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Magnetofluidodinamica. — A plane problem of incompressible magnetobydro-
dynamics with viscosity and resistivity depending on the temperature. Nota di GIovaN-
NI CiMATTI, presentata (*) dal Socio P. Villaggio.

AsstracT. — The plane flow of a fluid obeying the equations of magnetohydrodynamics is studied
under the assumption that both the viscosity and the resistivity depend on the temperature. Some results
of existence, non-existence, and uniqueness of solution are proved.

Key worps: Incompressible magnetohydrodynamics; Thermistor problem; Existence of sol-
utions.

Riassunto. — Un problema piano di magnetoidrodinamica incomprimibile con viscositd e resistivitd di-
pendenti dalla temperatura. Si studia il moto piano di un fluido retto dalle equazioni della magnetoidrodi-
namica supponendo che tanto la viscosita quanto la resistivita dipendano dalla temperatura. Si dimostra-
no alcuni risultati di esistenza, nonesistenza e unicita di soluzioni.

1. INTRODUCTION

The equations of magnetohydrodynamics, for a viscous, incompressible and resis-
tive fluid, read in the stationary case and in non-dimensional form:

(1.1) V-H=0, Vv=0,
(12) Vx (oVxH) + (HV) v— (V) H=0,
(13) (0V) = —=Vp + SH-V) H+V- (W),

where H is the magnetic field and » the velocity. The non-dimensional quantity v and
0, related to the viscosity and electric resistivity, are usually supposed constant. Now
in a real situation (e.g. liquid metals like sodium or mercury) they depend strongly on
the temperature «. In this paper we suppose v, g, and also the thermal conductivity k,
to be given continuous functions of the temperature:

(1.4) v=v(u), o0=0(u), K=krlu).

In addition we have the energy equation:

3
(1.5) —V-(kVu) =Q(VXH)2+V_ E (vl-)/e+vk,,-) Vi k-

i k=1

We treat the plane case of an indefinite cylinder of cross section £, an open and
bounded subset of R? with a regular boundary I" composed of two disjoint parts 'y,
I';. The velocity and the magnetic field are accordingly assumed to be of the
form

(1.6) H =h(x;, x,) 25, v=0v(x, %) 73,

(*) Nella seduta del 12 dicembre 2003.
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where 7; is the unit vector coinciding with the axis of the cylinder. Since in the present
situation VX H = —Vh X 73, it is easily verified that eqns. (1.1), (1.2), and (1.6) re-
duce to

(1.7) V-(o(u) Vh) =0,
(1.8) V-(v(u) Vo) =0,
(1.9) =V (&) V) = 0(u) |Vh|? + v(u) | Vo |?.

The first term in the RH.S. of (1.9) corresponds to the heating in the fluid due to the
Joule effect and the second term to the viscous production of heat. In the dielectric
medium outside the cylinder the current density_J vanishes; thus we have there, by the
Maxwell’s equations, V5 =0 (z.e. the magnetic field is constant), and the appropriate
boundary conditions are:

(110) b:bl on F17 b:bz on Fz,
where b, and b, are given constants, and
(1.11) v=pv, wu=u on I,

with v and # given functions. The boundary value problem (1.7)-(1.11) is similar to the
thermistor problem (see [1, 2, and references therein]).

In Section 2 we prove that, under the assumption o(«z) e L *(R"), v(x) e L* (R"),
k(u)e L*(R') and
(1.12) oy=zolu) =20,>0, vy=zvw) =zv,>0, ky=ku)=k,>0,

for all # € R, there exists at least one solution to problem (1.7)-(1.11). In Section 3 we
examine a special case in which uniqueness can be proved but, depending on the

value of the integral
" k(1)
—d,
f o(?) &
0

the solution may not exist.

2. EXISTENCE OF WEAK SOLUTIONS

Using eqns. (1.7) and (1.8), the energy eqn. (1.9) can be rewritten as fol-
lows:

(2.1 =V (klu) Vu) =V-(ho(u) Vb) + V- (vv(u) Vo).
Let 7, 7 and 5 be functions such that

2.2) heH?(Q), 9eH*(Q), uneH*(Q),
and

(2.3) h=h onl,, h=h, onl, ov=vonl, #=1uonl.

