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STEPHAN LUCKHAUS - LIVIO TRIOLO

THE CONTINUUM REACTION-DIFFUSION LIMIT
OF A STOCHASTIC CELLULAR GROWTH MODEL

ABSTRACT. — A competition-diffusion system, where populations of healthy and malignant cells
compete and move on a neutral matrix, is analyzed. A coupled system of degenerate nonlinear parabolic
equations is derived through a scaling procedure from the microscopic, Markovian dynamics. The heal-
thy cells move much slower than the malignant ones, such that no diffusion for their density survives in
the limit. The malignant cells may locally accumulate, while for the healthy ones an exclusion rule is con-
sidered. The asymptotic behavior of the system can be partially described through the analysis of the sta-
tionary wave which connects different equilibria.
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1. INTRODUCTION

The aim of this paper is to treat a model of tumor growth, or more precisely a
model of competition between populations of malignant and normal cells, concentrat-
ing on one particular distinguishing feature of certain malignant cell type. We start
from an individual-cell based model, in our case a stochastic process on a lattice. On
that scale lateral contact inhibition can be convincingly modelled by the exclusion
property, i.e. prohibiting multiple occupancy of a site. We just take this exclusion
property, and lower motility, to distinguish the normal from the malignant cell type,
neglecting all other aspects to show the effect of this particular property.

Especially we set birth and death rates equal for both cell types. The death rate is
depending on the occupation number of a site, modelling the role of local density. We
suppose that on an underlying matrix, modelled by the two-dimensional lattice Z2 ,
two random fields, U and V , are defined: U(x) is the number of malignant cells in the
site x�Z2 , with a-priori any nonnegative value, while V(x) is the number of healthy
cells in the site x , with values in the set ]0, 1(. The evolution, represented by a
Markov process, will be given by a stirring mechanism, which we suppose acting
much faster on the field U than on V , and a birth-death mechanism which will be de-
scribed as follows. The specific death rate for the U-cells (i.e. the malignant ones) in x
depends on the local overall crowding, while their specific birth rate is a positive con-
stant independent of the crowding. We suppose that the V-cells (i.e. the healthy ones)
die according to the same rule, while their births are conditioned by the «exclusion»
rule; the birth never takes place in x if this site is occupied, moreover it is proportional
to the number of V-cell in the first (4, in the plane) neighbours. The stirring part of
the generator, the one related to the U-cells, has to be enhanced in such a way that in
the continuum limit, there comes out for the continuum density u describing the ma-
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lignant tissue, a diffusion term with a positive diffusive constant: this is achieved by an
amplification of the stirring term as big as the square of the ratio between the macro-
scopic and the microscopic space. The part of the stirring term which is related to the
V-field will be speeded up sufficiently fast (same as the macro-micro ratio) to provide
enough mixing, yet not so much to get a diffusion term in the limit equation for the re-
lated density v. These different terms will be written down in Section 2.

In the same section we’ll consider the hydrodynamic limit of this stochastic model,
along the lines of [10, 8, 14]. The resulting system will be a reaction-diffusion one for
the resulting densities u and v , with the absence of diffusion of the density v as its par-
ticular feature.

It is important that the nonlinearities have to be calculated with the help of local
distributions, Poisson and Bernoulli respectively, i.e. by a local (not global), mean
field approach, [4].

The analysis of the reaction-diffusion system leads to the following result: first
analysing the spatially uniform states, i.e. the ODE system, one sees that there is al-
ways a stable state with only malignant cells, but in a certain regime for the death rates
a stable state with only normal cell surviving appears. Secondly, for the spatially
nonuniform behavior, by analysing the Lyapunov functional for the system, one gets a
regime where the stable state of normal cells has an advantage versus the stable state of
malignant cells. The analysis on the next time scale, i.e. of the travelling fronts is in
progress. We know that there may be a discontinuous (because of the vanishing moti-
lity of normal cells), standing wave solution of the PDE system, and we may guess that
in the limit the motion of the front between normal and malignant cells would be
driven by the positive part of the mean curvature. But this mathematical question is
still open. An interesting conclusion of the results obtained so far is that, at least in
this model, a change in the death rate, let’s call it an aggressive treatment, which
doesn’t differentiate by itself between normal and malignant cells, can improve the
long term survival chance of the normal cells, «making the tumor shrink». And this ef-
fect depends on the evaluation of the local invariant measure of the process, the mi-
crostructure created by it, it would disappear in a large-scale (i.e. global) mean field
model.

