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GIANNI GILARDI

ON A PHASE TRANSITION MODEL OF PENROSE-FIFE TYPE

ABSTRACT. — We deal with a Penrose-Fife type model for phase transition. We assume a rather gene-
ral constitutive low for the heat flux and treat the Dirichlet and Neumann boundary condition for the
temperature. Some of our proofs apply to different types of boundary conditions as well and improve so-
me results existing in the literature.

KEY WORDS: Phase transition; Penrose-Fife model; Heat flux law; Boundary conditions; Well-posed-
ness.

1. INTRODUCTION

A wide literature deals with the so-called phase field models for phase transitions.
Such models introduce a new physical variable, the phase parameter W (which is a
scalar in the simplest cases), besides the temperature w , and their mathematical de-
scription consists in a system of partial differential equations that rules the pair
(w , W).

To give an idea of such a framework, we start with the well-known two phase Ste-
fan problem. If w and W denote the relative temperature (around the transition tem-
perature w40) and the proportion of the solid phase, respectively, the Stefan pro-
blem can be described by the energy balance

¯t (w1lW)1div q 4g(1.1)

and by a pointwise relationship between w and W , namely

W� H(w).(1.2)

Here, the positive constant l , the vector field q, and the function g are the latent heat,
the heat flux, and the heat source, respectively, while H is the Heaviside graph in the
euclidean plane defined by

H(w) 40, [0 , 1], 1 according to wE0, w40, wD0.

In equation (1.1), the heat flux is related to w by the Fourier law

q 42k˜w(1.3)

where k is a positive constant, at least in the simplest case.
In such a formulation, the solid and the liquid regions are the sets where W40 and

W41, respectively, and their complement, where W takes values between 0 and 1 , is
the so-called mushy region. When a classical solution to the Stefan problem exists, the
mushy region is empty and the solid and liquid regions are separated by a moving
smooth surface.

Phase field model replace such a sharp interface with a thin transition layer. From
the mathematical point of view, this corresponds to replace (1.2) by a differential in-
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clusion that rules the phase dynamics, namely

m¯t W2nDW1 H21 (W) �lw(1.4)

where m and n are small positive constants. Note that the Stefan problem is formally
obtained by setting m4n40 in (1.4). A different phase dynamics is given by the
Allen-Cahn equation

m¯t W2nDW1W 8 (W) 4lw(1.5)

where W is a double well potential, e.g., W(W) 4W 2 (12W)2. For the wide literature
on phase field models we directly refer, e.g., to the books [1] and [17].

Assuming l4m4n41 to simplify the notation, we observe that both (1.4) and
(1.5) are particular cases of the differential inclusion

¯t W2DW1¯j(W)1s 8 (W) �w(1.6)

and that (1.6) is the gradient flow governed by the free energy functional

Fw (W) 4
1
2
�

V

N˜WN21�
V

g j(W)1s(W)2wWh.

In (1.6), ¯j is the subdifferential of j , where

j : (2Q , 1Q) K [0 , 1Q] is convex, proper, and lower semicontinuous(1.7)

and s is a smooth function. More precisely, we can assume that

s�C 1 (2Q , 1Q) and s 8 is Lipschitz continuous.(1.8)

Indeed, in (1.4) j is the indicator function of [0 , 1] and s40, while in (1.5) j and s
are the convex and concave parts of the double well potential W , respectively.

More recently, Penrose and Fife derived in [15] a new model for phase transitions
which uses the absolute temperature rather then the relative temperature and guaran-
tees thermodynamical consistency, namely, the absolute temperature is positive and
the second principle is satisfied in the form of the Clausius-Duhem inequality. From
the mathematical point of view, the main difference with respect to the previous phase
field models is that the inverse 1/w of the absolute temperature w enters the phase dy-
namics, directly. A rather general version of the related system of partial differential
equations reads

¯t (w1W)1div q 4g ¯t W2DW1¯j(W)1s 8 (W) � 1
wc

2
1
w

where wc is the critical value of the absolute temperature w and q is related to w by a
suitable constitutive law.

