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ALBERTO BRESSAN

SOME REMARKS ON MULTIDIMENSIONAL SYSTEMS
OF CONSERVATION LAWS

ABSTRACT. — This note is concerned with the Cauchy problem for hyperbolic systems of conserva-
tion laws in several space dimensions. We first discuss an example of ill-posedness, for a special system
having a radial symmetry property. Some conjectures are formulated, on the compactness of the set of
flow maps generated by vector fields with bounded variation.
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1. HYPERBOLIC SYSTEMS WITH THE COMMUTATIVE PROPERTY

A nonlinear system of conservation laws in several space dimensions takes the
form

¯

¯t
u1 !

a41

m
¯

¯xa
F a (u) 40.(1.1)

Here u4 (u1 , R , un ) is the vector of conserved quantities and x4 (x1 , R , xm ) is the
space variable. By the chain rule, every smooth solution of (1.1) satisfies the quasi-
linear system

ut1 !
a41

m

A a (u)uxa
40, A a

u Du F a .(1.2)

For every u�Rn , we assume that the system satisfies the following

HYPERBOLICITY CONDITION. For every unit vector j4 (j 1 , R , j m ), the matrix

A(u , j) u !
a

j a A a (u)

has n real eigenvalues l 1 (u , j), R , l n (u , j) and a basis of real eigenvectors
r1(u , j), R , rn(u , j). Because of the strong nonlinearity of the equations, smooth ini-
tial data can develop shocks in finite time. One can hope to find global solutions only
within a space of discontinuous functions. The conservation equations must then be
interpreted in a distributional sense.

Scalar conservation laws in several space dimensions [11], as well as hyperbolic
systems in one space dimension [17, 3] are now fairly well understood. On the contra-
ry, developing a mathematical theory of multi-dimensional systems of conservation la-
ws remains a challenging task. Indeed, at the present time not even the global existen-
ce of solutions is known, in any meaningful generality. The existing literature is mainly
concerned with
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1. Local existence of smooth solutions in a Sobolev space H s , where s is sufficien-
tly large to allow the embedding H s% C1 . Existence and uniqueness of solutions are
obtained up to the first time where one of the first derivatives blows up [9, 16]. A spe-
cial case where solutions remain smooth for all times was studied in [15].

2. Special solutions, having a particularly simple structure. For example, piecewi-
se smooth solutions having one shock across a moving hypersurface [12], or solutions
of two-dimensional Riemann problems [18], where the initial data are constant over
sectors of the (x1 , x2 )-plane.

However, having solved these special cases we are still a long way from a full un-
derstanding of the general solution. In particular, unlike the one-dimensional case, it
is not clear whether one can recover the solution of the general Cauchy problem by
approximations in terms of several Riemann problems. In our view, a more promising
approach is to look first at special classes of hyperbolic systems, possessing additional
properties that may simplify their analysis. In each case, one should study the whole
set of solutions, checking whether the evolution equations determine a flow depend-
ing continuously on the initial data.

A special class of multi-dimensional hyperbolic systems, which can be naturally
singled out, consists of those systems of the form (1.2) where all matrices A a commute.
We observe that

A a A b4A b A a(1.3)

provided that the n3n hyperbolic matrices A a , A b admit a common basis of eigen-
vectors ]r1 , R , rn(. The relevance of this assumption can be easily appreciated in
connection with the Cauchy problem for a linear system with constant coefficients:

ut1!
a

A a uxa
40, u(0 , x) 4 u(x).(1.4)

Let ]l1 , R , ln( be a common basis of left eigenvectors of the matrices A a , normalized
so that

li Q rj4
.
/
´

1

0

if i4 j ,

if ic j .

The general solution can now be explicitly written as the superposition of n travelling
waves:

u(t , x) 4!
i

f i (x2ci t) ri , f i (s) 4 li Qu(s).(1.5)

Here the speed of the i-th wave is ci4 (ci , 1 , R , ci , m ). For i41, R , n and a4

41, R , m , the component ci , a is the eigenvalue of the matrix A a corresponding to the
eigenvector ri .

From the explicit formula (1.5), it clear that the solution operator u O St u u u(t) is
continuous as a map from Lp O Lp , for all p� [0 , Q[. We remark that, writing the
solution by means of a Fourier transform, one always obtains the continuity of the solu-
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tion operator St as a map from L2 into itself [16]. Indeed, the L2 norm is preserved
under Fourier transform. On the other hand, a deep result of P. Brenner [2] shows
that, for pc2, the solution operator St is continuous as a linear transformation within
Lp only if all matrices A a commute. Based on this result, J. Rauch proved that, for a
non-commutative system of conservation laws, the total variation of a solution can be
amplified by an arbitrarily large factor [14]. In particular, no a priori BV bounds can
be available. This is in sharp contrast with the one dimensional case, where the basic
existence and uniqueness theory heavily rely on estimates on the total variation [10, 6, 3].
In order to obtain existence results for multidimensional systems, one should therefo-
re search for new compactness theorems, not based on a priori bounds on the total
variation.

