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Teoria dei gruppi. — Abelian quasinormal subgroups of groups. Nota di STEWART
E. STONEHEWER e GIOVANNI ZACHER, presentata (*) dal Socio G. Zacher.

AsstracT. — Let G be any group and let A be an abelian quasinormal subgroup of G. If # is any po-
sitive integer, either odd or divisible by 4, then we prove that the subgroup A” is also quasinormal in G.

Key worps: Quasinormal subgroup; Abelian groups.

Riassunto. — Sottogruppi abeliani quasi-normali dei gruppi. Sia G un gruppo e sia A un sottogruppo
abeliano e quasi-normale in G. Se # ¢ un qualunque intero positivo dispari o divisibile per 4, allora si di-
mostra che il sottogruppo A” & pure quasi-normale in G.

1. INTRODUCTION AND STATEMENT OF RESULTS

Among the most important concepts in group theory, arguably the most impor-
tant, are those of composition and chief series, arising from normal subgroups. If zor-
mal is replaced by gquasinormal, then, by analogy, little seems to be known. A sub-
group A of a group G is said to be quasinormal (or permutable) in G if AX = XA for
all subgroups X of G. Obviously this is equivalent to the product AX being a sub-
group. Of course normal subgroups are necessarily quasinormal, while the converse is
not always true. But what is the structure of minimal quasinormal subgroups and what
properties do maximal (z.e. unrefinable) chains of quasinormal subgroups possess?
The answers to these and similar questions remain pitifully inadequate. In the present
work, however, we show that when A is an abelian quasinormal subgroup of G, then
certain canonical subgroups of A are also quasinormal in G. We denote the core of a
subgroup A of a group G by A¢. When A is quasinormal and G is finite, the quotient
A/Ag is always nilpotent [4], though there is no restriction on the class [2, 11]. Much
of the published work on quasinormal subgroups has been about A/A, i.e. the core-
free case. Here, however, our arguments apply equally to the core-free and the non-
core-free situations. Our main result is the following.

TueoreM 1. Let A be an abelian quasinormal subgroup of a group G and let n be a
positive integer, either odd or divisible by 4. Then A" is also quasinormal in G.

We shall see in Section 3 that the restriction on 7 here is necessary, by constructing
an example in which A? is not quasinormal. Theorem 1 is proved first for the case
when G is a finite group. This in turn reduces easily to the case where G is a p-group,
for some prime p. Then by straightforward induction arguments, we need to consider
only the cases # = p, when p is odd, and # = 4 and 8, when p = 2. Thus we prove the
following

(*) Nella seduta del 14 maggio 2004.
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THEOREM 2. Let A be an abelian quasinormal subgroup of a finite p-group G, where
p is an odd prime. Then AP is also quasinormal in G.

THEOREM 3. Let A be an abelian quasinormal subgroup of a finite 2-group G. Then
(i) A* and (i) A® are both quasinormal in G.

We recall that every finite abelian group is self-dual, z.e. its subgroup lattice admits
an inclusion-reversing bijection. Thus suppose that A is an abelian quasinormal sub-
group of a finite p-group G, where p is an odd prime. Then in the light of Theorem 2,
it is natural to ask if the subgroup 2(A), generated by the elements of order p in A, is
also quasinormal in G. However, this is not the case and we construct an example to
show this in Section 3. To complete the picture, we give a further example of a finite
2-group G with an abelian quasinormal subgroup A such that 2 ,(A) is not quasinot-
mal in G (here Q,(A)/2(A) = Q(A/Q(A))).

Section 4 deals with infinite groups G and deduces the full statement of Theorem
1 from the finite case. Also we include here two further examples which answer obvi-
ous questions.

Other notation is as follows. The centre of a group G is denoted by Z(G) and a
representative of the class of cyclic groups of order #» by C,. If H is a subgroup of a
group G, then the lattice of subgroups between G and H is denoted by [G : H]. Also
the normal closure of H in G is denoted by HC.

