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GruserpE Da PrRATO - ALESSANDRA LUNARDI

ON A CLASS OF ELLIPTIC OPERATORS
WITH UNBOUNDED COEFFICIENTS IN CONVEX DOMAINS

AsstraCT. — We study the realization A of the operator A = 541 (DU, D) in L*(Q, u), where £

is a possibly unbounded convex open set in RN U is a convex unbounded function such that
lim U(x) = + « and lim QU(x) = + o, DU(x) is the element with minimal norm in the sub-

¥—30, xe x| >+, xe

differential of U at x, and u(dx) = cexp (—2U(x))dx is a probability measure, infinitesimally invariant for
A. We show that A, with domain D(A) = {ue H*(R, u): (DU, Du) e L*(2, u)} is a dissipative self-ad-
joint operator in L?(£, u). Note that the functions in the domain of A do not satisfy any particular
boundary condition. Log-Sobolev and Poincaré inequalities allow then to study smoothing properties
and asymptotic behavior of the semigroup generated by A.

Key worbps: Kolmogorov operators; Unbounded coefficients; Convex domains.

1. INTRODUCTION

In this paper we give a contribution to the theory of second order elliptic opera-
tors with unbounded coefficients, that underwent a great developement in the last few
years. See e.g. [1, 5-8, 12, 13].

Here we consider the operator

(1.1) Qu= %Au — (DU, Du)

in a convex open set 2c RN, where U is a convex function such that

(1.2) lim U(x) =+ o, lim Ulx) = + o,
x—>002,xeQ |x] =+, xe

Since we do not impose any growth condition on U, the usual L? and Sobolev spaces
with respect to the Lebesgue measure are not the best setting for the operator . It is
more convenient to introduce the measure

-1
(13) ,Lt(dx) — ( J€2U(x)dx) 672U(x)dx)
Q
which is infinitesimally invariant for @, ze.

f(ﬁlu (dx) =0, ueCy (RY),

and lets @ be formally self—ad]omt in L?(Q, u), as an easy computation shows. We
prove in fact that the realization A of A in L*(Q, u), with domain

={ueH*(Q,n): Quel*(2,u)} ={ueH*(Q2,u):(DU, Du)e L*(2, u)}

is a self-adjoint and dissipative operator, provided Cy° (£2) is dense in H' (L, u). We
recall that H'(Q, u) is naturally defined as the set of all e H}.() such that z,
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Diuel?(Q,u), for ;/=1,..., N. While it is easy to see that C;° (L) is dense in
L%(2, u), well-known counterexamples show that C;* () is not dense in H!(2, u)
in general. A sufficient condition in order that C;* () be dense in H' (L, u) is

(1.4) DUeL*(Q, u).

Once we know that C;* () is dense in H'(£, u), it is not hard to show that for each
ueD(A) and pe H' (2, u) we have

f(au)(x)y;( Juldy) = — L f<Du %), D) Yaa(d).

e
This crucial integration formula implies that A is symmetric and dissipative. The next
step is to prove that Al — A is onto for A > 0, so that A is m-dissipative. This is done by
approximation, solving first, for each 1 >0 and fe C;* (2),

(1.5) Aug (x) — (Qguy)(x) = F(x), xe RN,

where A, is defined as A, with U replaced by its Moreau-Yosida approximation U,,.
To be more precise, first we extend £ and U to the whole R setting f(x) =0 and
U(x) = + o for x outside £2; since the extension of U is lower semicontinuous and
convex the Moreau-Yosida approximations U, are well defined and differentiable

with Lipschitz continuous gradient in R Then (1.5) has a unique solution
1

u,e H*(RY, u ), with u ,(dx) = ( [ e 72U dx)i e 2V« dx, and the norm of #, in
RN

H*(RY, u,) is bounded by C(A) | |lz2~, .,), Where the constant C(4) is independent
of a, due to the estimates for equations in the whole RY already proved in [5]. Using
the convergence properties of U, and of DU, to U and to DU respectively, we arrive at
a solution e H?(L, u) of

(1.6) Au(x) = (Au)(x) = f(x), xe®,

that belongs to D(A), satisfies [|u]|ss2(0, ,) < C(A)[| /|20, ) and is the unique solution
to the resolvent equation because A is dissipative. If £ is just in L2(Q, u), (1.6) is
solved approaching f by a sequence of functions in C;* (R2).

