
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Avner Friedman

Free boundary problems arising in tumor models

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 15 (2004), n.3-4, p. 161–168.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2004_9_15_3-4_161_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_2004_9_15_3-4_161_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 2004.



Rend. Mat. Acc. Lincei
s. 9, v. 15:161-168 (2004)

AVNER FRIEDMAN

FREE BOUNDARY PROBLEMS ARISING IN TUMOR MODELS

ABSTRACT. — We consider several simple models of tumor growth, described by systems of PDEs,
and describe results on existence of solutions and on their asymptotic behavior. The boundary of the tu-
mor region is a free boundary. In §1 the model assumes three types of cells, proliferating, quiescent and
necrotic, and the corresponding PDE system consists of elliptic, parabolic and hyperbolic equations. The
model in §2 assumes that the tumor has only proliferating cells. Finally in §3 we consider a model for
treatment of tumor, described by a system of elliptic and hyperbolic equations.
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1. A MODEL WITH THREE POPULATIONS OF CELLS

We assume that in the tumor region V(t) there are three types of cells: proliferat-
ing cells with density p, quiescent cells with density q, and necrotic cells with density r.
Nutrient (e.g. oxygen) with concentration c is diffusing in V(t) and affects the transi-
tion of cells from one type to another:

pKq at rate kQ (c), qKp at rate kP (c),

pK r and qK r at rates kA (c) and kD (c) respectively, and pKp at proliferation rate
kB (c). Necrotic cells are removed from the tumor at constant rate kR . By conservation
of mass,

¯p
¯t

1div (p vK) 4 [kB (c)2kQ (c)2kA (c) ]p1kP (c)q ,

¯q
¯t

1div (q vK) 4kQ (c)p2 [kP (c)1kD (c) ]q ,

¯r
¯t

1div (r vK) 4kA (c)p1kD (c)q2kR r

where vK is the velocity of cells, caused by motions due to proliferation and removal of
cells. We assume that the tumor is a porous medium so that, by Darcy’s law,

vK 42˜s , s4pressure .

We further assume that the total density of the cells is constant,

p1q1 r4const4N

and take, for simplicity, N41. Adding the first three equations we get an equation for
s, namely, Ds42kB (c)p1kR r. We can then eliminate the equation for r, and set
r412p2q in the equation for s. Introducing also a diffusion equation for the nutri-
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ent concentration c, we arrive at the following system of equations:

e 0
¯c
¯t

2Dc1lc40 in V(t),(1.1)

¯p
¯t

1˜s Q˜p4 f (c , p , q) in V(t),(1.2)

¯q
¯t

1˜s Q˜q4g(c , p , q) in V(t)(1.3)

Ds42h(c , p , q) in V(t)(1.4)

where e 0F0,

f (c , p , q) 4 [kB (c)2kQ (c) ]p1kP (c)q1h(c , p , q)p ,

g(c , p , q) 4kQ (c)p2 [kP (c)1kD (c) ]q1h(c , p , q)q ,

h(c , p , q) 42kR1 [kB (c)1kR ]p1kR q .

Denote the boundary of V(t) by G(t). Then

c4c on G(t) (c positive constant),(1.5)

s4gk on G(t),(1.6)

¯s
¯n

42Vn on G(t)(1.7)

where n is the outward normal and Vn is the velocity of G(t) in the normal direction, k
is the mean curvature (k41/R for a ball of radius R), and g is the surface tension co-
efficient. Equations (1.1)-(1.4) were first introduced by Pettet et al. [15] in the radially
symmetric case in order to explain some experimental results. The condition (1.6) was
introduced already in early tumor models (Greenspan [14]). From the definition of
the various rate functions it is clear that kB (c) and kP (c) are monotone increasing in c,
whereas kD (c), kQ (c) and kA (c) are monotone decreasing in c.

We complement the system (1.1)-(1.7) with initial conditions:

.
/
´

V(t)Nt404V 0 is given ,

pNt404p0 (x) F0, qNt404q0 (x) F0, p0 (x)1q0 (x) G1,

and cNt404c0 (x) is given if e 0D0, c0 (x) F0.