2. THE FINITE CASE

We begin by showing how, when G is finite, Theorem 1 follows from Theorems 2
and 3. Thus let A be an abelian quasinormal subgroup of a finite group G and let 7 be
a positive integer, odd or divisible by 4. Let p be a prime and let A, be the p-compo-
nent of A. Then A, is quasinormal in G, by [8, Lemma 5.1.10]. Therefore we may as-
sume that A is a p-group. Also we may assume that # is a p-power and indeed, by in-
duction, either equal to p, if p is odd, or equal to 4 or 8, if p = 2. Clearly it suffices to
show that A” X is a subgroup, for all cyclic subgroups X of G, and we can restrict our-
selves to the case where X is a g-group, for some prime g. However, A is subnormal in
AX, by [6], and so if g # p, then A << AX. Thus A” << AX in this case. Therefore we
may suppose that ¢ =p and then Theorems 2 and 3 give the result.

In order to prove Theorems 2 and 3, we need two lemmas. The first is well known
and the second is both intuitive and easily proved.

Lemma 2.1 [7,5.3.5]. Let x and y be elements of a nilpotent group of class at most 2

and let m be an integer. Then (xy)” =x"y"[y, x](z).

LemMmA 2.2. Let A be a quasinormal subgroup of a group G and suppose that
G = AX, where X ={(x) is a cyclic subgroup. Then A= AA".
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Proor. We may assume that A is not normal in G and Ac =1. So AN X =1, since
(AN X)°=(ANX)"<A. Then by [10, Lemma 2.1], X is finite. Thus G is finite and
we may argue by induction on |G|, assuming the usual induction hypothesis. By [5],
A lies in the hypercentre of G, so G is nilpotent. Let p be a prime dividing |AA4* N X|
and let ax; be an element of order p in Z(G), where ae A, x, € X. Then [4, X] =1
and

(a)° =(a)'< A.

Hence ¢ =1 and X, = (x;) has order p and so lies in AA* N X N Z(G). By induction
applied to G/X;, A°=AA*X,=AA*, as required. O

We are now in a position to be able to prove our main result for p-groups, when p
is an odd prime.

Proor or THeOREM 2. We have a finite p-group G, where p is an odd prime, with
an abelian quasinormal subgroup A and we must show that A? is quasinormal in G.
Thus suppose that the Theorem is false and let G be a counter-example of minimal or-
der. Then there is a cyclic subgroup X = (x) of G such that A? X is not a subgroup,
and so we have G = AX. Since A N X <Z(G), we must have AN X =1, otherwise
AP X/(ANX) is a subgroup, by choice of G, whence so is A?X. Similarly
Xg=(A?)g=1.

Let M be a maximal subgroup of G containing X and let B=ANM. Then
|G: M| =|A:B|=p. We distinguish two cases.

Case 1. Suppose that B is not elementary. Then 1 # B? < A?. Since B is quasinormal
in M, our choice of G implies that B? X is a subgroup. Thus

K= (B")°=(B")*<B’X.
Again by choice of G, we know that A? XK/K is a subgroup and so A” XK is a sub-
group. But
APXCA?XK = APKXCAP X,

and therefore A? X = A? XK is a subgroup, a contradiction.

Case 2. Suppose that B is elementary. Clearly A is not elementary, so
A=Cp2XC, X ... XC,
and B= Q(A). By Lemma 2.2, A= AA*= A(A° N X). Thus with L=A N A*, we
have [A%: A] = [A*: L] and this lattice is a chain. Therefore
|AC: Al =p or p?
and we consider these cases separately (recall that A is not normal in G).

Suppose that |A“: A|=p. Here A® is the product of two normal abelian
subgroups, therefore A has class at most 2. Also (A¢)” = (AX,)?, where X; = Q(X).



72 S.E. STONEHEWER - G. ZACHER

Thus by Lemma 2.1,
0)
(AP =AP[X,, A1" =A?,
since [X;, A] < B. Therefore A? <{ G, contradicting our choice of G.

Finally, suppose that |A“: A| = p?. Since A/L = C,., it follows that A = (a) X L,
where (a)=C,. and L<B. Also L=ANA*<Z(A®)=Z (say) <A, since
[A, X;]#1. Thus Z<Ac<ANA*<Zand so L=Z<1G. Now |B/L| =p and B
normalises X modulo L. Therefore [B, X,] <L, where X, = Q,(X). Let

H=A°NM=BX,.
Thus H<1 G and H' = [B, X,] <L < Z(H). Then H has class at most 2, and so by
Lemma 2.1, H? = X§ = X, < G, again contradicting our choice of G.
This completes the proof of Theorem 2. O

Next we move on to consider the 2-group situation.