A lot of nice consequences follow: A generates an analytic contraction semigroup
T(¢) in L*(L2, u), which is a Markov semigroup and it may be extended in a standard
way to a contraction semigroup in L? (€, u) for each p = 1. The measure u is invariant

for T(z), i.e.

[T i jf uldx),  feL'(Q,p),

Q
and moreover T ) f converges to the mean value f = f F(x)u(dx) of fas t— + o, for
each fe L*(Q, u).

If, in addltlon, U—w|x|?/2 is still convex for some w >0, T(¢) enjoys further
properties. 0 comes out to be a simple isolated eigenvalue in 0(A), the rest of the spec-
trum is contained in (— %, —w], and T(#) f converges to f at an exponential rate as
t— + o, Moreover, T(#) is a bounded operator (with norm not exceeding 1) from
L?(R, u) to LY(Q, u), with ¢() =1+ (p — 1) e?*". This hypercontractivity proper-
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ty is the best we can expect in weighted Lebesgue spaces with general weight, and
there is no hope that T(#) maps, say, L2(£, u) into L * (£2). Similarly, Sobolev embed-
dings are not available in general. The best we can prove is a logarithmic Sobolev
inequality,

[ 70108 (POt < & [ 1700 Pt + Frog (B, e (2, .
Q Q

2. PRELIMINARIES: OPERATORS IN THE WHOLE RN

Let U: RN—R be a convex C! function, satisfying
(2.1) lim Ul(x) = + .

=+ =
Then there are a € R, 5> 0 such that U(x) = a + b|x|, for each x e R". It follows that
the probability measure v(dx) = e 2Y% dx/ [ ¢ 72V dx is well defined.

N

R
The spaces H' (RN, v) and H?(R", v), consist of the functions z e H}.(RY) (re-
spectively, z € HZ.(RY)) such that # and its first (resp., first and second) order deriva-
tives are in L2(RN, »).
We recall some results proved in [5] on the realization A of @ in L2(RY, v). It is
defined by
D(A) = {ueH*(RN,v): Aue L*(RN, v)}
(2.2) ={ueH?* (R, v):(DU, Du) e L*(RY, v)},
(Au)(x) = Qu(x), xeRN.

THEOREM 2.1. Let U: RN—R be a convex function satisfying assumption (2.1).
Then the resolvent set of A contains (0, + ©) and

. 1
(7) IR, A) Fllp2@y, ) < I”][”LZ(RN,V)’

.. 2
(2.3) (@) |IDR(A, A) fAllL2®y, . < _l”f”LZ(HN,V))

\/_

(i) || |D2R(/1, A)f| ||L2(RN, » S 4||f||L2(lRN, V).

Tueorem 2.2. Let U : RN R satisfy (2.1), and be such that x— U(x) — w|x|?/2 is

convex, for some o > 0. Then, setting 4= [ u(x)v(dx), we have
RN

2w

RN

f|u<x>—a|zv(dx) <L f | Dulx) |2 v(d),
RN

f;ﬂ(x) log ((x)) v(d) < + f | Dulx) |2 v(dx) + &2 log (#),
RN RN
for each ue HY(RY, v) (we adopt the convention 0 log 0 = 0).
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3. THE OPERATOR A

Let U: 2+ R be a convex function satisfying assumption (1.2), and let us extend
it to the whole RY setting

(3.1) Ulx) = + o0, xe¢ Q.

The extension, that we shall still call U, is lower semicontinuous and convex. For each
x e RN, the subdifferential dU(x) of U at x is the set {yeR": U(§) = Ul(x) +(y, & —x),
VEe RN}, At each x e Q, since U is real valued and continuous, dU(x) is not empty
and it has a unique element with minimal norm, that we denote by DU(x). Of course if
U is differentiable at x, DU(x) is the usual gradient. At each x ¢ 2, dU(x) is empty and
DU(x) is not defined.

