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Funzioni speciali. — On integral representations of q-gamma and q-beta functions.
Nota (*) di ALserTo DE SoLE e Victor G. Kac, presentata dal Socio C. De Concini.

Asstract. — We study g-integral representations of the g-gamma and the g-beta functions. As an
application of these integral representations, we obtain a simple conceptual proof of a family of identities for
Jacobi triple product, including Jacobi’s identity, and of Ramanujan’s formula for the bilateral hypergeometric
series.

Key worbs: g-calculus; g-gamma function; ¢-beta function.

RiassuNTO. — Sulle rappresentazioni integrali delle funzioni g-gamma e g-beta. Studiamo la rappresentazione
g-integrale delle funzioni ¢g-gamma e g-beta. Questo studio svela una g-costante molto interessante. Come
applicazione di queste rappresentazioni integrali, otteniamo una semlice dimostrazione concettuale di una
famiglia di identita per il prodotto triplo di Jacobi, che include I'identita di Jacobi, e della formula di Ramanujan
per le serie ipergeometriche bilaterali.

1. INTRODUCTION

There is no general rigorous definition of a «g-analogue». An intuitive definition of a
g-analogue of a mathematical object A is a family of objects A,, 0 < ¢ < 1, such that the
limit of A,, as ¢ tends to 1, is \A. Under certain additional requirements the g-analogue
may be unique, but sometimes it is useful to consider several g-analogues of the same
object.

The g-calculus (i.e. the g-analogue of the usual calculus) begins with the definition of
the g-analogue d, f (x) of the differential of a function, df (x). The former is much simpler
than the latter:

dof(x) = flgx) —f(x) .

Having said this, we immediately get the g-analogue of the derivative of f(x), called its g-
derivative:

_ dof %) flgx) — flx)
(1.1) qu(x) = dqx = (q — 1)x .

Notice that the g-derivative satisfies the following g-analogue of Leibniz rule

(12) D,(f(x)g(x)) = gx)D, f(x) + f(gx)D, g(x) .

Of course, the first question is what is the g-derivative of x*, where o € C. This is very
easy:

D" = la]x® 1,

(*) Pervenuta in forma definitiva all’Accademia il 27 luglio 2004.
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where [«] is the g-analogue of o:

1-4
[o] = =g

Here we discover the remarkable property of a g-analogue A, of an object A - sometimes
A, makes sense even when A does not:
1
The next question is what is the g-analogue (x + a); of the function (x + )" for a non-
negative integer 7. The natural requirements are
(13) D,x+a) = [nlx+a)", (x+a)) = 1.
It is a nice exercise to check that the (unique) answer is (z € IN)
n—1
(1.4) (x+a); = H(x—i—q/a) .
7=0
The product (1.4) plays in combinatorics the most fundamental role. Again, remarkably,
for x = 1, a = x this formula makes sense for # = oo:

o0

(1.5) (1+x7 = [[0+40 .
7=0

Under our assumptions on ¢, the infinite product (1.5) is convergent. Now we may give a
definition of (1 4 x); for any number o, which is consistent with (1.4):

(1+x).°
1.6 1 .
(1.6) (L40); (1 +4q%x),°
We shall need the following generalizations of (1.3), where #» € 7 and 4, b,¢ € C,
Dylax +b); = alnllax+ b);fl ,
(1.7) Dya+bx), = blnlla+ qu)Z_1 ,
Dy(1+bx)y, = bLA +bgx) .

The proof of these identities is left as a simple exercise for the reader.
There are two important g-analogues of the exponential function:

(1.8) E;:X;f‘”“/z[j;! — (-
(1.9) e"—i <1
' e L CE M
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where [#]! = [1]1[2]--- [#]. Note that the series in (1.8) (resp. (1.9)) converges for
x| < oo (resp. |x] < [o00] = qu> The second equalities in (1.8) and (1.9) are due to

Euler. The simplest proof of them is obtained by using the g-analogue of Taylor’s formula
(see e.g. [6]). The function ¢ is uniquely defined by the requirements

X X 0
D,e, = ¢, ¢ 1.
However, due to the product expansions in (1.8) and (1.9), (6’;)71 = E_* (not e, ™), which
explains why one needs both g-analogues of the exponential function. The g-derivative of
E} is

D,E = E.

