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Teoria dei gruppi. — Abelian quasinormal subgroups of groups. Nota di STEWART

E. STONEHEWER e GIOVANNI ZACHER, presentata (*) dal Socio G. Zacher.

ABSTRACT. — Let G be any group and let A be an abelian quasinormal subgroup of G. If n is any po-
sitive integer, either odd or divisible by 4, then we prove that the subgroup A n is also quasinormal in G.

KEY WORDS: Quasinormal subgroup; Abelian groups.

RIASSUNTO. — Sottogruppi abeliani quasi-normali dei gruppi. Sia G un gruppo e sia A un sottogruppo
abeliano e quasi-normale in G. Se n è un qualunque intero positivo dispari o divisibile per 4, allora si di-
mostra che il sottogruppo A n è pure quasi-normale in G.

1. INTRODUCTION AND STATEMENT OF RESULTS

Among the most important concepts in group theory, arguably the most impor-
tant, are those of composition and chief series, arising from normal subgroups. If nor-
mal is replaced by quasinormal, then, by analogy, little seems to be known. A sub-
group A of a group G is said to be quasinormal (or permutable) in G if AX4XA for
all subgroups X of G. Obviously this is equivalent to the product AX being a sub-
group. Of course normal subgroups are necessarily quasinormal, while the converse is
not always true. But what is the structure of minimal quasinormal subgroups and what
properties do maximal (i.e. unrefinable) chains of quasinormal subgroups possess?
The answers to these and similar questions remain pitifully inadequate. In the present
work, however, we show that when A is an abelian quasinormal subgroup of G , then
certain canonical subgroups of A are also quasinormal in G. We denote the core of a
subgroup A of a group G by AG. When A is quasinormal and G is finite, the quotient
A/AG is always nilpotent [4], though there is no restriction on the class [2, 11]. Much
of the published work on quasinormal subgroups has been about A/AG , i.e. the core-
free case. Here, however, our arguments apply equally to the core-free and the non-
core-free situations. Our main result is the following.

THEOREM 1. Let A be an abelian quasinormal subgroup of a group G and let n be a
positive integer, either odd or divisible by 4. Then A n is also quasinormal in G.

We shall see in Section 3 that the restriction on n here is necessary, by constructing
an example in which A 2 is not quasinormal. Theorem 1 is proved first for the case
when G is a finite group. This in turn reduces easily to the case where G is a p-group,
for some prime p. Then by straightforward induction arguments, we need to consider
only the cases n4p , when p is odd, and n44 and 8, when p42. Thus we prove the
following

(*) Nella seduta del 14 maggio 2004.
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THEOREM 2. Let A be an abelian quasinormal subgroup of a finite p-group G , where
p is an odd prime. Then A p is also quasinormal in G.

THEOREM 3. Let A be an abelian quasinormal subgroup of a finite 2-group G. Then
(i) A 4 and (ii) A 8 are both quasinormal in G.

We recall that every finite abelian group is self-dual, i.e. its subgroup lattice admits
an inclusion-reversing bijection. Thus suppose that A is an abelian quasinormal sub-
group of a finite p-group G , where p is an odd prime. Then in the light of Theorem 2,
it is natural to ask if the subgroup V(A), generated by the elements of order p in A , is
also quasinormal in G. However, this is not the case and we construct an example to
show this in Section 3. To complete the picture, we give a further example of a finite
2-group G with an abelian quasinormal subgroup A such that V 2 (A) is not quasinor-
mal in G (here V 2 (A) /V(A) 4V(A/V(A) )).

Section 4 deals with infinite groups G and deduces the full statement of Theorem
1 from the finite case. Also we include here two further examples which answer obvi-
ous questions.

Other notation is as follows. The centre of a group G is denoted by Z(G) and a
representative of the class of cyclic groups of order n by Cn . If H is a subgroup of a
group G , then the lattice of subgroups between G and H is denoted by [G : H]. Also
the normal closure of H in G is denoted by H G.

