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LUIGI AMBROSIO - NICOLA GIGLI - GIUSEPPE SAVARÉ

GRADIENT FLOWS WITH METRIC AND DIFFERENTIABLE STRUCTURES,
AND APPLICATIONS TO THE WASSERSTEIN SPACE

ABSTRACT. — In this paper we summarize some of the main results of a forthcoming book on this to-
pic, where we examine in detail the theory of curves of maximal slope in a general metric setting, follo-
wing some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability
measures. In the first part we derive new general conditions ensuring convergence of the implicit time di-
scretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second
part we study in detail the differentiable structure of the Wasserstein space, to which the metric theory
applies, and use this structure to give also an equivalent concept of gradient flow. Our analysis includes
measures in infinite-dimensional Hilbert spaces and it does not require any absolute continuity assum-
ption on the measures involved.

KEY WORDS: Gradient flows; Wasserstein metric; Optimal transport.

1. INTRODUCTION

In this paper we summarize the main results of the forthcoming book [3], devoted
to the theory of gradient flows in a general metric setting and in the framework of the
space of probability measures endowed with the L 2 Wasserstein metric. The presenta-
tion here reflects the structure of the book, with two parts that can be read almost in-
dependently of each other: in the first one we study gradient flows in metric spaces
(calling them curves of maximal slope, since only the slope makes sense in this general
setting), introduced following the ideas in [11] (see also [2]). We find general condi-
tions ensuring the convergence of the implicit time discretization scheme to a curve of
maximal slope. These conditions are typically satisfied if the energy functional is con-
vex along geodesics. We also find a new convexity condition, which takes into account
both the behaviour of the energy functional and of the metric, ensuring both unique-
ness of curves of maximal slope (for a given initial datum) and full convergence, with
explicit error estimates, of the implicit time discretization scheme (here we follow
mostly the ideas in [5, 20]). These findings extend some convergence results known in
Alexandroff Non Positively Curved metric spaces (see [18, 16]), but apply also to
some Positively Curved metric spaces, as the Wasserstein space of probability
measures.

In the second part we describe the Wasserstein space of probability measures in a
separable Hilbert space X and its differentiable structure, recovering in a more gener-
al framework the formal calculus introduced in [21] and the representation of the
Wasserstein distance as a «Riemannian» metric in [6]. One of the main features of our
presentation is that we don’t assume that X is finite-dimensional or that all measures m
under consideration are absolutely continuous with respect to a given measure (e.g.
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the Lebesgue measure in finite dimensions). Our derivation of the «Riemannian»
structure (i.e. the tangent bundle and the metric on it) stems from a differential char-
acterization of all absolutely continuous curves with values in the Wasserstein space.
After the construction of the tangent bundle we examine in detail the differentiability
properties along a rectifiable curve of the Wasserstein distance from a given point,
and show the infinitesimal behaviour of the distance between nearby points on a recti-
fiable curve. In this framework also the notions of subdifferential and of gradient
flows can be estabilished (see also [9], where analogous concepts appear in the con-
text of the so-called Riemannian length spaces) and it turns out that gradient flows co-
incide with curves of maximal slope. This leads in many situations to the existence and
the uniqueness of gradient flows (see also [9] for related results, mostly concerning
uniqueness and rate of convergence as tKQ), to the convergence of the implicit time
discretization scheme (see also [15, 8, 1]) and, under a slightly stronger convexity con-
dition, to the error estimates for the scheme.

Due to obvious space constraints, the references quoted here are only a small part
of the large literature available on these topics, and which will be represented in more
detail in the book.

2. GRADIENT FLOWS IN METRIC SPACES

2.1. Basic notions.

Let us begin with some basic notions which make sense in any complete metric
space (S , d) (see [2, 4] for a more detailed treatment of this topic).

DEFINITION 2.1. Let v : (a , b) K S be a curve; we say that v belongs to AC p (a , b ; S),
for p� [1 , 1Q], if there exists m�L p (a , b) such that

d(v(s), v(t) ) G�
s

t

m(r)dr ( aE sG tEb .(2.1)

In the case p41 we are dealing with absolutely continuous curves and we will denote
the corresponding space simply with AC(a , b ; S).

THEOREM 2.2 (Metric derivative). Let p� [1 , 1Q]. Then for any v�AC p (a , b ; S)
the limit

Nv 8N(t) »4 lim
sK t

d(v(s), v(t) )
Ns2 tN

(2.2)

exists for L1-a.e. t� (a , b). Moreover the function t ONv 8 N(t) belongs to L p (a , b), it is
an admissible integrand for the right hand side of (2.1), and it is minimal in the follow-
ing sense:

Nv 8N(t) Gm(t) for L1 -a.e. t�(a,b), for each function m satisfying (2.1).(2.3)
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DEFINITION 2.3 (Local slope). The local slope of a functional f at a point v�D(f)
is 0 if v is isolated point of S, otherwise it is given by

N¯fN(v) »4 lim sup
wKv

(f(v)2f(w) )1

d(v , w)
.(2.4)

We will denote by D(¯f) the set of v� S such that N¯fN(v) E1Q .