(1.8)

THEOREM 1 (Chen and Friedman [5]). If e 040, p0 , q0 belong to C m111a (V0 ) for
some integer mF1 and 0 EaE1, and ¯V 0 belong to C m111a , then there exists a
unique solution of (1.1)-(1.8) for some time interval 0 E tGT such that p , q , c and
their first m11 derivatives in (x , t) are in C a , a/3m 0

0 G tGT
V(t)3 ]t(n and

m 0
0 G tGT

G(t)3 ]t(n has Ds D m
s , t derivatives which belong to C 31a , (31a) /2 (s is a local co-

ordinate in ¯V 0 ).
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The proof requires a careful study of the inhomogeneous Hele-Shaw problem:

Ds4k(x , t) in V(t),

subject (1.6), (1.7).
Theorem 1 extends to the case e 0D0.
As in the Hele-Shaw problem where Ds40 in V(t) subject to (1.6), (1.7), we can-

not expect to have global existence for (1.1)-(1.8). However, in the case of spherically
symmetric data

V 04 ]rER0(, p04p0 (r), q04q0 (r)(1.9)

we have:

THEOREM 2 (Cui and Friedman [8]). Under the additional assumption (1.9), there
exists a unique global spherically symmetric solution for the system (1.1)-(1.8), and the
free boundary r4R(t) satisfies

d 0GR(t) GA0 (tD0(1.10)

where d 0, A0 are positive constants.

In this theorem it is assumed that the functions kX (c) satisfy the following
conditions;

.
/
´

k 8B (c) D0, k 8P (c) D0, k 8A (c) G0, k 8D (c) E0,

k 8Q (c) E0, k 8B (c)1k 8D (c) D0,

kB (0) 4kP (0) 40, kA (1) 4kD (1) 4kQ (1) 40.

(1.11)

Theorem 2 suggests that R(t) might converge to a limit as tKQ. This, however,
has not been proved. Nor is it known whether spherically symmetric stationary solu-
tions exist. But some results are known in case we assume that there are only two types
of cells in the tumor, namely, proliferating and quiescent. In this case rf0, qf12p
and we have:

THEOREM 3 (Cui and Friedman [8]). In the special case of two types of cells, prolife-
rating and quiescent, there exists a unique spherically symmetric stationary solution.

More recently it was proved by Chen, Cui and Friedman [4] that this solution is
linearly asymptotically stable with respect to spherically symmetric perturbations.

2. TUMOR WITH ONLY PROLIFERATING CELLS

In this section we consider a tumor model whereby all the cells are proliferating.
This means, in the notation of §1, that pf1, qf0, rf0. We assume that the prolifer-
ation rate is given by

kB (c) 4m(c2cA)

where cA is a positive constant, so that analogously to (1.4) we have

Ds42m(c2cA) in V(t).(2.1)
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Note that our choice of kB (c) is different from that in (1.11). We consider the system
(1.1), (2.1) with the same free boundary conditions (1.5)-(1.7) and with the initial
conditions

V(t)Nt404V 0 , cNt404c0 (x).(2.2)

This model was considered by Byrne and Chaplain [3]. Friedman and Reitich [10]
proved that (i) for initial spherically symmetric data there exists a unique global
spherically symmetric solution with free boundary v4R(t); (ii) if

cA

c
E1

then there exists a unique spherically symmetric stationary solution, and (iii) the sta-
tionary solution is asymptotically stable with respect to spherically symmetric small
perturbations.

For the stationary solution (s s , cs , Rs ), in the 2-d case Rs is given by

I1 (Rs )
I0 (Rs )

4
sA

2 s
Rs

and cs (r) is given by

cs (r) 4 s I0 (r) /I0 (Rs )

where Im (r) is the Bessel function of the second kind; similar formulas can be derived
in the 3-d case.

The existence of a local solution for general initial data was established by Bazaliy
and Friedman [1]; the proof uses Sobolev norms rather than the Hölder norms which
were used in the proof of Theorem 1.

Consider now general perturbation of the spherically symmetric stationary
solution:

¯V 0 : r4Rs1ef (u , W) c0 (r) 4cs (r)1eg(r , u , W)(2.3)

THEOREM 4 (Bazaliy and Friedman [2]). If m is sufficiently small then if NeN is suffi-
ciently small there exists a global solution to the system (1.1), (2.1), (1.5)-(1.7) with ini-
tial condition (2.2), (2.3) and

G(t) K ]r4Rs(

exponentially fast as tKQ.

It was proved by Friedman and Reitich [11, 12] in the 2-d case and by Fontelos
and Friedman [9] in the 3-d case that there exist symmetry-breaking bifurcation
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branches of stationary solutions, at bifurcation points

m 2Em 3EREm nER (m nKQ if nKQ).

Therefore Theorem 4 cannot be extended to m4m 2 . The question whether Theorem
4 is valid for all mEm 2 remains open.

The proof of Theorem 4 is valid also if m40; this Hele-Shaw case is already well
known.