2. THE FINITE CASE

We begin by showing how, when G is finite, Theorem 1 follows from Theorems 2
and 3. Thus let A be an abelian quasinormal subgroup of a finite group G and let n be
a positive integer, odd or divisible by 4. Let p be a prime and let Ap be the p-compo-
nent of A. Then Ap is quasinormal in G , by [8, Lemma 5.1.10]. Therefore we may as-
sume that A is a p-group. Also we may assume that n is a p-power and indeed, by in-
duction, either equal to p , if p is odd, or equal to 4 or 8, if p42. Clearly it suffices to
show that A n X is a subgroup, for all cyclic subgroups X of G , and we can restrict our-
selves to the case where X is a q-group, for some prime q. However, A is subnormal in
AX , by [6], and so if qcp , then A & AX. Thus A n & AX in this case. Therefore we
may suppose that q4p and then Theorems 2 and 3 give the result.

In order to prove Theorems 2 and 3, we need two lemmas. The first is well known
and the second is both intuitive and easily proved.

LEMMA 2.1 [7, 5.3.5]. Let x and y be elements of a nilpotent group of class at most 2

and let m be an integer. Then (xy)m4x m y m [y , x]
(m

2 )
.

LEMMA 2.2. Let A be a quasinormal subgroup of a group G and suppose that
G4AX , where X4 axb is a cyclic subgroup. Then A G4AA x.
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PROOF. We may assume that A is not normal in G and AG41. So AOX41, since
(AOX)G4 (AOX)AGA. Then by [10, Lemma 2.1], X is finite. Thus G is finite and
we may argue by induction on NGN , assuming the usual induction hypothesis. By [5],
A lies in the hypercentre of G , so G is nilpotent. Let p be a prime dividing NAA xOXN
and let ax1 be an element of order p in Z(G), where a�A , x1�X. Then [a , X] 41
and

aabG4 aabAGA .

Hence a41 and X14 ax1b has order p and so lies in AA xOXOZ(G). By induction
applied to G/X1 , A G4AA x X14AA x , as required. o

We are now in a position to be able to prove our main result for p-groups, when p
is an odd prime.

PROOF OF THEOREM 2. We have a finite p-group G , where p is an odd prime, with
an abelian quasinormal subgroup A and we must show that A p is quasinormal in G.
Thus suppose that the Theorem is false and let G be a counter-example of minimal or-
der. Then there is a cyclic subgroup X4 axb of G such that A p X is not a subgroup,
and so we have G4AX. Since AOXGZ(G), we must have AOX41, otherwise
A p X/(AOX) is a subgroup, by choice of G , whence so is A p X. Similarly

XG4 (A p )G41.

Let M be a maximal subgroup of G containing X and let B4AOM. Then
NG : MN4NA : BN4p. We distinguish two cases.

Case 1. Suppose that B is not elementary. Then 1 cB pGA p. Since B is quasinormal
in M , our choice of G implies that B p X is a subgroup. Thus

K4 (B p )G4 (B p )XGB p X .

Again by choice of G , we know that A p XK/K is a subgroup and so A p XK is a sub-
group. But

A p X%A p XK4A p KX%A p X ,

and therefore A p X4A p XK is a subgroup, a contradiction.

Case 2. Suppose that B is elementary. Clearly A is not elementary, so

A`Cp 2 3Cp3R3Cp

and B4V(A). By Lemma 2.2, A G4AA x4A(A GOX). Thus with L4AOA x , we
have [A G : A] ` [A x : L] and this lattice is a chain. Therefore

NA G : AN4p or p 2

and we consider these cases separately (recall that A is not normal in G).
Suppose that NA G : AN4p. Here A G is the product of two normal abelian

subgroups, therefore A G has class at most 2. Also (A G )p4 (AX1 )p , where X14V(X).
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Thus by Lemma 2.1,

