ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

HEUNGJU AHN

Global boundary regularity for the $\overline{partial}$ -equation on q-pseudo-convex domains

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 16 (2005), n.1, p. 5–9.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2005_9_16_1_5_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Analisi matematica. — Global boundary regularity for the $\bar{\partial}$ -equation on q-pseudo-convex domains. Nota (*) di Heungju Ahn, presentata dal Socio C. De Concini.

ABSTRACT. — For a bounded domain D of \mathbb{C}^n , we introduce a notion of α_r -pseudoconvexity» of new type and prove that for a given $\bar{\partial}$ -closed (p,r)-form f that is smooth up to the boundary on D, and for $r \geq q$, there exists a (p,r-1)-form g smooth up to the boundary on g which is a solution of the equation $\bar{\partial} u = f$.

Key words: $\bar{\partial}$ -equation; q-pseudoconvexity; Cauchy-Riemann system.

RIASSUNTO. — Regolarità globale per il sistema $\bar{\partial}$ sopra domini q-pseudoconvessi di \mathbb{C}^n . Si introduce una nuova nozione di «q-pseudoconvessità» per un dominio D di \mathbb{C}^n . Per un tale D, e per ogni forma $\bar{\partial}$ -chiusa f di tipo (p,r) con $r \geq q$, che è C^{∞} fino al bordo di D, si prova che esiste una forma u anch'essa C^{∞} in \overline{D} che risolve l'equazione $\bar{\partial}u = f$.

1. Introduction and main result

For a domain D of \mathbb{C}^n we introduce the property of boundary global regularity. This means that for any $\bar{\partial}$ -closed form f which is smooth up to the boundary of D, we can find a solution u of $\bar{\partial}u = f$ which is also smooth up to the boundary. Kohn [3] completely solved this problem on pseudoconvex domains by introducing the $\bar{\partial}$ -Neumann operator with weight in order to gain higher differentiability: The equation $\bar{\partial}u = f$ for $\bar{\partial}f = 0$ is solvable for forms f of any degree $r \geq 1$. His method also applies to the so-called strictly q-pseudoconvex domains: in this case the $\bar{\partial}$ -equation is solvable in any degree $r \geq q$. When the domain is neither pseudoconvex nor strictly q-pseudoconvex, very little is known. We introduce a quite general condition of weak q-pseudoconvexity that can be naturally applied to the global boundary regularity problem.

Let D be a bounded domain in \mathbb{C}^n with smooth boundary bD and let ρ be its defining function. For a given boundary point $z_0 \in bD$, we consider a boundary complex frame which means an orthonormal basis $\omega^1, \ldots, \omega^n = \partial \rho$ of (1,0)-forms with C^∞ coefficients on a small neighborhood U of z_0 . We denote by $(\rho_{jk}(z))_{j,k=1}^{n-1}$ the matrix of the Levi form $\partial \bar{\partial} \rho(z)$ in the complex tangential direction at z with respect to the basis $\omega^1, \ldots, \omega^n$. Let $\lambda_1(z) \leq \cdots \leq \lambda_{n-1}(z)$ be the eigenvalues of $(\rho_{jk}(z))_{j,k=1}^{n-1}$. We assume that for a suitable choice of the boundary complex frame $\omega^1, \ldots, \omega^n$, there exists an integer q with $1 \leq q \leq n-1$ such that for all r with $q \leq r \leq n-1$ and for some q_0 with $0 \leq q_0 < q$ we have

(1)
$$\sum_{j=1}^{r} \lambda_j(z) \ge \sum_{j=1}^{q_0} \rho_{jj}(z), \quad z \in bD \cap U$$

(here we conventionally set $\sum_{j=1}^{q_0} \rho_{jj}(z) = 0$ if $q_0 = 0$). When 1 holds we say that D is q-

6 H. AHN

pseudoconvex at z_0 . We say that D is *q-pseudoconvex* when it is *q*-pseudoconvex at every boundary point. Now we can state our main theorem.