Defining U=« — # in terms of U, eqn. (2.1) becomes

(2.4) =V (&(u) VU) = V- (&x(u) Vu) + V- (ho(u) Vb) + V- (vv(u) Vo),
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with the boundary condition

(2.5) U=0 on I.

We formulate problem (1.7), (1.8), (2.2), (2.4) and (2.5) in the following weak form: to
find the functions he H'(Q)NL *(Q), ve H'(2) N L *(Q) and Ue H{ (Q) such that
the equations

(2.6) h—heHNQ jg U+ ) Vh-VEdx=0, VEeHM(Q),

2.7) v— e HNQ), JV(U-!—Z!) Vo-VEdx =0, VYEeH!(Q),
Qo

2.8) UeHM®Q jKU-i—u VUvgdx——jKUm Vi -VEdy —

— [bo(U + i) Vh-Véds — [ov(U + ) Vo-Védx, VEeH{ ().
Q Q

are satisfied.

TraeorEM 2.1. If (1.12) and (2.2) hold, then there exists at least one solution to prob-
lem (2.6)-(2.8).

Proor. Let {w;}i_ | be a regular basis of Hy (£2). Define

(29) 2 ckwk me N

where (¢, ..., c,) e R”. Using standard results of existence, uniqueness and
regularity of the linear elliptic theory we can solve the problems:

(2.10) V-(oU,+#) Vh,)=0in 2, h,=h on T

(2.11) V-wU,+u) Vv,,)=01in Q, wv,=2 on I.
We have 5,,, v,,e H*(2) and, by the weak maximum principle,

(2.12) 16,0l = (@) < by, [, 1= @) < D,
where by = sup {h(x), xe I'} and By = sup {#(x), x € '}. Multiplying (2.10) by h — 5

and integrating by parts over 2, we have

[o(U, +i)|Vh,|2dx = [o(U, + i) Vb, Vhdx <
Q Q

1/2 ~
s(jg<Um+z,>|me|de) (jg<Um+z,>|Wg|de)
Q Q

1/2

This implies the estimate
(2.13) IVh ml| < C,.
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In the same way we obtain from (2.11)
(2.14) Vo, <G,

where the constants C; and C, do not depend on 7.
Let us now consider the following nonlinear system of 7 equations in the unknown

(¢1y...,¢,)€R”
(2.15) JK(UW-I-ZJ) VU, Vupdx = — jxwmw)v;,-vwkdx—
o Q

jme(Um+ %) Vh,,-Vw, dx — Jvmv(Um +u) Vo, Vw,dx, k=1,..., m
9 o

To prove that (2.15) has at least one solution, we use the Browder fixed point theo-
rem. Define the map F: R”—R"” by a, = Flcy, ..., c,), k=1, ..., m, where

——j[v KU, + ) VU,) + V- (x(U,, + %) +
+V-(h,o(U, + ) Vb,) + V- (0, v(U, + ) Vo,,)] wydx,
where U,, is given by (2.9) and 54,,, v,, by (2.10) and (2.11). We have
2 aa= I[K(UerZf)|VUm|2+K(Um+Z¢)VZ¢-VUm+
=1
Q

+bh,,0U,+u) Vb, VU, +v,v(U,+u) Vo,-VU,,1dx.

Moreover:

j KU, +#) Va-VU, dx | < ky|Vall|VU, || < GIIVU, ||,
Q

[0uv(U, 43 V2,-VU, dx| < duv Vo, VU] < G VO, |

el
Thus, from (2.16) we obtain

Z a0 =ZK,||VU, P = (Cs + Cy+ C5)|VU,, ||

Hence there exists a positive constant K such that if E ¢t = K we have 2 apc, = 0.

This implies (see [4, p. 53]) that (2.15) has at least one solution (¢y, ...c,,).

Multiplying (2.15) by ¢, and adding over £=1, ..., 7z we obtain
(2.16) VU, |l < Cs.
By (2.13), (2.14) and (2.16) we can extract from {b,,}, {v,,} and {#, } subsequences
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(not relabelled) such that
(2.17) (4, by, v,,) = (1, b, v) weakly in H' (L)
(¢4, by, 0,y) = (u, b, v) strongly in L?(2), 1<p< o and ae. in Q.