(A G )p4A p [X1 , A]
(p

2)
4A p ,

since [X1 , A] GB. Therefore A p & G , contradicting our choice of G.
Finally, suppose that NA G : AN4p 2. Since A/L`Cp 2 , it follows that A4 aab3L ,

where aab `Cp 2 and LGB. Also L4AOA xGZ(A G ) 4Z (say) GA , since
[A , X1 ] c1. Thus ZGAGGAOA xGZ and so L4Z & G. Now NB/LN4p and B
normalises X modulo L. Therefore [B , X2 ] GL , where X24V 2 (X). Let

H4A GOM4BX2 .

Thus H & G and H 84 [B , X2 ] GLGZ(H). Then H has class at most 2, and so by
Lemma 2.1, H p4X2

p4X1 & G , again contradicting our choice of G.
This completes the proof of Theorem 2. o

Next we move on to consider the 2-group situation.

PROOF OF THEOREM 3(i). Again we suppose that the Theorem is false and let G be
a 2-group which is a counter-example of minimal order. As in Theorem 2, G4AX ,
where A is an abelian quasinormal subgroup of G , X4 axb is a cyclic subgroup, and
A 4 X is not a subgroup. Also as before

AOX41 4XG4 (A 4 )G .

By Lemma 2.2, A G4AA x. Let L4AOA x and Z4Z(A G ). Then LGZ & G. Also
ZGA , otherwise V(X) commutes with A and lies in Z(G). Therefore LGZGAGGL
and

L4Z4AG & G ,

as in Case 2 of Theorem 2. Thus L has exponent at most 4 and A4 aabL , for some ele-
ment a in A. Clearly NaNF8.

Suppose that NaNF16. Then aa 2 bL is quasinormal in the subgroup aa 2 bLX , so by
choice of G , aa 8 bX is a subgroup. Therefore

aA 8 bG4 aa 8 bXG aa 8 bX .

Again by choice of G (as in Case 1 of Theorem 2), we see that A 4 X is a subgroup,
which is not the case. Therefore

NaN48 and NA G : AN42, 4 or 8 .

We claim that

G has a unique minimal normal subgroup .(1)

For, suppose that N1 and N2 are distinct minimal normal subgroups of G. Since XG4
41, they both lie in A. Also by choice of G , A 4 N1 X and A 4 N2 X are subgroups and so
we must have

A 4 N1 X4A 4 N2 X4 aA 4 , Xb.

Then intersecting with A , we obtain A 4 N14A 4 N2 , contradicting (A 4 )G41. There-
fore (1) is true.
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Thus let N be the unique minimal normal subgroup of G. Note that A 44 aa 4 b, so
again by choice of G , aa 4 bNX is a subgroup. Also modulo N , aa 4 b is quasinormal in
this subgroup. Therefore for some integer i ,

[x , a 4 ] fx i2n21
mod N ,

where NxN42n. Thus [x 2 , a 4 ] 4 [x , a 4 ]241 and so a 4�Z4L. Since A4 aabL , it
follows that NA G : AN42 or 4. Suppose that NA G : AN42, so A & A G , NA : LN42
and A G has class 2. Then putting X14V(X) and using Lemma 2.1, we have

(A G )44 (AX1 )44 aa 4 b[aabL , X1 ]24 aa 4 b,

since [a , X1 ]24 [a 2 , X1 ] G [L , X1 ] 41. Thus aa 4 b 4A 4 & G and we have a contra-
diction. Therefore we must have

NA G : AN44.

We see now that A G /L is the product of two cyclic quasinormal subgroups of or-
der 4. Then it is easy to deduce that A G /L is abelian and so again A G has class 2. Mo-
dulo L , G is the product of cyclic subgroups aab of order 4 and X of order 2n. Thus by
[3, Satz 2], G 4

fX 4 mod L and hence LX 4 & G. Let K4LX 4. Then A 2 K/K has order
2 and is quasinormal in A 2 XK/K and NXK/KN44. Thus A 2 XK/K is abelian and so
A 2 K4H (say) is normal in G. Similarly AH/H has order 2 and is quasinormal in
G/H4AX/H and NXH/HN44. Thus G/H is abelian and so AK & G. To complete the
proof, we distinguish two cases.

