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Geometria algebrica. — On the geometry of moduli of curves and line bundles.
Nota (*) di CLaubio FonTaNagr, presentata dal Socio C. De Concini.

AsstracT. — Here we focus on the geometry of Py, the compactification of the universal Picard variety
constructed by L. Caporaso. In particular, we show that the moduli space of spin curves constructed by
M. Cornalba naturally injects into P, and we give generators and relations of the rational Picard group of P,
extending previous work by A. Kouvidakis.

Key worbs: Universal Picard variety; Geometric invariant theory; Spin curve; Stable curve.

RiassunTo. — Sulla geometria degli spazi di moduli di curve e fibrati in rette. Il presente lavoro ¢ dedicato alla
geometria di P, ,, la compattificazione della varieta di Picard universale costruita da L. Caporaso. In particolare,
si dimostra che lo spazio dei moduli delle curve spin costruito da M. Cornalba si mappa iniettivamente in P, e si
esibiscono generatori e relazioni del gruppo di Picard razionale di P, estendendo un precedente risultato di

A. Kouvidakis.

1. INTRODUCTION

The universal Picard variety P, is the coarse moduli space for line bundles of degree
d on smooth algebraic curves of genus g. Even though one is mainly interested in the
behaviour of line bundles on smooth curves, nevertheless it is often useful to control their
degenerations on singular curves. Perhaps the most celebrated example of proof by
degeneration is provided by the Brill-Noether-Petri theorem (see [2, and the references
therein]). Another very recent achievement of degeneration techniques is the proof given
by L. Caporaso and E. Sernesi (see [7, 8]) that a general curve of genus g > 3 can be
recovered from its odd theta-characteristics. In particular, in order to control
degenerations of curves with prescribed theta-characteristics, a key rdle is played in [8]
by the moduli space of spin curves S, constructed by M. Cornalba in [9]. This perspective
suggests the deep mathematical interest (both in itself and as a tool) of a geometrically
meaningful compactification of the moduli spaces parameterizing pairs of curves and line
bundles. Let P, denote the compactification of P, constructed by L. Caporaso in [4]
via geometric invariant theory. The boundary points of P, correspond to certain line
bundles on Deligne-Mumford semistable curves, while all previously known
compactifications of the generalized Jacobian of an integral nodal curve used torsion
free sheaves of rank one. From this point of view, a strict analogy emerges between P,
and S,: even though the techniques used in the two constructions are completely
different, in both cases the resulting compactification is given in terms of line bundles
on the same kind of singular curves. We will see that this analogy has a precise
explanation: namely, in Section 3 we introduce a subscheme of P, which compactifies

(*) Pervenuta in forma definitiva all’ Accademia il 15 settembre 2004.
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the locus in P, , corresponding to curves with theta characteristics and we investigate how
it is related to Eg. Indeed, after having established the existence of a natural morphism
from S, to P, (see Theorem 1), we prove that it is an injection and we give an explicit
combinatorial description of its image and of a locus where it is an immersion (see
Theorem 2 and Theorem 3). As pointed out in [6] (see Theorem 5.4.2 and its Corollary),
the above properties definitely do not hold for moduli spaces of higher spin curves, which
were introduced by T.J. Jarvis in a rather different style (see [14-16]). In Section 4,
instead, we obtain a complete description of the divisor class group of P,, (see
Theorem 5) and of its rational Picard group (see Corollary 1). The strategy of proof is
straightforward: first of all, we deduce from the basic properties of P;, a rough
description of its boundary (see Proposition 4); next, we recall a theorem proved by
A. Kouvidakis in [17] on the Picard group of P, (see Theorem 4). Hence the result on
generation follows and in order to exclude nontrivial relations we simply lift to P,,, the
families of curves constructed by E. Arbarello and M. Cornalba in [1].
We work over the field C of complex numbers.