In the present paper we shall discuss g-analogues of Euler’s gamma and beta functions
I'(#) and B(#, 5). Their definitions are reminded in Section 2, equations (2.1) and (2.2) (for
the unlikely reader who is not familiar with these functions). The g-gamma function was
introduced by Thomae [14] and later by Jackson [4] as the infinite product

(1-q);"
(110) Fq(l) = W , t>0.

Though the literature on the g-gamma function and its applications is rather extensive
(see [1-3] and references there), the authors usually avoided the use of its g-integral
representation. In fact, each time when a g-integral representation was discussed, it was,
as a rule, not quite right. The first correct integral representation of I",(¢) that we know of
is in references [11, 12]:

[od]
(1.11) () = / X E, 7d, x

0

where the g-integral (introduced by Thomae [14] and Jackson [5]) is defined by

(112) [ 165 = =03 ag'flag')
0 /=0

Notice that the series on the right-hand side is guaranteed to be convergent as soon as the
function f is such that, for some C > 0, o > —1,|f(x)| < Cx* in a right neighborhood of
x = 0.

The definition (1.12) has an obvious interpretation in terms of a Riemann sum.
Moreover it is easy to check that the g-integral defined in (1.12) is the g-antiderivative.
Namely for any function (x) continuous at x = 0 we have

(1.13) [ Dusdyx = s -0, D, [fiode = .
0 0
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In the following we will denote, for arbitrary numbers 4, 5

b b a
/ Fod,x = / £, x — / Fd, x
a 0 0

As immediate consequence g-Leibniz rule (1.2) and of equation (1.13), we get the ¢-
analogue of the rule of integration by parts
/ f(gx)D, glx

b
(1.14) /g(x)qu(x)dqx = flx)g(x)

The g-beta function was more fortunate than the g-gamma function as far as the
integral representations are concerned. Already in the above mentioned papers by
Thomae and Jackson it was shown that the g-beta function, defined by the g-analogue
of the usual formula (2.5),

I ()I,(2)

(1.15) B,(#,5) :m )

has the following g-integral representation, which is a g-analogue of Euler’s formula
(2.2):

1
(1.16) /x (1 —gx), "dyx, t,5>0.
0

Jackson [5] made an attempt to give a g-analogue of a less traditional Euler’s integral
representation of the beta function:

(1.17) / HY ;
0

which is obtained from (2.2) by the substitution x — 1/(1 4 x). However, his definition is
not quite right, since it is not quite equal to B, (¢, s), as will be explained in Remark 3.5. A
correct g-analogue of (1.17) is the famous Ramanujan’s formula for the bilateral
hypergeometric series, see [1, pp. 502-505].

In the present paper we give another g-integral representation of I",(¢), based on
the g-exponential function €}, and a g-integral representation of B,(#,s) which is a ¢-
analogue of (1.17). Both representations are based on the following remarkable
function, cf. [12]:

x! 1 1
(1.18) K(x,t) = T~ <1+ >q(1—|—x)q

This function is a ¢-constant in x, ze.
K(gx,t) = K(x,?) ,

and for # an integer it is independent of x and is equal to ¢/“~"/2. However, for ¢ € (0,1)
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this function does depend on x, since for these # one has

lim K(x; 2) = x' + %'
g—0

Our integral representations are as follows:

00/A(1—q)
(1.19) I,(t) =K(A,1) / Xl Mdyx
0
oo/A
(1.20) B,(z,5) = At>/ T4 mdq

where the improper integral, following [5] and [13], is defined by
o0/A

(1.21) /f(x) (1—g Z f( )

ne’z

Since K(A, #) depends on A, we conclude that the integrals in both formulas do depend
on A. In his formulas Jackson used the factor ¢~/ in place of K(A, ¢), which is correct
only for an integer ¢.