Lemma 3.1, There are aeR, b>0 such that U(x) Za+ b|x| for each xe Q.

Proor. The statement is obvious if £ is bounded. If 2 is unbounded, we may as-
sume without loss of generality that 0 € 2. Assume by contradiction that there is a se-
quence x, with |x,|— + o such that ﬂli_)mm Ulx,)/|x,| =0. Let R be so large that

min {U(x) = U(0): xe 2, |x| =R} >0. Since U is convex, for » large enough we
have

U(ixn) < R ue)+ (1— R )U(O)
|, | |, | | |
so that
lim sup U(ixﬂ) ~000) < lim -2 Utx) - R 1(0) =0,
n— o |, | = x| EA
a contradiction. O
We set as usual e = = 0. The function
x,_)€72U(x), XERN,

is continuous, it is positive in £, and it vanishes outside 2. Lemma 3.1 implies that it
is in L'(£2). Therefore, the probability measure (1.3) is well defined, and it has £ as
support.

Lemma 3.2. Cy* (RN) 4s dense in L*(RY, u), in HY (RN, u) and in H*(RY, u).
Moreover,
(i) C°(Q) is dense in L*(2, u);
(z7) If (1.4) holds, then Cy° () is dense in H (Q, u).

Proor. The proof of the first statement is identical to the proof of [5, Lemma 2.1],

and we omit it.
Let 6,: R—R be a sequence of smooth functions such that 0 <8 ,(y) <1 for
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each y, 0,=1 for y<#n, 6,=0 for y=2#, and such that
C

|0;(y)|$;, yeR.

For each #eL?(Q, u) set
(3.2) u,(x) =u(x)0,(Ulx)), xe, u,(x) =0, xeQ.

Then u, has compact support, and #,—>« in L*(RY, u). Indeed,

[lo,—uPudo < [ JulPudy)

RN {xeQ: Ulx) = n}

which goes to 0 as #— . In its turn, z, may be approximated in L?(£2) by a se-
quence of C;* () functions obtained by convolution with smooth mollifiers. Since #,
has compact support, such a sequence approximates #, also in L*(£, u), and state-
ment (7) follows.

Statement (z) is proved in three steps. First, we note that any » e H' (2, u) may
be approached by functions in H' (£, #) N L * (). Then we approach any function
in H'(Q, u) N L~ () by functions in H' (£, u) with compact support. Third, any
function in H'(2, u) with compact support is approximated by a sequence of
Cy” (2) functions obtained as above by convolution with smooth mollifiers.

For any ue H' (R, u) we set

Then

f|”—%s|zﬂ(dx)=Ju2(1— L )Zﬂ(dx)
Q

1+ eu?
g

goes to 0 as ¢—0, and

Du  2eu’Du

Du, =
14+eu?  (1+eu?)?

so that |Du — Du, | goes to 0in L?(£2, u) as well. So, « is approximated by a sequence
of bounded H' functions.

Now, let ue H' (2, u) "L > (L), and define u, by (3.2).

Since U is convex, it is locally Lipschitz continuous, so that it is differentiable al-
most everywhere with locally L * gradient. It follows that «, is differentiable a.e. and
for almost each x in Q we have

Du,(x) = Du(x) 0 ,(U(x)) + u(x)0,(U(x)) DU(x).

Here Duf) ,(U) goes to Du in L?(2, ), and «0/,(U)DU goes to 0 in L?(L,u) as n—> %
because #e L*, DUe L*(2, u) and |6, | < C/n. Statement (7) follows. O

We remark that in general Cy* (2) is not dense in H' (RN, ). See next Example 4.1.
We introduce now the main tool in our study, ze. the Moreau-Yosida approxima-
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tions of U,
Ua(x)zinf{U(y)-l—ﬁ|x—y|2;yeRN}) ceRY a0,

that are real valued on the whole RY and enjoy good regularity properties: they are
convex, differentiable, and for each xeRN we have (see eg [2, Prop.2.6,
Prop. 2.11])

U,(x) = U(x), |DU,(x) | < |DU(x) |, lim0 U, (x) = Ulx), xeRN,
lim0 DU, (x) =DU(x), xe£; limO |DU,(x)| =+, xe¢Q.
Moreover DU, is Lipschitz continuous for each «, with Lipschitz constant 1/a.
Let us define now the realization A of @ in L?(L, u) by

{D(A) ={ueH*(Q,n):(DU, Du)e L*(Q, u)},

G3) (Au)(x) = AQulx), xe 8.