Initial and boundary value problem for similar systems have been already studied
from several viewpoints and a number of results is known. As we are interested mainly
in well-posedness, we quote the papers [3-5, 7-14, 16, 18] and just mention that there
are results also in different directions, like, e.g., long-time behaviour, numerical ap-
proximation, and additional memory effects. However, different variants of Penrose-
Fife type systems require different techniques, in general, even when dealing just with
well-posedness.
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Here, we discuss a rather general class of constitutive laws for the heat flux and
treat the Dirichlet and Neumann problems for the temperature (more precisely, for a
function of the temperature). We note that such boundary conditions are considered
very seldom and that the third boundary value problem is mainly studied. Our starting
point is the couple of papers [3] and [4], where the constitutive law for the heat flux is
settled in the form

q 42˜a(w).(1.9)

In (1.9), a is a given smooth function on (0 , 1Q). The main assumption on it is
that

a is concave and strictly increasing .(1.10)

Moreover, a must have a suitable behaviour as its argument tends to 0 and to 1Q. In
the present exposition, we deal with the following case

r 2 a 8 (r) 411o(1) as rK01(1.11)

r d a 8 (r) 4cQ1o(1) as rK1Q with 0 GdG1(1.12)

where cQ is a positive constant. We note that the case d40 corresponds to a pertur-
bation of the linear behaviour of a(w) for high values of the temperature, so that the
parameter d can be seen as a measure of the distance from the Fourier law (1.3) with
k4cQ. In the worst case (d41) we can deal with, a has a logarithmic behaviour at
infinity.

Coming back to the papers we have just quoted, we remark that an existence result
is given in [3] under much more general assumptions on a near 0 and with a latent
heat that can depend on W. On the contrary, the regularity and uniqueness results con-
tained in [4] are proved just in the particular case d40. Finally, both papers consider
the third boundary value problem for a(w), namely

¯n a(w)1ca(w) 4h(1.13)

where ¯n is the outward normal derivative, c is a positive constant, and h is a given
function on the boundary of the domain.

Here, we present the results contained in [6] and in [2] with some simplification.
On one side, we assume that the latent heat is constant as above, while a nonconstant
latent heat could be considered. On the other side, some of the conditions we assume
to make the exposition simpler are not necessary. Finally, some of the results are just
mentioned without any precise statement, for brevity.

2. MAIN RESULTS

In order to simplify the notation, we set

V»4H 1 (V), H»4L 2 (V), Wd »4W 1, 4/(d12) (V)

H 2
n »4 ]v�H 2 (V) : ¯n v40 on G(

where V is a bounded and connected open set in the 3-dimensional euclidean space
with smooth boundary G. Moreover, we identify H to a subspace of V 8 in the usual
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way and denote the duality pairing between V 8 and V by aQ , Qb. In the case of the
Dirichlet problem, we replace V 8 by H 21 (V) in such an identification and use the
same notation aQ , Qb for the duality pairing between H 21 (V) and H 1

0 (V). Moreover,
we introduce two more state variables, u and j , related to the previous ones by the
conditions

u4a(w) and j�¯j(W).(2.1)

Such relations must hold a.e. in V3 (0 , T), where TD0 is a given final time. In all
the problems we are going to consider, we look for four functions, w , W , u , and j , sat-
isfying the regularity condition (R) stated below and relationships (2.1).

REGULARITY (R). We require that

w�L Q (0 , T ; H)OL 2 (0 , T ; Wd )

W�L 2 (0 , T ; H 2
n )OH 1 (0 , T ; H)

u�L 2 (0 , T ; V), j�L 2 (V3 (0 , T) )

wD0 a.e. in V3 (0 , T) and 1/w�L 2 (0 , T ; V).