With these definitions in mind, we can formulate as in [11] (see also [11, 17, 2])
the concept of gradient flow in a general metric setting.

DEFINITION 2.4 (Curves of maximal slope). We say that a locally absolutely continu-
ous map u : (a , b) K S is a curve of maximal slope for the functional f if f i u is L1-a.e.
equal to a non-increasing map W and

W 8 (t) G2
1
2

Nu 8N2 (t)2
1
2

N¯fN2 (u(t) ) for L1 -a.e. t� (a , b).(2.5)

We say that uA is the starting point of the curve u if lim
tKa

u(t) 4 uA.

To illustrate the heuristic ideas behind the previous definition, let us start with the
classical setting of a gradient flow

u 8 (t) 42˜f(u(t) )(2.6)

in a Hilbert space. If we take the modulus in both sides we have the equation
Nu 8N(t) 4N˜f(u(t) )N which makes sense in a metric setting, interpreting the left
hand side as the metric derivative and the right hand side as the local slope. However,
in passing from (2.6) to a scalar equation we clearly have a loss of information. This in-
formation can be retained by looking at the derivative of the energy:

d
dt

f(u(t) ) 4 au 8 (t), ˜f(u(t) )b 42Nu 8 (t)NN˜f(u(t) )N4

42
1
2

Nu 8N2 (t)2
1
2

N˜f(u(t) )N2 .

The second equality holds iff u 8 and 2˜f(u) are parallel and the third equality holds
iff Nu 8N and N˜f(u)N are equal, so that we can rewrite (2.6) as

1
2

Nu 8N2 (t)1
1
2

N˜f(u(t) )N242
d
dt

f(u(t) ).

This argument shows that the metric formulation is consistent with the classical
Hilbertian framework.

2.2. Implicit time discretization.

The basic and classical construction of curves of maximal slope is based on a time
discretization, building discrete solutions depending from a time step t and passing to
the limit as t goes to 0.

The discrete solutions are built through a variational approximation of the prob-
lem and a recursive argument in the following way: we fix the parameter tD0 and the
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starting point Ut
0 , then we choose Ut

n11 in the set

Jt [Ut
n ] »4argmin mf(Q)1

1
2t

d 2 (Ut
n , Q)n .(2.7)

DEFINITION 2.5 (Discrete solutions). The discrete solution is the piecewise constant
function

Ut (t) »4Ut
n if t� [nt , (n11)t).

Since we wish to show convergence of the discrete solutions to a limit curve, we
have to look for some compactness property of the metric space (or of the sublevels of
f). Of course we may ask that this compacteness is with respect to the topology in-
duced by the distance d; however, since this assumption is too strong in some applica-
tions, we believe it is more convenient to look for convergence w.r.t. a weaker auxil-
iary topology s . So here and in the sequel we assume that there exists a topology s
with the following properties.

2.1a. Weak topology. – s is an Hausdorff topology on S compatible with d in the
sense that s is weaker than the topology induced by d and d is sequentially s-lower
semicontinuous:

(un , vn ) �
s

(u , v) ¨ lim inf
nKQ

d(un , vn ) Fd(u , v).(2.8)

De Giorgi introduced in [10] the notion of limits of discrete solutions in an ab-
stract framework (where more general perturbations than the square of the distance
are considered), and named them minimizing movements. Let us recall his definition,
with minor variants.

DEFINITION 2.6 (Minimizing movements). For a given functional f and an initial
datum u0� S we say that a curve u : [0 , 1Q) K S is a mimimizing movement for f
starting from u0 if for every sufficiently small tD0 there exists a discrete solution Ut

defined as in (2.5) such that

lim
tI0

f(Ut
0 ) 4f(u0 ), lim

tI0
d(Ut

0 , u0 ) 40, Ut (t) �
s

u(t) ( t� [0 , 1Q).(2.9)

We denote by MM(f ; u0 ) the collection of all the minimizing movements for f starting
from u0 .

Analogously, we say that a curve u : [0 , 1Q) K S is generalized mimimizing
movement for f starting from u0 if there exists a sequence t kI0 and a corresponding
sequence of discrete solutions Ut k

defined as in (2.5) such that

(2.10) lim
kKQ

f(U 0
t k

)4f(u0 ), lim
kKQ

d(U 0
t k

, u0 ) 40, Ut k
(t) �

s
u(t) ( t� [0 , 1Q).

We denote by MM(f ; u0 ) the collection of all the generalized minimizing movements
for f starting from u0 .

In order to be sure that discrete solutions exist and that minimizing movements (or



GRADIENT FLOWS WITH METRIC ... 331

the generalized ones) are curves of maximal slope, we need to make some assumptions
on f , and here are the main ones.