For the proof of these integral representations, provided in Section 3, we will need the
following reciprocity relations, which follow immediately from the definition of g-integral:

(122) /f dx/f@dqx, /fx)dx /x2f< >dx

9/4
L 1 .
These are change of variables rules under the substitution x — —, and similar rules are
X

easily derived for the substitution x — ax?. However there is no general change of
variables formula for the g-integral. This is the main handicap of ¢-calculus. The reader
may find more on g-calculus and its applications in the books [1, 3, 6].

In Sections 4 and 5 we will apply equation (1.20) to find an integral representation of
the g-beta function which is manifestly symmetric under the exchange of # and s, and to
find a g-analogue of translation invariance of certain improper integrals. Finally, in
Section 6 we will show that equation (1.19) is equivalent to a family of triple product
identities, a limiting case of which is the Jacobi triple product identity:

8}

(1.23) 1- 6]);0(1 — x);o(l — q/x);o = Z (— 1)”qn(n—1)/2xn 7

and that equation (1.20) is equivalent to Ramanujan’s summation formula, see [1, pp.
501-505]:
(1—g¢q —bla); (1 —ax) (1 — q/ax) ]
(1.24) > 9 5" = /9, 4 9/ 4
£~ (1-b) (1—b)q 1—q/aq 1—x)°(1 = b/ax),
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Also, the symmetric integral representation of the g-beta function is equivalent to the
following identity:

(1.25) Z(l—a (1—gq/a),” (l—a) (1-gq/a), —q), (1 =bc/q),

= 1= b)q(l - C);” 11— b)q (1-0% (1- b/a (1-— ac/q

q

Jacobi’s triple product identity and Ramanujan’s summation formula are among the
most famous and important identities in all of Mathematics. In particular, each of these
identities turned out to be the tip of the iceberg of an important representation theory:
The Jacobi triple product identity (respectively a specialization of the Ramanujan’s
summation formula) is the «denominator identity» of the simplest affine Kac-Moody
algebra, 3[(2)” (resp. of the simplest affine superalgebra, 3((2,1)7), [7, 9]. At the same
time, these identities arise in quantum field theory, as an essential part of the boson-
fermion correspondence and its super analogue [8].

One way or another most of the results of the paper have appeared in the literature,
however our exposition seems to be more systematic.

2. DEFINITION OF g-GAMMA AND ¢-BETA FUNCTIONS
The Euler’s gamma and beta functions are defined as the following definite integrals
g g g

(s,2>0):

oo

(2.1) () :/x’_le_"dx ,
0
1
(2.2) B(z,s) :/xtfl(l —x)dx
0

23) / 1ertH

0

From the expression (2.2) it is clear that B(#, 5) is symmetric in # and 5. Recall some of the
main properties of the gamma and beta functions:

(2.4) re+1) =00, =1,
(2.5) B(t,s5) = D))/ Tt +5) .

In this paper we are interested in the g-analogue of the gamma and beta functions.
They are defined in the following way.

DerINtTION 2.1, (a) For t > 0, the g-gamma function is defined to be
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(<]

(2.6) r,n= / x’flE;q"dqx .
0
(b) For s,t > 0, the g-beta function is
1
(2.7) B,(t,5) = /x"‘fl(l - qx);_ldqx .
0

I',(#) and B,(¢,5) are the «correct» g-analogues of the gamma and beta functions,
since they reduce to I'(¢) and B(z,s) respectively in the limit ¢ — 1, and they satisfy
properties analogues to (2.4) and (2.5). This is stated in the following