3. TREATMENT OF CANCER

When a drug or «inhibitor» is present in the tumor, one may describe it by a diffu-
sion process. For example, the model in §2 may be augmented by introducing a diffu-
sion equation for the concentration of an inhibitor. This was done [3]; mathematical
analysis of the model was carried out in [6]. Here we shall describe a more specific ap-
proach to tumor therapy, based on injection of genetically engineered virus into the
tumor. The virus particles move into the tumor cells, infect them, and multiply inside
them. When an infected cell dies, the virus particles burst out and infect adjacent tu-
mor cells. We shall consider here only the spherically symmetric case, although the ex-
tension to general initial conditions, by analogy to §1, is straightforward.

We denote by x(r , t) the density of uninfected tumor cells, by y(r , t) the density of
infected cells, by z(r , t) the density of necrotic cells, and by v(r , t) the density of free
virus in the tumor. As in §1 we assume that

x(r , t)1y(r , t)1z(r , t) fconst4u ;(3.1)

since the virus particles are much smaller than the tumor cells, their density is neglect-
ed in (3.1). We use conservation of mass for x, y and z (as in §1), add the three equa-
tions to get (using (3.1)) an equation for the radial velocity, and finally drop the equa-
tion for z. After rescaling (taking u41) we obtain the following system:

¯x(r , t)
¯t

4lx(r , t)2p0 gx(r , t)v(r , t)2
1
r 2

¯

¯r
[r 2 u(r , t)x(r , t) ],(3.2)

¯y(r , t)
¯t

4p0 gx(r , t)v(r , t)2dy(r , t)2
1
r 2

¯

¯r
[r 2 u(r , t)y(r , t) ],(3.3)

1
r 2

¯

¯r
(r 2 u(r , t) ) 4lx(r , t)2m[12x(r , t)2y(r , t) ], u(0 , t) 40(3.4)

in the tumor region ]rER(t), tD0(, where the left-hand side of (3.4) is ˜2 s,
s4pressure. The equation for v(r , t) is

¯v(r , t)
¯t

4dy(r , t)2gv(r , t)1k 0 R 2 (t) 1
r 2

¯

¯r
gr 2 ¯v

¯r
h,

¯v(0 , t)
¯r

40, k 0D0.(3.5)

In the above equations l is the proliferation rate of uninfected cancer cells, b is the in-
fection rate of uninfected cells, d is the death rate of infected cells, m is the removal
rate of necrotic cells, g is the removal rate of virus particles, and p04buN/g where N
is the bust size of virus emerging from a dead cancer cell.
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We complement the system (3.2)-(3.5) with the free boundary conditions

¯v
¯r

(R(t), t) 40,(3.6)

dR(t)
dt

4u(R(t), t) ,(3.7)

and prescribe initial conditions

R(0) is given , x(r , 0 ) 4x0 ( r ), y( r , 0 ) 4y0 ( r ), v( r , 0 ) 4v0 ( r )(3.8)

where x0 (r), y0 (r), v0 (r) are nonnegative functions and x0 (r)1y0 (r) G1.
The above system with k 040 was introduced by Wu et al. [16]; adding the diffu-

sion term in (3.5) is essential for making the system mathematically well posed (as
shown in [13]), but it is also reasonable since the virus particles have Brownian
nature.

THEOREM 5 (Friedman and Tao [13]). The system (3.2)-(3.8) has a unique global
solution, and

d 0 e 2btGR(t) GA0 e bt (tD0(3.9)

where d 0 , A0 , b are positive constants.

Note the similarity between the system (3.2)-(3.7) and (1.1)-(1.7) (in the radial
case). There are of course some differences in the differential equations and in the
boundary conditions. In particular notice that instead of the assertion (1.10) we have
the much cruder bounds (3.9) for R(t). The interesting question here is whether R(t)
can remain bounded, or even go to zero as tKQ, by appropriate injection v0 (r) of
virus particles.

In order to address this question we perform a change of variables

p4
r

R(t)
, xA(p , t) 4x(r , t), yA(p , t) 4y(r , t),

vA(p , t) 4v(r , t), uA(p , t) 4u(r , t)

and obtain a new system for xA, yA, vA, uA with initial values

xA0 (p), yA0 (p), vA0 (p).

We next examine all the possible stationary solutions (xs , ys , vs , us) with constant
densities. We easily find that there are just four such solutions of (3.2)-(3.5),
namely

(xs , ys ) 4 (0 , 0 ), (1 , 0 ), g0, 12
d
m h ( provided dEm),(3.10)

and

(xs , ys ) 4 u lm2p0 dm1p0 d 21md

(p0 d2l)p0 d
,

(l1m)(p0 d2d2l)
(p0 d2l)p0 d

v(3.11)
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provided each component is nonnegative, and

vs4
d
g ys(3.12)

us4
1
3

(2m1 (l1m)xs1mys ) r(3.13)

in all cases. Consider first the case (xs , ys ) 4 (0 , 12d/m):

THEOREM 6 (Friedman and Tao [13]). Let R(0) be arbitrary, and assume that

p0D
m(l1d)
d(m2d)

.