Proor oF THEOREM 3(7). Again we suppose that the Theorem is false and let G be
a 2-group which is a counter-example of minimal order. As in Theorem 2, G = AX,
where A is an abelian quasinormal subgroup of G, X = (x) is a cyclic subgroup, and
A*X is not a subgroup. Also as before

ANX=1=X;=(A%)¢.
By Lemma 2.2, A®=AA* Let L=ANA* and Z=Z(A®). Then L<Z < G. Also
Z < A, otherwise Q(X) commutes with A and lies in Z(G). Therefore LS Z<Ac<L
and
L=Z= AG < G,

as in Case 2 of Theorem 2. Thus L has exponent at most 4 and A = ()L, for some ele-
ment ¢ in A. Clearly |a| =8.

Suppose that |a| = 16. Then ()L is quasinormal in the subgroup (a*)LX, so by
choice of G, (a®)X is a subgroup. Therefore

(A = (a®Y < (a®)X.
Again by choice of G (as in Case 1 of Theorem 2), we see that A*X is a subgroup,
which is not the case. Therefore
|a| =8 and |AG: A|=2,4 or 8.

We claim that
(1) G has a unique minimal normal subgroup.
For, suppose that N; and N, are distinct minimal normal subgroups of G. Since X, =
= 1, they both lie in A. Also by choice of G, A* N, X and A*N, X are subgroups and so
we must have

AN X = AN, X = (A%, X).

Then intersecting with A, we obtain A* N, = A*N,, contradicting (A*); = 1. There-
fore (1) is true.
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Thus let N be the unique minimal normal subgroup of G. Note that A* = (a*), so
again by choice of G, (a*)NX is a subgroup. Also modulo N, (4*) is quasinormal in
this subgroup. Therefore for some integer 7,

[x,a*]1=x2?"" modN,
where |x| =2". Thus [x?, a*] =[x, 4*1*=1 and so a*eZ=L. Since A= (a)L, it
follows that |[A¢: A| =2 or 4. Suppose that |A“: A| =2,s0 A<TAC, |[A:L| =2
and A has class 2. Then putting X; = Q(X) and using Lemma 2.1, we have
(AG)4 = (AX1)4 = <d4>[<d>L) }<1:|2 = <d4>)
since [a, X,1*=[a?, X,1 <[L, X;1=1. Thus (¢*) = A* < G and we have a contra-
diction. Therefore we must have
|AC: Al =4.

We see now that A /L is the product of two cyclic quasinormal subgroups of or-
der 4. Then it is easy to deduce that A /L is abelian and so again A has class 2. Mo-
dulo L, G is the product of cyclic subgroups {a) of order 4 and X of order 2”. Thus by
[3, Satz 2], G* = X* mod L and hence LX* <1 G. Let K = LX*. Then A? K/K has order
2 and is quasinormal in A?XK/K and |XK/K| =4. Thus A?XK/K is abelian and so
A?K =H (say) is normal in G. Similarly AH/H has order 2 and is quasinormal in
G/H = AX/H and | XH/H| = 4. Thus G/H is abelian and so AK <1 G. To complete the

proof, we distinguish two cases.

Case 1. Suppose that G/K is not abelian. Thus in the quotient G/K, x must invert

the element «, ie. a*=a "0 x*, where ( €L and ; is an integer. Since [L, X] =
=[L, G] < G, it follows that

¥ = (@ W0xY)y =x Y0 1gl*x¥ = 2*" mod [L, X].

Hence [a, x?] = v (say) lies in [L, X]. We have » =3 and by (1), 2(L) is an indecom-
posable X-module. Therefore it has rank at most 2”2, since x2'  centralises L. How-
ever, modulo Q(L) (=Q(A)), A is the direct product of {a) (of order 4) and L, and so

rank (L/Q(L)) < rank (A/Q(A)) < rank (4) <22,

Therefore L/Q2(L) has rank at most 2”2 — 1. Now viewing L/Q(L) as additive X-
module, we have

[a,x*] =v="0,(x—1)mod Q(L),

for some (,eL. Thus [a,x? 1= 0, (x— 1) ""'=0 mod Q(L). Therefore
[a, x2""] has order at most 2 and then, by Lemma 2.1,

(A = (AQ,(X))* = (aM{a), 2,(X) P = (a*) < G,

a contradiction.