2. THE MICROSCOPIC MODEL AND ITS SCALING LIMIT

In this section, we set up our microscopic model of competition-diffusion, defin-
ing various terms which correspond to the behaviour described above. The evolution
will correspond to an interacting particle system, namely a Markov process
(Ut , Vt )tF0 on SN4 ](U(x), V(x) ), x�T2

N , U(x) �N , V(x) � ]0, 1((, where, as usual
T2

N is the (discrete) torus in Z2 , its sites having coordinates x1 , x2 ranging from 0 to
N21 (dimension 2 is just for simplification). We shall identify these sites x with the
points of the 1/N-grid in the unit torus T2�R2 : i.e. for r4 (r1 , r2 ) �T2 , r14x1 /N ,
r24x2 /N.
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The Markov evolution on SN will be described by a semi-group Pt
N whose infinites-

imal generator LN will contain various terms. The general construction and properties
of interacting particle systems are given in [12, 10]. The generator has two parts with
two terms for each population of cells (i.e. the U- and the V-random fields), and, for
any function f on SN , is expressed as follows:

(LN f )(U , V) 4 (N 2 L U
0 f1NL V

0 Df1L U
R f1L V

R f )(U , V).(2.1)

The evolution induced by L U
0 and L V

0 is called a stirring in the particle system termi-
nology (see [12]), L U

R , (L V
R ) are the corresponding birth-death operators. Let yAx

mean that y is first neighbor of x (i.e. Ny2xN41), g : NKR1 is the death rate per
cell, bD0 is the birth rates for both type of cells.

L U
0 f (U , V) 41/4 !

x , yAx
U(x)[ f (U x , y , V)2 f (U , V) ](2.2)

L V
0 f (U , V) 4 !

x , yAx
V(x)(12V(y) )[ f (U , V x , y )2 f (U , V) ](2.3)

(2.4) L U
R f (U , V) 4!

x
bU(x)[ f (U x , 1 , V)2 f (U , V) ]1

1!
x

g(U(x)1V(x) )U(x)[ f (U x , 2 , V)2 f (U , V) ]

(2.5) L V
R f (U , V)4!

x
b(12V(x) ) 1U(x)40) 1/4 g!

yAx
V(y)h [ f (U , V x , 1 )2 f (U , V) ]1

1!
x

g(U(x)1V(x) )V(x)[ f (U , V x , 2 )2 f (U , V) ] .

The stirring operator L U
0 acts on the U-population, and is accelerated by a factor N 2 in

order to lead to finite diffusion after rescaling, and consists of a one-cell jump between
neighboring sites; U x , y (z) 4U(z)2d x (z)1d y (z), i.e. is the configuration which dif-
fers from U for a jump of a particle from x to y (similarly for the V-field): to get a non-
zero jump rate, the site x has at least one particle on it, and for the V-field the exclu-
sion rule forces the site y to be without any V-particle (a more radical request would
be that of being empty at all). The other stirring operator L V

0 is accelerated by a factor
N in order to get the right mixing (local equilibrium), yet the continuum limit is zero.
In both cases we assume that the rate of the jump of one U-(V-)cell from a given site is
proportional to the number of U-(V-)cells in that site. We further derive the continu-
um limit for this model. In order to extract a macroscopic behavior from a micro-
scopic description, we rescale space by N , and take the limit NKQ. In this way, any
fixed macroscopic region in T2 will contain a very large number of microscopic sites,
infinite in the limit. We define the death rate function D , asking the necessary conver-
gence in R of the power series, as follows

D(u) 4 !
k40

Q

g(k11) u k

k!
exp (2u).

