The function
ue, ) = [e]' Vg, + g2, No(R), 7,) + ple, Na(R), 7,)]

is the solution of equation (1.2) in Theorem A.
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Remark 2. In the proof of Theorem B the bifurcation equation could be solved
through variational methods as for Theorem A. However there is a simpler technique
available. The bifurcation equation reduces, in the limit € — 0, to a superquadratic
Hamiltonian system with one degree of freedom. We prove existence of a non-
degenerate, analytic solution by direct phase-space analysis. Therefore it can be continued
by the Implicit function Theorem to an analytic solution of the complete bifurcation
equation for € small.

Supported by M.LLU.R. «Variational Methods and Nonlinear Differential Equations».
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