Case 2. Suppose that G/K is abelian. Here we must have 7 = 4, otherwise if | X| =
=8,thenA°=A[A, X] <AQ(X) <A . Thus[a, x] =0, X" where {,eLandkis
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an integer. Therefore

[a, x21 = 03[0, x]1 " "= [0,, x]x®" " mod Q(L).
Then [a, x*1=1[(,, x, x*] mod Q(L), ie. again viewing L/Q(L) as X-module,
[a, x*1=0,(x— 1) and hence [a, x2 = 0,(x— 1) 1= 0, as in Case 1. Thus
we obtain the same contradiction as before and the proof of Theorem 3(7) is
complete. DO

To prove the second part of Theorem 3, we can now use the first part and a some-
what shorter argument suffices.

Proor oF THEOREM 3(77). We have a finite 2-group G with an abelian quasinormal
subgroup A and we have to show that A® is quasinormal in G. As before, we suppose
that this is not the case and let G be a counter-example of minimal order. So G = AX,
where X = (x) is cyclic, A®X is not a subgroup and

ANX=1=X;=(A%.
But A*X is a subgroup, by part (2). Also A® = AA*, by Lemma 2.2; and exactly as in
part (), we must have
L=ANA*=7=7(A°) =A;<G.
Then L has exponent at most 8 and A = (a)L, for some element « in A. By analogy
with part (7), we have |a| =16. Thus
2<|AC Al s 16.

IfL*=1,then A*=(a") and (¢*)X is a subgroup, by (7). Therefore A*X = (a®)X

is also a subgroup, contradicting our assumption. Thus

L*=1
and L has exponent exactly 8. Let N be a minimal normal subgroup of G contained in
L* and consider A* X modulo L*. This quotient is the product of (a*) (of order 2 or 4)
and X. Modulo N, A® is quasinormal in G and so [4®, x] € NXZ”A, where |X| =2".

Therefore [a®, x?] =1 and hence a®e Z=L. Thus |A: L| =|A®: A| <8. It follows
that

[a®, x]eNX? 'NnZ=Ns<L*
Therefore A® = (4®) is central in G modulo L* and so [2*, x] lies in A*L*X?" " (re-

calling that A* is quasinormal in G). Thus

: n—1
[d4, X] 248%)4962

>

27/71

for some integer 7 and element { € L (observe that the factor x*  is required here,

otherwise [a%, x] = 1). Then
) (a8, x] = (ﬂ&'(mxz”*l)a4aszf4x2”*1 = [a*, xz””]’

since 2% and € both commute with x2 . Also la?, x%] = [a*, x, x] = [a¥, x]1[0*, x],
and so [a*, x%1 =[0%, x][0%, ] =04 (x— 1), viewing L* as additive X-module.
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Continuing, we see that

(3) [414,962"71]=€4(x—1)2”7171=0.
For, if |A9: A| =2, then a’€L, ie. [a?, x? '1=1 and (3) holds. On the other
hand, if |AG: A| =4, then L*is an X/X? “-module, and so £ (x — 1)*" ~ = 0. There-
fore 04 (x — 1)2”71_1 =0, and again (3) holds. Finally we see from (2) that (3) implies
(28, x] =1, a contradiction.

This completes the proof of Theorem 3(zz). O

3. ExAMPLES

We begin by showing why 7 in Theorem 1 cannot be twice an odd integer and why
p in Theorem 2 has to be odd.

ExampLE 3.1. There is a finite 2-group G with an abelian quasinormal subgroup A
such that A? is not quasinormal in G.

To see this, let B be an elementary abelian 2-group of rank 4 with basis
{a1, a5, a3, a;}. Let X = (x) be a cyclic group of order 8 and form a split extension of
B by X as follows:

4) la;, x] =a,,1, i=1,2,3; a4, x] =1.

Thus B is an indecomposable X/X*module of dimension 4 and we put M = B X X.
We claim that M admits an automorphism « defined by

at=a;, i=1,2,3,4; x*=ax .
For, (a,x°)® = (a,x)® = (in additive notation) @, (x — 1)’ = 0. Also the relations of B
and (4) are all preserved by a. Since a is clearly a surjective map, it follows that « is in-
deed an automorphism of M.
Now x% = (a,x°)=a,(a,x°) = a,(a; x)
action of a? on M coincides with conjugation by a;. Therefore by [9, Theorem

9.7.1(i)], there is an extension G of M by a group of order 2, defined by G = M{(a),
2

5 4.4

x*=x(a;x)'x* =a,x=x. Thus the

where 4* = 4; and conjugation by @ on M agrees with a.

