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Fisica matematica. — Discontinuous travelling wave solutions for a class of dissipative
hyperbolic models. Nota (*) di CArMELA CURRO e DoMENICO Fusco, presentata dal Socio
T. Ruggeri.

AsstracT. — Discontinuous shock structure solutions for a general system of balance laws is considered in
order to investigate the problem of connecting two equilibrium states lying on different sides of a singular barrier
representing a locus of irregular singular points for travelling waves. Within such a theoretical setting a governing
system of monoatomic gas is considered.

Key worbs: Shocks; Singular phase plane; Travelling waves.

Ruassunto. — Soluzioni d’'onda discontinue per una classe di sistemi iperbolici dissipativi. Si considerano le
soluzioni di tipo struttura d’urto per un sistema di equazioni di bilancio allo scopo di studiare la connessione tra
due stati di equilibrio separati nello spazio delle fasi da una barriera singolare, rappresentante un luogo di punti
di singolarita nello studio delle «travelling waves». Si considerano infine le equazioni che descrivono il bilancio di
un gas monoatomico uni-dimensionale dedotte nell’ambito della Termodinamica Estesa.

1. INTRODUCTION AND OUTLINE OF THE PROBLEM

In mathematical modelling irreversible phenomena within the theoretical framework
of extended thermodynamics a prominent role is played by systems of balance laws of the
form [1]

(1) . F'(U) =FU)

where U, F,F* are RN-column vectors, with U being the field depending variable, while
x® =1t and «’, 1 =1,2,3, are respectively time and space coordinates. As in most
applications the solutions of the system (1) are assumed to satisfy a supplementary
conservation equation [1, 2]

(2) Oy b" (U) = Z(U)

which in physical applications represents in fact an entropy-like law with entropy density

—b°(U) and entropy flux —b*(U), —X(U) being a non negative entropy production.
Owing to the consistency of (1) and (2), the use of a well established approach [3-7],

permits to introduce a new set of dependent variables U’ (Lagrange Multipliers) such that

(3) an* =U'"- dF* X=U F<0
and four potential-like functions

(4) h/a:U,-Fa—ha

such that

(*) Pervenuta in forma definitiva all’ Accademia I’8 settembre 2004.
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ah/ll
F'=—
whence (1) can be recast into the symmetric hyperbolic and conservative form
ah/a 82 bla
6 O\ == | =F ——0,U' =F.
(©) (8U’> = auou

Systems belonging to the class (1) (or (6)) exhibit relevant prominent features in
modeling wave propagation [6]. In particular, as in the theoretical setting of the wave
hierarchies problems [8], we split U’ € RN into two parts U' = (V/,W'), V' € RM,
W' e RN"M (0 < M < N) and accordingly F = (f, g) so that (6), in turn, adopts the
form

o) D (";LV) =f(V W)

la
(8) Ou (%) =8 (Vlv W/)'

There was proved in [2] that given some assigned value W (x*) of W' any of the
2N — 2 subsystems arising from (7)-(8) is symmetric hyperbolic or in other words it
inherits all the structural properties of the full original system. The latter property is
relevant in studying subcharacteristic conditions and subshocks [2].

As in most applications, here our main concern is the case when system (7)-(8) consists
of M conservative equations with f =0 and N — M balance equations involving a
source-like term g.

In the following we choose as field variables the components of the main field, ze.
u=U' = (v,w), so that the system is equivalent to [9]

V) OP'(u)

®) ot + Oxt =0
(10) 8‘?5”) + az;;(;: ) g(w)

where V,P' ¢ RM, W R’ € RN-M

w-[5] #-[£] =~

According to [1] we assume the system (9)-(10) (or equivalently (1)) to admit two
equilibria

(11) uy— (v070), u; — (1)1,0)
which satisfy the condition

1) og g T . .
(12) D@,w) = 3 {% + (%> } negative definite

whereupon it is possible to show that the equilibria (11) maximize X
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As far as dissipative shock wave processes are concerned, Boillat and Ruggeri [2]
proved that a smooth shock structure solution connecting the two equilibria (11) does not
exist when the shock velocity is greater than the maximum characteristic velocity. Under
suitable assumptions on the equilibria (vg,0), (v1,0), in this paper we show that the
searched connection consists of a smooth solution relating one of the two equilibrium
states with an intermediate non equilibrium state and of a shock. A general approach is
outlined for the system of balance laws (9)-(10). Later a set of governing equations of non
equilibrium monoatomic gas is considered.