2. A SIMPLE COMMUTATIVE SYSTEM

Among systems that enjoy the commutativity property, we can further specialize to
those of the special form

¯

¯t
ui1 !

a41

m
¯

¯xa
g fa(NuN) uih40.(2.1)

Such systems have been used as simplified models for magneto-hydrodynamics, and
are discussed in [7, 16]. See also [13] for a detailed study of the one-dimensional
case.

The solution of the Cauchy problem for (2.1) with initial data

u(0 , x) 4 u(x)(2.2)

can be constructed in two steps.

1. The norm r u NuN is obtained by solving the Cauchy problem for a scalar con-
servation law

r t1 !
a41

m

g fa (r) rhxa
40 r(0 , x) 4Nu(x)N .(2.3)

2. To compute the angular component u u u/NuN , we observe that u is constant
along trajectories of the discontinuous O.D.E.

x
.
4 fgr(t , x)h,(2.4)

where f4 ( f1 , R , fm ). Calling t O x(t) u F t (y) the trajectory starting at x(0) 4y , we
thus have

ugt , F t (y)h4u(0 , y) 4 u(y) /Nu(y)N .

Given tD0 and x�Rm , call y u F2t x be the (unique) point such that F t y4x . If the
measurable maps F2t are well defined (up to sets of zero measure), the angular com-
ponent of the solution of (2.1)-(2.2) is then obtained as

u(t , x) 4 u(F2t x),(2.5)

where u u u/NuN .
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Assuming u � LQ , by the fundamental result of Kruzhkov [11] one can find a uni-
que solution r4r(t , x) of the scalar conservation law (2.3), continuously depending
on the initial data in the L1 norm. On the other hand, when this solution r develops
shocks, the O.D.E. (2.4) has a discontinuous right hand side. In the literature, no exi-
stence-uniqueness theorem is yet available which covers this case.

The recent analysis in [4] shows that, even with bounded initial data, in two space
dimensions the Cauchy problem can be ill posed in L1 .

PROPOSITION 1. There exists a flux function f4 ( f1 , f2 ) and a sequence of initial
data un , nF1, such that the following holds.

l f is Lipschitz continuous, piecewise affine.

l Each un is piecewise constant, namely un (x) � ]2, 3 , 4(.

l As nKQ one has the convergence of the initial data unK u in L1 .

l The corresponding solutions un (t , Q) 4St un are well defined for all tD0.

l There exists tD0 such that the sequence un (t , Q) does not converge in L1 . It ad-
mits a weak limit, which is NOT a weak solution of the nonlinear system (2.1).

A counterexample with the above properties was constructed in [4]. For each nF

F1, one can always solve (2.2) and obtain the corresponding density function r n4

4r n (t , x). By the results in [11], the L1 convergence r nKr holds. However, as shown
in figure 1, for this limit function r the corresponding O.D.E. (2.4) now has a mixing
property. Points which initially lie on the gray region V 1 are transported by the flow
onto the region V 2 , then onto V 3 , etc. After a finite amount of time, the flow F t is no
longer invertible and the representation (2.5) fails.

Fig. 1.
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3. FLOWS OF BV VECTOR FIELDS

In the previous example, compactness was lost because of oscillations. We remark
that the conservation equations imply

�
F t (V)

r(t , x) dx4�
V

r(0 , x) dx(3.1)

for every tF0 and every measurable set V%Rm . Here F t : x(0) O x(t) is the flow
map generated by (2.4). If the initial density satisfies 0 EaGr(0 , x) Gb , a standard
comparison argument yields

aGr(t , x) Gb .(3.2)

Setting k u b/a , from (3.1)-(3.2) we deduce

1
k meas (V) Gmeas gF t (V)hGk meas (V)(3.3)

for every tF0 and V%Rm . In one space dimension, the estimate (3.3) is sufficient to
guarantee the Lipschitz continuity of the flow. Indeed, for any two trajectories x1 , x2 ,
the identity

�
x1 (t)

x2 (t)

r(t , x) dx4 �
x1 (0)

x2 (0)

r(0 , x) dx

and the assumption r� [a , b] imply

x2 (t)2x1 (t) G
b
a gx2 (0)2x1 (0)h.

In the multidimensional case, for initial data in LQ the counterexample in [4] shows
that an infinite amount of mixing can take place. This determines a loss of compactness and
hence the ill posedness of the Cauchy problem. An interesting open question is whether the
system (2.1) can be well posed within the class of functions such that

r u NuN�BV , u u

u
NuN

� LQ .