It represents the expected value of a nonnegative-integer-valued random variable dis-
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tributed with a Poisson law of density u; and it will be useful to write it as D(u) 4

4d(u) exp (2u), i.e. taking out the absolutely monotone factor d(Q). Technically, we
prove that the empirical measures for the cell repartitions,

a U
N (t , . ) 4

1
N 2

!
x�Z2

N

U(x)d x/N (.), a V
N (t , . ) 4

1
N 2

!
x�Z2

N

V(x)d x/N (.)(2.6)

converge weakly for t� [0 , T] (when NKQ) to the densities u(Q , t), and v(Q , t), solu-
tions of the following non-linear reaction-diffusion system,

¯t u4Du1u(b2D(u)2D 8 (u)v)(2.7)

¯t v4v(b(12v) exp (2u)2D(u) )(2.8)

with some given initial smooth density profile u0 (.), v0 (.).
These equations are formally deduced by considering the evolution of the local

functions U(x), V(x), for a given x , and performing the limit NKQ , identifying
r�T2 with x/N , x�Z2

N . More precisely, let mN
t be the evolved state coming from mN ,

which has to be suitably close to a local equilibrium state given by the initial densities
(see later for details). The main point is then the following: for any couple of test func-
tions GU , GV , defined on T2 , and any dD0, let

(2.9) AN , d4 {(U , V) : N 1
N 2

!
x

U(x)GU (x/N)2�GU (r)u(r , t)drN Dd

and N 1
N 2

!
x

V(x)GV (x/N)2�GV (r)v(r , t)drN Dd}.

Then prove that

lim sup
NKQ

sup
t� [0 , T]

mN
t ]AN , d( 40.(2.10)

We use the so-called relative entropy method, explained for instance in [10]. The hy-
pothesis on the initial states mN is given in term of a relative entropy inequality, but
first we need some definitions: Let nN

w(Q) is the local equilibrium (Poisson) distribution
of the U-field modulated by the profile w(Q), w(r) F0:

nN
w(Q)]U(x) 4k( 4exp ]2w(x/N)(

w(x/N)k

k!
, x�ZN

2 , k40, 1 , 2 , R

and p N
z(Q) is the local equilibrium (Bernoulli) distribution of the V-field modulated by

the profile z(Q), 0 Gz(r) G1:

p N
z(Q)]V(x) 4e( 4ez(x/N)1 (12e)(12z(x/N) ), x�ZN

2 , e40, 1 .

Then the needed property of the mN’s is the following:

lim sup
NKQ

N 22 H(mN NnN
u0 (Q)3p N

v0 (Q) ) 40.(2.11)

Remark that we do not need that the initial state is of local equilibrium, but just that
the density of its relative entropy w.r.t. the initial local equilibrium one, goes to zero as
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NKQ. It comes out that this behavior persists in time, that is

lim sup
NKQ

sup
t� [0 , T]

N 22 H(mN
t NnN

u(Q , t)3p N
v(Q , t) ) 40.(2.12)

The local equilibrium profiles are given by the solution u(Q , t), v(Q , t) of the R-D sys-
tem, with that initial data u0 (Q), v0 (Q). Recall now the entropy inequality, which, for
two probability measures r and s and the associated relative entropy H(rNs), has the
following general form (for any positive a and any observable F):

aaFbrG log aexp (aF)bs1 H(rNs)

(as usual, aFbrf sFdr , i.e. the expectation of F w.r.t. r). We recall that this inequal-
ity may provide the definition of relative entropy H(rNs) as follows

H(rNs) 4 sup
F

(aFbr2 log aexp (F)bs ).

This will be applied, for the evolved states mN
t and nN

u(Q , t)3p N
v(Q , t) , to the observable

1AN , d
, getting the inequality

mN
t ]AN , d( G

log 21 H(mN
t Nn N

u(Q , t)3p N
v(Q , t) )

log [11 (nN
u(Q , t)3p N

v(Q , t) )[AN , d ]21 ]
.(2.13)

Dividing the numerator by N 2 we get zero in the limit, by the entropy result (2.12),
while the denominator, via a large deviation result [10], stays away from zero. The
proofs are cumbersome and essentially not different from the ones in [14], the main
variance being in the «defective» scaling of the V-stirring operator. This will be writ-
ten elsewhere.

