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WEI-MING NI

DIFFUSION AND CROSS-DIFFUSION IN PATTERN FORMATION

ABSTRACT. — We discuss the stability and instability properties of steady state solutions to single
equations, shadow systems, as well as 232 systems. Our basic observation is that the more complicated
the pattern are, the more unstable they tend to be.

KEY WORDS: Diffusion; Cross-diffusion; Shadow systems; Steady states; Stability.

0. INTRODUCTION

The purpose of this expository paper is to discuss the roles of diffusion and cross-
diffusion in modeling pattern formation in various branches of science. To focus our
attention more on diffusion and/or cross-diffusion, we shall limit our considerations
to autonomous equations and systems with reaction terms involving only the un-
knowns but not their gradients. From the point of view of pattern formation, we shall
mainly concentrate on the stability properties of steady states of those equations/systems
under the homogeneous Neumann boundary condition (i.e. no flux boundary condi-
tion).

Using diffusion to model pattern formation has a long history. For instance, the
well known concept of «Turing patterns» goes back to the celebrated paper of Turing
[36] in 1952, in which an attempt was made to model the remarkable regeneration
phenomenon of hydra. However, mathematical progress in understanding those pat-
terns has only been made relatively recently.

It turns out to be a general principle that the stability properties of a steady state
are closely related to the «shape» of the steady state. Roughly speaking, the more com-
plicated the shape of the steady state, the less stable the steady state is.

For example, in Section 1 below we will show that for a solution of a single equa-
tion with homogeneous Neumann boundary condition to be stable, it must be a con-
stant if the domain is convex – a nice result due to Matano [18]. This may be regarded
as «stability implies triviality» for single equations. In Section 3 we will show that, in
one space dimension and still under homogeneous Neumann boundary condition, for
a (time-dependent) solution of a «shadow system» (i.e. a reaction-diffusion equation
coupled with a non-local ordinary differential equation) to be stable, it must be (even-
tually) monotone in space. In short, «stability implies monotonicity» holds for shadow
systems – a recent result due to [21]. For 232 systems, the situation can be very com-
plicated and will be illustrated via an example in Section 4. Section 2 is devoted to the
discussion of stability properties of single reaction-diffusion equations under homoge-
neous Dirichlet boundary condition.

In certain models, diffusion seems simply inadequate from either the modeling or
mathematical points of view. For instance, in the classical Lotka-Volterra competi-
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tion-diffusion system in population dynamics, no nonconstant steady state is possible
when the competition is weak. Furthermore, it is also not entirely reasonable to as-
sume that individuals in the competition system move around in a completely random
fashion. Thus, an attempt was made in 1979 [31] to model segregation phenomena in
competing species by taking inter-specific population pressure into account. This re-
sults in a cross-diffusion system which will be discussed in Section 5.

Finally, we remark that the article [20] appeared in 1998 is closely related to the
present one. This current expository paper can be considered as an updated and more
detailed version of [20].

1. SINGLE EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

We start our discussion on the stability analysis of solutions to single equations
with homogeneous Neumann boundary conditions

.
/
´

Du1 f (u) 40

¯u
¯n

40

in V ,

on ¯V ,
(1.1)

where f�C 1 (R), V is a bounded smooth domain in Rn , n is the unit outer normal to
¯V. In order to discuss the notion of stability in an intuitive way, it is best to introduce
the corresponding parabolic initial-boundary problem

.
/
´

vt4Dv1 f (v)

¯v
¯n

40

v(x , 0 ) 4v0 (x)

in V3R1 ,

on ¯V3R1 ,

in V .

(1.2)

A solution of (1.1) is said to be a steady state of (1.2), and a solution of u of (1.1) is said
to be stable if for every eD0, there exists a dD0 such that Vv(Q , t)2u(Q)VL Q (V)Ee for
all tD0 provided that Vv02uVL Q (V)Ed. A steady state u is said to be asymptotically
stable if there exists dD0 such that Vv(Q , t)2u(Q)VL Q (V)K0 as tKQ provided that
Vv02uVL Q (V)Ed. Naturally we say that u is unstable if it is not stable. It is also possi-
ble to discuss the stability of a solution u to (1.1) without going into its parabolic
counterpart (1.2). This may be done via the «linearized stability». Standard arguments
show that (see e.g. [18, Theorem 3.3, p. 423]) if u is stable, then

H(W) 4�
V

[NDWN22 f 8 (u)W 2 ] F0(1.3)

for all W�H 1 (V). Putting this in a different way, we look at the linearized problem of
(1.1) at this particular solution u

.
/
´

DW1 f 8 (u)W1lW40

¯W
¯n

40

in V ,

on ¯V .
(1.4)
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Denoting the first eigenvalue by l 1 , we have

l 14Min ]H(W)NW�H 1 (V), VWVL 2 (V)41((1.5)

and, the assertion (1.3) follows from the following result which can be proved
easily.

PROPOSITION 1.1. If l 1E0, then u is unstable.

It is generally believed that the diffusion process is a «smoothing» and «trivializ-
ing» process. Thus in a closed system it seems reasonable to expect that the only stable
steady states are constants (i.e. spatially homogeneous). It turns out that this is indeed
the case for single equations (1.1) or (1.2) provided that the domain V is nice, e.g. con-
vex (for systems of equations with different diffusion coefficients, this is generally not
true and we shall discuss this later). This result was proved by Matano [18] in 1979
(see [5] also). Matano also showed that this result also holds for other domains such as
annuli ]x� Rn NaENxNEb(, and gave a counterexample showing that for certain
non-convex domains, nontrivial stable steady states of (1.1) or (1.2) do exist. Following
Matano’s proof, we see that the role of convexity is contained in the following.