We point out that (R) contains the homogeneous Neumann condition for W as well.
Moreover, we require an additional regularity property, namely

either ¯t w�L 2 (0 , T ; H 21 (V) ) or ¯t w�L 2 (0 , T ; V 8 )(2.2)

according to whether we are dealing with the Dirichlet condition or with other types
of boundary conditions for u. In any case, the phase dynamics is described by the
equation

¯t W2DW1j1s 8 (W) 42
1
w

(2.3)

with a new s (obtained by subtracting a linear term with slope 1/wc to the previous
one). On the contrary, the energy balance and the boundary condition for u are stated
in different forms according to the boundary condition we want to consider. In the
case of the Dirichlet condition, we ask that

(2.4) a¯t (w(t)1W(t) ), vb1�
V

˜u(t) Q˜v4�
V

g(t)v

for every v�H 1
0 (V) and for a.a. t� (0 , T)

u4uG on G3 (0 , T)(2.5)

where uG is given. In the case of the Neumann problem, instead, we insert the bound-
ary condition in the variational formulation as usual, i.e.,

(2.6) a¯t (w(t)1W(t) ), vb1�
V

˜u(t) Q˜v4�
V

g(t)v1 �
G3 (0 , T)

h(t)v

for every v�V and for a.a. t� (0 , T)
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and the same we do for the third type condition (1.13), namely

(2.7) a¯t (w(t)1W(t) ), vb1�
V

˜u(t) Q˜v1c�
G

uv4�
V

g(t)v1 �
G3 (0 , T)

h(t)v

for every v�V and for a.a. t� (0 , T).

As in the introduction, h is a given function and c is a positive constant. Finally, we
give the initial conditions

w(0) 4w0 and W(0) 4W0(2.8)

with suitable initial data.
For the sake of convenience, we specify the regularity of the given data later on.

Now, we summarize the assumptions on the structure and state the three problems
corresponding to the above boundary conditions.

ASSUMPTION (H). We assume that the functions j and s satisfy (1.7) and (1.8). More-
over a�C 2 (0 , 1Q) satisfies (1.10), (1.11), and (1.12).

PROBLEM (P1 ). Find (w , W , u , j) satisfying (R), the first condition (2.2), (2.1), and
solving the initial-boundary value problem (2.3), (2.4), (2.5), and (2.8).

PROBLEM (P2 ). Find (w , W , u , j) satisfying (R), the second condition (2.2), (2.1),
and solving the initial-boundary value problem (2.3), (2.6), and (2.8).

PROBLEM (P3 ). Find (w , W , u , j) satisfying (R), the second condition (2.2), (2.1),
and solving the initial-boundary value problem (2.3), (2.7), and (2.8).

A problem like (P3 ) is solved in [3] and [4] under general assumptions on the
data. More precisely, [3] gives an existence result under assumptions on the structure
that are much more general than (H) as far as the behaviour of a near 0 is concerned.
On the contrary, [4] deals just with the case d40 since the Lipschitz continuity of
a21 is used there. Moreover, the Lipschitz continuity of the function

l (r) »4a(r)1
1
r , r� (0 , 1Q)(2.9)

is assumed as well. In [4] the authors prove a uniqueness result assuming the further
regularity condition on the solution

w�L Q (0 , T ; V).(2.10)

In the same paper, a regularity result ensuring (2.10) is proved under suitable assump-
tions on the data.

REMARK 2.1. We note that a21 is globally Lipschitz continuous if and only if d40
and that it has an exponential behaviour at infinity in the worst case d41. Moreover,
the function l is Lipschitz continuous on (d , 1Q) for any dD0, even in the case 0 G

GdG1, as a consequence of (1.12) and of the smoothness of a. However, its global Lip-
schitz continuity cannot be deduced from (H).
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Now we present the results of [6] and [2] regarding problems (P1 ) and
(P2 ), respectively. Some ideas on their proofs are given in the next section.