2. DisconTINUOUS TRAVELLING WAVES

For hyperbolic dissipative models relevant informations about shock wave behaviour
are provided by shock structure solutions. Hence, in line with the analysis worked out in
[10], we look for a regular solution of (9)-(10) of the form

(13) u=u(p), ¢=xn —st, s=const, n=(n;)= const

and such that

(14) i u(p) = ul; Jm =0

Upon inserting (13) into (9)-(10) we have

(15) %(SV(u) +P,u)) =0, P,=Pun
d ;
(16) d—(o(—xW(u) +R,u)) =gu), R,=R'n,.
Next by taking into account the boundary conditions (14), from (15) we get
(17) —s(V(v1,0) = V(v0,0)) + P, (v1,0) — P,(vy,0) =0

Z.e. the Rankine-Hugoniot equations for the sub-system arising from (9)-(10) by assigning

the value w = 0, namely

oV (v,0) N OP;(v,0)
ot Ox’
Owing to the relations (17) the equilibria (11) of the full system (9)-(10) turn out to be

also shock states for the sub-system (18) such that

(18) = 0.

(19) v1 =v1(vo, ), lir%vl =

namely vy and v are the states ahead and behind the shock respectively. If A™** (u) is the
greatest of the characteristic velocities of the system (9)-(10), Boillat and Ruggeri proved
that a C! shock wave structure propagating with velocity s : s > 2™ () cannot exist; in
other words smooth solutions of the form (13)-(14) may exist only if s <A™ (uy).

Therefore the value "*(u() can be used to define a range of validity of a hyperbolic
model of interest. For hyperbolic models based upon extended-thermodynamics Weiss
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[11, 1] through numerical approaches pointed out that a singular surface (subshock)
arises in front of the shock if s > A" (uy). Moreover there was also pointed out that
there are systems (35-moments case) for which a second subshock appears as Mach
number increases with respect to ™™ (u;) [11, 1].

The main aim of this work is to outline a systematical approach in order to investigate
how the equilibria (vg,0), (v1,0) can be connected in the state space for a general system
of balance laws (9)-(10). Later we prove that if A™ (ug) < s < 2™ (uy) the searched
connection consists of a smooth solution relating one of the two equilibrium states with an
intermediate non equilibrium state and of a shock.

Under the assumption

(20) det(V P, —sV,V) #0

the equation (15) yields v = v (w) which inserted into (16) gives rise to
dw

(1) K(v(w%w)d—(p:g(v(w%w)

where

(22) Kw),w)= (VuR, —sV,W)—
—(V,R, — sV,W)(V,P, — sV, V) (V,P, — sV, V).

Bearing in mind (20), it is simple matter to ascertain that
(23) det(K(w(w),w)) = det(V,F, — sV,F), F,=Fun;

provided that s is not a characteristic velocity of the system (1), so that (21) can be recast
into the normal form

(24) i (Ko@w),w)) 'gww),w).
Let s be a fixed value different from a characteristic speed of (1), the equation
(25) Aw) = det(K(v(w),w)) =0

defines in the state space a locus of irregular singular points [12, 13] where the
solutions of (21) exhibit singularities. Such a locus is usually named singular barrier
[14-16]. A C' shock-wave structure connecting in the state space the points
(v9,0), (v1,0) may exist only if the equilibria lie in the interior of the region bounded
by the singular barrier; such a situation is related to the condition s < 2™ (ug). If the
barrier lies between the two equilibria, as well known travelling wave solutions have no
meaning and the resulting phase trajectories can cross the singular barrier only at non
equilibrium points where g(v(w),w) =0, V,g@w(w),w) # 0. The latter points are
usually indicated as «holes in the wall» [17]. Furthermore, if s> A" (u;), the
equilibria in point belong to the exterior of the region bounded by the singular barrier.
That is the case where for the 35-moments model the occurence of a second subshock
was evidentiated [11, 1].