2.1b. Lower semicontinuity. – We suppose that f is sequentially s-lower semicon-
tinuous on d-bounded sets

sup
n , m

d(un , um ) E1Q , un�
s

u ¨ lim inf
nKQ

f(un ) Ff(u).(2.11a)

2.1c. Coercivity. – There exist t *D0 and u*� S such that

m * »4 inf
v� S

f(v)1
1

2t
d 2 (v , u*) D2Q .(2.11b)

2.1d. Compactness. – Every d-bounded set contained in a sublevel of f is relatively
s-sequentially compact: i.e.,

every sequence (un ) % S with sup
n

f(un ) E1Q , sup
n , m

d(un , um ) E1Q

admits a s-convergent subsequence .
(2.11c)

2.1e. Semicontinuity of the slope. – The slope satisfies the following equation

N¯fN(u) 4 inf mlim inf
nK1Q

N¯fN(un ) : un�
s

u , sup
n

]d(un , u), f(un )( E1Qn.(2.11d)

Basically the assumptions b , c ensure the existence of discrete solutions, d is need-
ed to find a limit curve and e to is needed to show that this limit curve is of maximal
slope.

PROPOSITION 2.7 (Convergence of the implicit time discretization scheme). Let us
suppose that the assumptions of 2.1a, b, c, d hold and let be given a sequence (t n ) I0
and a corresponding family of initial data ]U 0

t n
( satisfying

U 0
t n

�
s

u0 , f(U 0
t n

) Kf(u0 ) E1Q as nK1Q , sup
n

d(U 0
t n

, u0 )E1Q .(2.12)

Then there exist a subsequence, not relabeled, and a limit curve u�AC 2
loc ( [0 , 1Q); S)

such that

Ut n
(t) �

s
u(t) ( t� [0 , 1Q).(2.13)

In particular u�GMM(f ; u0 ), which is a nonempty subset of AC 2
loc ( [0 , 1Q); S).

THEOREM 2.8 (Limit curves are of maximal slope). Assume that conditions 2.1a, b,
c, e are fullfilled and that f satisfies the continuity property

sup
n�N

mN¯fN(vn ), d(vn , v0 ), f(vn )nE1Q , vns�
s

v ¨ f(vn ) Kf(v).(2.14)

Then every u�GMM(f ; u0 ) is a curve of maximal slope for f .

Some stronger results (i.e. the energy identity and the convergence of various dis-



L. AMBROSIO ET AL.332

crete quantities to their continuous counterparts) can be given replacing the continu-
ity condition (2.14) by the assumption that N¯fN is an upper gradient of f in the sense
of Heinonen and Koskela (see [14] and (2.15) below).

THEOREM 2.9. Assume that conditions a, b, c, e hold and that N¯fN has the following
property: for every absolutely continuous curve v : [0 , 1] K S the function N¯fN i v is
Borel and

Nf(v(t) )2f(v(s) )NG�
t

s

N¯fN(v(r) )Nv 8 (r)Ndr (0 E sG tE1.(2.15)

Then every curve u�GMM(f ; u0 ) is a curve of maximal slope for f and u satisfies the
energy identity

1
2
�

0

T

Nu 8N2 (t)dt1
1
2
�

0

T

N¯fN2 (u(t) )dt1f(u(T) ) 4f(u0 ) (TD0.(2.16)

Moreover, if ]Ut n
(n�N is a sequence of discrete solutions satisfying (2.12) and (2.13),

we have

lim
nKQ

f(Ut n
(t) ) 4f(u(t) ) ( t� [0 , 1Q),(2.17)

lim
nKQ

N¯fN(Ut n
) 4 lim

nKQ
NUt n

8 N4Nu 8N4N¯fN(u) in L 2
loc ( [0 , 1Q) ),(2.18)

where NUt8N is defined as

NUt8N(t) 4
d(Ut

n21 , Ut
n )

t if t� ( (n21)t , nt)(2.19)

and N¯2 fN is the right hand side in (2.11d).

2.3. The geodesically convex case.

The abstract conditions given above are fulfilled in the case when the functional is
convex along constant speed geodesics, according to the definition below. This case is
relevant for many applications, see for instance [16, 19, 21, 22] and the examples men-
tioned in the following section.

DEFINITION 2.10 (Convexity along curves). A functional f : S K (2Q1Q] is
said to be convex along the curve g : [0 , 1] K S if

f(g t ) G (12 t)f(g 0 )1 tf(g 1 ) (t� [0 , 1] .(2.20)

DEFINITION 2.11 (Constant speed geodesics and length spaces). A curve
g : [0 , 1] K S is a constant speed geodesic connecting two points v0 , v1� S if g i4vi ,
i40, 1 , and

d(g s , g t ) 4 (t2 s)d(v0 , v1 ) (s , t� [0 , 1], sG t .(2.21)

A metric space S is said to be a length space if for every couple of point x , y� S there
exists at least one (not necessarily unique) geodesic connecting them.
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DEFINITION 2.12 (Geodesically convex functionals). A functional f :SK(2Q,1Q]
on a length space S is geodesically convex if for every x , y� S there exists a constant
speed geodesic connecting them along which f is convex.