THEOREM 1.1. Let D be a bounded q-pseudoconvex domain in \mathbb{C}^n . Then for every $\bar{\partial}$ -closed form $f \in C^{\infty}_{(p,r)}(\overline{D})$, with $q \leq r \leq n$, we can find $u \in C^{\infty}_{(p,r-1)}(\overline{D})$ satisfying $\bar{\partial} u = f$.

Ho [2] introduced another kind of q-convexity: There is an integer q with $1 \le q \le n-1$ such that for all boundary point z we have $\sum_{j=1}^{q} \lambda_j(z) \ge 0$. Under this condition he proved global boundary regularity for any degree $r \ge q$. Note here that the q-convexity by Ho is a special case of the q-pseudoconvexity in our sense. Zampieri also [6] introduced q-pseudoconvexity as follows: Under a suitable choice of the frame $\omega^1, \ldots, \omega^n$, we have

(2)
$$(\rho_{jk}(z))_{j,k \le q-1} \le 0$$
, $(\rho_{jk}(z))_{j,k=q}^{n-1} \ge 0$, $\rho_{jk}(z) = 0$ if $j \le q-1$, $q \le k$.

This clearly implies q-pseudoconvexity. Under this condition he proved local boundary regularity for any degree $r \ge q$. A large class of q-pseudoconvex domains is given by the domains whose Levi form has a constant number of q-1 negative eigenvalues (cf. [5]). For these domains 2 is trivially satisfied.

2. The weighted $\bar{\partial}$ -Newmann operators

If $f,g\in L^2_{(p,q)}(D)$ and $\varphi\in C(\overline{D})$ the weighted L^2 -inner product and norms are defined by

$$(f,g)_{\varphi} = \int\limits_{D} \langle f,g \rangle e^{-\varphi} dV$$
 and $||f||_{\varphi}^2 = (f,f)_{\varphi}$,

where dV is the volume element and $\langle f,g\rangle$ is the inner product on (p,q)-forms induced by the hermitian metric. We denote the formal adjoint of $\bar{\partial}$ by \mathcal{S}_{φ} so that $(f,\bar{\partial}g)_{\varphi}=(\mathcal{S}_{\varphi}f,g)_{\varphi}$ for every $g\in C^{\infty}_{(p,q-1)}(D)$ with compact support in D. We write $f=\sum_{|I|=p,|I|=q}'f_{IJ}\omega^I\wedge\bar{\omega}^J$ where \sum_{I}' denotes sum over ordered multi-indices I and I. It follows from the definitions of $\bar{\partial}$ and \mathcal{S}_{φ} that

(3)
$$\bar{\partial}f = \sum_{I,J} \sum_{k=1}^{n} \overline{L}_{k} f_{I,J} \,\bar{\omega}^{k} \wedge \omega^{I} \wedge \bar{\omega}^{J} + \dots = Af + \dots$$

(4)
$$\mathscr{S}_{\varphi}f = (-1)^{p} \sum_{\stackrel{|I|=p,}{|K|=q-1}} \sum_{j=1}^{n} \delta_{j}^{\varphi} f_{I,jK} \omega^{I} \wedge \bar{\omega}^{K} + \dots = Bf + \dots,$$

Here $\delta_j^{\varphi} u = e^{\varphi} L_j(e^{-\varphi} u)$, and the dots indicate terms in which no $f_{I,J}$ and $f_{I,jK}$ are differentiated and which do not involve φ . With these notations we can prove the following Kohn-Hörmander type inequality (we refer to [1] in case D is pseudoconvex in usual sense).

Proposition 2.1. If $f = \sum_{I,J}' f_{I,J} \omega^I \wedge \overline{\omega}^J \in C^{\infty}_{(p,q)}(\overline{D}) \cap \text{ with } \operatorname{supp} f \in \overline{D} \cap U \text{ and } \varphi \in C^2(\overline{D}), \text{ then we have for every integer s with } 0 \leq s \leq n-1$