In order to the equilibria lie on different sides of the singular barrier we require the
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shock speed s to fulfill the relation
(26) (A@)),, (@), < 0.

Let A1(u) < A2(m) < ... < An(u) be the real eigenvalues of the hyperbolic system
(9)-(10). Tt is straightforward to ascertain that if s satisfies the Lax conditions [18]

(27) Ai(wr) <. < Apoi(mr) <5< Ap(ur) < ... < An(m1)
(28) )vl(uo) <. < /Ip(uo) <s < )Lerl(uO) <. < ;LN(MO)
p=12,..,N

then the condition (26) holds.

In passing we notice that for the fastest wave p = N we get s > 2" (u) whence in
agreement with the analysis worked out in [10] there results that the equilibria cannot be
connected in the state space by a C! regular solution. In view of investigating the possible
connection of the two equilibria (11) we consider first the singular barrier as a shock
surface for the full governing system (9)-(10) so that the connection in point can be
completed by using appropriate Rankine-Hugoniot conditions for discontinuous plane
wave solutions (13). The scope of our later analysis is to determine which of the two
equilibria # and u; can be connected through the singular barrier by means of R-H
conditions to another state representing in the state space the end point or, alternatively,
the initial point of a smooth travelling wave trajectory. If ugr and uj represent,
respectively, states ahead (unperturbed) and behind (perturbed) the singular barrier
the following R-H conditions must be fulfilled

(29) —s[V1+[P,]1 =0

where [-] = (), —(-)g indicates the jump and (-)g, (-); are the limit values of a quantity
across the shock front evaluated respectively in the unperturbed and perturbed state,
furthermore s has to satisfy the Lax conditions

(31) ) <. <lp_i(wr) <s < Ay(wr) < .. < An(ur)

(32) A(ur) <.... < Ap(ur) <s < App1(ugr) < .... < AN(ug)
p=1,2,...,N

whereupon

(33) Ap(ur) <'s < Ap(ur).

In line with the analysis developed hitherto, we focus our attention on two different
cases concerning the states ug and ;. :

1. First we assume #; =wu; so that the Rankine Hugoniot conditions provide
ur =ug(uy,s) whereupon the searched connection between uo and u; consists of a
smooth solution which starts from the unstable state #( and terminates in #z and of a
shock which jumps from uy to the steady state u;.
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2. Let ur =uy whence the relations (29)-(30) yield u; =uy (uo,s) so that the re-
sulting connection consists of a shock which jumps from u¢ to #; and a smooth solution
starting from #; and connecting to the stable state .

We remark that if s > 2" (ug) case 1 cannot hold because, according to [10], C*
solutions starting from o do not exist.

3. MONOATOMIC GAS

According to Extended Thermodynamics, we consider the system of balance laws
describing a non equilibrium monoatomic gas in one space dimension [1] with the right-
hand side calculated for Maxwell molecules

opr 0
(34) o T o (p*v*) =0
0 0 , 3 3
% % sk - *T* 7% —
(35) 81‘*(/)0)—1_ (pv —|—5p +50) 0

a * K2 9* * 8 *2 K\ Kk §* 9** _
(36) aﬁ(pv +5pT) Bx*((v +3T*)p*v +54 +Sav>0

9 (10 ., .\ 0 (/10 , 4., 7 8 N\ ..
(37) %(?pv +0>+8x*<<9v —|—3T>pv +30v —1—15 >— pio

0 5 0 5

32 3 2
where p*,v*, T*, 4" are, respectively, the dimensionless mass density, velocity, absolute
temperature, heat flux, while 6* is the dimensionless component of the pressure deviator

related to the physical variables p,v, T, 4,6 = —¢;1;) through the relations:

T
p*: ﬁ, Z}*:E, T*:—, J*:S—O’z’ q* Sq
x* = poax = pyat aZZ%T
ap 0 0 3m 0

As is well known for monoatomic gas the pressure p and the internal energy e are
. 2 . .
related by the equation p = 3Pe = —pT, ais a constant for Maxwellian molecules.
m

A strict wave analysis was worked out in [19, 1] in order to validate the governing
model (34)-(38). As far as acceleration waves and hyperbolicity regions are concerned, the
characteristic polynomial is given by

62 78 9 ~ 27 18

4 2 ~

o2 -2 + 15
(40) {/1 (5 25) 5V 55150 }
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where

~ N=v 3 . 3 4 A
41 A S LA N A S |
( ) /_T* 5P*T* q Sp* T*3 a0

being 4 the characteristic wave speed.