2. NOTATION AND PRELIMINARIES

Let X be a Deligne-Mumford semistable curve and let E be a complete, irreducible
subcurve of X. One says that E is exceptional if it is smooth, rational, and meets the other
components in exactly two points. Moreover, one says that X is guasistable if any two
distinct exceptional components of C are disjoint. In the sequel, X will denote the
subcurve X \ UE; obtained from X by removing all exceptional components.

A spin curve of genus g (see [9, 10]) is the datum of a quasistable genus g curve X with
an invertible sheaf (yx of degree g — 1 on X and a homomorphism of invertible sheaves

2
ax : (—wx

such that
(2) {x has degree 1 on every exceptional component of X;
(¢7) ax is not zero at a general point of every non-exceptional component of X.
From the definition it follows that ax vanishes identically on all exceptional
components of X and induces an isomorphism

= e®2
ax : CX \X—nyj(
In particular, when X is smooth, (x is just a theta-characteristic on X.
By definition (see [9, § 2]), two spin curves (X,(x,ax) and (X',{y,ax) are
isomorphic if there are isomorphisms ¢ : X — X’ and 7: 6*({%) — {x such that 7 is

compatible with the natural isomorphism between ¢*(wx) and wx. However, we point
out the following fact.

Lemma 1. Let (X, x, ax) and (X', {x, ax) be two spin curves and assume that there are
isomorphisms 0 : X — X' and t: 0" ({y) — (x. Then (X,(x,0x) and (X',{x,ax) are
isomorphic as spin curves.
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Proor. Let fiy : (52 — wy be defined by the following commutative diagram:

‘ Bx
PR .

17%2 T
(0*Cx) ™ = 0" () 4 aFwx.
Then (X, {x, fx) is a spin curve, which is isomorphic to (X', {yr, ax/) by definition and to
(X, Cx,ax) by [9, Lemma (2.1)], so the claim follows. O

A family of spin curves is a flat family of quasistable curves f : X — § with an invertible
sheaf {; on X’ and a homomorphism

ar - C%z —wy

such that the restriction of these data to any fiber of f gives rise to a spin curve.

Two families of spin curves f : X — S and f' : X' — § are isomorphic if there are
isomorphisms ¢ : X—X" and 7 : ¢*({)—{; such that / = /" o ¢ and 7 is compatible
with the natural isomorphism between ¢*(w) and wy (see [10 p. 212]).

Let S, be the contravariant functor from schemes to sets, which to every scheme §
associates the set S,(S) of isomorphism classes of families of spin curves of genus g.

Let S, be the set of isomorphism classes of spin curves of genus g and S, be the subset
consisting of classes of smooth curves. One can define a natural structure of analytic
variety on Eg (see [9, §5]) and from [9, Proposition (4.6)], it follows that Eg is a coarse
moduli variety for S,.

Let now g > 3. For every integer d, there is a universal Picard variety

. 0
Wg:Pyg—M,

whose fiber J4(X) over a point X of Mg parametrizes line bundles on X of degree d
modulo isomorphism.

Assume d > 20(g — 1), but notice that this is not a real restriction because of the
natural isomorphism P, , 2 Py, ,2,-2),. Then Py, has a natural compactification

$s: pd,g _’mg

such that ¢ (Mg) = P, ,. Namely, let Hilbjx__ggH be the Hilbert scheme parametrizing
closed subschemes of ¢~2 having Hilbert polynomial dx — g + 1, fix G = SL(d — g + 1)
and set Hy:={h e Hﬂbjﬁ;‘gﬂ : b is G-semistable and the corresponding curve is
connected}. Then P;, was constructed in [4] as a GIT quotient

U7 Hd—>Hd/G = Fd,g-

Moreover, one can define (see [4, § 8.1]) the contravariant functor P, , from schemes to
sets, which to every scheme § associates the set P, () of equivalence classes of polarized
families of quasistable curves of genus g

f(xL)—Ss
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such that £ is a relatively very ample line bundle of degree d whose multidegree satisfies
the following Basic Inequality on each fiber.