$$\begin{split} 2(\|\bar{\partial}f\|_{\varphi}^{2} + \|\mathcal{S}_{\varphi}f\|_{\varphi}^{2}) + C\|f\|_{\varphi} &\geq \frac{1}{2} \sum_{I,J}' \left[\sum_{j \geq s+1} \|\overline{L}_{j} f_{I,J}\|_{\varphi}^{2} + \sum_{j \leq s} \|\mathcal{S}_{j}^{\varphi} f_{I,J}\|_{\varphi}^{2} \right] + \\ &+ \sum_{I,K}' \sum_{j,k} (\varphi_{jk} f_{I,jK}, f_{I,kK})_{\varphi} - \sum_{I,J}' \sum_{j \leq s} (\varphi_{jj} f_{I,J}, f_{I,J})_{\varphi} + \\ &+ \sum_{I,K}' \sum_{j,k} \int_{bD} \rho_{jk} f_{I,jK} \overline{f_{I,kK}} e^{-\varphi} dS - \sum_{I,J}' \sum_{j \leq s} \int_{bD} \rho_{jj} |f_{I,J}| e^{-\varphi} dS. \end{split}$$

From now on we fix $\varphi_t(z)=t|z|^2$, $t\geq 0$ and use the notation $\|\cdot\|_{(t)}=\|\cdot\|_{\varphi_t}$, $(\;,\;)_{(t)}=(\;,\;)_{\varphi_t}$ and $\vartheta_t=\vartheta_{\varphi_t}$ and etc. The above Kohn-Hörmander type inequality implies the L^2 -existence for the $\bar{\partial}$. Let $\Box_t=\bar{\partial}\bar{\partial}_t^*+\bar{\partial}_t^*\bar{\partial}$ and take $f\in {\rm Dom}\,(\Box_t)$ of degree $r\geq q$, then we have for every t>C

$$(t-C)\|f\|_{(t)}^2 \le 4(\|\bar{\partial}f\|_{(t)}^2 + \|\bar{\partial}_t^*f\|_{(t)}^2) = 4(\Box_t f, f)_{(t)} \le 4\|\Box_t f\|_{(t)}\|f\|_{(t)}$$

or

$$(t-C)\|f\|_{(t)} \le 4\|\Box_t f\|_{(t)}, \quad f \in \text{Dom}(\Box_t).$$

This means that Range (\Box_t) is closed and \Box_t is injective. Therefore we can establish the existence theorem of the inverse of \Box_t the so called weighted $\bar{\partial}$ -Neumann operator N_t .

THEOREM 2.2. Let D be a bounded q-pseudoconvex domain in \mathbb{C}^n . Then for any $q \le r \le n$ and t > C, there exists a bounded operator $N_t : L^2_{(p,r)}(D) \to L^2_{(p,r)}(D)$ with the following properties:

- (i) Range $(N_t) \subset \mathrm{Dom}\,(\square_t)$, $N_t\square_t = \square_t N_t = I$ on $\mathrm{Dom}\,(\square_t)$,
- $(ii)\ f=\bar{\partial}\bar{\partial}_t^*N_tf\oplus\bar{\partial}_t^*\bar{\partial}N_tf,\quad f\in L^2_{(p,r)(D)},$
- (iii) $\bar{\partial}N_t = N_t\bar{\partial}$, $q \le r \le n-1$ and $\bar{\partial}_t^*N_t = N_t\bar{\partial}_t^*$, $q \le r \le n$, $r \ge 2$
- (iv) For all $f \in L^2_{(p,r)(D)}$ we have the estimates

$$(t-C)||N_t f||_{(t)} \le 4||f||_{(t)},$$

$$\sqrt{t-C}\|\bar{\partial}N_t f\|_{(t)} + \sqrt{t-C}\|\bar{\partial}_t^* N_t f\|_{(t)} \le 4\|f\|_{(t)},$$

(v) If $\bar{\partial} f = 0$, then $u_t = \bar{\partial}_t^* N_t f$ solves the equation $\bar{\partial} u_t = f$.