Among others there was shown [1], that by assuming a state close to equilibrium the
equation (40) provides real characteristic speeds.

Let (py,v0, To,0,0) denote a generic equilibrium state. We consider a plane wave

propagating with dimensionless velocity s* = — and introduce the relative velocity #*
a
and the Mach number M, 0

(42) u=s"—0v, My=s"—v), z=x"—s5*t, >0

In line with the theoretical framework and the method of approach outlined in Section
2, by identifying

2 - |7] o]

we get
. Mo
(44) r=_
T*
(45) o' =1 —‘rgMo(Mo — ﬂ*) —MOE
M
(46) g = —70 (g (Mo — > =3T* +5> +u*
and the system (21) specializes to the set of equations
14 Ndu 9, dT* M, 5 T*
Mg 32 2 ) My 0 (L 2 (M — ) — My —
47) ( 3 Mo 43 0+5> &5k u( T3 MolMo —u) Ou*)
. 7 7\ , 34 . 8 5 3 T2\ du*
(—ZM()Z/!Z— (gMS-‘rg)M —?MoT +§M0(MO +3)+§M0MTZ d_z+
34 . 1(.. 3 6, T*\dT*
*(‘?MO” +5(Mo+§> ‘5M°7>d—z—

o (=10Moz? + (3 + 5MG)u* + Mo (15 + 5MG — 18T%)).

Once M is fixed, a direct inspection of (47), shows that the equilibria are given by

M2 +3 (ME+3)(5M; 1)
= (My,1 = 0 0 0 .
(49) o= (1), 8= (F2 SRR =)
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The singular barrier is defined by the condition

* * 422 2 *2 6]-4 2 3 % 166 2 e
(49) A, T") = S Mou 15J\/10<J\/[O+5 S5 MyT~

18 T 27,17 153 189
— = Mo (M2 + MG+ My 27M; + .
5 °< 5) TR P M+ 5e =0

The equation (49) evaluated at the equilibria (48) reduces respectively to

5 39 27
Ay == 4 2
(50) b 2MO 5 M+ +35
31, ., 303 243
1 A ="My —=—M2+
G1) ' 16 20 0T g

The vanishing of 4y and A4 gives, respectively, the following values for the Mach number
My =+0.62972.... My = £1.65029...
My =+0.67351.... My = £1.85905...

hence it is straightforward to ascertain that in the range
(52) 1.65029... < My < 1.85905...

the condition (26) is fulfilled. As pointed out in [1], we notice that condition (52)
corresponds to s > A" (ug). According to Weiss [1, pp. 277-308] in the range (52) the
equilibria (48) are stable nodes.

The Rankine-Hugoniot conditions (29)-(30) associated to the full governing system
are given by

53) e
* %2 e 3 *-

(54) pusts pT+§J =0
R e % - 5 * *3_

(55) 24" =5p"T"u" = 20" = 3p"u” | =0

8 . 4 *T* % Lok x SV k3 —

(56) qu+3p u+30u+9ﬂu_ 0
21 2 '

(57) zp*um +3p" T2 +?T*a* + %u*q" +u?(8p"T* +50¢%)| =0.