Case 1. Suppose that G/K is not abelian. Thus in the quotient G/K , x must invert
the element a , i.e. a x4a 21 l x 4 j , where l �L and j is an integer. Since [L , X] 4
4 [L , G] & G , it follows that

a x 2
4 (a 21 l x 4 j )x4x 24 j l 21 a l x x 4 j

fa x 4 j
mod [L , X].

Hence [a , x 2 ] 4v (say) lies in [L , X]. We have nF3 and by (1), V(L) is an indecom-
posable X-module. Therefore it has rank at most 2n22 , since x 2n22

centralises L. How-
ever, modulo V(L) (4V(A)), A is the direct product of aab (of order 4) and L , and so

rank (L/V(L) ) E rank (A/V(A) ) G rank (A) G2n22 .

Therefore L/V(L) has rank at most 2n2221. Now viewing L/V(L) as additive X-
module, we have

[a , x 2 ] 4vf l 1 (x21) mod V(L),

for some l 1�L. Thus [a , x 2n22
] f l 1 (x21)2n2221

f0 mod V(L). Therefore
[a , x 2n22

] has order at most 2 and then, by Lemma 2.1,

(A G )44 (AV 2 (X) )44 aa 4 b[aab, V 2 (X) ]24 aa 4 b & G ,

a contradiction.

Case 2. Suppose that G/K is abelian. Here we must have nF4, otherwise if NXN4
48, then A G4A[A , X] GAV(X) EA G. Thus [a , x] 4 l 2 x k2n22

, where l 2�L and k is
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an integer. Therefore

[a , x 2 ] 4 l 2
2 [l 2 , x] x k2n21

f [l 2 , x]x k2n21
mod V(L).

Then [a , x 4 ] f [l 2 , x , x 2 ] mod V(L), i.e. again viewing L/V(L) as X-module,
[a , x 4 ] f l 2 (x21)3 and hence [a , x 2n22

] f l 2 (x21)2n2221
f0, as in Case 1. Thus

we obtain the same contradiction as before and the proof of Theorem 3(i) is
complete. o

To prove the second part of Theorem 3, we can now use the first part and a some-
what shorter argument suffices.

PROOF OF THEOREM 3(ii). We have a finite 2-group G with an abelian quasinormal
subgroup A and we have to show that A 8 is quasinormal in G. As before, we suppose
that this is not the case and let G be a counter-example of minimal order. So G4AX ,
where X4 axb is cyclic, A 8 X is not a subgroup and

AOX41 4XG4 (A 8 )G .

But A 4 X is a subgroup, by part (i). Also A G4AA x , by Lemma 2.2; and exactly as in
part (i), we must have

L4AOA x4Z4Z(A G ) 4AG & G .

Then L has exponent at most 8 and A4 aabL , for some element a in A. By analogy
with part (i), we have NaN416. Thus

2 GNA G : ANG16.

If L 441, then A 44 aa 4 b and aa 4 bX is a subgroup, by (i). Therefore A 8 X4 aa 8 bX
is also a subgroup, contradicting our assumption. Thus

L 4
c1

and L has exponent exactly 8. Let N be a minimal normal subgroup of G contained in
L 4 and consider A 4 X modulo L 4. This quotient is the product of aa 4 b (of order 2 or 4)
and X. Modulo N , A 8 is quasinormal in G and so [a 8 , x] �NX 2n21

, where NXN42n.
Therefore [a 8 , x 2 ] 41 and hence a 8�Z4L. Thus NA : LN4NA G : ANG8. It follows
that

[a 8 , x] �NX 2n21
OZ4NGL 4 .