3. A PRIORI ESTIMATES AND PROOF OF THE MAIN THEOREM

For nonnegative integer s we define Sobolev space $H^s_{(p,r)}(D) = \{f \in L^2_{(p,r)}(D) : \|f\|_s < +\infty\}$, where the Sobolev norm of order s is defined by

8 H. AHN

$$||f||_s^2 = \sum_{|a| \le s} \int_D |D^a f|^2 e^{-\varphi_t} dV.$$

Theorem 3.1. If $f \in C^{\infty}_{(p,r)}(\overline{D})$ with $r \geq q$ and $N_t f \in C^{\infty}_{(p,r)}(\overline{D})$, then for any nonnegative integer s there exist constants C_s and T_s so that for every $t > T_s$ we have

$$||N_t f||_{\varsigma} \leq C_{\varsigma} ||f||_{\varsigma}.$$

PROOF. The proof is the same as in [3].

With this a priori estimates and the elliptic regularization method which was used in [3] we can also prove the following actual estimates.

THEOREM 3.2. For every integer $s \ge 0$ and real $t > T_s > 0$ the weighted $\bar{\partial}$ -Neumann operator N_t is bounded from $H^s_{(p,r)}(D)$ into itself for $q \le r \le n$.

By Theorem 2.2 (v), Theorem 3.2 and the density of $C_{(p,r)}^{\infty}(\overline{D})$ in $H_{(p,r)}^{s}(D)$ the following is immediate.

Corollary 3.3. If $f \in H^s_{(p,r)}(D)$, $s = 0, 1, 2, \ldots$ satisfies $\bar{\partial} f = 0$, where $q \le r \le n$, then there exists $u \in H^s_{(p,r-1)}(D)$ so that $\bar{\partial} u = f$ on D with the estimate $||u||_s \le C_s ||f||_s$.

End of proof of Theorem 1.1. We note that for any $r \geq q$ and for any $k = 0, 1, \ldots$ there are solutions $u_k \in H^k_{(p,r-1)}(D)$ of $\bar{\partial} u_k = f$ such that

$$||u_k - u_{k+1}||_k \le 2^{-k}$$
.

This is a consequence of Corollary 3.3 through a sophisticated inductive argument due to [4, p. 230].

Setting $u_{\infty} = u_N + \sum_{k=N}^{\infty} (u_{k+1} - u_k)$, we have $u_{\infty} \in H_{(p,r-1)}^N(D)$ for every $N \in \mathbb{N}$. By the Sobolev embedding theorem, $u_{\infty} \in C_{(p,r-1)}^{\infty}(\overline{D})$.

Acknowledgements

The author was supported by the Post-doctoral Fellowship Program of Korea Science and Engineering Foundation and the Post-doctoral Fellowship of University of Padua in Italy. This paper has benefited greatly from suggestions and discussions provided by Giuseppe Zampieri.

References

- S.-C. CHEN M.-C. SHAW, Partial differential equations in several complex variables. AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, RI, Providence 2001. MR 2001m:32071
- [2] L.-H. Ho, $\bar{\partial}$ -problem on weakly q-convex domains. Math. Ann., 290, no. 1, 1991, 3-18. MR 92j:32052
- [3] J.J. Kohn, Global regularity for $\bar{\theta}$ on weakly pseudo-convex manifolds. Trans. Amer. Math. Soc. 181, 1973, 273-292. MR 49 \#9442
- [4] J.J. Kohn, Methods of partial differential equations in complex analysis. Amer. Math. Soc. Proc. Sympos. Pure Math., XXX, Part. 1, R.I., Providence 1977, 215-237.

- [5] V. MICHEL, Sur la régularité C^{∞} du $\overline{\partial}$ au bord d'un domaine de \mathbb{C}^n dont la forme de Levi a exactement s valeurs propres strictement négatives. Math. Ann., 295, 1993, no. 1, 135-161. MR 93k:32030
- [6] G. Zampieri, q-pseudoconvexity and regularity at the boundary for solutions of the θ̄-problem. Compositio Math. 121, 2000, no. 2, 155-162. MR 2001a:32048

Pervenuta il 28 aprile 2004, in forma definitiva il 20 settembre 2004.

> Dipartimento di Matematica Pura e Applicata Università degli Studi di Padova Via Belzoni, 7 - 35131 Padova hjahn@math.unipd.it