In this case, one has to solve a possibly discontinuous O.D.E. of the form

x
.
4g(t , x)(3.4)

where the right hand side g(t , x) u fgr(t , x)h is a time-dependent vector field with boun-
ded variation. For discontinuous vector fields with divergence is in LQ or in L1 , existence
and uniqueness of the corresponding flow has been studied by DiPerna and Lions [8] and
very recently by Ambrosio [1]. However, in the presence of shocks, the divergence of g be-
comes a measure which is not absolutely continuous w.r.t. Lebesgue measure. The existen-
ce of a measurable flow for (3.4) remains an open problem (*). A basic step in this direc-
tion would involve a proof of the following conjecture.

(*) Added in proof: see however the recent paper by L. AMBROSIO - C. DE LELLIS, Hyperbolic conser-
vation laws in several space dimensions. International Mathematics Research Notices, 41, 2003,
2205-2220.
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Consider a sequence of time-dependent, smooth vector fields gn : [0 , T]3

3Rm O Rm . Assume that they all satisfy the uniform bounds

Vgn VLQ GC1 ,(3.5)

Vgn VBV u�
0

T

�
Rm

N ¯

¯t
gnN1 !

a41

m

N ¯

¯xa
gnNdxdtGC2 .(3.6)

Call t O x(t) u Fn
t (y) the solution of

x
.
4gn (t , x), x(0) 4y .

Moreover, assume that the fluxes F t
n are all nearly incompressible, so that, for every

bounded set V%Rm ,

1
C3

meas (V) Gmeas gF t
n (V)hGC3 meas (V),(3.7)

for some constant C3 and all t� [0 , T], nF1.

CONJECTURE 1. With the above assumptions, by possibly extracting a subsequence
one has the convergence

Fn
t KF t in L1

loc(3.8)

for some measurable flow F t , also satisfying (3.7).

We remark that, by a standard compactness theorem [19], one can always extract a
subsequence fn 8 converging to some BV vector field f in L1

loc . However, one cannot use
the same argument here, to prove compactness of the family of flows, because the fun-
ctions Fn

t may have arbitrarily large total variation.

4. MIXING FLOWS

Because of the assumption (3.7), loss of compactness can only be due to an un-
bounded amount of oscillations in the flows Fn . It would thus be interesting to provi-
de a quantitative estimate on the amount of mixing that can be generated by a BV vec-
tor field. A convenient setting for this problem can be the following. Consider the m-
dimensional torus Tm

u R2 /Z2 . Let f4 f (t , x) be a smooth, time dependent vector
field on Tm , and call y O F t (y) the corresponding flow map. In other words,
F t (y) u x(t , y), where t O x(t , y) is the solution of the Cauchy problem

x
.
4 f (t , x) x(0) 4y .(4.1)

Fix any V% Tm . We say that the map F t mixes V up to scale e if, for every ball Be of
radius e one has (fig. 2)

meas (V)
2

Qmeas (Be ) Gmeas gBeOF t (V)hG2 meas (V) Qmeas (Be ).(4.2)
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Fig. 2.

It is reasonable to expect that vector fields satisfying a uniform BV bound can mix a
set V only up to a finite scale.

CONJECTURE 2. For each set V%Tm there exists a constant CV such that the follow-
ing holds. Let f4 f (t , x) is a smooth vector field whose flow F satisfies

1
2

meas (A) Gmeas gF t
f (A)hG2 meas (A)(4.3)

for every tF0 and A’ Tm , and such that F T mixes V up to scale e . Then

!
a41

m

�
0

T

�
Tm

N ¯

¯xa
fNdxdtFCV QNln eN .(4.4)

A seemingly equivalent conjecture is the following. Consider two sets V , V 8%Rm ,
with meas (V) 4 meas (V 8 ) 41. Assume that there exists a measure-preserving tran-
sformation c : V O V 8 such that

Nx2c(x)NGe for all x�V .(4.5)

Let f : [0 , T]3Rm O Rm be a smooth vector field whose flow F f is almost incompres-
sible, so that (4.3) holds for every A%Rm . Moreover, assume that the flow F T separ-
ates the two sets V , V 8 , namely

NF T (x)2F T (x 8 )NF1 for all x�V , x 8�V 8 .(4.6)
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Fig. 3.

CONJECTURE 3. There exists a constant C , independent of f , e , V , V 8 , such that
the above assumptions (4.3), (4.5) and (4.6) imply

!
a41

m

�
0

T

�
Rm

N ¯

¯xa
fNdxdtFC QNln eN .(4.7)

Intuitively, if the flow F T maps couples of nearby points to quite different loca-
tions (fig. 3), the vector field f must be far from constant. A quantitative estimate in
this direction would be provided by (4.7). A much simplified one-dimensional analo-
gue of this estimate was proved in [5].
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