As far as (P1 ) is concerned, we think of an extension of the Dirichlet datum uG to
the whole domain and still term uG such an extension.

THEOREM 2.2. Assume (H). Assume moreover

g�L 2 (0 , T ; H), uG�L 2 (0 , T ; V)OH 1 (0 , T ; H)OL Q (V3 (0 , T) )

w0�H , w0D0 a.e. in V, 1/w0�H, W0�V, j(W0)�L 1(V).

Then problem (P1 ) has at least a solution.

THEOREM 2.3. Assume (H) and let (w , W , u , j) be a solution to problem (P1 ) satis-
fying also (2.10). Then such a solution is unique.

REMARK 2.4. More precisely, in [6] it is proved that the solution given by Theorem
2.2 can be obtained as the limit of the solutions to problems of type (P3 ) depending on
a parameter eD0 that one lets tend to zero.

Moreover, the same paper contains a regularity result ensuring (2.10). Such a result
is analogous to the one given in [4] as far as the regularity of the data and of the solu-
tion is concerned, but it holds essentially just under assumptions (H). In particular, it
holds for all d� [0 , 1]. Indeed, the precise further assumption needed is just a rein-
forcement of (1.11), namely

r 2 a 8 (r) 411O(r) as rK01 .(2.11)

Note that (2.11) is stronger than (1.11) and weaker than the Lipschiz continuity of l .
Now, we deal with problem (P2 ) and present the main results proved in [2]. The

existence of a solution depends on a further assumption on j which seems to be just
technical. We assume that

NsNGc0 (11 j(r) ) E1Q for any r� (2Q , 1Q) and s� j(r)(2.12)

for some c0D0. Hence, ¯j can still be multivalued. However, it cannot grow more than
exponentially at infinity and the second condition (2.1) cannot include constraints on W.

THEOREM 2.5. Assume (H) and (2.12). Assume moreover

g�L 2 (0 , T ; H), h�L Q (G3 (0 , T) )

w0�H , w0D0 a.e. in V , 1/w0�H , W0�V , j(W0 ) �L 1 (V).

Then problem (P2 ) has at least a solution.

THEOREM 2.6. Assume in addition that the function l defined in (2.9) is Lipschitz
continuous. Then the solution given by Theorem 2.5 is unique.

REMARK 2.7. More precisely, in [2] it is proved that the solution given by Theorem
2.5 can be obtained as the limit of the solutions to problems of type (P3 ) depending on
a parameter eD0 that one lets tend to zero. Moreover, the assumption on h could be
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replaced by a weaker assumption depending on d. Finally, we note that the technique
used in [2] to prove Theorem 2.6 applies to problems (P1 ) and (P3 ) as well, i.e., the
uniqueness of the solution to such problems is guaranteed without any further regu-
larity assumption on the solution itself, provided that l is Lipschitz continuous.

3. OUTLINE OF THE PROOFS

As far as Theorem 2.2 is concerned, we refer to [6], where the solution to (P1 ) is
obtained letting e tend to zero in a family of problems (P3 ). More precisely, one
takes

c4
1
e and h4

1
e uG(3.1)

in (P3 ) and treats the obtained problem like an approximating problem. Hence, one
uses compactness and monotonicity methods and shows that its solution
(we , We , ue , je ) tends to a solution to (P1 ) as eK01 in a suitable topology, at least for
a subsequence.