We shall show that A is a self-adjoint dissipative operator, provided Cy* () is
dense in H'(RN, u). The fact that A is symmetric is a consequence of the next
lemma.

Lemma 33, If Cy () is dense in H' (RN, u), then for each ueD(A),
YweHY (RN, u) we have

(3.4) f(au)(x)W(x)v(dx) = — % f{Du(x), Dy(x))u(dx).
o

Q

Proor. Since C;* (RY) is dense in H' (RN, u) it is sufficient to show that (3.4) hold
for each e Cy” (RV).

If ¥ e Cy” (), then the function 1 exp (—2U) is continuously differentiable and
it has compact support in Q. Integrating by parts (Au)(x)y(x) exp(—2U(x)) we

get
y f(Au)<x)¢(x)e—2U<X> di=-1 f(Du(x), D(p(x)e ~2U®))dx =
o Q

= - % j(Du(x), Dy(x)ye 2V dyx + % j(Du(x), 2DU(x))p(x) e 2V dx
g g

so that (3.4) holds. O

Taking 1y =« in (3.4) shows that A is symmetric.

Once we have the integration formula (3.4) and the powerful tool of the Moreau-
Yosida approximations at our disposal, the proof of the dissipativity of A is similar to
the proof of Theorem 2.4 of [5]. However we write down all the details for the read-
er’s convenience.
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TaeorEM 3.4. Let U: Q=R be a convex function satisfying assumption (1.2),
and be such that Cy° () is dense in H (2, u). Then the resolvent set of A contains
(0, + ) and

. 1
() R, A)f”LZ(Q,ﬂ) S IHfHLZ(Q,M);

g 2
(3.5) i) [IDR(Z, A) Allezi0,0 < ==l F a0,

VA
(ii7)  |ID*R(A, A) Alle2co, 0 < 4ll A2, -
Moreover the resolvent R(A, A) is positivity preserving, and R(A, A) 1= 1/A.

Proor. For A >0 and fe L?(L2, u) consider the resolvent equation
(3.6) Au—Au=f.

It has at most a solution, because if #e D(A) satisfies Au = Au then by (3.4) we
have

fi(u(x))zy(dx) - f(Au)(x)u(x)u(dx) --2 f | Dulx) |2 uldx) <0,
o Q Q
so that # =0.

To find a solution to (3.6), we approximate U by the Moreau-Yosida approxima-
tions U, defined above, we consider the measures v, (dx) = ¢ ~2V«¥) dx/ [ ¢ 72Ue) [y
in RN and the operators @, defined by @, = Au/2 — (DU, Du). &

Since the functions U, are convex and satisfy (2.1), the results of Theorem 2.1 hold
for the operators A,: D(A,) = H*(RY, v,) —L2(RY, v,). In particular, for each
fe Cy” (RY) with support contained in £, the equation
(3.7) Auy, — Aqu, =1,
has a unique solution #, € D(A,). Moreover, each #, is bounded with bounded and
Holder continuous second order derivatives, thanks to the Schauder estimates and the
maximum principle that hold for operators with Lipschitz continuous coefficients,
see [10].