LEMMA 1.2. Let V be a bounded smooth convex domain in Rn. Suppose that

v�C 3 (V) with ¯v
¯n

40 on ¯V. Then

¯

¯n
NDvN2G0 on ¯V .

The main result in this section may be stated as follows.

THEOREM 1.3. If V is convex, then the only stable solutions of (1.1) are
constants.

The approach is to show that if u is a non-constant solution of (1.1), then l 1 (given
by (1.5)) must be negative. This is achieved by choosing appropriate test functions in
(1.3). For a detailed proof we refer the interested readers to [18]. However, it seems
natural to question a priori whether this approach would work. For, it seems that if
f 8E0 on R, then H(W) is always positive for all Wg0 in H 1 (V). It turns out that if
f 8E0 on R, then (1.1) has no non-constant solutions. To prove this, we let u be a solu-
tion of (1.1). Integrating the equation yields s

0V
f (u(x) )dx40 and thus there exists a

unique a such that f (a)40 (since f is monotonically decreasing). Without loss of gene-
rality, we may assume that a40, i.e. f (0) 40 (for, we may set vfu2a , then Dv1

1 f
A(v) 40 and ¯v

¯n
40 on ¯V , where f

A(v) 4 f (v1a). Thus f
A(0) 4 f (a) 40). Assume

ug0, then ]x�VNu(x) D0( and ]x�VNu(x) E0( are both non-empty. Let u(P) 4

4 max
V

u. Then u(P) D0 and we have two cases:

(i) P�V. Since f (u(P) ) E0 ( fE0 on R1) we have Du(P) D0. On the other
hand, u assumes its maximum at P , so Du(P) G0, a contradiction.
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(ii) P�¯V. Choose a ball B’V which is tangent to ¯V at P with uD0 on B. Then
f (u(x) ) E0 on B, and Du(x) D0 on B with u(P) 4 max

B
u. By Hopf’s boundary point

lemma, ¯u
¯n

D0 at P , which contradicts the boundary condition ¯u
¯n

40 on ¯V.

In [18], an example is given to illustrate the importance of the convexity of V in
the above theorem; namely, a stable nonconstant solution for (1.1) on a dumbell-shaped
domain V was constructed with a bistable nonlinearity f (u). Further research in this
direction has been conducted by many authors, see [9, 11] and the references
therein.

2. SINGLE EQUATIONS WITH DIRICHLET BOUNDARY CONDITIONS

It is clear that we can define the notions of stability, asymptotic stability, linearized
stability and instability for solutions to single equations under homogeneous Dirichlet
boundary conditions

.
/
´

Du1 f (u) 40

u40

in V ,

on ¯V ,
(2.1)

in a similar fashion as we did in § 1. Attempts have been made to obtain the counter-
part of Theorem 1.3 in § 1. However, the situation here is more complicated. In [13]
(see [33]) the following result was established:

PROPOSITION 2.1. Let V be a ball or an annulus. Then a stable solution of (2.1) must
not change sign in V.

We ought to remark that, in general, even if V is convex, a stable solution of (2.1) is
not necessarily of one sign. Such an example was constructed in (H. Matano, private
communication) and [33].

To prove Proposition 2.1, we proceed as follows. Note that an interesting interme-
diate step in the proof is that stability implies radial symmetry.

Let u be a stable steady state of

.
/
´

vt4Dv1 f (v)

v40

v(x , 0 ) 4v0 (x)

in V3R1 ,

on ¯V3R1 ,

in V .

(2.2)

As the first step, we claim that u must be radial. To this end, we set

Tij4xi
¯

¯xj
2xj

¯

¯xi
, i , j41, R , n

where x4 (x1 , R , xn ) � Rn. A stragihtforward computation shows that

DTij4Tij D .
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Applying Tij to the equation in (2.1), we have

.
/
´

D(Tij u)1 f 8 (u)Tij u40

Tij u40

in V ,

on ¯V .

(recall that V has rotational symmetry). Since (1.3) holds for all W�H 1
0 (V), Tij u is the

first eigenfunction of the Schrödinger operator D1 f 8 (u) if Tij ug0. Tij u must then
have only one sign in V , which is impossible. Hence Tij uf0 for all 1 G i , jGn and
our assertion is proved.

We now divide the rest of the proof into two cases.

CASE 1. V4Bb (i.e. V is the ball of radius b centered at the origin).
Since u is radial, it satisfies

.
/
´

urr1
n21

r ur1 f (u) 40 in 0 G rGb ,

u(b) 40.

Suppose that u changes sign in (0 , b). Then there exists an r0� (0 , b) such that
ur (r0 ) 40. Differentiating the above equation with respect to r , we obtain

(ur )rr1
n21

r (ur )r1 f 8 (u)ur2
n21

r 2
ur40.

Multiplying the above equation by r n21 ur and integrating over (0 , r0 ), we have by
(1.3), that

2(n21)�
Br0

u 2
r

r 2
dx4�

Br0

N˜urN
2 dx2�

Br0

f 8 (u)NurN
2 dxF0

since the function

W(r) 4
.
/
´

ur (r)

0

if rG r0 ,

if r0G rGb

belongs to H 1
0 (V). Therefore, urf0 in (0 , r0 ) which implies that u is a constant in Br0

and thus in V , which is a contradiction.