In view of connecting the two equilibria lying in opposite sides of the singular barrier
and along the lines of investigation indicated in Section 1, bearing in mind the range (52)
the Rankine-Hugoniot conditions (53)-(57) for ug = ug, give rise to
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. M
ko 7? *2 5 2 é * 7& 2
(59) TL = 27 ur + 3MO (MO +5> ur 27M0
. 10M, .
(60) 0L = 27 ML (MO uLZ)
2
(61) q;:__SMO <M2 9) + 65 <M2 ;) —?SMW;Z

with #; and M, satisfying the equation:
(62)  3470Mju;’ — 3550Myu;? — 4212Mou;?+

+(729 + 2106Mg + 715M) i} + 40M; = 0.
Since M, obeys the restriction (52) as proved in [19] the Lax conditions
s> }.4(u0) > ﬂ} (uo) > /12(140) > il(u())

Ay(ur) > 5> A3(ur) > Ao(mr) > Ai(ur)

are fulfilled. Thus within the theoretical framework outlined in section 1 it is possible
to connect the two equilibria by a shock which jumps from #( to u; through the
singular barrier and by a smooth orbit which starts from #; and terminates in the stable
state u.

As illustrative example, for a given numerical value of My the behaviour of the
resulting trajectory in the phase plane as well as travelling wave profiles are reported in
figs. 1, 2.

M,=1.75

2\
1.8) %
1.6 ;

"y 1.4 !

1.2

1 . 7

0.8 1 1.2 1.4 1.6 1.8 2

u

Fig. 1. — Phase plane plot of a discontinuous travelling wave solution My = 1.75, u; = 1.69, T} = 1.06. The

solid line is the phase trajectory starting from («} , T} ) and connecting to the stable state ;. The dotted line is the

singular barrier which lies between the two equilibria Sy, i (marked by -). A jump connects §; to («}, T})
through the singular barrier.
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M,=1.75 M,=1.75

*
[
N O
T
=
N OB Y 0N

105 110 115 120 125 105 110 115 120 125
Z Z

Fig. 2. — Solution profiles of a discontinuous travelling wave. The smooth solutions start, respectively, at
u; =1.69, T; = 1.06 and terminate in the stable states «}, T} . The discontinuities in #* and T* are pointed out.

4, CONCLUSIONS AND GENERAL REMARKS

Since a C! shock wave structure propagating with velocity s > A™*(u) cannot exist [2],
a strict approach was developed in order to investigate discontinuous travelling wave
solutions and to establish the connection of the two equilibria (48) assumed to lie on different
sides of the singular barrier. The latter one in the state space represents a locus of points where
the solutions of (21) exhibit singularities. The singular barrier was considered as a shock
surface for the full governing system (9)-(10) so that appropriate Rankine-Hugoniot
conditions for discontinuous plane wave solutions (13) were used. Thus the searched
connection through the singular barrier was achieved by means of a smooth solution relating
one of the equilibria with an intermediate non-equilibrium state and by a shock. Furthermore
the method of approach in point was used to investigating a dissipative model of a
monoatomic gas based upon the theory of Extended Thermodynamics. The connection of
the resulting equilibria was discussed in terms of the Mach number and some illustrative plots
of trajectory’s behaviour in the phase plane and of travelling wave profiles were given.

Finally, about the equilibria (48) a remark is in order. Owing to the leading modeling
assumptions of the Extended Thermodynamics, if s > A"**(u¢) and condition (12) is
required to be fulfilled the case 1 of Section 2 cannot hold [2]. However, for systems of
governing equations (9)-(10) arising from different theoretical frameworks where the
resulting equilibria are not subjected to (12), the case 1 is to be taken into account [20].

ACKNOWLEDGEMENTS

This work was partially supported by Research Programme - P.RIN./COFIN 2003 «Problemi matematici
non lineari di propagazione e stabilita nei modelli del continuo» and by Programma di Ricerca dell'Universita di
Messina (PRA 2001) «Soluzioni esatte e metodi per lo studio di onde non lineari per i modelli della Fisica
Matematica».

REFERENCES

[1]1 L. MuLLer - T. RuGGeri, Extended Thernodynamics. Springer Tracts on Natural Philosophy, 37,
Springer-Verlag, New York 1993, 231 pp. (Rational Extended Thermodynamics. Springer-Verlag, new
edition, 37, 1998, 393 pp.).