The basic a priori estimate can be formally obtained this way. Setting wG »4

»4a21 (uG ), we test equation (2.7) (where we have replaced c and h according to
(3.1)) with v4we1ue2wG2uG and integrate over (0 , t); next, we multiply (2.3) by
¯t We and integrate over V3 (0 , t); then we sum the obtained equalities to each other.
We refer to [6] for the treatement (partially inspired by [3]) of all the integrals and
just note two things about the formula we get. First, the left hand side contains the
sum

�
V

A(we (t) )1 �
V3 (0 , t)

N˜ueN
21 �

V3 (0 , t)

N¯t WeN
2(3.2)

where A is the unique primitive of a with min A40. On the other hand, the integrals
containing ue ¯t W and ¯t W/we partially cancel and just the term

�
V3 (0 , t)

l (we )¯t We

survives in their sum. Such a term is treated with the help of an elementary inequality
which follows from (H) (see [6, Lemma 3.2]), namely

l 2 (r) Gda 2 (r)1cd g11A(r)h for any r� (0 , 1Q)

where cd depends only on a and on the parameter dD0. Clearly, such an inequality
helps a lot, compared with (3.2) and the possibility of applying the Gronwall lemma.
The final basic estimate we obtain is

VA(we )VL Q (0 , T ; L 1 (V) )1V j(We )VL Q (0 , T ; L 1 (V) )1Vwe VL Q (0 , T ; H)1

1Vue VL 2 (0 , T ; V)1VWe VL Q (0 , T ; V)1V¯t We VL 2 (0 , T ; H)

1e21/2
Vue2uG VL 2 (G3 (0 , T) )1V˜we

12d/2
VL 2 (0 , T ; H)Gc
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where c does not depend on e. In particular is already clear that the Dirichlet condi-
tion for u will be satisfied in the limit.

However, the above test function v is not admissible and the correct procedure
used in [6] replaces v with a V-valued approximation of it.

In order to apply weak and strong compactness results and overcome the difficul-
ties related to the limits of the nonlinear terms, more estimates are proved in [6]. In
particular, one shows that the limit satisfies the regularity conditions (R).

As far as Theorem 2.2 is concerned, we refer to [6] and just note that the proof ap-
plies to problems (P2 ) and (P3 ) as well, and the same remark holds for the technique
used to prove the regularity result for (P1 ) just mentioned in the previous section.
However, it must be pointed out that the outline of the proofs of both the uniqueness
and the regularity results of [6] is strongly inspired by [4]. The modification relies es-
sentially in one point: [6] uses the properties stated below instead of the Lipschitz
continuity of a21 and l

the function l i a21 is globally Lipschitz continuous

N(l i a21 )8 (s)NGc k(a21 )8 (s) for any real s

where c is a positive constant. The corresponding proofs are given in [6, Lemma 3.3]
and in [6, Lemma 3.4], respectively, and are completely elementary. The first property
is true whenever assumptions (H) hold. On the contrary, the second one needs the ad-
ditional assumption (2.11).

The same outline we have sketched to prove Theorem 2.2 is used as far as Theorem
2.5 is concerned. In this case, one simply takes c4e in (P3 ) and starts estimating suit-
able norms of the approximate solution (we , We , ue , je ). The basic estimate should
follow similarly as before. Here, assuming that the point where a(r) vanishes is r41,
one should choose (a V-valued approximation of) v4we1ue21 in (2.7) (with c4e)
and multiply (2.3) by ¯t W. After integrating and summing up, we obtain what we
could call the basic equality. We do not write it for brevity and just observe that its left
hand side contains the sum

1
2
�

V

Nwe (t)N21 �
V3 (0 , t)

N˜ueN
21�

V

j(We (t) )1 �
V3 (0 , t)

N¯t WeN
2 .(3.3)

A partial cancellation helps as before. On the contrary, one immediately finds some
trouble related with the source terms.

This difficulty is overcome with the help of the further assumption (2.12). The
procedure used in [2] splits the basic estimate in two parts and uses just assumptions
(H) and (2.12). Here, we assume l to be Lipschitz continuous (see also Remark 2.1)
and proceede formally (i.e., we choose exactly the above v) in order to make the expo-
sition simple and transparent. The source terms are

�
G3 (0 , t)

hwe and �
0

t

a f(s), ue (s)b ds(3.4)
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where we have introduced f�L 2 (0 , T ; V 8 ) by setting

a f(s), vb 4�
V

g(s)v1�
G

h(s)v for v�V and s� (0 , T).