CASE 2. V4 ]x� Rn NaENxNEb( where 0 EaEbEQ. Now u satisfies

.
/
´

urr1
n21

r ur1 f (u) 40 in (a , b),

u(a) 4u(b) 40.

Suppose that u changes sign, there exist r0 , r1 such that aE r0E r1Eb and ur (r0 ) 4

4ur (r1 ) 40. Differentiating the above equation and repeating the same arguments as in
Case 1, we obtain that urf0 in (r0 , r1 ) (in the present case, the «test function» is cho-
sen to be

W(r) 4
.
/
´

ur (r)

0

if r0G rG r1

if rF r1 or rG r0 ,
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which clearly belongs to H 1
0 (V)). Thus u is a constant in (r0 , r1 ) which again implies u

is a constant in V , a contradiction, and the proof of Proposition 2.1 is com-
plete.

For general nonlinearity f (u), even positive solutions of (2.1) are often unstable.
To guarantee stability for positive solutions, we need to restrict ourselves to special
classes of nonlinearities.

PROPOSITION 2.2. Let u be a positive solution of (2.1) where f satisfies the following
condition:

f (z)
z is decreasing in zD0.(2.3)

Then u must be the only positive solution of (2.1) and is stable.

Well known examples include the case f (u) 4e 2u. The sublinear case f (u) 4u t ,
0 EtE1, although not C 1 in R, can be handled by exactly the same argu-
ments.

The proof of Proposition 2.2 makes use of the well known «monotone iteration
method»; or, the «upper- and lower-solutions method», which is standard by now,
and is therefore omitted here. We refer the interested readers to [19] for a detailed
proof (for the monotone iteration method, see [30, 3]).

3. SHADOW SYSTEMS

From Theorem 1.3 in Section 1, it seems clear that single equations with homoge-
neous Neumann boundary conditions are simply inadequate in modeling nontrivial
pattern in reality. Therefore we need to go to systems, and 232 systems already admit
many stable steady state solutions with highly nontrivial patterns. As a first step in un-
derstanding 232 systems, we shall first study the shadow systems which, in some
sense, lie between single equations and 232 systems.

For a 232 system

.
/
´

ut4d1 Du1 f (u , v)

vt4d2 Dv1g(u , v)

¯u
¯n

4 ¯v
¯n

40

in V3 [0 , T),

in V3 [0 , T),

on ¯V3 [0 , T),

(3.1)

it has been known for quite some time that when both the diffusion coefficients d1 , d2

are large, the dynamics of (3.1) is essentially determined by the corresponding system
of ordinary differential equations, at least in many important cases. It has also been
understood that when one of the diffusion coefficients, say, d2 is large, the dynamics of
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(3.1) is essentially determined by the following shadow system

.
`
/
`
´

ut4d1 Du1 f (u , j)

j t4NVN21 s
V

g(u , j)dx

¯u
¯n

40

in V3 [0 , T),

in [0 , T),

on ¯V3 [0 , T),

(3.2)

again in many important cases (see [8]). Note that the equation for v in (3.1) is re-
placed by an ordinary differential equation for j with nonlocal effects.

In [21] it is established that any bounded (not necessarily stationary) stable solution
of (3.2) in n41 must be either asymptotically homogeneous or eventually monotone in
x. In particular, the fact that «stability implies monotonicity» for the shadow system
(3.2) we discussed at the beginning of this paper holds. To make the basic idea trans-
parent we first treat the steady state case.

PROPOSITION 3.1 [21]. Suppose that f (u , v) and g(u , v) are of class C 1. Then any
spatially inhomogeneous non-monotone steady state of

.
/
´

ut4uxx1 f (u , j) in (0 , 1 )3 [0 , Q),

ux (0 , t) 40 4ux (1 , t), tD0,

j t4 s
0

1

g(u , j)dx , tD0,

(3.3)

is unstable.

The proof relies heavily on symmetry properties of the domain V4 (0 , 1 ) and
thus is strictly one-dimensional.

We begin with the notion of k-symmetry. We say that a function u(x) is k-symme-

tric in [0 , 1], kF2, if the restriction u(x), x� k i21
k

, i11
k

l, is even symmetric

with respect to the point x4 i/k for all i41, 2 , R , k21, that is,

u(x) 4u(2 i/k2x) for all x� k i21
k

, i11
k

l.
We call a solution (u , j) of (3.3) k-symmetric if u(x , t) is k-symmetric for every t.

Let (u(x), j) be a stationary solution of (3.3), that is, (u(x), j) satisfies

.
/
´

u 91 f (u , j) 40, x� (0 , 1 ),

u 8 (0) 40 4u 8 (1),

s
0

1

g(u(x), j)dx40.

(3.4)

Clearly, if (u(x), j) is a nonconstant non-monotone solution of (3.4), then u(x) is
k-symmetric with some kF2 and monotone in [0 , 1/k].

Let us consider the following eigenvalue problem associated with the linearized
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operator around u(x):

.
/
´

l W(x) 4Wb (x)1 fu (u(x), j)W(x), x� (0 , 1 ),

W 8 (0) 40 4W 8 (1).
(3.5)

According to the Sturm-Liouville theory, the eigenvalues of (3.5) are real numbers
l 0D l 1D l 2DRK2Q , and the corresponding eigenfuncitons W0 , W1 , W2 , R , are
characterized by the property that W j has exactly j zeros in (0 , 1 ). We assume that
these eigenfunctions are normalized in L 2 (0 , 1 ).