Derinition 1. Let X = (J7_; X; be a projective, nodal, connected curve of arithmetic
genus g, where the X;’s are the irreducible components of X. We say that the multidegree
(di,...,d,) satisfies the Basic Inequality if for every complete subcurve Y of X of
arithmetic genus gy we have

my < dy < my + ky

where

dy=34d

Xcy
ky =Y NX\Y]

_d ky\ Ry

ng_l(gY1+2> 5

(see [4, pp. 611 and 614]).
Two families over S, (X,L£) and (X', L) are equivalent if there exists an S-
isomorphism

o: X—X
and a line bundle M on § such that
oL =~ L®fM.
By [4, Proposition 8.1], there is a morphism of functors:
(1) Py,—Hom( ., P;,)
and P, coarsely represents P, if and only if

) d—g+1,20—2)=1.

The relationship between S, and P, can be expressed as follows.

THEOREM 1. For every integer t > 10 there is a natural morphism:

fr: S5 P
Proor. First of all, notice that in this case (2) does not hold, so the points of P, are
not in one-to-one correspondence with equivalence classes of very ample line bundles of

degree d on quasistable curves, satisfying the Basic Inequality (see [4, p. 654]). However,
we claim that the result can be deduced from the existence of a morphism of functors:

(3) Fr: S—Parin)g-1)e

Indeed, since S, coarsely represents S,, any morphism of functors S, — Hom( ., S)
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induces a morphism of schemes S . — S, so the claim follows from (1). Now, a morphism
of functors as (3) is the datum for any scheme § of a set-theoretical map

F;(S) : gg(S)—ﬂ_D(zHl)(g,l)’g(S),
satisfying obvious compatibility conditions. Let us define
FES([f: X =8{af]) =[] (X, ®w]§1) — ).

In order to prove that F,(S) is well-defined, the only non-trivial matter is to check that the
multidegree of {; ® wf®’ satisfies the Basic Inequality on each fiber, so the result follows
from the next Lemma. a

Lemma 2. If Y is a complete subcurve of X and dy is the degree of (x ® of'|y, then
my < dy < my + ky in the notation of the Basic Inequality. Moreover, if we set

by =Y NX\Y]|,

we have dy = my if and only if kNY =0 and all ~excepz‘z'amzl components in Y do not in-
tersect X \'Y, and dy = my + ky if and only if ky = 0 and all exceptional components in
X\ 'Y do not intersect Y.

Proor. Let Yi,...,Y, be the irreducible components of Y, of arithmetic genus
g1, - -, 4 respectively. We may assume that the first  ones are non-exceptional and the
last (v — D) ones are exceptional, so that Y =Y, U...UY;. Next, let {p1,-..ps} be the
points of intersection between two distinct irreducible components of Y. Again, we may
assume that the first  ones involve two non-exceptional components and the last (6 — 0)
ones are between a non-exceptional and an exceptional component. We have

14
gi+5—v+1=Zgi+5—u+1
=1 =1

&y =

v

and since C§2|1~, &~ wg|y we may compute

1 1 <
deglx|y = zdegw}ﬂ? =3 (Z (2g; —=2)+ 20+ ky)

=1
Hence we deduce

dy :deg(CX ® w§1)|y = deg x|y +tdegwx|y =
zdegCXh; + deg{;dﬁ + tdeng|Y =
1 _ ~
=§<Z(2g,‘—2)+25+k}/> +(U—D)+l‘(2gy—2+ky) =
i=1

:gy—1—(5—5)+2(0—5)+1é2—y+2t(gy—1+k7y).

On the other hand,
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k k
my = (2t+1)(gy—1+—y> ——=2t<gy—1+—y> +gy — 1,
2 2 2
SO
dY:mY—(é—S)JrZ(D—B)Jr?Y
and the Basic Inequality is satisfied if and only if
-k
052(0—5)—(5—5)+7Y§ky.