TheoREM 2.2. (a) I',(2) can be equivalently expressed as

1
(2.8) r,@ = E:Z;?l :
In particular one has

L+ =01y, V>0, I,(1)=1.
(b) The g-gamma and g-beta functions are related to each other by the following two
equations

~ B,(#,00)
(2.9) r,@) = T

L0 ,(s)
(210) Bq(f, S) —m

Proor. We reproduce here the proof of Kac and Cheung [6, pp. 76-79], because
similar arguments will be used to prove the results in the next section. If we put s = oo in
the definition of the ¢-beta function, use (1.8) and the change of variable x = (1 — ¢)y, we
get

1 1
B,(t,00) = /xt_l(l —gx),; dyx = /x’_lE;IT"dqx
0 0

1/(1—¢9)
= (1-9g/f / y’flE;qydqy = —q)qu(i) )
0

which proves (2.9). It follows from g-integration by parts (1.14) and equation (1.7) that
B,(z, 5) satisties the following recurrence relations (2, s > 0):
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2.11) B+19 = —o5 [#D,0-wdx
1 10
_ E/( )1 — ),
0
(7]
= mBq(f,S+l)a

B,(t,s+1) = /xt_l(l — gx)'d,x
0

= [ g
0

= B,t,5) —4¢B,(t+1,s) .

The above equations (2.11) imply

[s]

1 B,(¢,s+1) = T +t]B (¢,5) .
Since clearly B,(z,1) = o e get, for # > 0 and any positive integer 7,
[n—1]...[1] (1—q)
2.12 = Ut = )17
212) Bylt,) [t4+n—11...0¢2] 1-4) 1—q;

(1 _ )n—l(l _ )t—l

= (1—4) T H—ﬂ_f]q :
1-4q),

Taking the limit for # — oo in this expression we get
B,(¢,00) = (1 —g)(1 — q)’ b

This together with (2.9) proves (2.8).

Now we prove (2.10). By comparing (2.12) and (2.8) we have that (2.10) is true for any
positive integer value of 5. To conclude that (2.10) holds for non integer values of s we will
use the following simple argument. If we substitute 2 = ¢* and 4 = ¢’ in (2.10) we can
write the left-hand side as

1= bty - ) :
=0 Ny
and the right-hand side as
(1 -9, (1 —ab);]
1-a -5, "

1-9)
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Both these expressions can be viewed as formal power series in ¢ with coefficients rational
functions in ¢ and 4. Since we already know that they coincide, for any given 4, for
infinitely many values of 4 (of the form 4 = 4", with positive integer #), it follows that they
must be equal for every value of 2 and 4. This concludes the proof of the theorem. O

3. AN EQUIVALENT DEFINITION OF g-GAMMA AND ¢-BETA FUNCTIONS

In the previous section the definition of I',(#) was obtained from the integral
expression (2.1) of the Euler’s gamma function, simply by replacing the integral with a
Jackson integral and the exponential function e~ with its g-analogue E %, It is natural to
ask what happens if we use the other g-exponential function. In other words, we want to
study the following function (A > 0):

00/A(1—g)
(3.1) () = / ¥l dyx

0

Similarly, the function B,(z,s) was obtained by taking the g-analogue of the integral
expression (2.2) of the Euler’s beta function. We now want to study the g-analogue of the
integral expression (2.3). We thus define

o0/A
/ i—1

(A) _ X
52) B 5) = 0/ T

In this section we will show how the functions y(qA) (¢) and ﬁ;A) (¢, 5) are related to the g-
gamma and g-beta function respectively. We will adapt in this situation the same
arguments used for the proof of Theorem 2.2. Recall the main steps used there

1. put s = oo in the definition of B,(#, s) to derive equation (2.9),

2. use g-integration by parts to derive recurrence relations for B,(z, s),

3. notice that B, (¢, s) is a formal power series in ¢ with coefficients rational functions in
a=q'and b= 4.