Next, let us consider the eigenvalue problem

.
/
´

l
A

WA(x) 4 WA9 (x)1 fu (u(x), j) WA(x), x� (0 , 1/k),

WA8 (0) 40 4 WA8 (1/k).
(3.6)

We denote by l
A

j and WAj the jth eigenvalue and corresponding eigenfunction of (3.6),
respectively. We assume that the eigenfunctions are normalized in L 2 (0 , 1/k). Since
WAj has exactly j zeros in (0 , 1/k), it follows from reflection and the number of zeros
that

l
A

j4 l jk , WAj (x) fkkW jk (x) on [0 , 1/k],

for all j40, 1 , 2 , R.

LEMMA 3.2. Let w(x) be any k-symmetric function on [0 , 1]. Then

�
0

1

w(x)W j (x)dx40, for all jc0, k , 2k , R .

PROOF. Let aQ , QbL 2 (a , b) denote the L 2-inner product on (a , b). By reflection, we
have for x� (0 , 1/k)

w4 !
j40

Q

aw , WAj bL 2 (0 , 1/k)W
A

j

4 !
j40

Q

kaw , W jk bL 2 (0 , 1/k) W jk

4 !
j40

Q

aw , W jk bL 2 (0 , 1 ) W jk .

Hence, again by reflection, we obtain

w4 !
j40

Q

aw , W jk bL 2 (0 , 1 ) W jk on [0 , 1].

On the other hand, we can expand w as

w4 !
j40

Q

aw , WbL 2 (0 , 1 ) W j on [0 , 1].

Comparing these two expansions termwise, we obtain the conclusion.
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LEMMA 3.3. If u(x) is k-symmetric, then the eigenvalues of (3.5) satisfy
l 0D l 1DRD l k21D0.

PROOF. Differentiating (3.4) by x , we obtain

]u 8 (x)(91 fu (u(x), j)u 8 (x) 40, x� (0 , 1 ).

We also have u 8 (0) 4u 8 (1) 40. Clearly u 8 (x) has k21 zeros in (0,1) and W j (x) has
exactly j zeros in (0,1). Then it follows from the Sturm comparison theorem that
l k21D0.

We now give a proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. Let (u(x), j) be any spatially inhomogeneous non-
monotone solution of (3.12), and consider the eigenvalue problem

.
/
´

lF(x) 4F 9 (x)1 fu (u(x), j)F(x)1 fv (u(x), j)h , x� (0 , 1 ),

lh4 s
0

1

]gu (u(x), j)F(x)1gv (u(x), j)h(dx ,

F 8 (0) 40 4F 8 (1).

(3.7)

Since gu (u(x), j) is k-symmetric with some kF2, it follows from Lemma 3.2
that

�
0

1

gu (u(x), j)W j (x)dx40 for jc0, k , 2k , R

Hence (l , F , h) 4 (l j , W j , 0 ) satisfies (3.7) if jc0, k , 2k , R This implies that
(FA, hA) 4 (e l j t W j (x), 0 ) satisfies the linearized system for (3.3)

.
`
/
`
´

F
A

t4 F
A

xx1 fu (u , j) F
A

1fv (u , j) hA, 0 ExE1, tD0,

hAt4 s
0

1

[gu (u , j) F
A

1gv (u , j) hA]dx , tD0,

F
A

x (0 , t) 40 4 F
A

x (1 , t), tD0

if jc0, k , 2k , R Since l jD0 for j41, 2 , R , k21 by Lemma 3.3, the steady state
(u , j) is unstable.

The proof of the «parabolic» version of Proposition 3.1 is more involved, and we
refer the interested readers to [21] for details.

Among major problems left open concerning (3.2) is perhaps the multi-dimensio-
nal analogue of Proposition 3.1 for, say, convex domains. Very little is known so far in
this generality.

On the other hand, with more specific shadow systems, there are stability and in-
stability results for domains in multi-dimensions. See e.g. [27].
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4. DIFFUSION SYSTEMS

Stability properties for diffusion systems have been studied for many important
models. However, there seems to be no general results. In particular, the counterpart
for the property that «stability implies triviality» for single equations, or that «stability
implies monotonicity» for shadow systems, has not been established even for 232
diffusion systems. The situation here seems quite complicated, and remains as a major
research direction.

Therefore, in this section, instead of surveying stability and instability results for
various systems, we shall use an activator-inhibitor system to illustrate the role of dif-
fusions in pattern formation.

The regeneration phenomenon of hydra, first discovered by A. Trembley [35]
in 1744, is one of the earliest examples in morphogenesis. Hydra, an animal
of a few millimeters in length, is made up of approximately 100,000 cells of
about 15 different types. It consists of a «head» region located at one end
along its length. Typical experiments on hydra involve removing part of its «head»
region and transplanting it to other parts of the body column. Then, a new
«head» will form if and only if the transplanted area is sufficiently far from
the (old) «head». These observations have led to the assumption of the existence
of two chemical substances – a slowly diffusing (short-range) activator and a
rapidly diffusing (long-range) inhibitor. In 1952, A. Turing [36] argued, although
diffusion is a smoothing and trivializing process in a system of a single chemical,
for systems of two or more chemicals, different diffusion rates could force the
uniform steady states to become unstable and lead to nonhomogeneous distributions
of such reactants. This is now known as the «diffusion-driven instability». Exploring
this idea further, in 1972, Gierer and Meinhardt [7] proposed the following
activator-inhibitor system (already normalized) to model the above regeneration
phenomenon of hydra:

.
`
/
`
´

Ut4d1 DU2U1
U p

V q

tVt4d2 DV2V1
U r

V s

¯U
¯n

4
¯V
¯n

40

in V3 [0 , T),

in V3 [0 , T),

on ¯V3 [0 , T)

(4.1)

where, as before, D is the usual Laplacian, V is a bounded smooth domain
in Rn , n denotes the outward unit normal to ¯V , TGQ , and the constants
t , d1 , d2 , p , q , r are all positive, sF0 and

0 E
p21

q E
r

s11
.(4.2)

Here U represents the density of the slowly diffusing activator which activates
both U and V , and V represents the density of the rapidly diffusing inhibitor
which suppresses both U and V. Therefore, both U and V are positive, and
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d1 is very small while d2 is very large. The parameter t here reflects the response
rate of V versus the change of U.

Condition (4.2) is mathematical, under which one can prove easily that the equi-
librium U f1 and V f1 of the corresponding kinetic system (for ordinary differential
equation)

.
/
´

Ut42U1
Up

Vq

tVt42V1 Ur

Vs

is stable if tE (s11)/(p21). However, once the diffusion terms are introduced with
d1 small and d2 large in (4.1), linearized analysis of (4.1) shows that the equilibrium
Uf1 and Vf1 becomes unstable and bifurcations occur, thus the «diffusion-driven
instability» takes place.

Note that (4.1) does not have variational structure. One way to solve (4.1) is using
the «shadow system» approach. More precisely, since d2 is large, we divide the second
equation in (4.1) by d2 and let d2 tend to Q. It seems reasonable to expect that, for
each fixed t , V tends to a (spatially) harmonic function that must be a constant by the
boundary condition. That is, as d2KQ , V tends to a spatially homogeneous function
j(t). Thus, integrating the second equation in (4.1) over V , we reduce (4.1) to the fol-
lowing «shadow system»

.
`
/
`
´

Ut4d1 DU2U1 U p

j q

tj t42j1
1

NVN
j2s s

V
U r (x , t)dx

¯U
¯n

40

in V3 [0 , T),

in [0 , T),

on ¯V3 [0 , T),

(4.3)

where NVN denotes the measure of V. Although the above reduction can be verified
rigorously in some cases [22], we must point out that it is more important to solve
(4.1) via solutions of (4.3). It turns out that the steady states of (4.3) and their stability
properties are closely related to that of the original system (4.1) and that the study of
the steady states of (4.3) essentially reduces to that of the following single equation (by
a suitable scaling argument):

.
/
´

e 2 Du2u1u p40

uD0

¯u
¯n

40

in V ,

in V ,

on ¯V .

(4.4)

In the case n41, a lot of work has been done by I. Takagi [34]. For nF2, the
situation becomes far more interesting. The pioneering work [22-24] have produced a
single-peak spike-layer solution ue of (4.4) in 1993. Furthermore, steady states of the
shadow system (4.3) as well as the original system (4.1) have been constructed from ue
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– at least for small d1 and large d2 , and their stability properties have been investigated
[25-27].

5. A CROSS-DIFFUSION SYSTEM

Although diffusion is generally regarded as a trivializing process in single equa-
tions (see Section I above), we have seen how different diffusion rates could produce
patterns strikingly different from trivial ones for 232 systems. However, for that to
happen, reaction terms are essential as well: for some systems, no matter what the dif-
fusion rates are, no nonconstant steady state could possibly exist. For example, the
classical Lotka-Volterra competition-diffusion system takes the following form:

.
/
´

ut4d1 Du1u(a12b1 u2c1 v)

vt4d2 Dv1v(a22b2 u2c2 v)

¯u
¯n

40 4 ¯v
¯n

in V3 (0 , Q),

in V3 (0 , Q),

on ¯V3 (0 , Q)

(5.1)

where all the constants ai , bi , ci , di , i41, 2 , are positive, and u , v are nonnegative.
Here, as is explained in [37], u and v represent the population densities of two com-
peting species (a nice and thorough reference for (2.11) is the recent monograph by

Cantrell and Cosner [4]). For convenience, we set A4
a1

a2
, B4

b1

b2
, and C4

c1

c2
. It is

well known that in the «weak competition» case, i.e.

BDADC ,(5.2)

the constant steady state (u* , v*) f g a1 c22a2 c1

b1 c22b2 c1
,

b1 a22b2 a1

b1 c22b2 c1
h is globally asymp-

totically stable regardless of the diffusion rates d1 and d2 . This implies, in particular,
that no nonconstant steady state can exist for any diffusion rates d1 , d2 .