Now, since every exceptional component meets the other components in exactly two
points, there are obvious inequalities

§—0<2(v—0)
and
(6= 0) + (ky — ky) > 2(v—10),
hence the claim follows. O
Remark 1. If 4 and £ are 1ntegers > 10, then Lemma 8.1 of [4] yields an
isomorphism 7 : P( 2h+1)(g-1)8 —P (26+1)(g-1),¢- We point out that by the definitions of

7 (see [4, proof of Lemma 8.1]) and of /; (see proof of Theorem 1) there is a commutative
diagram:

_ f, _

5S¢ = Panine

| IT

A

S¢ — Ppontiye-1)e O

3. SPIN CURVES IN Py,

For every integer # > 10 we define

Koy =1{h € Hﬂb(giﬂ 1;1;“ : there is a spin curve

(X,(x,ax) and an embedding 4, : X — PZ+De-=e
induced by {y ® ¥’ such that b = h,(X)}.
By applying [4, Proposition 6.1], from the first part of Lemma 2 we deduce
Karyg-1) € Harm -1

(the definition of H; was recalled above in Section 2). Moreover, we claim that K3, 11)(g—1)
is a constructible set but not a scheme. Indeed, let

][ = 7[(721+1)(g71)(n(z;_i,-l)(g—l)(K(2f+1)(g—1))) ’
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let A, be the stable locus in [, and let B, the locus in J; corresponding to strictly semistable
points with closed orbits. Since A, is open in J; and B; is closed in J;, it turns out that
Kar41)(g-1) = Ay U B, is constructible. On the other hand, if K5, 1)(,—1) were locally closed
in ], it should be K(3/41)(,-1) = C; N U, with C; closed in J; and U, open in J;. This would
imply J, = A, C C, C ], and K(341)(,—1) = U, contradiction. We also point out that the
second part of Lemma 2 provides a great amount of information on Hilbert points
corresponding to spin curves.

~ Provosition 1. Let (X, Cx, ax) be a spin curve. Then hy(X) is GIT-stable if and only if
X is connected.

Proor. We are going to apply the stability criterion of [4, Lemma 6.1], which says
that b,(X) is GIT-stable if and only if the only subcurves Y of X such that dy = my + &y
are union of exceptional components.

If X is connected, then for every subcurve Y of X which is not union of exceptional
components we have &y > 0, so from Lemma 2 it follows that dy < mzy + &y and 5,(X)
turns out to be GIT-stable.

If instead X is not connected, pick any connected component Z of X and take Y to be
the union of Z with all exceptional components of X intersecting Z. It follows that &y = 0
and all exceptional components in X\ Y do not intersect Y, so Lemma 2 vyields
dy = my + ky and h,(X) is not GIT-stable. O

Prorosrrion 2. If (X, {x, ax) is a spin curve, then the orbit of bh,(X) is closed in the
semistable locus.

Proor. Just recall the first part of [4, Lemma 6.1], which says that the orbit of ,(X) is
closed in the semistable locus if and only if 2y = 0 for every subcurve Y of X such that
dy = my, so the result is a direct consequence of Lemma 2. O

The sublocus of P(2¢+1)<g_1) o obtained by projection from K5,;1)(,-1) is indeed the

GIT analogue of S, we are looking for. Namely, if we set
2= e 1) Ky e-1)
then the following holds.

Tueorem 2. The morphism f; induces a bijection
f; : Eg‘—>2[

which is an immersion at all points corresponding to spin curves (X, (x, ax) such that X is
connected.