Step 1. By taking the limit s — oo in the definition of ﬁ(qA)(t, 5), using the infinite
product expansion of ¢; and making the change of variables x = (1 — g)y, we get

oc0/A o0/A
A) X! -1 "Tg
ﬂ; (f,OO) = / qux = / X eq 7”dqx
0 1 0
00 /A(1—g)

We therefore proved
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1
(1-

Step 2. We now want to find recursive relations for y(qA)(t) and [)’(qA)(t, 5). By integration
by parts (1.14) we get

(3.3) V;A)(t) — q)tﬁ;A) (¢,00) .

P+ 1) =gy

Here we used the fact that x’eq_" tends to zero as x — 0 and x — +oo (the second fact
follows from the identity ¢, * = 1/E). Since obviously y;A)(l) = 1, we conclude that for
every positive integer # (and any value of A > 0),

(3.4) 7"V D) = [ — 111 =T yn) .

Let us now consider the function ﬁ;A)(t, 5). In order to perform integration by parts we

will need the following

LemMa 3.1, For arbitrary numbers o, § we have

o a—1 o

X~ X
7(1 +X)g = [o] 7(1 +x)g+1 —([p1 - [oc])i(1 +x)’§“ .

D,—

Proor. The lemma follows immediately from the definition (1.1) of g-derivative, and
the definition (1.6) of (1 + x);. O
It then follows from integration by parts (1.14) and Lemma 3.1 that, for #,5 > 0

0/A
(3.5) ﬂif”(z‘ +1,5) = —ﬁqﬁ 0/ (qx)th(l%x);qux
1 ! 1
= q' 7 0/ a +x);+Squ’qux

R [:[fs] B

For # = 1 we have
00/A

(3.6) B, 5) = O/ ﬁdqx:[—i] .
Formulas (3.5) and (3.6) imply (s > 0, » € Z,)
(37 7" VPR (n,5) = (1 - g) (- 00" B,(n,5) .

(1 _ q);rnfl
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Similarly we have by integration by parts (1.14) and Lemma 3.1

o0 /A

(3.8) BVs+1) = ! q‘/ ! LAMIPIN
7 [t + 5] J (gx) " (145"

o0 /A

1 1
= _qx [l‘+3'] 0/ (1+x)lq+1Dq;dqx
- [.V] (A)
= [l‘—&—ﬂﬁq (¢,5) .

We now need to compute /3( (¢,1). By definition of /3 (¢,5) and Lemma 3.1 we have
oo0/A 0o0/A

G-9) /(1 Y Ay = m/

When using the fundamental theorem of g-calculus to compute the right-hand side, we

xt

(1 +x);

exist. On the other hand, by definition of g-derivative and Jackson integral, we have

o00/A | N
/DqF dx_hmF(Aq>_1\}£IoloF(A>
0

where the limits on the right-hand side are taken over the sequence of integer numbers N.
We then have from (3.9)

have to be careful, since the limit for x — 400 of the function F(x) = does not

1N\t
(3.10) BV, 1) = H(hm AN+ M)q> .

Let us denote by K(A; #) the limit in parenthesis in the right-hand side of (3.10). We can
compute the limit for N — oo in the expression of K(A4, ), simply using the definition
(1.6) of (1+x);:
1+gN/A) - (1+q71/A) A+1/A))7
K(A:1) = A’ lim Nz‘(+q/) (1+47'/4) ( /)qoo
N T g /A T+ ¢ A T+ q'/A),

! 1+Ag)--- (1 +AgN
= oaf14 k) g L+ A9) (14 AgV)
A qN-»oo(l—l—Aql—f)---(l—i—AqN—f)

t
Y 1 1—¢
= 1+AA< )q(1+/1)q .