We can deal with the first term (3.4) owing to the inequality

VvVL dl (G)GdV˜a(v)VH
2 1cd (11VvVH

2 )

where dlF1 is given by dl »44/(113d). Such an inequality holds for any dD0,
some cd4c(d , V , a), and for any positive v that makes the right hand side finite. Its
proof is given in [2, Lemma 3.1] and uses just sharp trace theorems and standard in-
equalities. A simple application and an integration over (0 , t) yield

�
G3 (0 , t)

hweGd �
V3 (0 , t)

N˜ueN
21cd �

V3 (0 , t)

NweN
21cd

(with a new cd), provided that h is bounded (more generally, h could belong to a suit-
able space depending on d), and the last integrals can be controlled using the Gron-
wall lemma, since the left hand side of our basic equality contains the sum (3.3). As far
as the second (3.4) is concerned, we can estimate it like

�
0

t

a f (s), ue (s)bdsGc(g , h)Vue VL 2 (0 , t ; V)

with full V-norm, while the left hand side of our basic equality contains just the
integral

�
V3 (0 , t)

N˜ueN
2 .

On the other hand, the Poincaré inequality

Vue (t)2me (t)VV
2
Gc(V)�

V

N˜ue (t)N2 where me (t) »4
1

NVN
�

V

ue (t)

does not solve immediately our problem. So, some work has to be done. We add and
subtract the mean value and are led to estimate the integral

�
0

t

a f(s), me (s)bds4�
0

t

me (s)a f(s), 1 bdsGV f VL Q (0 , T ; V 8 ) V1VV�
0

t

Nme (s)Nds

where we are assuming f�L Q (0 , T ; V 8 ) just for the sake of simplicity. Now, we can
treat the last integral this way

�
0

t

Nme (s)NdsG
1

NVN
�

V3 (0 , t)

Na(we )NG
1

NVN
�

V3 (0 , t)

1
we

1
1

NVN
�

V3 (0 , t)

N l (we )N .

The l -term can be easily controlled using the Lipschitz continuity of l we are assum-
ing for the sake of simplicity. Instead, the mean value of 1/we has to be treated careful-
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ly. However, it can be read in (2.3) and estimated. Noting that DWe has zero mean
value (thanks to the Neumann condition for We contained in (R)) and owing to the
Lipschitz continuity of s 8 , we have

�
V3 (0 , t)

1
we

Gc �
V3 (0 , t)

(N¯t WeN1NjeN1NWeN11).

Now, remembering that the left hand side of our basic equality contains the sum (3.3),
we see that assumption (2.12) allows us to overcome the difficulty.

We conclude by sketching the proof of Theorem 2.6. In order to simplify the nota-
tion, we use the same symbol c for constants that might be different from each other,
even in the same line of our estimates.

Let (wi , Wi , ui , ji ), i41, 2 , be two solution to (P2 ). Following [4], we write (2.6)
for such solutions, take the difference, and integrate the obtained equation over (0 , t).
Next, we write (2.3) for the two solution and take the difference. We obtain the
system

�
V

gw(t)1W(t)hv1�
V

˜gs
0

t

uh Q˜v40 for every v�V and for a.a. t� (0 , T)

¯t W2DW1j1s 8 (W1 )2s 8 (W2 ) 4z a.e. in V3 (0 , T)

where we have set for convenience

w»4w12w2 , u»4u12u2 , W»4W12W2

j»4j12j2 , z»4z12z2 , z i »42 1
wi

for i41, 2 .

Now, we write the first equation for t4 s , choose v4u(s), and integrate over (0 , t).
Then, we multiply the second equation by W and integrate over V3 (0 , t) owing to
the Neumann condition for W. Finally, we sum the obtained equalities to each other
and obtain

�
V3 (0 , t)

wu1
1
2
�

V

N˜s
0

t

uN
2
1

1
2
�

V

NW(t)N21 �
V3 (0 , t)

N˜WN21 �
V3 (0 , t)

jW4

4 �
V3 (0 , t)

(z2u)W1 �
V3 (0 , t)

gs 8 (W2 )2s 8 (W1 )hW .