Proor. It is easy to check that £,(5,) = 2. Indeed, if [(X,{x,ax)] € S,, then any
choice of a base for H°(X,{x ® »%') induces an embedding 4, : X — pDe-1)=¢ and
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F (X Cxry ax0)]) = Marg1y g1y (h:(X)) € 25 conversely, if 7mp41),-1)(h) € 24, then
there is a spin curve (X,(x,dax) and an embedding A, : X — P@*VEU=¢ guch that
h = h,(X) and £,([(X", {xs axr)]) = A1) g-1) ().

Next we claim that £, is injective. Indeed, let (X, {y,ax) and (X, {x/, ax') be two spin
curves and assume that £([(X,{x,ax)]) =/£([(X,{x,ax)]). Choose bases for
HO(X,(x ® o) and HO(X', {y @ @%) and embed X and X’ in PG HDED¢ 1f j (X)
and h,(X') are the corresponding Hilbert points, then 7p1),-1)(A(X)) =
= M(2r41)(g-1)(h(X')) and the Fundamental Theorem of GIT implies that Og(5,(X))
and Og(h,(X’)) intersect in the semistable locus. It follows from Proposition 2 that
Oc(h, (X)) N Og(h,(X") #£ 0, so Og(h,(X)) = Og(h,(X')) and there are isomorphisms
0:X— X' and 7: 0*({x) — {x. Now the claim follows from Lemma 1.

Finally, we are going to prove that /! is a morphism at all points in X,
correspondmg to GIT-stable points in K1) 1) Recall that the Hilbert scheme
Hllbp carries a universal polarized famlly u- Hllbp (see for instance [4] on
p. 601). Since S, coarsely represents S, there is a morphism of functors
Z:S,—Hom( .,S,). We look at the image under Z(A4,) : S,(4,)—Hom(A,,S,) of
F;(A, )71([U|At]) where F; is the morphism of functors (3), A; C Kz;41)(,-1) is the stable

locus defined above, and U is the universal family on Hllbéiﬁ (g D= gH This

construction yields a G-invariant morphism A,—S, which by unlversahty of the
GIT quotient induces the morphism

ffl 2041y (g—1) (Ar) — S,

In order to conclude, just apply Proposition 1. O

Remark 2. Maybe it could be useful to restate the above result in different words.
Indeed, as pointed out in the Conclusion of [14], Cornalba’s moduli space S, can be
identified with the special case of Jarvis’ compactification parametrizing triples
(X,E&,b), where X is a stable curve, £ is a rank one torsion free sheaf on X, and
b:E%? — wy is a suitable Ox-module homomorphism (see [14, Definition 2.1.2]).
On the other hand, as shown by Pandharipande (see [18, Theorem 8.2.1 and
Theorem 10.3.1]), P;, parametrizes equivalence classes modulo automorphisms of
torsion-free sheaves of rank one and degree 4 on stable curves of genus g. In this set-
up, our Theorem 2 simply says that the natural forgetful map (X,&,5)—(X,€) is
injective. On the other hand, we do not know whether the morphism £, is an
immersion everywhere. It is clear that the final part of our proof does not work with
A, replaced with K(3,41),—1) since, as we have already remarked, K(3/41)(,—1) is not a
scheme. As a matter of fact, we are not able to find either an alternate proof or a
counterexample.

Next we are going to derive an explicit combinatorial description of 2;,. We omit the
proof of the following easy Lemma, referring to the proof of Lemma 2 for a similar
computation.
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LemmMa 3. Let (X, {x, ax) be a spin curve. Fix a decomposition
X=JXulJE
=1 =1

=
where the X;’s are the irreducible components of X and the E;’s are the exceptional com-

ponents of X. Set k; = |)~(l NX\ )N(l\ and k; = |)~(, ﬂf(\f(,| Then the multidegree of
Qo onXisd=(di,....dy,dsi1,. .., dpim) with

&=+ D)puX) - )+ th+ 3k 1<i<n

dn+j =1 1< <m.