From (3.8) and (3.10) we conclude that for any # > 0 and positive integer 7
n—1 t—1
(1—gq); (1—-9),

(1 o q)Z+t71

(3.11) K(4; z)/f t,n) =1 —¢q)

=B,t,n) .
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In the following lemma we enumerate some interesting properties of the function

L ov(14! t(1+ )Lt
— X .
T+x x/, 7

K(x;¢) =

Lemma 3.2. (a) In the limits g — 1 and g — 0 we have

1irr%K(x;t) = 1, VxteR

q;)

1irréK(x; f) = x4+x71, Ve (0,1), xe R .
q‘?

In particular K(x, t) is not constant in x.
(b) Viewed as a function of t, K(x;t) satisfies the following recurrence relation:

K(x;2+1) = ¢'K(x; 1) .
Since obviously K(x;0) = K(x; 1) = 1, we have in particular that for any positive integer n
K(x;n) = g""~ V72
(c) As function of x, K(x;t) is a «g-constant», namely
DK(x,0) =0, VetxeR.

In other words K(q"x; t) = K(x; t) for every integer n.

Proor. The limit for ¢ — 1 of K(x;#) is obviously 1. In the limit ¢ — 0 we have, for
any o > 0,

(14 g2,

1+, =1 +x) - — (1+x) .
q

(14 ¢*x)

1
We therefore have, for ¢ € (0, 1): lir% K(x;2) = & (1 + —) . For part (5) we need to use the
following obvious identity - %

L+ = A+ +y) .

It follows from the definition of K(x; ) that

1 1\
Ko;e+1) = —x14+4=) (1+4x).°
1+x x/, 7

q[
X(l +;) 1+ g 'x)

For part (¢) it suffices to prove that K(gx; #) = K(x; #). By definition

(gx)’ <1 + i) 1+ qx);_’ )
q9x) 4

K(x;2) = ¢'K(x;2) .

K(gx;t) =

14gx
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We can replace in the right-hand side

t 1+1 I
(1_|_Lx> = M<1+_) ,
“/q 1+ 4'/(gx) x/,

-t _ 1"“]17[95 1-¢
(1+qX)q = 174-96(1+X)q .

The claim follows from the following trivial identity

q‘(l + ql—x> (14 4'"x)
(1 +q9(1+7)

ql—[x

=1.

This concludes the proof of the lemma. O

Remark 3.3. The function K(x; #) is an interesting example of a function which is not
constant in x and with g-derivative identically zero.

Step 3. It follows from (3.7), (3.11) and Lemma 3.2 that the functions K(A4; t)ﬂ;A) (¢,5)
and B, (¢, 5) coincide for any A > 0 as soon as either # or s is a positive integer. We want to
prove that they actually coincide for every #,5 > 0.

Treorem 3.4. For every A, t,s > 0 one has:

(3.12) KA;090(6) =T, (0)

(3.13) KA; 0B, 5) =B, (¢t,9) .

Remark 3.5. This result corrects and generalizes a similar statement of Jackson [5].
There (3.13) is proved in the special case in which s + # is a positive integer, But, due to a
computational mistake, the factor K(A;¢) is missing.

Proor oF TueoreM 3.4. Equation (3.12) is an immediate corollary of (2.9), (3.3)
and (3.11). As in the proof of Theorem 2.2, in order to prove (3.13) it suffices to
show that K(4; t)/)’;A)(t, s) can be written as formal power series in ¢ with coefficients
rational functions in ¢ = ¢* and b = ¢’. After performing a change of variable y = Ax,
we get

o0/1
1 1\’ 1
g g L (1 N
(14 KA (t,x)—1+A(1+A>q(1+A)q / T
0
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Fix A > 0. After letting » = ¢/, we can rewrite the factor in front of the integral as

o0

1 (T+%), A+A7

LAy, (1)
q

and this is manifestly a formal power series in ¢ with coefficients rational functions in
b. We then only need to study the integral term in (3.14), which we decompose as