If

V
xA0 (p)20, yA0 (p)2 g12

d
m h, vA0 (p)2

d
g g12

d
m h

V

C 1[0 , 1]

is sufficiently small then R
.
(t) E0 for all tD0 and

R(t) Ge 2at as tKQ , for some aD0.

This result shows that no matter how large the initial tumor is, we can nontheless

decrease its size at exponential rate by injecting a dose close to d
g ys , provided initially

the density of the infected cells is approximately 12d/m and the density of uninfected
cells is sufficiently small.

A similar result holds in the case (3.11), but not for the other two stationary solu-
tions. These results suggest an interesting problem in optimal control: Given any ini-
tial values of xA0 (p), yA0 (p), find the best choice of vA0 (p) to reduce the tumor, under
some constraints, such as VvA0 VL Q GK.

ACKNOWLEDGEMENTS

This work is partially supported by the National Science Foundation Grant DMS-0098520.

REFERENCES

[1] B.V. BAZALIY - A. FRIEDMAN, A free boundary problem for an elliptic-parabolic system: Application to
a model of tumor growth. Communications in PDE, 28, 2003, 517-560.

[2] B.V. BAZALIY - A. FRIEDMAN, Global existence and stability for an elliptic-parabolic free boundary
problem; An application to a model of tumor growth. Indiana University Math. J., 52, 2003,
1265-1304.

[3] H.M. BYRNE - M.A.J. CHAPLAIN, Growth of nonnecrotic tumours in the presence and absence of in-
hibitors. Mathematical Biosciences, 181, 1995, 130-151.

[4] X. CHEN - S. CUI - A. FRIEDMAN, A hyperbolic free boundary problem modeling tumor growth: A
symptotic behavior. To appear.

[5] X. CHEN - A. FRIEDMAN, A free boundary problem for elliptic-hyperbolic system: An application to tu-
mor growth. SIAM J. Math. Analysis, 35, 4, 2003, 974-976.

[6] S. CUI - A. FRIEDMAN, Analysis of a mathematical model of the effect of inhibitors on the growth of tu-
mors. Math. Biosci., 164, 2000, 103-137.



A. FRIEDMAN168

[7] S. CUI - A. FRIEDMAN, A free boundary problem for a singular system of differential equations: An ap-
plication to a model of tumor growth. Trans. AMS, 355, 2003, 3537-3590.

[8] S. CUI - A. FRIEDMAN, A hyperbolic free boundary problem modeling tumor growth. Interfaces and
Free Boundaries, 5, 2003, 159-181.

[9] M. FONTELOS - A. FRIEDMAN, Symmetry-breaking bifurcations of free boundary problems in three di-
mensions. Asymptotic Analysis, 35, 2003, 187-206.

[10] A. FRIEDMAN - F. REITICH, Analysis of a mathematical model for the growth of tumors. J. Math. Biol.,
38, 1999, 262-284.

[11] A. FRIEDMAN - F. REITICH, Symmetry-breaking bifurcation of analytic solutions to free boundary prob-
lems: An application to a model of tumor growth. Trans. Amer. Math. Soc., 353, 2000, 1587-
1634.

[12] A. FRIEDMAN - F. REITICH, On the existence of spatially patterned dormant malignancies in a model for
the growth of non-necrotic vascular tumor. Math. Models and Methods in Appl. Sciences, 77, 2001,
1-25.

[13] A. FRIEDMAN - Y. TAO, Analysis of a model of a virus that replicates selectively in tumor cells. J. Math.
Biology, 47, 2003, 391-423.

[14] H. GREENSPAN, On the growth and stability of cell cultures and solid tumors. J. Theor. Biol., 56, 1976,
229-242.

[15] G. PETTET - C.P. PLEASE - M.J. TANDALL - D. MCELWAIN, The migration of cells in multicell tumor
spheroids. Bull. Math. Biol., 63, 2001, 231-257.

[16] J.T. WU - H.M. BYRNE - D.H. KIRN - L.M. WEIN, Modeling and analysis of a virus that replicate selec-
tively in tumor cells. Bull. Math. Biology, 63, 2001, 731-768.

Department of Mathematics
The Ohio State University

231 West 18th Avenue
COLUMBUS, OH 43210 (U.S.A.)

afriedmanHmbi.osu.edu