For geodesically convex functionals the local slope admits the following simple
representation:

N¯fN(v) 4 sup
wcv

u f(v)2f(w)
d(v , w)

v1

,(2.22)

from which one can show that N¯fN has the upper gradient property stated in Theo-
rem 2.9 and that 2.1e holds with s equal to the topology induced by d . Then, one ob-
tains the following result.

THEOREM 2.13. Suppose that f is geodesically convex and that all the Assumptions
2.1 hold. Then every u0 such that f(u0 ) E1Q is the starting point of a curve of maxi-
mal slope for f and all the conclusions of Theorem 2.9 hold.

Moreover the convexity property ensures some pointwise differentiability proper-
ties, first observed by Brezis [7] in the Hilbertian setting. We collect them in the fol-
lowing theorem.

THEOREM 2.14 (Pointwise properties). Let us suppose that Assumptions 2.1a, b hold
and that f is geodesically convex. If f(u0 ) E1Q then each element u�GMM(f ; u0 )
is locally Lipschitz in (0 , 1Q) and satisfies the following properties:

(i) The right metric derivative

Nu 81N(t) »4 lim
sI t

d(u(s), u(t) )
s2 t

(2.23)

exists and N¯fN(u(t) ) E1Q for all tD0.

(ii) The map t O f(u(t) ) is convex and the map t ON¯fN(u(t) ) is non-increasing
and right continuous.

(iii) The equation

d
dt1

f(u(t) ) 42N¯fN2 (u(t) ) 42Nu 81N2 (t) 42N¯fN(u(t) )Nu 81N(t)(2.24)

is satisfied at every t� (0 , 1Q).

Even though the geodesic convexity ensures existence of curves of maximal slope
and several useful properties, including the energy identity, uniqueness of curves of
maximal slope for a given initial datum is an open problem. This problem is open even
in a linear framework, for instance when S is a reflexive Banach space, and seems to be
related to the lack of an Hilbertian structure, even on small scales. We discuss this
problem in the next subsection.
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2.4. A new kind of convexity assumption.

Explicit error estimates for the implicit time discretization scheme and uniqueness
of curves of maximal slope can be proved if we ask convexity not only for the func-
tional, but even for the distance.

ASSUMPTION 2.15. We suppose that for every choice of w , v0 , v1� S there exists a
curve g : [0 , 1] K S such that g i4vi , i40, 1 , f is convex along the curve and the fol-
lowing estimate holds

d 2 (w , g t ) G (12 t)d 2 (w , v0 )1 td 2 (w , v1 )2 t(12 t)d 2 (v0 , v1 ).(2.25)

This assumption is in some sense stronger than the geodesic convexity, since we
are requiring a uniform convexity condition also on the distance; on the other hand it
is weaker, since the curve g along which this has to happen need not be a geodesic. In
fact, in the applications described in the next section, this degree of freedom in the
choice of the curve is extremely useful. Notice also that condition (2.25) along
geodesics is the definition of Non Positively Curved (NPC) metric spaces in the sense
of Alexandroff (for Riemannian metric spaces the condition is equivalent to non posi-
tivity of all sectional curvatures). In the setting of NPC metric spaces the uniqueness
of gradient flows was proved in [18] (see also [16]), but our more general result fol-
lows a different path, strongly related to the ideas in [5, 20].

Moreover we identify now the topology s with the one induced by the distance d
and drop the compactness assumption 2.1d: indeed, Assumption (2.15) guarantees
both the existence of a minimizer for the discrete problem 2.7 and the convergence of
the discrete solutions to a curve of maximal slope. The main results are contained in
the following theorem, in which we use the notation f t (u) for the function
inf f(Q)1d 2 (Q , u) /2t .

THEOREM 2.16. Let us assume that f is a proper, lower semicontinuous, coercive
functional (according to 2.1c) and that Assumption 2.15 is satisfied. Then

i) Convergence and exponential formula: for each u0� D(f) there exists a unique
element u4S[u0 ] in MM(F ; u0 ) which therefore can be expressed through the expo-
nential formula

u(t) 4S[u0 ](t) 4 lim
nKQ

Ut/n
n (u0 ).(2.26)

ii) Regularizing effect: u is a locally Lipschitz curve of maximal slope with
u(t) �D(¯f) %D(f) for tD0; in particular the following a priori bounds hold:

(2.27) f(u(t) ) Gf t (u0 ), N¯fN2 (u(t) ) GN¯fN2 (v)1
1
t 2

d 2 (v , u0 ) ( v�D(f).

iii) Uniqueness and evolution variational inequalities: u is the unique solution of
the evolution variational inequality