Therefore A 84 aa 8 b is central in G modulo L 4 and so [a 4 , x] lies in A 8 L 4 X 2n21
(re-

calling that A 4 is quasinormal in G). Thus

[a 4 , x] 4a 8 i l 4 x 2n21
,

for some integer i and element l �L (observe that the factor x 2n21
is required here,

otherwise [a 8 , x] 41). Then

[a 8 , x] 4 (a 8 i l 4 x 2n21
)a 4

a 8 i l 4 x 2n21
4 [a 4 , x 2n21

],(2)

since a 8 and l both commute with x 2n21
. Also [a 4 , x 2 ] 4 [a 4 , x , x] 4 [a 8 i , x][l 4 , x],

and so [a 4 , x 4 ] 4 [l 4 , x][l 4 , x]x 2
4 l 4 (x21)3 , viewing L 4 as additive X-module.
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Continuing, we see that

[a 4 , x 2n21
] 4 l 4 (x21)2n212140.(3)

For, if NA G : AN42, then a 2�L , i.e. [a 2 , x 2n21
] 41 and (3) holds. On the other

hand, if NA G : ANF4, then L 4 is an X/X 2n22
-module, and so l 4 (x21)2n22

40. There-
fore l 4 (x21)2n212140, and again (3) holds. Finally we see from (2) that (3) implies
[a 8 , x] 41, a contradiction.

This completes the proof of Theorem 3(ii). o

3. EXAMPLES

We begin by showing why n in Theorem 1 cannot be twice an odd integer and why
p in Theorem 2 has to be odd.

EXAMPLE 3.1. There is a finite 2-group G with an abelian quasinormal subgroup A
such that A 2 is not quasinormal in G.

To see this, let B be an elementary abelian 2-group of rank 4 with basis
]a1 , a2 , a3 , a4(. Let X4 axb be a cyclic group of order 8 and form a split extension of
B by X as follows:

[ai , x] 4ai11 , i41, 2 , 3 ; [a4 , x] 41.(4)

Thus B is an indecomposable X/X 4-module of dimension 4 and we put M4B J X.
We claim that M admits an automorphism a defined by

ai
a4ai , i41, 2 , 3 , 4 ; x a4a1 x 5 .

For, (a1 x 5 )84 (a1 x)84 (in additive notation) a1 (x21)740. Also the relations of B
and (4) are all preserved by a . Since a is clearly a surjective map, it follows that a is in-
deed an automorphism of M.

Now x a2
4 (a1 x 5 )a4a1 (a1 x 5 )54a1 (a1 x)5 x 44x(a1 x)4 x 44a4 x4x a3 . Thus the

action of a 2 on M coincides with conjugation by a3 . Therefore by [9, Theorem
9.7.1(ii)], there is an extension G of M by a group of order 2, defined by G4Maab,
where a 24a3 and conjugation by a on M agrees with a.

Let A4Baab 4 aa1 b3 aa2 b3 aab3 aa4 b `C23C23C43C2 . We claim that A is
quasinormal in G. For, B & G , and modulo B , all subgroups of G are quasinormal,
since G/B (`C8 J C2) has a modular subgroup lattice. Therefore A is quasinormal in
G. But A 24 aa3 b is not quasinormal in G, because aa3 , Xb 4 (aa3 b3
3 aa4 b) J X . o

Our next example shows that the self-duality of the subgroup lattice of a finite
abelian group does not lead to a result dual to Theorem 2.

EXAMPLE 3.2. For each odd prime p, there is a finite p-group G with an abelian
quasinormal subgroup A such that V(A) is not quasinormal in G.
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Thus, consider the abelian group H of order p 4 defined by

H4 aa , b , yNa p4b p 2
41, y p4b p , [a , b] 4 [a , y] 4 [b , y] 41 b.

It is easy to see that H has an automorphism u of order p defined by

u : a O aby 21 , b O b , y O y .