3. MACROSCOPIC BEHAVIOR: THE SPACE HOMOGENEOUS CASE

In this section, we start to analyse the behavior of the system of equations which
have been shown to control the macroscopic evolution of the stochastic model. We
present here some properties of the space-independent system.

Let u be the density of malignant cells, which has just to be nonnegative, and v the
(nonnegative) density of healthy ones which is bounded from above by 1.

Let

g1 (u , v) f (b2D(u)2D 8 (u)v) and g2 (u , v) f (b(12v) exp (2u)2D(u) )

then

u
.
4ug1 (u , v) and v

.
4vg2 (u , v).

We recall that

D(u) 4d(u) exp (2u) 4 !
k40

Q

g(k11) u k

k!
exp (2u)

and we suppose now some structural hypotheses on the parameters. Let D(0) 4

4g(1) Eb: this insures a stationary solution (u , v) 4 (0 , v), with

0 Eb(12v) 4D(0) 4g(1).

On the other hand we suppose that for v40, a stationary solution (u, 0 ) exists; u has
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to satisfy b4D(u). We’ll assume first an increasing behavior for g , this will be reflect-
ed in an analogous behavior for D(Q); moreover it will be assumed a (discrete) super-
harmonic behavior of the ]g(Q)(, i.e. D discr g(k12) fg(k13)22g(k12)1g(k1

11) G0. Let us first see the first derivative:

D 8 (u) 4exp (2u)(d 8 (u)2d(u) ) 4exp (2u) !
k40

Q

(g(k12)2g(k11) ) u k

k!
.

Observe that the property g6 reflects in D6 , so that we first ask that bDD(0) 4

4g(1). Moreover we ask that g(2)2g(1) Db. Concavity of D readily follows, as this
elementary computation shows;

D 9 (u) 4exp(2u)(d 9 (u)22d 8 (u)2d(u) ) 4

4exp (2u) !
k40

Q

(g(k13)22g(k12)1g(k11) ) u k

k!
.

Let us now pass to the discussion of the dynamical system given by the ODE sys-
tem in the plane (u , v). The nullclines ]g1 (u , v) 40( and ]g2 (u , v) 40( are graphs
of two decreasing functions:

v4G 1 (u) 4 (b2D(u) ) /D 8 (u) )

and

v4G 2 (u) 4 (b2exp (u)D(u) ) /b).

As a consequences of the hypotheses on g we have that they cross once, and the result-
ing stationary point is unstable (of saddle type), see fig. 1. Heteroclinic orbits connect
these points, in particular one from the origin to this «coexistence» point, and two
from this to the stable ones on the axes. Concluding this section, we note that simple
conditions on the birth-death rates imply qualitative changes in the structure of the
system. The relations g(2)2g(1) DbDg(1) and the concavity requirement provide

Fig. 1. – Graphs of the decreasing functions: v4G 1 (u) (thin) and v4G 2 (u) (thick). (0 , 0 ) and (u * , v *)
are the unstable stationary points (3), while (0 , v) and (u, 0 ) are the stable ones (i ). The signs of the

components of ˜G are shown too.
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a simple and significant picture of the system; in particular the «large» value of g(2)
implies the existence of a stable «healthy» state.

4. MACROSCOPIC BEHAVIOR: THE SPACE-DEPENDENT CASE

We pass to study some features of the PDE system (2.7), (2.8) which from now on
we assume to hold in the full space. Consider first the following functional
F[u , v]:

F[u , v](t) 4� 1
2

N˜uN2 (x , y , t)dxdy1�G(u(x , y , t), v(x , y , t) )dxdy

where the integrations are over the full space, and the «density» G has to be comput-
ed. By imposing that the time-derivative of F is nonpositive, getting in this way a Lya-
punov functional, we have the explicit form of ˜G(u , v):

Gu (u , v) 42ug1 (u , v); Gv (u , v) 42 �
G 2

21 (v)

u

s¯v g1 (s , v)ds .