Essentially at this point, [4] and [6] use ui and replace wi with a21 (ui ). Here, instead,
we use wi rather that ui and replace z i2ui by 2 l (wi ). Forgetting some positive terms
and taking advantage of the Lipschitz continuity of both l and s 8 , we deduce
that

�
V3 (0 , t)

wu1
1
2
�

V

NW(t)N21 �
V3 (0 , t)

N˜WN2Gc �
V3 (0 , t)

NwNNWN1c �
V3 (0 , t)

W 2 .

Clearly, the main point is compensating the second last integral with the left hand side
since the last term can be controlled using the Gronwall lemma. To this aim, we esti-
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mate the first integral on the left hand side from below owing to the following
inequality

(r12 r2 )ga(r1 )2a(r2 )hFd 0

(r12 r2 )2

11 r1
d1 r2

d

which holds for some constant d 0D0 and any r1 , r2D0 and is an easy consequence of
the mean value theorem and of our assumptions (H). Moreover, we estimate the trou-
bling integral from above accordingly. We obtain

d 0 �
V3 (0 , t)

w 2

11w1
d 1w2

d
1

1
2

VW(t)VH
2

1 �
V3 (0 , t)

N˜WN2G

G
d 0

2
�

V3 (0 , t)

w 2

11w1
d 1w2

d
1c �

V3 (0 , t)

(11w1
d 1w2

d )W 2

and note that we could already apply the Gronwall lemma if d40. If dD0, we esti-
mate the non trivial contributions to the last integral owing to the Hölder inequality
with suitable p , qF1 satisfying (1/p)1 (2/q) 41. We choose

p»4
2
d

and q»4
4

22d

and note that qG4. We obtain for i41, 2

�
V3 (0 , t)

wi
d W 2G�

0

t

Vwi
d
VL p (V) VWVL q (V)

2 ds4�
0

t

Vwi VH
d

VWVL q (V)
2 dsGc�

0

t

VWVL 4 (V)
2 ds

where c accounts also for the norm of wi in L Q(0, T ; H). Now, the compact embedd-
ing V%L 4 (V) yields

VvVL 4 (V)
2

GdV˜vVH
2

1cd VvVH
2

for any dD0 and any v�V and for some constant cd. Hence, we deduce

�
V3 (0 , t)

wi
d W 2G

1
4

�
V3 (0 , t)

N˜WN21c�
0

t

VW(s)VH
2 ds .

Therefore, we can apply the Gronwall lemma and conclude that w and W vanish iden-
tically, i.e., w14w2 and W14W2 , whence also u14u2 , obviously. Finally, we deduce
that j14j2 by comparison in (2.3), and the proof is complete.

REMARK 3.1. One could replace equation (2.3) by the system

¯t W2Dw40, w�2DW1¯j(W)1s 8 (W)1
1
w

which is equivalent to a fourth order equation of Cahn-Hilliard type for W. One uses
to add the homogeneous Neumann condition ¯n w40 on the boundary. If we still
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keep the energy balance equation and the boundary and initial conditions we have
dealt with before, we obtain a Penrose-Fife type model with conserved order para-
meter. Indeed, the integral of W(t) over V does not depend on time.

From the mathematical point of view, the main difference with respect to the
second order system is that the time derivative ¯t W is estimated in L 2 (0 , T ; V 8 ) rather
than in L 2 (0 , T ; H). Nevertheless, one can prove similar results. This is done in a
joint work with A. Marson, where we are dealing with well-posedness, essentially un-
der the same assumptions (H). Indeed, just the case d41 is missing. Some results on
the third type problem for u have been already established. However, our work is still
in progress.
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