Let A =B(a) = (a;) X (ay) X {(a) X {a4) = C, x C; x C; X C;. We claim that A is
quasinormal in G. For, B <1 G, and modulo B, all subgroups of G are quasinormal,
since G/B (= Cg X C,) has a modular subgroup lattice. Therefore A is quasinormal in
G. But A%*={(a;) is not quasinormal in G, because (a3, X)= ({a3) X
X {ay)) X X. DO

Our next example shows that the self-duality of the subgroup lattice of a finite
abelian group does not lead to a result dual to Theorem 2.

ExampLE 3.2. For each odd prime p, there is a finite p-group G with an abelian
quasinormal subgroup A such that Q(A) is not quasinormal in G.
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Thus, consider the abelian group H of order p* defined by
H=(a,b,y|la?=5""=1, y? =0’ [a,b] = la,y] =[5, y] =1).
It is easy to see that H has an automorphism 6 of order p defined by
0:a—>aby™', b—b, yr—y.

Therefore by [9, Theorem 9.7.1(z7)], there is an extension G of H by a group of order p
defined by

G={a, b, x|ap=bp2= 1,[a,bl=1, x*" =b", a*=abx ", b*=b).
This group G has order p°. Let A = (a, b). We claim that

) A is quasinormal in G.

For, certainly b € Z(G). Therefore to prove (5), we may factor G by (5). But the quo-
tient is isomorphic to C, X C,2 and so has all its subgroups quasinormal. Thus (5) is
true.

However, 2(A) = {a) X {b?) and, with X = (x), 2(A) X = {(a) X is not a subgroup,
otherwise 4 would normalise X, which is not the case. Therefore Q(A) is #ot quasinor-
mal in G and our example is established. O

The above construction can easily be modified to include the case p = 2. But by
Example 3.1, A? is not always quasinormal and so, in the present context, the modi-
fied example has no interest. More relevant is the question of whether Q,(A) is always
quasinormal in a finite 2-group having A as an abelian quasinormal subgroup. But
again this is answered negatively by the following modification of Example 3.2.

ExampLE 3.3. There is a group G of order 2" with an abelian quasinormal subgroup
A such that Q,(A) is not quasinormal in G.

To see this, let
H={a,b,yla*=5b%=1, y* =07, [a, b] = la, y] = [b, y]1 = 1).
Then H is abelian of order 2° and has an automorphism of order 2 defined by
ar>aby %, b—b, y—y.
By analogy with Example 3.2, we see that H can be extended by a group of order 2 to
give the group
G={(a,b,x|a’>=b%=1, x¥=07, a*=abx ", b*=b).
Let A= {a, b). Then we easily see that A is quasinormal in G. But Q,(A4) = {(a) X
X (b*) and Q,(A)X is not a subgroup. O

4. THE INFINITE CASE

Extending our result to include abelian quasinormal subgroups of infinite groups
is fairly straightforward. We already know that Theorem 1 is true for finite groups G.
Thus suppose that G is any group with an abelian quasinormal subgroup A and # is a
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positive integer, either odd or divisible by 4. In order to complete the proof of Theo-
rem 1, clearly we may assume that

G=AX,
where X = (x) is cyclic. We must show that A”X is a subgroup.

If X is infinite and A N X =1, then by [10, Lemma 2.1], X normalises A and so X
also normalises A”. Therefore we may assume that
|G : A| is finite.
Let H be any finitely generated subgroup of A and let K = (H, X). Then B=ANKis
quasinormal in K and has finite index in K. Thus B is finitely generated. Also if B” X is
a subgroup for all H, then it follows that A” X is also a subgroup. In other words, we
may assume that A is finitely generated. Thus |A : A”| is finite and so |G : A”| is fi-
nite. Let N = (A”)¢. So G/N is finite. Now by the finite version of Theorem 1, A” XN
is a subgroup. But A”XN =A"NX =A"X and this establishes the infinite case of
Theorem 1. O

Originally we conjectured that when A is a torsion-free abelian quasinormal sub-
group of a group G, then A” is also quasinormal in G, for a/l positive integers 7. At
one point we even had a fallacious proof of this statement. Also it is true when A has
very small rank, but it fails in general, as the following example (in which A has rank
5) shows.