See fig. 1 for an overall picture of the situation. Notice that the components of ˜G be-
come zero on the respective nullclines; so Gu is zero on the (thin) nullcline ](u , v) :
v4G 1 (u)( and Gv is zero on the (thick) nullcline ](u , v) : v4G 2 (u)(.

As it is well known, besides the homogeneous equilibria, the next «simple» solu-
tions to study are the stationary space-dependent ones, or more generally, the travel-
ling waves, which may connect different equilibria and propagate steadily, with a
fixed shape. The starting point for this analysis is the reduction to the one-dimension-
al case; in this way the solution u and v will depend on (x , t), and we look for those
solutions which have limits (u6Q , v6Q ) at x46Q given by the values of the diffe-
rent equilibria ((u2Q , v2Q ) 4 (0 , v) and (u1Q , v1Q ) 4 (u, 0 ), say).

These solutions provide «connection» between those equilibria and describe the
way the system evolves (or stays still, if the wave is stationary), keeping this behavior at
6Q. In the case where the wave moves, keeping its shape fixed, the sign of its velocity
reveals which equilibrium will invade the whole space, in the long run. This qualita-
tive information may sometimes be extracted without much effort if the system is one-
dimensional; but the exact computation of the speed and the actual shape of the mov-
ing interface are usually difficult to compute, and generally they are just estimated or
numerically evaluated. The system for the travelling waves, where the parameter c
represents the unknown velocity, is the following (the independent variable is now
z4x2ct while u(x , t) 4 U(x2ct), v(x , t) 4 V(x2ct))

2c U8 (z) 4 U9 (z)1 U g1 (U, V)(4.1)

2c V8 (z) 4 V g2 (U, V)(4.2)

(U(2Q), V(2Q) ) 4 (0 , v), (U(Q), V(Q) ) 4 (u, 0 ).(4.3)

The analysis of the travelling waves will be made elsewhere, but we may point out
here that linearized analysis around the stationary points (u, 0 , 0 ) and (0 , v, 0 ) for the
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associated 3d ODE system (the third variable being W f U8), shows that there is no
solution with positive c. This depends on the position of the stable/unstable manifold
of these points. But if G(u, 0 ) DG(0 , v) there is always – actually a continuum of –
discontinuous stationary connections (i.e. with c40 speed), between these points: in
the Appendix we’ll see it explicitly, in a special case.

5. APPENDIX

Let’s see here a specific example to show an explicit discontinuous stationary
wave. Let us consider the special (limit) case of a linear nonhomogenous death rate,
i.e. g(k11) 4Ak1B. In this case it is easy to see that the death function has the
same form, i.e. D(u) 4Au1B. The qualitative properties hold as before, so that

A4g(2)2g(1) DbDg(1) 4B .

Taking some numerical values as follows: A43, B40.1, b41, we want to study
the possible one-dimensional stationary connections between the stable states, (i.e.,
between (0 , v 40.9) and (u 40.3, 0)).

If we consider the eqs. (4.1) - (4.2), with c40, we may try to substitute in the first
equation for u , the value of v coming from the nullcline g2 (u , v) 40, for 0 GuG u× 4

40.224691, and v40 for u× GuG u.

v4G 2(u)412e u(3u10.1), for 0Gu×40.224691; v40, for 0.224691GuG0.3.

Consider now a general equation with a «potential» F

u 91 f (u) 40, f4F 8 .

The condition on the existence of a stationary connection between two equilibrium
states u6 at 6Q is the well known one: F(u1 ) 4F(u2 ). In our case the function f is
given by

f (u)4
.
/
´

ug1 (u , G 2 (u) ) 4u(0.923(u112e u (3u10.1)), for 0GuGu×40.224691

ug1 (u , 0 ) 4u(0.923u), for 0.224691 GuG0.3.

It is easy to compute the potential function, for which 0 4F(0) DF(0.3), implying
nonexistence of the stationary wave.

But we may change the value where v has to be put zero, in particular there exists a
value ujA0.12 such that defining f as before, but just changing the point u× to uj , we
get that the corresponding potential has the same values at 6Q.

In this way a stationary connection, with a jump in v (corresponding to that well
defined value of u4uj), is shown to exist.
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