! ytfl ytfl
3.15 /7;1 y+/ 4,y
( ) J (1+%>;+ q J (1+%);+ q

After letting 2 = ¢° and b = ¢’ the first term in (3.15) can be written as

1+ ab%)
(1 _ q) bﬂ ( nA ,
2"
and this is a formal power series in ¢ with coefficients rational functions in « and 5.
We are left to consider the second term in (3.15). By relation (1.22) we can rewrite it
as
q

( 6) xvfl d
3 .1 / 7;ﬂ. q X .
oy
Recalling the definition of K(x;#), we have the identity
1 1 1—ses ALt
= 1+ A e—
xf+f(1 + Aix) s 4+ Ax a+ X)‘f KAx; ¢t +s)

q

The main observation is that, even though K(Ax; ¢ + 5) is not constant in x, by Lemma
3.2 K(Aq";t +5) = K(A; ¢t +5), ¥ n € 7, therefore inside the Jackson integral it can
be treated as a constant. Using this fact, we can rewrite (3.16) as

(3.17) AT / Lo 101 4 ant g
’ K(A;t+5) 1+ Ax Mg %
0

After letting 2 = ¢° and b = ¢’ we can finally rewrite the first factor in (3.17) as
ab\>® 4)>
1+ (1+4)7(1 +Z—;,)q

019 (ESTRE T

and the integral term in (3.17) as

(1+Aq")7
(3.19) 1-93 wl%.
n>0 1+ 7"
( ab )q

Clearly both expression (3.18) and (3.19) are formal power series in ¢ with coefficients
rational functions in 2 and 4. This concludes the proof of the theorem. O
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Remark 3.6. The proof of Theorem 3.4 is more complicated than one may have
expected. This is due to the fact that we do not have a formula for the change of variables
x — x + 1. Notice that, instead, we took advantage of the fact that one can take out of the
sign of g-integral an arbitrary ¢-constant, not just a constant as for ordinary integrals.

4. APPLICATION 1: AN INTEGRAL EXPRESSION OF
THE ¢-BETA FUNCTION MANIFESTLY SYMMETRIC IN # AND §

Theorem 2.2 implies that B, (#, s) is a symmetric function in # and s. This is not obvious
from its integral expression (2.7). We now want to use Theorem 3.4 to find an integral
expression for B, (¢, s) which is manifestly symmetric under the exchange of # and s. By
Theorem 3.4 we have that, for any A > 0

o00/A

4.1) B,(z,5) = K(4; 1) /

0

xl‘fl

—  d.x.
(1427

By definition of K(x, #) we get, after simple algebraic manipulations
(4.2) Lo =k(Se) (142 t(1+ 'x),
i = X, =K{ %), q'x), .

Since by Lemma 3.2 we have

K(l;t) =KA;8), VYx==,ne”,
X

qﬂ
A
when we substitute (4.2) back into (4.1) we get, after a change of variable y = ¢'x,

oo/a
(4.3) B,(z,5) = / lt dyy, YVa>0.
0 y(1+z> (1+y);

q

To conclude, we just notice that this integral expression of B,(#, 5) is manifestly symmetric

in # and s, since performing the change of variable x = 4 (namely applying the reciprocity

relation (1.22)) gives the same integral with « replaced by 1/a and s replaced by ¢.
5. APPLICATION 2: TRANSLATION INVARIANCE
OF A CERTAIN TYPE OF IMPROPER INTEGRALS

One of the main failures of the Jackson integral is that there is no analogue of the
translation invariance identity
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a atc
/f(x)dx = / flx —c)dx |
0 c

obviously true for «classical» integrals. By using Theorem 3.4 we are able to write a ¢-
analogue of translation invariance for improper integrals of a special class of function,
namely of the form x*/(1 + x)/; . More precisely we want to prove the following

CoRrOLLARY 5.1. For o > 0 and f > o+ 1 we have

1\ %
oo/A oo/l x* <1 ——)
/ x* q x
(
0

d,x = 1d, x .
TR T

(5.1)

Remark 5.2. In the «classical» limit ¢ = 1, the right-hand side is obtained from the
left-hand side by translating x — x — 1.