ExampLE 4.1. There is a group G with a torsion-free abelian quasinormal subgroup
A such that A? is not quasinormal in G.

We begin with an abelian group K presented as follows:
K=A(ay,...,as, w|la;, a]] = la, w]l =1, all 7,7; a5 =w").

Thus K is the direct product of a free abelian group of rank 5 and a group of order 2.
Then K has an automorphism of order 2 defined by

aa;, i#E2; a>ayasw 2, wew.
Therefore by [9, Theorem 9.7.1(z7)], there is an extension H of K by a group of order

2, where H is generated by elements 4, ..., 45, y subject to the relations

la, a1 =1, all 4,7, [a;, ] =1, i#2; [ay, 9] =asy ", ai=9°.

This group H is nilpotent of class 2, with derived subgroup (a5y ~*) of order 2. We
wish to extend H by a cyclic group of order 4 generated by x, with x* =y. This re-
quires first an extension by a group of order 2, and we considered the most general of
these, consistent with obvious restrictions, using the theory of integral representations
of cyclic groups of prime order, described for example in [1, §74]. Then we made a
second extension by a group of order 2, satisfying the constraints necessary to produce
our example. We obtained many solutions, of which the following is one of the

simplest.
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We claim that H has an automorphism ¢ defined as follows:

. -1 2 -1 -1
¢ :a—>ajas o, a>ayasagy, as>aias ds o,

-1 -1
agr>ay dy o, dst>ds, Yy
It is easy to see that ¢ is surjective and preserves all the relations of H. Therefore ¢ is
an automorphism, as claimed.
Next we claim that
(6) ¢* coincides with conjugation in H by y.

For, one checks easily the following:

2. -1 -1,2 -1
G ay—=ay as, a;ajdas Yo, az—as o,

agr>asay, dst>ds, yr>y.
Then we find
ot ai—>a, ay>aas 'yt e as,
agr>ay, dst>ds, yr>y.
Therefore (6) is true and by the now familiar result in [9], we may extend H by a cyclic
group of order 4 generated by x, to get
G = H{x),

where x* =19 and x acts on H according to the automorphism ¢.

Let A= {(a;|i=1,...,5). Then A is a torsion-free abelian group of rank 5. Also
H=AY, where Y= (y) < {x) =X, say. So G=AX. We claim that
(7) A is a quasinormal subgroup of G.
For, {ay, a3, as, as)° = {ay, a3, a4, a5 < A. Therefore we may assume that ¢, = a; =
=g4,=0as=1 and then G becomes (4,)X, where (4,) = A =C, and X = C;,. Now
[4,, x] =y =x%and [45, x] = 1. So we may assume that 45 = 1 and then G becomes a
modular group of order 28 (see Iwasawa’s Structure Theorem, for example in [8, The-
orem 2.3.1]). Thus (7) holds.

However,
(8) A*={af, a3, af, ai, a?) is not quasinormal in G.
To see this, we observe that A?X is not a subgroup. For,

A?X ={af, af, af, ai)X

and (af, a3, af, af)N X =1. But

(a3) = asasaiasy

and a5 ¢ A? X. Therefore A?X # (A?, X), and so (8) follows. This verifies that our
example has the required properties. O

To conclude, we construct an example which answers another natural question
concerning infinite abelian quasinormal subgroups.
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ExampLE 4.2. There is a group G with an infinite abelian quasinormal subgroup
A such that the torsion subgroup of A is not quasinormal in G.

For, let p be an odd prime, (2) = C, and (x) = C,>. We form the split extension
H = (a) x (x) according to x* = x'*?. Then (a) is quasinormal in H. Now form G =
= H X (b), where (b) = C,..So A = (a, b) = (a) X (b) = C, X C,, and A is quasinormal
in G. But the torsion subgroup of A is {a), which is not quasinormal in G. For, the ele-
ment xb has infinite order and therefore normalises any quasinormal subgroup from
which it is disjoint, by [10, Lemma 2.1]. However, xb does 7ot normalises (a).
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