1
2

d
dt

d 2 (u(t), v)1f(u(t) ) Gf(v) L1 -a.e. in (0 , 1Q), ( v�D(f).(2.28)
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iv) Contraction semigroup: The map t O S[u0 ](t) is a non expansive semigroup,
i.e.

d(S[u0 ](t), S[v0 ](t) ) Gd(u0 , v0 ) ( u0 , v0� D(f).(2.29)

v) Optimal a priori estimate: if u0�D(f) then

d 2 (S[u0 ](t), Ut/n
n (u0 ) ) G

t
n (f(u0 )2f t/n (u0 ) ) G

t 2

2n 2
N¯fN2 (u0 ).(2.30)

3. GRADIENT FLOWS ON THE SPACE OF PROBABILITY MEASURES

3.1. Basic definitions and notation.

This section is devoted to the study of the differential structure of the space of
probability measures on a separable Hilbert space X (in the following denoted by
P(X)), endowed with the Wasserstein distance W2 . Although most of the results stat-
ed here are true even in the general case pD1, see [3], in this paper for the sake of
simplicity we will state them only for p42.

Let us first recall the basic definitions and properties.

DEFINITION 3.1 (Transport of measures). Let m be a probability measure on X and
let r : XKX be a Borel map. The push forward r

J

m� P(X) of m through r is defined by

r
J

m(B) »4m(r 21 (B) ) for any Borel subset B%X .(3.1)

More generally, the integral w.r.t. m and the integral w.r.t. r
J

m are related by

�
X

f (r(x) )dm(x) 4�
X

f (y)dr
J

m(y)(3.2)

for every bounded (or positive) Borel function f .

DEFINITION 3.2 (Transport plans). Given two measures m 1 , m 2� P(X), the set of
transport plans between them is:

G(m 1 , m 2 ) »4 mm�P(X3X) : p 1
J

m4m 1 , p 2
J

m4m 2n,(3.3)

where p i : X3XKX , i41, 2 , are the projections onto the first and onto the second
coordinate; notice that this set is always non empty since it contains at least
m 13m 2 .

The family of transport plans includes in some sense the family of transport maps:
indeed any transport map r induces a plan m defined by (Id3 r)

J

m , where
(Id3 r)(x) 4 (x , r(x) ).

The Wasserstein distance is defined on the family of measures in P(X) whose sec-
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ond moment is finite, i.e.:

P2 (X) »4 {m� P(X) : �
X

NxN2 dm(x) E1Q} .(3.4)

DEFINITION 3.3 (The optimal transportation problem). Given m 1 , m 2� P2 (X) their
Wasserstein distance is defined by

W2
2 (m 1 , m 2 ) »4 min { �

X 2

Nx12x2N2 dm(x1 , x2 ) : m�G(m 1 , m 2 )}.(3.5)

It is not hard to show that the minimum is always attained and that the function de-
fined above is a distance: we will denote by G 0 (m 1 , m 2 ) the subset of G(m 1 , m 2 ) where
the minimum is attained, i.e.

m�G 0 (m 1 , m 2 ) ` �
X3X

Nx12x2N2 dm(x1 , x2 ) 4W2
2 (m 1 , m 2 ).(3.6)

Note that G 0 (m 1 , m 2 ) is a closed convex subset of G(m 1 , m 2 ). In the case when m 1

vanishes on any Gaussian null set (in the case X4Rd this condition is equivalent to
the absolute continuity of m 1 with respect to Ld) we can say much more thanks to the
following theorem, due in the finite dimensional case to Knott-Smith and Brenier (see
also [12] for an analogous result in Wiener spaces and [13] for a sharper result in fi-
nite dimensions).

THEOREM 3.4 (Existence and uniqueness of the optimal transport map). Let
m 1 , m 2� P2 (X) and suppose that m 1 vanishes on any Gaussian null set. Then
G 0 (m 1 , m 2 ) contains only one element m , moreover m is induced by a Borel map r and r
is the Gateaux gradient of a convex function.

We will denote by P2
r (X) the subset of P2 (X) made by all measures vanishing on

any Gaussian null set and, for every m� P2
r (X), we will denote by Tm

s the map given by
the previous theorem; note that (Tm

s )
J

m4s and s
X

NTm
s2 IdN2 dm4W2

2 (m , s).

Finally we recall the basic properties of convergence and compactness in
(P2 (X), W2 ); remember that a subset K of P(X) is said to be tight if

lim
RK1Q

sup
m� K

m(X0BR ) 40,(3.7)

and 2-uniformly integrable if

lim
RK1Q

sup
m� K

�
X 0 BR

NxN2 dm(x) 40.(3.8)

THEOREM 3.5 (Compactness and convergence). (P2 (X), W2 ) is a complete and sep-
arable metric space. Moreover, a set K % P2 (X) is relatively compact if and only if it is
tight and 2-uniformly integrable. Finally, given a sequence (m n ) % P2 (X) and m� P2 (X)
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it holds:

lim
nKQ

W2 (m n , m) 40 `
.
/
´

m n weakly converge to m ,

]m n( is 2-uniformly integrable ,
(3.9)

where the weak convergence is w.r.t. the duality with continuous and bounded
functions.