As in [4, § 5.1], we set

M :={bh e Hy,h=hilb(C,L) : deg L = d}
and
ve=MnH,
By [4, Corollary 5.17 (but see also on p. 627), if [C] € M, then the Vs are exactly the
irreducible components of the fiber over [C] of the natural morphism

Yy Hd—>mg.

ProPOSITION 3. Let d = (dy, . .., d,) be a multidegree and let C = J_, C; be a stable
curve, where the C,’s are the irreducible components of C. Set g = p.(C;) and
ki =|C;NClifi#j, ky:=0ii=].

Then there exists a spin curve (X,(x,ax) with an embedding b, : X — PR (e-1)—¢
induced by {x @ Y’ such that h/(X) € Vg if and only if for every 1 < i,7 < n there are
integers s; and a;; with

n

0<s; <k Sj = Sji Z (k; —5;) = 0 mod. 2

such that

n n n
di= @)~ 1)+ k43> (k=5 + Yoy
=1 =T =1
Proor. To get a quasistable curve X starting from C = |J!_, C;, forevery 1 < 7,7 <=n
choose 7; nodes of C; and s;; contact points between C; and C; and blow them up, by
adding a smooth rational component connecting the branches. In the notation of
Lemma 3, notice that pa(f(,v) =g —r k= 27:1 kiy+2r; and & =Y " (ky — ;).

=1
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As pointed out in [9, § 3], in order for a spin curve having X as underlying curve to exist, a
necessary and sufficient condition i is that £, = 0 mod. 2 for every 1 <7 < ». Moreover,
by [4, Proposition 5.11, 5,(X) € V if and only if there is a partition X = (J/_, X, such
that X; is a complete connected subcurve of X whose stable model is C; and
di = degx ({x ® @f’). So the claim follows from Lemma 3. O

Let Ve ==, Vg and let P, ¢ := ¢, (C). By [4, proof of Corollary 5.1], we have
Pic=Vc/G

and for every irreducible component I of P, ¢ there is a unique multidegree d such that
V dominates I via the quotient map

VC —>1_)d,C~

Tueorem 3. Let C=\J"_, C; be a stable curve, where the C,’s are the irreducible
components of C. Set g; := p,(C;) and ki == |C;NCj|if i # 7, kij :=0ifi =7. Let I be an
irreducible componem‘ of Pyc and let d = (dy,...,d,) be the multidegree such that I is
dominated by V—

Then there exists a spin curve (X, (x, ax) such that f,([(X, (x, ax)]) € I if and only if for
every 1 < ,7 < n there are integers s; and 6 with

OSSZJSk,/ Si = Sii Z(k,/—x,/)EOmodZ

=1

OSO’,’/ SS,']‘ o;+0; =5

such that

di=(2t+1)(g — 1) +t2kl]+ Z l-/-—sl-,)+zﬂ:o—,-,.
=1

Proor. By the Fundamental Theorem of GIT,
F([(X, &y ax)]) = 7)1 (b(X)) €1

if and only if there is 5 € Vé—l such that Og(h,(X)) and Og(5) intersect in the semistable
locus.
Since Og(h:(X)) is closed in the semistable locus by Proposition 2, we have

Oc(h:(X)) N Og(h) # 0
and since Og(h) is a union of orbits we may rephrase the above condition as
hi(X) € Og(h).
On the other hand, we have VC =U,. v Og(h) since Vg is G-invariant and
VE =U,. ¢ Og(h) since Vd is closed.

Summmg up, we see that £,([(X,{x,ax)]) € I if and only if 5,(X) € Vg. Now the
claim follows from Proposition 3. a
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ExampLE 1. Let C be a split curve of genus g, z.e. the union of two nonsingular rational
curves meeting transversally at g + 1 points. Such curves are particularly interesting, for a
number of reasons (see [5, 8]). According to Theorem 3, X, meets an irreducible com-
ponent I of P, if and only if I corresponds to a bidegree (41, d>) with

dy (t+1)(g+l)(2t+1)15+a
2 2
1 1
d2:<t+§)(g+1)—(2t+1)+zs—a

where s and ¢ are nonnegative integers satisfying
c<s<g+1 s=g+1mod. 2.