Therefore by [9, Theorem 9.7.1(ii)], there is an extension G of H by a group of order p
defined by

G4 aa , b , xNa p4b p 2
41, [a , b] 41, x p 2

4b p , a x4abx 2p , b x4bb.

This group G has order p 5. Let A4 aa , bb. We claim that

A is quasinormal in G .(5)

For, certainly b�Z(G). Therefore to prove (5), we may factor G by abb. But the quo-
tient is isomorphic to Cp l3Cp 2 and so has all its subgroups quasinormal. Thus (5) is
true.

However, V(A) 4 aab3 ab p b and, with X4 axb, V(A)X4 aabX is not a subgroup,
otherwise a would normalise X , which is not the case. Therefore V(A) is not quasinor-
mal in G and our example is established. o

The above construction can easily be modified to include the case p42. But by
Example 3.1, A 2 is not always quasinormal and so, in the present context, the modi-
fied example has no interest. More relevant is the question of whether V 2 (A) is always
quasinormal in a finite 2-group having A as an abelian quasinormal subgroup. But
again this is answered negatively by the following modification of Example 3.2.

EXAMPLE 3.3. There is a group G of order 27 with an abelian quasinormal subgroup
A such that V 2 (A) is not quasinormal in G.

To see this, let

H4 aa , b , yNa 24b 841, y 44b 2 , [a , b] 4 [a , y] 4 [b , y] 41 b.

Then H is abelian of order 26 and has an automorphism of order 2 defined by

a O aby 22 , b O b , y O y .

By analogy with Example 3.2, we see that H can be extended by a group of order 2 to
give the group

G4 aa , b , xNa 24b 841, x 84b 2 , a x4abx 24 , b x4bb.

Let A4 aa , bb. Then we easily see that A is quasinormal in G. But V 2 (A) 4 aab3
3 ab 2 b and V 2 (A)X is not a subgroup. o

4. THE INFINITE CASE

Extending our result to include abelian quasinormal subgroups of infinite groups
is fairly straightforward. We already know that Theorem 1 is true for finite groups G.
Thus suppose that G is any group with an abelian quasinormal subgroup A and n is a
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positive integer, either odd or divisible by 4. In order to complete the proof of Theo-
rem 1, clearly we may assume that

G4AX ,

where X4 axb is cyclic. We must show that A n X is a subgroup.
If X is infinite and AOX41, then by [10, Lemma 2.1], X normalises A and so X

also normalises A n. Therefore we may assume that

NG : AN is finite .

Let H be any finitely generated subgroup of A and let K4 aH , Xb. Then B4AOK is
quasinormal in K and has finite index in K. Thus B is finitely generated. Also if B n X is
a subgroup for all H , then it follows that A n X is also a subgroup. In other words, we
may assume that A is finitely generated. Thus NA : A nN is finite and so NG : A nN is fi-
nite. Let N4 (A n )G. So G/N is finite. Now by the finite version of Theorem 1, A n XN
is a subgroup. But A n XN4A n NX4A n X and this establishes the infinite case of
Theorem 1. o

Originally we conjectured that when A is a torsion-free abelian quasinormal sub-
group of a group G , then A n is also quasinormal in G , for all positive integers n. At
one point we even had a fallacious proof of this statement. Also it is true when A has
very small rank, but it fails in general, as the following example (in which A has rank
5) shows.

EXAMPLE 4.1. There is a group G with a torsion-free abelian quasinormal subgroup
A such that A 2 is not quasinormal in G.

We begin with an abelian group K presented as follows:

K4 aa1 , R , a5 , wN[ai , aj ] 4 [ai , w] 41, all i , j ; a5
24w 4 b.

Thus K is the direct product of a free abelian group of rank 5 and a group of order 2.
Then K has an automorphism of order 2 defined by

ai O ai , ic2; a2 O a2 a5 w 22 , w O w .