3.2. The Riemannian structure of (P2 (X), W2 ).

In this section we analyze the «Riemannian» structure of (P2 (X), W2 ), developing
a first order calculus which makes rigorous the approach pursued in [21] and is con-
sistent with the Benamou-Brenier formula (3.15). Our starting point is to derive the
differentiable structure of the space (i.e. the tangent bundle and the metric on it)
starting from a characterization of the absolutely continuous curves, defined only
through the metric of the space; notice that this viewpoint can also be used in a classi-
cal setting, e.g. a finite-dimensional Riemannian manifold embedded in a Euclidean
space.

In the statement of the following theorem we use the class of cylindrical test functions
in X , of the form W i p where W�C Q

c (Rd) and p : XKRd is the coordinate map in-
duced by d orthonormal vectors in X . If I%R is an open interval, the class of cylindrical
test functions in X3I is defined analogously, using functions W�C Q

c (Rd3I).

THEOREM 3.6 (Absolutely continuous curves and the continuity equation). Let
I%R be an open interval, let m t : IK P2 (X) be an absolutely continuous curve and let
Nm 8N�L 1 (I) be its metric derivative. Then there exist Borel vector fields vt (x) such
that

vt�L 2 (m t , X), Vvt VL 2 (m t )GNm 8N(t) for L1 -a.e. t� I(3.10)

and the continuity equation

m
.

t1˜ Q (vt m t ) 40 in X3 (0 , 1 )(3.11)

holds in the sense of distributions, i.e.

�
0

1

�
X

(¯t f(x , t)1 avt (x), ˜x f(x , t)b)dm t (x)dt40(3.12)

for any cylindrical function W in X3 I . Morever, for L1-a.e. t� I vt belongs to the closure
in L 2 (m t , X) of the subspace generated by the gradients of cylindrical functions in X .

Conversely, if m t : IK P2 (X) satisfies the continuity equation for some Borel veloc-
ity field vt with Vvt VL 2 (m t )�L 1 (I) then m t is an absolutely continuous curve and
Nm 8N(t) GVvt VL 2 (m t ) for L1-a.e. t� I .

Obviously for a given curve m t there is no uniqueness for the vector fields
vt satisfying the continuity equation (3.11): choosing vector fields wt such that
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˜ Q (wt m t ) 40 the vectors vt1wt still satify (3.11). However the following facts
suggest a canonical choice of vt :

l the vectors vt act only on ˜W , with W cylindrical in X;
l the second implication shows that the norm of vt in L 2 (m t , X) is always greater

than the metric derivative Nm 8N(t) for L1-a.e. t� I;
l the first implication shows that it is possible to have

Vvt VL 2 (m t , X)4Nm 8N(t) for L1 -a.e. t� I ;(3.13)

l the linearity of (3.11) and the strict convexity of the L 2 norm imply the unique-
ness of the vectors satisfying (3.13).

So it is natural to consider as velocity vectors those vt’s for which both (3.11) and
(3.13) hold and to give the following definition.

DEFINITION 3.7 (Tangent bundle). Let m� P2 (X). We define

Tanm P2 (X) »4 ]˜W : W cylindrical in X(L 2 (m) .

REMARK 3.8. As we said before, vectors in Tanm P2 (X) %L 2 (m , X) can be character-
ized even by the following variational principle: v�Tanm P2 (X) iff

Vv1wVL 2 (m)FVvVL 2 (m) ( w�L 2 (m ; X) such that ˜ Q (wm) 40.(3.14)

The tangent space, being a closed subspace of L 2 (m , X), is endowed with a natural
inner product aQ , Qbm ; however the space (P2 (X), W2 ) is not an infinite dimensional
Riemannian manifold (not even in the Euclidean case X4Rd or for measures m with a
smooth density) since it is not possible to define an exponential map from a neigh-
bourhood of the origin in Tanm P2 (X) into P2 (X) which is an homeomorfism. This is
due to the fact that the characterization of geodesics in the space gives

expm (w) »4 (Id1w)
J

m

provided x O x1w(x) is the gradient of a convex function. On the other hand, there
are elements v�Tanm P2 (Rd ) whose second derivatives are unbounded from below,
therefore x O x1hv(x) is not an optimal transport map for any hD0.

In spite of this difference we keep the terminology Riemannian structure since
there are a lot of analogies with the Riemannian case (these analogies lead in [9] to the
terminology of Riemannian length space): the most relevant one is that indeed the
Wasserstein metric is the Riemannian metric induced by the tangent bundle and its in-
ner product defined above. This fact was noticed independently by Benamou and
Brenier [6] and Otto [21], in the case when X4Rd and all measures under considera-
tion are absolutely continuous with respect to Ld .