On the other hand, it seems not entirely reasonable to add just diffusions to mo-
dels in population dynamics, since individuals do not move around completely ran-
domly. In particular, while modeling segregation phenomena for two competing
species one must take into account the population pressures created by the competi-
tors. In an attempt to model segregation pheonomena between two competing
species, Shigesada, Kawasaki and Teramoto [31] proposed in 1979 the following
cross-diffusion model

.
/
´

ut4D[ (d11r 12 v)u]1u(a12b1 u2c1 v)

vt4D[ (d21r 21 u)v]1v(a12b2 u2c2 v)

¯u
¯n

40 4 ¯v
¯n

in V3 (0 , T),

in V3 (0 , T),

on ¯V3 (0 , T),

(5.3)

where r 12 and r 21 represent the cross-diffusion pressures and are nonnegative (in fact,
the model in [31] also includes «self-diffusion» pressures that turn out to be not so
different from the usual diffusion as is shown in [14]. Here, for simplicity, we shall
discuss only (5.3)).
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We first focus on the effect of cross-diffusion on steady states. To illustrate the
significance of cross-diffusions, we again go to the weak competition case (i.e.
BDADC) since in this case (5.3) has no nonconstant steady states if both r 124

4r 2140 (we refer to [10] for some interesting disccusions on the ecological signifi-
cance of coexistence, «competition-exclusion», and weak/strong competitions. One
point of view is that whether « competition-exclusion» holds in nature is a matter of in-
terpretation. See [37]). Recent work of Lou and myself [14, 15] show that, indeed, if one
of the two cross-diffusion rates, say r 12 , is large, then (5.3) will have nonconstant steady
states provided that d2 belongs to a proper range. On the other hand, if both r 12 and r 21

are small, then (5.3) will have no nonconstant steady states under the condition (5.2). This
shows the introduction of cross-diffusion does seem to help create patterns.

In the «strong competition» case, i.e. BEAEC , even the situation of steady states
solutions of (5.1) becomes more interesting and complicated, and is not completely
understood. Nonetheless, cross-diffusions still have similar effects in help creating
nontrivial patterns of (5.3). We refer the interested readers to [14, 15] for details.

So far in this section, we have only touched upon the existence and nonexistence
of nonconstant steady states. It seems natural and important to ask if we can derive
any qualitative properties (such as the spike-layers in the previous section) of those
steady states. Our first step in this direciton is to classify all the possible (limiting)
steady states as one of the cross-diffusion pressures tends to infinity.

THEOREM 5.1 [15]. Suppose for simplicity that r 2140. Suppose further that

BcAcC , nG3, and
a2

d2
cl k for all k , where l k is the kth eigenvalue of 2D on V

with zero Neumann boundary data. Let (uj , vj ) be a nonconstant steady state solution of
(5.3) with r 124r 12, j . Then by passing to a subsequence if necessary, either (i) or (ii)
holds as r 12, jKQ , where

(i) guj ,
r 12, j

d1
vjhK (u , v) uniformly, uD0, vD0, and

.
/
´

d1 D[ (11v)u]1u(a12b1 u) 40

d2 Dv1v(a22b2 u) 40

¯u
¯n

40 4 ¯v
¯n

in V ,

in V ,

on ¯V ;

(5.4)

and

(ii) (uj , vj ) K g z
w , wh uniformly, z is a positive constant, wD0, and

.
`
/
`
´

d2 Dw1w(a22c2 w)2b2 z40

¯w
¯n

40

s
V

1
w
ga12

b2 z
w 2c1 wh40.

in V ,

on ¯V ,
(5.5)
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The proof is quite lengthy. The most important step in the proof is to obtain a
priori bounds on steady states of (5.3) that are independent of r 12 .

We ought to remark that both systems (5.4) and (5.5) possess spike-layer solutions.
For instance, using a suitable change of variables, the equation in (5.5) may be trans-
formed into (4.4) with p42. Thus our results in [22-24] apply. Perhaps we ought to
point out that in fact, what is important is the ratio of cross-diffusion versus diffusion
r 12 /d1 in which d1 can also vary. A deeper classification result is obtained in [15] as
r 12KQ in (5.3) in terms of various possibilities of r 12 /d1 and d1 .

To see how (4.4) turns up in (5.5), at least heuristically, we proceed as follows. For-
mally, setting

z4u* v* and w4v *2W ,(5.6)

we have

d2 DW2 (c2 v*2b2 u*)W1c2 W 240.(5.7)

Rescaling (5.7) we obtain (4.4) provided that

c2 v*2b2 u*D0,(5.8)

which is equivalent to

.
/
´

1
2

(B1C) DA if BDADC ,

1
2

(B1C) EA if BEAEC .
(5.9)

Note that in (5.6) we need wD0, or, v *DW. In n41 this is guaranteed by

AD
1
4

(B13C).(5.10)

Under these conditions, our results in [22-24] imply that (2.17) has spike-layer solu-
tions for d2 small. Observe that those solutions tend to 0 as d2K0 except at isolated
points. Let W be e.g. a solution of (4.4) guaranteed by [22-24]. Then the pair
(w , u* v*) satisfies the differential equation with the homogeneous Neumann bound-
ary condition in (5.5), and it almost satisfies the integral constraint in (5.5) since w is
close to v* a.e. for d2 small. It is then not hard to find a solution, for d2 small, near the
pair (w , u* v*) by the Implicit Function Theorem, as was done in [15].

Although (5.4) is still an elliptic system, it is a bit easier to analyze than the original
one. We refer the interested reader to [15] for details.

It turns out that both alternatives (i) and (ii) in Theorem 5.1 occur under suitable
conditions. Therefore, to understand the steady states of (5.3) a good model would be
(5.4) or (5.5), at least when r 12 is large. In the recent work of Lou, Yotsutani and my-
self [17], we were able to achieve an almost complete understanding of the «shadow»
system (5.5) for n41 (and V is an interval, say, (0,1)). To illustrate our results, we in-
clude the following

THEOREM 5.2. Suppose BEC. Then (5.5) does not have any nonconstant solution if
either one of the following two conditions holds:
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(i) d2Fa2 /p 2

(ii) AGB

THEOREM 5.3. Suppose BEC. Then (5.5) has a nonconstant solution if d2Ga2 /p 2

and AF (B1C) /2.