Therefore by [9, Theorem 9.7.1(ii)], there is an extension H of K by a group of order
2, where H is generated by elements a1 , R , a5 , y subject to the relations

[ai , aj ] 41, all i , j , [ai , y] 41, ic2; [a2 , y] 4a5 y 24 , a5
24y 8 .

This group H is nilpotent of class 2, with derived subgroup aa5 y 24 b of order 2. We
wish to extend H by a cyclic group of order 4 generated by x , with x 44y. This re-
quires first an extension by a group of order 2, and we considered the most general of
these, consistent with obvious restrictions, using the theory of integral representations
of cyclic groups of prime order, described for example in [1, §74]. Then we made a
second extension by a group of order 2, satisfying the constraints necessary to produce
our example. We obtained many solutions, of which the following is one of the
simplest.
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We claim that H has an automorphism f defined as follows:

f : a1 O a1 a3
21 , a2 O a2 a3 a4 y , a3 O a1

2 a3
21 a5

21 ,

a4 O a1
21 a4

21 , a5 O a5 , y O y .

It is easy to see that f is surjective and preserves all the relations of H. Therefore f is
an automorphism, as claimed.

Next we claim that

f 4 coincides with conjugation in H by y .(6)

For, one checks easily the following:

f 2 : a1 O a1
21 a5 , a2 O a1 a2 a5

21 y 2 , a3 O a3
21 ,

a4 O a3 a4 , a5 O a5 , y O y .

Then we find

f 4 : a1 O a1 , a2 O a2 a5
21 y 4 , a3 O a3 ,

a4 O a4 , a5 O a5 , y O y .

Therefore (6) is true and by the now familiar result in [9], we may extend H by a cyclic
group of order 4 generated by x , to get

G4Haxb,

where x 44y and x acts on H according to the automorphism f.
Let A4 aai Ni41, R , 5 b. Then A is a torsion-free abelian group of rank 5. Also

H4AY , where Y4 ayb G axb 4X , say. So G4AX. We claim that

A is a quasinormal subgroup of G .(7)

For, aa1 , a3 , a4 , a5 bG4 aa1 , a3 , a4 , a5 bXGA . Therefore we may assume that a14a34
4a44a541 and then G becomes aa2 bX , where aa2 b 4A`CQ and X`C32. Now
[a2 , x] 4y4x 4 and [a2

8 , x] 41. So we may assume that a2
841 and then G becomes a

modular group of order 28 (see Iwasawa’s Structure Theorem, for example in [8, The-
orem 2.3.1]). Thus (7) holds.

However,

A 24 aa1
2 , a2

2 , a3
2 , a4

2 , a5
2 b is not quasinormal in G .(8)

To see this, we observe that A 2 X is not a subgroup. For,

A 2 X4 aa1
2 , a2

2 , a3
2 , a4

2 bX

and aa1
2 , a2

2 , a3
2 , a4

2 bOX41. But

aa2
2 bx4a2

2 a3
2 a4

2 a5 y 22

and a5�A 2 X. Therefore A 2 Xc aA 2 , Xb, and so (8) follows. This verifies that our
example has the required properties. o

To conclude, we construct an example which answers another natural question
concerning infinite abelian quasinormal subgroups.
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EXAMPLE 4.2. There is a group G with an infinite abelian quasinormal subgroup
A such that the torsion subgroup of A is not quasinormal in G.

For, let p be an odd prime, aab `Cp and axb `Cp 2. We form the split extension
H4 aab l3 axb according to x a4x 11p. Then aab is quasinormal in H. Now form G4
4H3 abb, where abb `CQ. So A4 aa , bb 4 aab3 abb `Cp3CQ and A is quasinormal
in G. But the torsion subgroup of A is aab, which is not quasinormal in G. For, the ele-
ment xb has infinite order and therefore normalises any quasinormal subgroup from
which it is disjoint, by [10, Lemma 2.1]. However, xb does not normalises aab.
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