THEOREM 3.9 (Benamou-Brenier formula). Given m 0 , m 1� P2 (X) it holds

W2
2 (m 0 , m 1 ) 4 inf�

0

1

Vvt V
2
L 2 (m t ) dt ,(3.15)
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where the infimum is taken among all absolutely continuous curves m t : [0 , 1] K P2 (X)
such that m i4m i for i40, 1 and vt are given by the equations (3.11) and (3.13).

The following theorem shows how to recover the tangent vectors vt through the in-
finitesimal behaviour of optimal transport plans along the curve. It is interesting to
note that in the limit we recover a plan (Id3vt )J

m t induced by a map even when m t is
not necessarily regular.

THEOREM 3.10 (Optimal plans along a.c. curves). Let m t : IK P2 (X) be an absolute-
ly continuous curve and let vt�Tanm t

P2 (X) be its velocity vector. Then, for L1-a.e. t� I
the following property holds: for any choice of mh�G 0 (m t , m t1h ) we have

lim
hK0

gp 1 , 1
h

(p 22p 1 )h
J

mh4 (Id3vt )J

m t in P2 (X3X)(3.16)

and

lim
hK0

W2 (m t1h , (Id1hvt )J

m t )
NhN

40.(3.17)

In particular, for L1-a.e. t� I such that m t� P2
r (X) we have

lim
hK0

1
h

(Tm t
m t1h 2 Id) 4vt in L 2 (m t , X).(3.18)

The notions and theorems just introduced lead in a natural way to the concept of
differentiability; all definitions and results given below can be adapted to any measure
(see [3]) but, for the sake of simplicity, we will state them only for regular ones. The
technical problem which arises without this assumption is that in general an optimal
transport plan is not induced by a map.

DEFINITION 3.11 (Differentiability at regular measures). We say that f : P2 (X) K

K P2 (X) is differentiable at m� P2
r (X) if there exists v�Tanm P2 (X) such that

lim
m 8Km

f(m 8 )2f(m)2 av , Tm
m 82 Idbm

W2 (m 8 , m)
40.

The vector v if exists is unique, and it will be called differential of f at m .

An interesting and useful fact is that for any s� P2 (X) the function mKW2
2 (m , s)

is differentiable at any m� P2
r (X).

THEOREM 3.12 (Differential of the squared distance). The function m O W 2 (m , s)
is differentiable at any m� P2

r (X). Its differential is v»42(Id2Tm
s ).

Note that by Theorem 3.10 it follows that if m t is an absolutely continuous curve
and f a function which is differentiable at m t for L1-a.e. t , then the map t O f(m t ) is
L1-a.e. differentiable and its derivative is awt , vt bm t

, where wt is the differential of f at
m t and vt is the velocity vector of the curve. In particular for any curve t O m t� P2

r (X)
and any s� P2 (X) the derivative of the function t O W2

2 (m t , s) exists L1-a.e. and is
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equal to 2aId2Tm t
s , vt bm t

. One can show, using again Theorem 3, that this differentia-
bility property is still true for maps t O m t� P2 (X) and, in this case, the derivative in-
volves optimal transport plans instead of optimal transport maps.

3.3. Subdifferential and gradient flow.

Following the same ideas of the previous section it seems that the most natural def-
inition of subdifferential ¯2 f(m) of the function f at a point m� P2

r (X) is

v�¯2 f(m) iff f(s) Ff(m)1 av , Tm
s2 Idbm (s� P2 (X).(3.19)

However, for technical reasons, in order to obtain stronger pointwise properties of
the subdifferential operator (for istance the closure) we need to extend this
notion.

In the following definition we need to consider multiple plans, i.e. probability
measures in X3X3X; we denote by p i , j : X 3KX 2 the canonical projections, for
1 G i , jG3.

DEFINITION 3.13 (Subdifferential). Let f : P2 (X) K (2Q , 1Q] and let m�D(f).
A plan m� P2 (X3X) belongs to the subdifferential of f at m , denoted by ¯2 f(m) if

(i) p 1
J

m4m;

(ii) for any s� P2 (X) there exists g� P2 (X3X3X) such that p 1, 2
J

g4m and
p 1, 3

J

g�G 0 (m , s), satisfying

f(s) Ff(m)1 �
X 3

ax2 , x32x1 bdg .(3.20)

N o t e t h a t e v e n i f m� P2
r (X) th e p r e v i o u s d e f i n i t i o n i s f i n e r t h a n t h e f i r s t o n e i n

( 3 . 1 9 ) , s i n c e i t m a y h a p p e n t h a t a me a s u r e m i n t h e s u b d i f f e r e n t i a l i s n o t i n d u c e d
b y a ma p ; t h e f o r m u l a ( 3 . 2 0 ) r e d u c e s t o t h e o n e i n ( 3 . 1 9 ) i f m i s r e g u l a r a n d
m4 (I d3v)

J

m .

REMARK 3.14. The set ¯2 f(m) is a closed convex subset of P2 (X3X).

As we said before one can show that the subdifferential just defined is a closed op-
erator, in the sense specified by the next proposition.