Estimates (2.3) imply that

1
ot 2 g, vy S IHJ[HLZ(RN, v
2
VA

11D |||y, vy S 4| A2y, v

(3.8) 1Dt |2, 0, < I AlL2r¥ s

so that
llete ez, v < Al A2, 0
with C = C(1) independent of a. Since U,(x) goes to U(x) monotonically as a— 0,

then exp (—2U,(x)) goes to exp (—2U(x)) monotonically, and ( [ e 72U dx)_l
RN
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goes to ( [ o2V dx)_l, [ AlL2cry ., goes to || AllLzry, ) as @ — 0. It follows that the
RN

norm |2, ||z2gv ) is bounded by a constant independent of a, and consequently also
the norm ||, |[z2r~ ) is bounded by a constant independent of a. Therefore there is a
sequence #, that converges weakly in H*(R", u) to a function #e H*(R", u), and
converges to # in H'(K) for each compact subset Kc Q. This implies easily that «
solves (3.6). Indeed, let ¢ € C;* (). For each » €N we have

J’(/luan - %Aua” + (DU, , Du, ) —f) ¢pe 2Vdx=0.
]RN

Letting #— o, we get immediately that f(/lua” - %Auaﬂ) pe 2" dx goes to
RN
f(/lu - %Au) pe 2" dx.  Moreover  [(DU, , Du, Ype *"dx  goes to
]P\N

RN

[(DU, Du)pe 2U*)dx because DU, goes to DU in L*(supp ¢). Therefore letting
RN
n—> © we get

J(/lu —Au—f)pe 2Vdx=0
RN
for each ¢ € Cy* (RY), and hence Au — Qu = f almost everywhere in Q. So, #o € D(A)
is the solution of the resolvent equation, and letting ¢ —0 in (3.8) we get

1 2
20, 0 < IHJ[HLZ(Q,;H’ 1| Det [l 200, ) < _/1||f||L2(9,v)7

(3.9) J VA
[ || | D?u | ||L2(!2, m) <4 ”fHLZ(Q, w-

Let now fe L?(L, i) and let #, be a sequence of Cy” (£2) functions going to f in

L?*(Q, u) as n— . Thanks to estimates (3.9), the solutions #, of

Au, — Au, = £,
are a Cauchy sequence in H?(, u), and converge to a solution z € H*(2, u) of (3.6).
Due again to estimates (3.9), u satisfies (3.5).

If in addition f(x) = 0 a.e. in £, we may take £, (x) = 0 in &, see the proof of Lem-
ma 3.2. Each #,, solution to (3.7) with f replaced by #,, has nonnegative values thanks
to the maximum principle for elliptic operators with Lipschitz continuous coefficients
proved in [10]. Our limiting procedure gives R(4, A) f,(x) =0 for each x, and
R(4, A) f(x) =0 for each x. So, R(A, A) is a positivity preserving operator. O

4. EXAMPLES AND CONSEQUENCES
ExampLE 4.1. Let 2 be the unit open ball in RY, and let U(x) = — < log(1 — |x|)
. 2
for xe Q, with a > 0. Then

exp(—2U(x)) = (1 - |x])*, DU(x) = m 0<|x| <1,
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and it is known that C;* () is dense in H'(Q, u) iff a = 1. See e.g. [14, Theorem
3.6.1]. In this case the result of Theorem 3.4 holds, and A is a self-adjoint dissipative
operator in L?(2, u).

Note that assumption (1.4) is satisfied only for a > 1. This shows that assumption
(1.4) is not equivalent to the fact that C;* () is dense in H' (R, u), however it is not
very far. O

Under the assumptions of Theorem 3.4, A is the infinitesimal generator of an ana-
Iytic contraction semigroup T(z) in L?(82, u).

Since the resolvent R(4, A) is positivity preserving for 4 > 0, also T(¢#) is positivity
preserving. Since R(A, A) 1 =1/4, then T(#) 1 =1 for each # > 0. Therefore, T(¢) is a
Markov semigroup and it may be extended in a standard way to a contraction semi-
group (that we shall still call T(#)) in L? (2, u), 1 <p < . T(¢) is strongly continuous
in L?(Q, u) for 1 <p < oo, and it is analytic for 1 <p < . See e.g. [4, Chapter 1].
The infinitesimal generator of T(#) in L”(£2, u) is denoted by A,. The characterization
of the domain of A, in L?(2, u) for p# 2 is an interesting open problem.

An important optimal regularity result for evolution equations follows, see [9].