DISCONTINUOUS TRAVELLING WAVE SOLUTIONS FOR A CLASS ... 71

[2]1 G. Bowwrar - T. RuGGeri, Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic
Conditions. Arch. Rat. Mech. Anal., 137, 1997, 304-320.

[31 S.K. GobuNov, An interesting class of quasilinear systems. Sov. Math., 2, 1961, 947-948.

[4] K.O. Friepricns - P.D. Lax, Systenzs of conservation equation with a convex extension. Proc. Nat. Acad.
Sci. USA, 68, 1971, 1686-1688.

[5]1 G. BoiLrat, Sur Pexistence et la recherche d'équations de conservation supplémentaires pour les systémes
hyperboliques. C.R. Acad. Sciences Paris, 278 A, 1974, 909-912.

[6] G. Boiwrat, Non Linear Fields and Waves. In: T. RuGGert (ed.), Recent Mathematical Methods in
Nonlinear Wave Propagation. CIME Course (Montecatini 1994). Lecture Notes in Mathematics, 1640,
Springer-Verlag, 1996, 103-152.

[71 T. RucGert - A. Strumia, Main field and convex covariant density for quasi-linear hyperbolic systems.
Relativistic fluid dynamics. Ann. Inst. H. Poincaré, 34 A, 1981, 65-84.

[81 G.B. Wurrnam, Linear and Nonlinear Waves. J. Wiley-Interscience, New York 1974, 636 pp.

[9]1 T. RuGGER1, Breakdown of shock-wave-structure solutions. Phys. Rev., E 47(6), 1993, 4135-4140.

[10] G. Borrat - T. RuGGERt, On the shock structure problem for byperbolic system of balance laws and convex
entropy. Continuum Mech. Thermodyn., 10, 1998, 285-292.

[11] W. Werss, Die Berechnung von kontinuierlichen Stofstrukturen in der Kinetischen Gastheorie. Habilitation
thesis TU, Berlin 1997.

[12] E. Kamke, Differentialgleichungen I. Geest & Portig, Leipzig 1967.

[13] L. BieBersacH, Theorie der gewohnlichen Differentialgleichungen. Springer-Verlag, Berlin 1965, 389 pp.

[14] B.P. MARCHANT - J. NORBURY - A.J. PERUMPANANI, Traveling shock waves arising in a model of malignant
invasion. SIAM J. Appl. Math., 60, 2000, 463-476.

[15] B.P. MaRCHANT - J. NoORrBURY - J.A. SHERRATT, Discontinuous travelling wave solutions to a haptotaxis-
dominated model of malignant invasion. Nonlinearity, 14, 2001, 1653-1671.

[16] B.P. MArRCHANT - J. NORBURY, Discontinuous travelling wave solutions for certain hyperbolic systems. IMA
7. Appl. Math., 67, 2002, 201-224.

[17]1 GJ. Perrer - D.L.S. McELwaIN - J. NorsuRry, Lotka-Volterra equations with chemotaxis: walls, barriers
and travelling waves. IMA J. Appl. Med. Biol., 17, 2000, 395-413.

[18] P.D. Lax, Shock Waves and Entropy. In: E. ZaranTONELLO (ed.), Contribution to Non Linear Functional
Analysis. Acad. Press, New York 1971, 603-634.

[19] T. RuGGeRy, Shock waves in hyperbolic dissipative systems: non equilibrium gases. In: D. Fusco - A. JEFFREY
(eds.), Euromech colloguium 270 (Reggio Calabria, 25-28 September 1990). Pitman Research Notes in
Mathematics, vol. 227, Longman, Harlow 1991.

[20] C. Curro - D. Fusco, Shock-like travelling wave solutions for a hyperbolic tumour growth model. In:
Proceedings of XII International Conference on Waves and Stability in Continuous Media (Villasimius,
Cagliari, June 1-7 2003). World Scientific, 2003, 141-147.

Pervenuta il 28 maggio 2004,

in forma definitiva I'8 settembre 2004. . . . .
Dipartimento di Matematica

Universita degli Studi di Messina
Salita Sperone, 31 - 98166 MEssiNa
curro@mat520.unime.it
fusco@mat520.unime.it