The case d2Ga2 /p 2 and BEAE (B1C) /2 is more delicate – existence holds for
d2 closer to a2 /p 2 while nonexistence holds when d2 is near 0.

The behavior of solutions is also obtained for d2 close to one of the two endpoints,
0 or a2 /p 2.

THEOREM 5.4. (i) As d2Ka2 /p 2 , (w , z) K (0 , 0 ) in such a way that

z
w K

a2 (11m)

2[m1 (12m) sin2 (px/2) ]

uniformly on [0 , 1] where m4 (2A/B)2122k(A/B)22 (A/B)� (0 , 1].
(ii) As d2K0 we have

(a) if AE
B13C

4
, then

zK
a 2

2

b2 c2
Q

(B2A)(A2C)

(B2C)2

w(0) K2
a2

c2
Q

A2 (B13C) /4
B2C

w(Q) K
a2

c2
Q B2A

B2C
on (0 , 1],

(b) if AF
B13C

4
, then zK

3
16

Q
a 2

2

b2 c2
, w(0) K0, and wK

3a2

4c2
on (0 , 1].

It seems interesting to note that the limits in (b) above are independent of
a1 , b1 , c1.

Our method of proof here is a bit unusual: we convert the problem of solving
(w , z) of (5.5) to a problem of solving its «representation» in a different parameter
space. This is done first without the integral constraint in (5.5). Then we use the inte-
gral constraint to find the «solution cuve» in the new parameter space as the diffusion
rate d2 varies. This method turns out to be very powerful as it gives fairly precise infor-
mation about the solution.

Of course, our ultimate goal is to be able to obtain the steady state of (5.3) from
our knowledge of the simpler limiting systems (5.4) or (5.5). This turns out to be pos-
sible, at least in the one-dimensional case V4 [0 , 1], as the next two results show
(for simplicity, we shall assume that r 2140 in the next two theorems).

THEOREM 5.5 [15]. Suppose that ADB. There exists a small d *D0 such that for
any d2� (0 , d *), we can find a large d

A
D0 such that if d1D d

A
is fixed, then there exists
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a large aD0 such that if r 12Da , (5.3) has a non-constant positive steady state (u , v),
with (u , r 12 v) K (u, v) uniformly in [0, 1] as r 12KQ , where (u, v) is a non-constant
positive solution of (5.4).

THEOREM 5.6 [15]. Suppose that d1D0 is fixed and that either

A� g 1
2

(B1C), g 1
4

B1
3
4

Chh or A� gg 1
4

B1
3
4

Ch, 1
2

(B1C)h. There exists a

small d *D0 such that for d2� (0 , d *) we can find a large aD0 such that if r 12Da ,

has a non-constant positive steady state (u , v) with (u , v) K g z
w , wh as r 12KQ

where wD0, non-constant and (w , z) is a solution of (5.5).

The proofs of Theorems 5.5 and 5.6 involve careful analysis of the linearized
systems of (5.4) and (5.5) at their non-constant positive solutions.

The stability properties of the various steady states obtained in the results above
are yet to be studied. It is worth noting that even the local existence question for (5.3)
is highly nontrivial and was resolved in a series of long papers by H. Amann [1, 2] in
the early 1990s. The global existence question for (5.3) remains open, although
progress has been made under various assumptions on the smallness of the cross-dif-
fusion coefficients r 12 , r 21 , the dimension n , or the initial values u(x , 0 ), v(x , 0 ). In-
teresting related results with different but similar reaction terms have also been ob-
tained (see e.g. [6, 12, 16, 28, 29, 32, 38], and the references therein).

This work was partially supported by NSF.

REFERENCES

[1] H. AMANN, Dynamic theory of quasilinear parabolic equations II. Reaction-diffusion systems. Diff. In-
tegral Eqns., 3, 1990, 13-75.

[2] H. AMANN, Nonhomogeneous linear quasilinear elliptic and parabolic boundary value problems. In: H.
SCHMEISSER - H. TRIEBEL (eds.), Function Spaces, Differential Operators and Nonlinear Analysis.
Teubner-Texte zur Math., 133, Stuttgart-Leipzig 1993, 9-126.

[3] H. AMANN, Supersolution, monotone iteration and stability. J. Diff. Eqns., 21, 1976, 365-377.
[4] R.S. CANTRELL - C. COSNER, Spatial ecology via reaction-diffusion equations. John Wiley and Sons,

2003.
[5] R.G. CASTEN - C.J. HOLLAND, Instability results for a reaction-diffusion equation with Neumann

boundary conditions. J. Diff. Eqns., 27, 1978, 266-273.
[6] Y.-S. CHOI - R. LUI - Y. YAMADA, Existence of global solutions for the Shigesada-Kawasaki-Teramoto

model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004,
719-730.

[7] A. GIERER - H. MEINHARDT, A theory of biological pattern formation. Kybernetik, 12, 1972,
30-39.

[8] J.K. HALE - K. SAKAMOTO, Shadow systems and attractors in reaction-diffusion equations. Appl. Anal.,
32, 1989, 287-303.

[9] J.K. HALE - J.M. VEGAS, A nonlinear parabolic equation with varying domain. Arch. Rat. Mech.
Anal., 86, 1984, 99-123.