COROLLARY 4.2. Let 1 <p< oo, T>0. For each fe L?((0, T); L?(2, u)) (ie.
(£, x) = f()(x) e L?((0, T) X ; dt X u)) the problem

u'(t) =A,u(t) + (1), 0<t<T,
has a unique solution ueL?((0, T); D(A,)) N W"2((0, T); L*(2, u)).

From Lemma 3.3 we get, taking ¥ =1,

fAu,u(dx) =0, ueD(A),
2

and hence,
fT(z‘)f,u(dx) = jf,u(dx), >0,
2 2

for each fe L?(L2, u). Since L*(2, u) is dense in L' (82, u), the above equality holds
for each fe L'(L, u). In other words, u is an invariant measure for the semigroup
T(z).

From Lemma 3.3 we get also
ueD(A), Au=0= Du=0,

and hence the kernel of A consists of the constant functions. Let us prove now
that

4.1) lim T(z) f= jf(ym(dy) in L2(Q, u),
Q

t— +

for all fe L?(Q, u).
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Indeed, since the function #—> ¢(z) = [(T(z) f)? u(dx) is nonincreasing and bounded,
o
there exists the limit lim ¢(z) = hm (T (28)f, f)r2(0, - By a standard argument
11—+
it follows that there exists a symmetrlc nonnegative operator Qe L(L*(Q,u))
such that

Jim T() f= O, feL*(H, w).

On the other hand, using the Mean Ergodic Theorem in Hilbert space (see e.g. [11, p.
24]) we get easily

t— + ®

lim T(z) f= P(JT fdx)

where P is the orthogonal projection on the kernel of A. Since the kernel of A consists
of the constant functions, (4.1) follows.
From now on we make a strict convexity assumption on U:

(4.2) Jw >0 such that x— Ulx) — w|x|?/2 is convex.

This will allow us to prove further properties for T(¢), through Poincaré and Log-
Sobolev inequalities.
If (A, m) is any measure space and ue L'(A, m) we set

(4.3) U, = J’u(x)m dx
A

ProPOSITION 4.3. Let the assumptions of Theorem 3.4 and (4.2) hold. Then

(4.4) f|u( U, |*uldx) < —f|Du x) |2duldx), ueH'(L, ),
o o

and

@3) [0 log (u2()puld) < & f | Dulx) |2 ) +
Q

Q
+ Fﬂlog (;ﬂ), ue HY (Q, u).
Proor. Let # € Cy” (RY) have support in Q. Let U, be the Mor?au—Yosida approx-

imations of U, and set as usual Va(dx)z( feiZU“(")dx) e ~2Ua® 2y Since
X

x> U,(x) — (1 —a) |x|? is convex in the whole R", by Theorem 2.2 we have, for
e (0, 1),

2
4.6) f| v aldn) < J | Dulx) [2v . (d),

RN RN
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(where #, stands for #, ) and

(4.7)fu2(x) log (42 (x))v o (dx) < ——L1 j |Dulx) |27 (ds) + 22 log (42,).
w(l—a)
RN RN
Since
. Ulx) if xeQ
lim U,(x) = .
a—0 +oo  if xeQ,

then %, goes to 7, =qu(x)u(dx), u’, goes to u*, as a goes to 0, and letting & go to 0 in

(4.6), (4.7) we obtain that « satisfies (4.4) and (4.5). Since C;° () is dense in
H'(Q, u), the statement follows. O

Proposition 4.3 yields other properties of T(¢#), listed in the next corollary. The
proof is identical to the proof of [5, Corollary 4.3], and we omit it.

CorROLLARY 4.4. Let the assumptions of Theorem 3.4 and (4.2) hold. Then O is
a simple isolated eigenvalue of A. The rest of the spectrum, o(A)\{0} is contained in
(=, —wl, and

(4.8) 1T u =120, < e Nu =20, 0,  #eL?(Q,u), t>0.
Moreover we have
(4.9) 1T @l o, 0 < l@lliro, 0, P=2, @eLl?(2, ),
where
(4.10) gt) =1+ (p—1)e*™, +>0.
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