PROPOSITION 3.15 (Closure of the subdifferential operator). Let f : P2 (X) K

K (2Q , 1Q] be a lower semicontinuous functional and assume that (m h ) %D(f)
converge to m�D(f) in P2 (X) and mh�¯2 f(m h ) narrowly converge to m , with
sNx2N2 dmh bounded. Then m�¯2 f(m).

Now we turn to the definition of gradient flow, based on the differentiable struc-
ture of the Wasserstein space; we will soon show that in the case of geodesically con-
vex functionals this notion coincides with the purely metric one of curve of maximal
slope.
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DEFINITION 3.16 (Gradient flow). We say that a map m t�AC 2
loc ( (0 , 1Q); P2 (X) )

is a solution of the gradient flow equation

m
.

t�2¯2 f(m t )(3.21)

if for L1-a.e. tD0 its velocity vector vt�Tanm t
P2(X) satisfies (Id3vt)J

m�
�¯2 f(m t ).

The key ingredient for the equivalence we stated before is the following
lemma.

LEMMA 3.17 (Metric slope and subdifferential). Let f : P2 (X) K (2Q , 1Q] be a
geodesically convex and l.s.c. functional satisfying

f(m) F2aW2
2 (m , m)1b (m� P2 (X)(3.22)

for some aD0, b�R and m � P2 (X). Then

N¯fN2 (m) 4 min { �
X3X

Nx2N2 dm : m�¯2 f(m)} (m�D(f),

with the convention min ¯41Q .

THEOREM 3.18 (Curves of maximal slope coincide with gradient flows). Let
f : P2 (X) K (2Q , 1Q] be a geodesically convex and l.s.c. functional satisfying
(3.22). Then m t : (0 , 1Q) K P2 (X) is a curve of maximal slope according to Definition
2.4 iff m t is a gradient flow.

Because of this equivalence, in order to show the existence of gradient flows we
can apply the Theorems 2.8, 2.9, 2.13, 2.16 of the previous section; in this case it is
convenient to choose as weak topology the one induced by the narrow convergence
(i.e. in the duality with continuous and bounded functions in X). But one can also use
the differentiable structure of the space and pass to the limit in a kind of discrete sub-
differential inequality, in the same spirit of [15] (but the energy arguments involved in
the metric theory seem to be more general, handling for instance also singular mea-
sures or the case when pc2).

As we already said, uniqueness of curves of maximal slope is still an open problem
under the only geodesic convexity assumption. In this case, however, one can use the
differentiable structure of the Wasserstein space, and in particular the differentiability
properties of the distance recalled above, to show a kind of contraction property lead-
ing to uniqueness.

THEOREM 3.19 (Uniqueness of gradient flows). If f : P2 (X) K (2Q , 1Q] is a
geodesically convex functional then for any m 0� P2 (X) there is at most one gradient
flow m t : (0 , 1Q) K P2 (X) satisfying lim

tI0
m t4m 0 .

Finally, it is important to note that, quite surprisingly, for a large class of geodesi-
cally convex functionals considered in the literature (the internal energy, the potential
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energy and the interaction energy considered in [19]), even the Assumption 2.15 is
satisfied and therefore not only uniqueness of the gradient flow, but also error esti-
mates for the implicit time discretization scheme are available, according to Theo-
rem 2.16 (also, existence does not require anymore any compactness property of the
sublevels of f). In fact, even though the geodesics of the space P2 (X) do not satisfy the
inequality (2.25) (actually it was first noticed in [21] that always the opposite inequali-
ty holds!), it is possible to interpolate with different curves along which a geodesically
convex functional is (often, but not always) convex and (2.25) holds. Given m 0 ,
m 1� P2 (X), the curves we are talking about are

m t »4 ( (12 t)Tm
m 0 1 tTm

m 1 )
J

m(3.23)

in the case when m� Pr
2 (X) (the general definition requires multiple transport plans,

as in the definition of the subdifferential).
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[20] R.H. NOCHETTO - G. SAVARÉ - C. VERDI, A posteriori error estimates for variable time-step discretiza-

tions of nonlinear evolution equations. Comm. Pure Appl. Math., 53, 2000, n. 5, 525-589. MR 1 737
503

[21] F. OTTO, The geometry of dissipative evolution equations: the porous medium equation. Comm. Par-
tial Differential Equations, 26, 2001, n. 1-2, 101-174.

[22] C. VILLANI, Topics in optimal transportation. Graduate studies in mathematics, 58, AMS, Providence
RI, 2003.

L. Ambrosio, N. Gigli:
Scuola Normale Superiore

Piazza dei Cavalieri, 7 - 56126 PISA

l.ambrosioHsns.it
n.gigliHsns.it

G. Savaré:
Dipartimento di Matematica «F. Casorati»

Università degli Studi di Pavia
Via Ferrata, 1 - 27100 PAVIA

savareHimati.cnr.it