DIFFUSION AND CROSS-DIFFUSION IN PATTERN FORMATION 213

[10] G.E. HUTCHINSON, An introduction to population ecology. Yale University Press, New Haven, CT
1978.

[11] S. JIMBO - Y. MORITA, Remarks on the behavior of certain eigenvalues on a singularly perturbed do-
main with several thin channels. Comm. PDE, 17, 1992, 523-552.

[12] D. LE, Cross diffusion systems on n spatial dimensional domains. Indiana Univ. Math. J., 51, 2002,
625-643.

[13] C.-S. LIN - W.-M. NI, Stability of solutions of semilinear diffusion equations. Preprint, 1986.
[14] Y. LOU - W.-M. NI, Diffusion, self-diffusion and cross-diffusion. J. Diff. Eqns., 131, 1996, 79-131.
[15] Y. LOU - W.-M. NI, Diffusion vs cross diffusion: An elliptic approach. J. Diff. Eqns., 154, 1999,

157-190.
[16] Y. LOU - W.-M. NI - Y. WU, On the global existence of a cross-diffusion system. Discrete and Contin-

uous Dynamical Systems, 4, 1998, 193-203.
[17] Y. LOU - W.-M. NI - S. YOTSUTANI, On a limiting system in the Lotka-Volterra competition with

cross-diffusion. Discrete and Continuous Dynamical Systems, 10, 2004, 435-458.
[18] H. MATANO, Asymptotic behavior and stability of solutions of semilinear diffusion equations. Publ.

RIMS, 15, 1979, 401-454.
[19] W.-M. NI, Some aspects of semilinear ellitpic equations. Lecture Notes, National Tsinghua Univ.,

Hsinchu-Taiwan-China 1987.
[20] W.-M. NI, Diffusion, cross-diffusion, and their spike-layer steady states. Notices of Amer. Math. Soc.,

45, 1998, 9-18.
[21] W.-M. NI - P. POLACIK - E. YANAGIDA, Montonicity of stable solutions in shadow systems. Trans.

Amer. Math. Soc., 353, 2001, 5057-5069.
[22] W.-M. NI - I. TAKAGI, On the Neumann problem for some semilinear elliptic equations and systems of

activator-inhibitor type. Trans. Amer. Math. Soc., 297, 1986, 351-368.
[23] W.-M. NI - I. TAKAGI, On the shape of least-energy solutions to a semilinear Neumann problem.

Comm. Pure Appl. Math., 44, 1991, 819-851.
[24] W.-M. NI - I. TAKAGI, Locating the peaks of least-energy solutions to a semilinear Neumann problem.

Duke Math. J., 70, 1993, 247-281.
[25] W.-M. NI - I. TAKAGI, Point condensation generated by a reaction-diffusion system in axially symmet-

ric domains. Japan J. Industrial Appl. Math., 12, 1995, 327-365.
[26] W.-M. NI - I. TAKAGI - E. YANAGIDA, Stability analysis of point-condensation solutions to a reaction-

diffusion system. Tokoku Math. J., submitted.
[27] W.-M. NI - I. TAKAGI - E. YANAGIDA, Stability of least-energy patterns in a shadow system of an acti-

vator-inhibitor model. Japan J. Industrial Appl. Math., 18, 2001, 259-272.
[28] M.A. POZIO - A. TESEI, Global existence of solutions for a strongly coupled quasilinear parabolic sys-

tem. Nonlinear Analysis, 14, 1990, 657-689.
[29] M.A. POZIO - A. TESEI, Invariant rectangles and strongly coupled semilinear paraboli systems. Forum

Math., 2, 1990, 175-202.
[30] D.H. SATTINGER, Monotone methods in nonlinear elliptic and parabolic boundary value problems. In-

diana Univ. Math. J., 21, 1972, 979-1000.
[31] N. SHIGESADA - K. KAWASAKI - E. TERAMOTO, Spatial segregation of interacting species. J. Theo. Bio-

logy, 79, 1979, 83-99.
[32] S.-A. SHIM, Uniform boundedness and convergence of solutions to cross-diffusion systems. J. Diff.

Eqns., 185, 2002, 281-305.
[33] G. SWEERS, A sign-changing global minimizer on a convex domain. In: C. BANDLE - J. BEMELMANS - M.

CHIPOT - M. GRÜTER - J. ST. JEAN PAULIN (eds.), Progress in Partial Differential Equations: Elliptic
and Parabolic Problems. Pitman Research Notes in Math., 266, Longman, Harlow 1992, 251-258.

[34] I. TAKAGI, Point-condensation for a reaction-diffusion system. J. Diff. Eqns., 61, 1986, 208-249.
[35] A. TREMBLEY, Mémoires pour servir à l’histoire d’un genre de polypes d’eau douce, à bras en forme de

cornes. Leyden 1744.



WEI-MING NI214

[36] A.M. TURING, The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, B, 237, 1952,
37-72.

[37] P.E. WALTMAN, Competition models in population biology. CBMS-NSF Conf. Ser. Appl. Math., 45,
SIAM, Philadelphia 1983.

[38] A. YAGI, Global solution to some quasilinear parabolic system in population dynamics. Nonlinear
Analysis, 21, 1993, 531-556.

School of Mathematics
University of Minnesota

127 Vincent Hall - 206 Church St. S.E.
MINNEAPOLIS, MN 55455 (U.S.A.)

niHmath.umn.edu