This permits to pass to the limit for 72— o in the equations

jg<um> Vb, VEdx=0, VEcHM(Q),
Q

and

(2.18) v, 9eHJ(Q), [v(n,) Vo, VEdx=0, VEeH} (),

9
which hold for 72 = (&), obtaining (2.6) and (2.7). Let us fix 7ze N. Since {w; }i-,
is a basis of Hy (L), we have from (2.15)

(2.19) jK<U,,, +7) VU, VEdx + jK<Um + ) Vi VEdx =
Q Q

=— meQ(Um +7) Vb, Edx — jvmvwm +7) Vo, VEdx, k=1,...,m,
2 2
for all £e C;* (2). The limit 72— o in the first two terms of (2.19) presents no diffi-
culties. On the other hand, we have the estimates

(2.20)

<

jbmgwm +7) Vb, VEdx — jbg(m %) Vh-VEdx
Q Q

<6, = HllowllVE, V&l = + hullo(U 72 + @) = o(U + @ [[V5,, V]l - +

+

jbg(m #)(Vh, — Vh)-VEdx .
Q

By (2.17) the L.H.S. tends to zero. Proceeding in a similar way with the last term in the
R.H.S. of eqn. (2.18) we obtain, letting 72— o,

(2.21) jK(U +7) VU-VEdx + ij +7) Va-VEdx =
Q Q

=— j/oQ<U+ ) Vh-VEdx — jw<U+ %) V- VEdx
Q Q
for all £e Cy°(Q) and, by density, we obtain also (2.8). O

Remark 2.1. If (b, v, «) is a solution to the weak problem we have, by a result of
regularity of N.G. Meyers [6], VL e L?(R2), Voe L?(Q), p > 2. Therefore, in view of
(2.12), we get

ho(u) Vb, wvv(u)VoelLP(Q), p>2.
Hence, again by [6], Vue L?(R2), p > 2. If the data are regular, this remark permits to
bootstrap and to obtain a classical solution.
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3. UNIQUENESS AND NON-EXISTENCE OF SOLUTIONS

In this section we examine a special case in which, quite surprisingly, problem
(1.7)-(1.11) can be reduced to the Dirichlet’s problem for the Laplacian and thus, in a
certain sense, can be completely integrated.

The method works under the following assumptions: (¢) x(«) >0, o(u) > 0; (i) v
and u are constant on I; and (7) the relation v(«) = Ko(«), K> 0 holds. These hy-
potheses permit a detailed discussion upon the uniqueness and non-existence of sol-
utions. However, (#7) is clearly physically restrictive.

The system thus becomes

(3.1) V-(o(u) Vo) =0,

(3.2) V-(o(x) V) =0,

(3.3) — V- (k(u) Vu) = 0(u) |Vh|* + Ko(u) | Vo |?,
with the boundary conditions

(3.4) v=Vonl, v=0onl,

(3.5) h=HonTI,, h=0 on I

(3.6) u=0onTl, u=0 on I,

where V and H are given constants. The special boundary conditions suggest the exis-
tence of a functional relation between v, b and #. This remark is the key to the
following

TueOREM 3.1. Suppose (i), (i£) and (i) to hold, and

©

(3.7) J'ﬁdt=f<oo,
o(?)
0
with
2 2
(3.8) €>(1+KV )H—
H? | 8
Then problem (3.1)-(3.6) has one and only one solution, while, if
2 2
(3.9) ,{’<(1+KV )H_
H? | 8

the problem has no solution. If

©

(3.10) fg%ﬁzm,

0

then there exists one and only one solution.
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Proor. Suppose (3.7) and (3.8) to hold. Define the map F:[0, «)—[0,f)

(.11) Fu) = Jﬂdt,
; o(2)
and the other map
_ 1,2, K > —~
(3.12) 9—2/) + ZU + F(u),
2 2

and consider the function IC:[0, H] — [0, (1 + I;IVZ )%] defined as follows:

__ 152, 1 K2\, _ KV? 5
6.13) ok =~ 37+ Z(H+ £V p- A
By (3.7) and (3.8), the function
(3.14) G=J'0h), hel0, H]
is well-defined. Consider now the Dirichlet’s problem
(3.15) Ap=0 in Q,
(3.16) Yv=0on Ty, yY=vy, on I,
where

H
(3.17) vo= [o(G(h) db.
0

By the maximum principle, the only solution 3(x) of (3.15)-(3.17) satisfies the
inequality

(3.18) 0<y(x)<wy, in Q.
Define now the one-to-one mapping of [0, H] onto [0, ¥,] given by

h
(3.19) Loh) = j 0(8(2)) dr
0

where, by (3.18), the function

(3.20) hlx) = L7 (p(x), xeQ
is well-defined. Putting

(3.21) o(x) = %b(m
and
(3.22) u(x) = G(h(x)),

the triplet (h(x), v(x), u(x)) is a solution to problem (3.1)-(3.6), since Vi = o(u) Vb,
and, by (3.15), we have

(3.23) V-(o(u) Vh) =0, V-(o(u) Vo) =0.
Moreover, h(x) and v(x) satisfy the boundary conditions
(3.24) h=0, v=0onTl,, h=H, v=Von I,
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By (3.14) we have the functional relation

(3.25) IH(h(x)) = F(G(h(x))).

If A(x), v(x) and «(x) are defined respectively by (3.20), (3.21) and (3.22), the corre-
sponding function given by (3.12), ze.

K >

P20+ S0 (x) + ) = %(H+ Kv>

H

(3.26) 0(x) =

l\)lb—*

) h(x)

satisfies, by (3.23), the same equation as h(x) and v(x), Ze.:
(3.27) V-(o(u) VO) =0,

and the boundary conditions

2
(3.28) 6=0 on Iy, 02%(H+%)Hon r,.

On the other hand, we have, by (3.26),
o(u) VO = ho(u) Vh + Ko(u) vVov + k(u) Vu
and, in view of (3.27), (3.23) and (z), we obtain
=V (k(u) Vu) = o(u) |VH|* + v(u) | Vv|?
as required. Finally, we have
u=Gh)=¢G(0)=F 3H0))=0 on I'y,
u=G(h)=GH) =F "((H)=F '(0)=0 on I',.

Thus (h(x), v(x), u(x)) is a solution. We claim that this solution is unique. By contra-
diction, let (5, v, u) be a second solution. The corresponding auxiliary function

(3.29) o= 1p+ L7+ 5@
satisfies the equation
(3.30) V-(o(@) Vo) =
and the boundary conditions
(3.31) §=%H2+§V2, on Iy, =0 on T,
On the other hand, the function

= 1 KV?\ 2

@ = —

3 (H + T ) h

is a solution of the equation
(3.32) V-(o(@) V&) =0

and satisfies the same boundary condition (3.31) of 0. It follows O(x) = ®(x). This im-
plies that z and / are related by the same functional relation as # and 5. That
is

(3.33) Fa) = ).
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Recalling (3.7) and (3.8) we can solve (3.33) with respect to #, obtaining
u=F k) = §(h).
Now
hx)

P = [ o(g) dr

0

is a solution to problem (3.15) and (3.16). However, this solution is unique. Thus

P(x) = (x). Since
L7 (@(x) = L7 (y(x),
we also have G(h(x)) = G§(h(x)) and we conclude that
(h(x), v(x), u(x)) = (h(x), D(x), u(x)).

Assume now (3.7) and (3.9). We claim that under these hypotheses problem (3.1)-
(3.6) has no solution. By contradiction, let (h(x), v(x), #(x)) be a solution. We have
again the functional relation

On the other hand, by (3.7) we obtain

u(x)

To prove existence and uniqueness when (3.10) holds we proceed in the same way,
noticing that the functional relation F(«) = 9((h) in this case is always solvable with
respect to #. Indeed, F(«) is now a strictly increasing and diverging function as
U—> 0, O

Norte. With slightly more complicated calculations it is possible to treat the more
general (but still constant) boundary conditions

h=H,, v=V,, wu=wu only; h=H,, v=V,, u=u onI,.
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