Proor. From the definition of B,(#, 5) we have

1
(5.2) B,(z,5) :/xf_l(l - qx)[q_ldqx
0

8

1 1\t 1
1A=, y
; xS g%

—

The first identity was obtained by applying (1.22) and the second by a change of variable
y = x/g. From Theorem 3.4 we also have

o0o/A
(5.3) B, (1,5) = K(A; ) /

0

thl

———d,x .

1+ x);-ﬂ g%

Equation (5.1) is obtained by comparing (5.2) and (5.3), after lettinga = ¢ — 1, f=¢+
and using the fact that K(A4; o + 1) = ¢*K(4; o). O

Remark 5.3. As we have remarked above, the g-integral is not translation invariant.
However, as pointed out in [10] (see also [13]), translation invariance can sometimes be
restored by working with g-commuting variables. T.H. Koornwinder also pointed out to
us that formula (3.13) is essentially equivalent to exercise 6.17(7) from [3].



ON INTEGRAL REPRESENTATIONS OF 4-GAMMA AND ¢-BETA FUNCTIONS 27
6. APPLICATION 3: IDENTITIES

If we rewrite equations (3.12), (3.13) and (4.3) using the definition of improper
integrals, we get some interesting identities involving ¢-bilateral series.

After using the infinite product expansion (1.9) of the g-exponential function €, the
expression (2.8) of the g-gamma function, the definition (1.21) of the improper Jackson
integral and simple algebraic manipulations, we can rewrite equation (3.12) as

(6.1) (1- q)go(l +qt/A);O(1 JrqA/qt) =(1 JrqA Z q" I/A)Z

n=—00
If we let x = —¢’ /A in equation (6.1) we get

(6.2) (1—@X(1—x)(1—gq/x) = (1+qAF 1 +Ax° Y (=x"A"(1+1/A)]

n=—0o0

This is a 1-parameter family of identities for the well known Jacobi triple product
(1-¢)7(1—x,(1~g/x)) , parametrized by A. Notice that

hmA” +1/4), g2

This implies that, in the limit A — 0, equation (6.2) reduces to the famous Jacobi triple
product identity (1.23).

Let us consider now equation (3.13). After using the definition (1.21) of improper g-
integral, the expression (1.15) for the ¢g-beta function and simple algebraic manipulations,
we can rewrite it as

B SRSV IR B B R
: 0+ qz+:/A (g /A +qA (1 =) (1 =)

n= q

Notice that, after lettinga = —1/A, b = —¢'™ /A, x = ¢', equation (6.3) is equivalent to
the famous Ramanujan’s identity (1.24). In other words, the proof of Theorem 3.4 in
Section 3 can be viewed as a new conceptual proof of Ramanujan’s identity.

Finally we can rewrite equation (4.3) as

(6.4) i L1/l 4 g, I+ 11+ g0 (19 (1 — g )
S A/ gt g [ (g (- ) (=)

After letting 2 = —1/a, b= —¢'/a, ¢ = —¢" ', equation (6.4) reduces to (1.25).

Remark 6.1. It is also interesting to see what are the identities corresponding to the
original integral expression of the g-gamma and ¢-beta functions. For this, expand the
integral expression (2.6) of the g-gamma function using the definition of g-integral, use
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the infinite product representation (1.8) of the g-exponential function and compare the
result with (2.8). The resulting identity is:

1 B qnt
(1_qt)oc - Z(l_ n o

q n>0 q)q

which is, after replacing x = ¢’/(1 — g), the same as Euler’s identity (1.9). Similarly,
expand the integral expression (2.7) of the g-beta function and use (2.10) to get

R A
& (1= 9y (1=g)y

If we then make the change of variables 2 = ¢*, x = ¢/, we get the well known Heine’s
product formula for a g-hypergeometric series:

(l—ax)‘q _ Z(l_d)qX”
(1—x), = (1-q)
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