Moreover, from the proof of Proposition 3 it follows that s is the number of exceptional
components of a quasi-stable curve X underlying a spin curve (X,{x,ax) such that

F((X,Cx,ax)]) € 2N 1.

4. Divisors oN Py,

In order to understand the boundary of P, ,, we recall the morphism ¢, : P, ,—M,
and the decomposition of the boundary of M, into its irreducible components:

8mg =AyUdU... UALg/ZJ'
Next we define
D; = ¢7'(4)
fori =0,...]g/2], and we notice that, since ¢, is surjective, each D; turns out to be a
divisor on P;,. Moreover, if X € M,, we set as usual P, x := ¢;1(X)

Lemma 4. For every i, if X is a general element in A; then Pyy is irreducible.

Proor. If 7 > 1, a general element X of 4; is the union of two smooth curves X; and
X, meeting at one node, so X is of compact type and P, y is irreducible (see [4, footnote
on p. 594]). If instead 7 = 0, a general element X € Ay is an irreducible curve and also
P, x turns out to be irreducible (see [4, 7.1]). O

As a consequence, we obtain a complete description of the boundary of P,
ProprOSITION 4. For every i, D; is irreducible.

Proor. By [4, Corollary 5.1 (2)], for every X € M, all irreducible components of
¢;"(X) have dimension g. Let I be an irreducible component of D;; by applying the
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theorem on the dimensions of the fibers (see for instance [13, II, Ex. 3.22 (b), p. 951]) to
the map

bap : I—¢,(1) € 4
we obtain
dim — dim ¢,(I) < dim (¢;"(X)NI) < g.
Hence
3g—4 =dim4; > dim¢,(I) > 4g — 4 — dim (¢;" (X) N 1)
>3g—4

and all the above inequalities turn out to be equalities. In particular, we have
dim (¢;'(X)N1) = g

and ¢, (X) N1 is a closed subscheme of ¢;'(X) of maximal dimension. By Lemma 4
there is a dense open subset U; C 4, such that ¢, (X) is irreducible for every X € U,. Tt
follows that ¢;"(X) C I for every X € U, and ¢, (U;) is a dense open subset of I. Hence
I =¢,'(U,) is uniquely determined. O

We recall that the class of any line bundle £ on P, restricted to a fiber [¢(X) is a
multiple 720 of the class 0 of the @ divisor (see [17, p. 840]); it seems therefore natural to
define the class of L to be the integer 2.

The Picard group of P;, is completely described by the following result, due to
A. Kouvidakis (see [17, Theorem 4, p. 849]).

Tueorem 4. If g>3 then the Picard group of the wuniversal Picard variety
wy: Py, — ./\/lg is freely generated over 2. by the line bundles L; , and y'y (1), where L , is
any line bundle on P, , with class

b 2g -2
7 ged(2g—2,g+d - 1)

and A is the Hodge bundle on Mg.

The analogous result for P, is the following:

TueorREM 5. Assume g >3 and d > 20(g—1). Then the divisor class group of the
universal Picard variety ¢; : Py, — M, is freely generated over 7. by the classes Ly ,, (1)
and D; (i = 0, ... |g/2]), where D; denotes the linear equivalence class of D; and L, , is the
class of the closure in P, of any Weil divisor with class L, on Py .

Proor. Since P;, is smooth and irreducible, there is a natural identification
Pic(P;,) = A4y-4(Py,), where A, denotes the Chow group of #-dimensional cycles
modulo rational equivalence. Hence using the exact sequence
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Asg-4(Pyy\Pyy) — Asg-a(Pyy) — Asg-4(Psy) — 0

we may deduce from Theorem 4 that As,_4(P,,) is generated by Ly, ¢;(4) and
Ay s (Fd,g \ Py,). Now, we have

4) Fd,g\Pd,g ZD()U...UD[g/zJ Uqﬁ;l(/\/lg\/\/lg)
Moreover, by applying the theorem on the dimensions of the fibers to the map
Pajg MM 61t (M \ MO — M, \ M?

we obtain that codlm(qbd (M, \./\/t ),Ps,) > codim(M, \ Mg,mg) =g—21fg>4,
then ¢;'(M, \./\/l ) cannot contain any divisorial component, so from (1) and
Proposition 4 it fo]lows that As,4(Py, \ Py,) is generated by the D/’s. If, instead,
g =3, we recall that the hyperelliptic locus H is the unique divisor in M3 contained in
M;s \ MY (see [12, Ex. 2.27, 3]). Since [H] = 18/ in Pic(M; ® Q) (see [12, p. 164]), we
have [¢;'(H)] = 18¢(/) and the result on generation is completely proved. As for
relations, let

(5) Ly +bgy(2) +> D=0

be a relation in A4,_4(Py,). If J*(X) is the fiber over a curve X in Mg, then restricting
(5) to J4(X) vyields ak;,0 =0 and we get 4 =0. So we may rephrase (5) as
¢3(bA+ Y c;i0;) = 0. Recall now that a natural way to check that the Hodge class 1
and the boundary classes 6; on M, are independent is to construct families of stable
curves h: X — S, with § a smooth complete curve, such that the vectors
(degy, (4),degy (dp), - . . ) are linearly independent. Such a construction is carried out
in detail in [1] and it is applied in [9] to show the injectivity of z* : Pic(M,) — Pic(S,),
where y : S, — M, is the natural projection. We are going to mimic the same idea in
our case. Namely, in order to prove that ¢)(1) and the ¢)(d;)’s are independent in
Ayg-4(Py,), we will lift to P;, the families 5 : X — § constructed in [1]. The key
observation is that each of them is equipped with many sections passing through the
smooth locus of the general curve C of the family. Indeed, for every irreducible
component C; of C we easily find a section ; of 5 which cuts on C a smooth point
P; € C;. Next, we decompose the integer d as a sum of d;’s in such a way that the
multidegree determined by the d;’s satisfies the Basic Inequality. Finally, we endow C
with the line bundle £ := ®,0¢, (d,P;). Since P, is proper over M,, this construction
uniquely determines a lifting of 5 : X — §, so the proof is over. O

CoroLLary 1. Assume g >3 and d > 20(g — 1). Then Pic(P,,) is freely generated
over Q by Ly, ¢4(4) and D; (i =0,...[g/2)).

Proor. By [4, Lemma 2.2 (1)1, P, is the quotient of a nonsingular scheme, so in
particular it is normal and there is an injection:

Pic (Pd,g) (_>A4g74 (pd,g) :
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On the other hand, since the pull-back of a Q-Cartier divisor is Q-Cartier, both ¢,(1) and
the D,’s are Q-Cartier; moreover, since P, — M, is projective, P, carries a relatively
ample line bundle, which by Theorem 1 has to be a linear combination of £, ,, $;(4) and
the D;’s such that the coefficient of £, is non-zero. It follows that also £, is (O-Cartier
and Ay, 4(P;,) ® Q C Pic(P;,) ® Q, so the proof is over. O

Remark 3. For the sake of completeness, we point out that the rational Picard group
of S, for g > 9 has been explicitly determined in [3, Corollary 11, as a consequence of
previous work by Cornalba [9, Proposition (7.2)] and Harer [11, Corollary 1.3]. Indeed,
for any family / : X — B of spin curves, My := det Rf.{; is a line bundle on B. Let M
denote the corresponding line bundle on S, associated to the universal family on S,. It

turns out that Pic(S,) is freely generated over QO by the set of boundary classes together
with the class u of M.
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