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Meccanica dei fluidi. — Start-up of channel-flow of a Bingham fluid initially at re-
st. Nota di IRENE DAPRÀ e GIAMBATTISTA SCARPI, presentata (*) dal Socio E.
Marchi.

ABSTRACT. — We present an analytical solution of plane motion for a Bingham fluid initially at rest
subjected to a suddenly applied constant pressure gradient. Using the Laplace transform we obtain
expressions which allow a direct easy calculation of the velocity, of the plug thickness and of the rate of
flow as function of time.

KEY WORDS: Bingham fluid; Unsteady flow; Channel-flow.

RIASSUNTO. — Inizio del moto piano per un fluido di Bingham. In questa Nota viene presentata una so-
luzione analitica per il moto piano laminare di un fluido di Bingham inizialmente in quiete sottoposto ad
un gradiente di pressione costante. Si ottengono espressioni per il calcolo della velocità e dell’ampiezza
del nucleo solido centrale in funzione del tempo.

1. INTRODUCTION

The beginning of the motion in a Bingham fluid has been studied in the past, ei-
ther for numerical calculation purposes (e.g. by Duggins [1], Mitra [2], Hammad [3],
Ly and Bellet [4], Al Khatib and Wilson [5], Makarov, Zhdanova and Polozova [6])
or analytically. A fundamental paper of Safronchik [7] gives a general expression for
the velocity which requires the solution of a nonlinear integral equation; for the case
we are studying Safronchik gives an approximated solution valid only for small value
of time. Analitical papers of Glowinski [8], Huilgol and Mena [9] do not give an ex-
plicit solution in terms of velocity. A paper of Atabek [10] for axisymmetrical flow
contains an error in the setting up of the boundary conditions (see [6]), and that of
Amadei and Savage [11] for plane flow contains the same error: the equation of mo-
tion in the fluid domain is usable in the region between the wall and the solid plug,
which are the boundaries where the non-slip condition and the yield stress respec-
tively have to be imposed; in [11] the condition on the stress is imposed at the layer
axis, which is out of the region of validity of the related equation. This has several con-
sequencies on the final results: e.g., the expression for the velocity in the fluid region
does not depend on the thickness of the solid core. An extensive reference is in the re-
view article by Bird, Dai and Yarusso [12].

The present work gives an analytical solution for the velocity, the plug thickness,
the shear stress and the rate of flow as a function of time that is easily suitable for nu-
merical calculations.

(*) Nella seduta del 9 gennaio 2004.
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2. PROBLEM STATEMENT

We consider a plane horizontal layer of constant thickness 2h filled with a Bing-
ham fluid, initially at rest; at time t40 we apply a constant pressure gradient, strong
enough to start a laminar motion. For a rectilinear flow, taking into account the conti-
nuity equation, the equation of motion can be written:

2
¯p
¯x

1 ¯t
¯y

4r ¯u
¯t

(1)

were x is the direction of the motion, y the normal to the layer (2hGyGh), p the
pressure, t the shear stress (t xy ), u the velocity, r the fluid density and t the time. The
relation between shear stress and shear rate for a Bingham fluid in plane horizontal
laminar flow is

t4t 0 sign g ¯u
¯y h1m ¯u

¯y
(2)

where t 0 is the yield stress and m is the viscosity.

Putting 2
¯p
¯x

4P0D0 and introducing the following dimensionless quantities:

j4x/h, h4y/h, n4um/h 2 P0 , u4t/hP0 , u 04t 0 /hP0 , T4 tm/rh 2, (1) and (2)
become:

H(T)1 ¯u
¯h

4 ¯n
¯T

(3)

where H(T) is the Heaviside unit-step function, and

u4u 0 sign g ¯n
¯h

h1 ¯n
¯h

.(4)

Initial and boundary conditions are respectively:

n(h , TE0) 40(5)

and

n(h461, T) 40(6)

(no-slip condition at the wall).
We suppose P0Dt 0 /h so that the fluid moves in the positive j direction; because

of symmetry, we may study the problem only in the region defined by 0 GhG1 where
¯n/¯h and u assume negative values.

If we call h 0 the local semi-amplitude of the plug, which obviously depends on T,
we obtain from (4) u42u 0 for h4h 0 (T) and thus another boundary condition:

¯n
¯h N

h4h 0 (T)
40 .(7)

Writing the equation of motion for the solid plug it is easy to verify that the stress de-
pends linearly on the distance from the j axis:

¯u
¯h

42
u 0

h 0
.(8)
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Deriving (4) in respect to h we obtain

¯u
¯h

4 ¯ 2 n

¯h 2
.(9)

Equation (3) becomes then

H(T)1 ¯ 2 n

¯h 2
4 ¯n

¯T
.(10)

3. SOLUTION

We take the Laplace transform of (10) with respect to T; putting

n×(h , s) 4 L[n(h , T) ] 4�
0

Q

n(h , T) e 2sT dT

and recalling (5) we obtain

¯ 2 n×

¯h 2
2 sn×42 1

s .(11)

The general solution is then

n×(h , s) 4 1
s 2

1F Sinh (h ks)1G Cosh (h ks)(12)

where F and G are any function of s.
Equation (12), which is applicable only where the fluid’s behaviour is Newtonian

(h 0GhG1), must satisfy the no-slip condition at the wall

n×(1 , s) 40(13)

and the condition u42u 0 as h4h 0 (T), i.e.

¯n×
¯h N

h4h 0 (T)
40 .(14)

Equation (10) with conditions (5) (6) and (7) may be considered as the governing law
of a linear system with time-varying parameters (see e.g. [13]), where the parameter is
h 0 (T), and thus n×(h , s) is the correspondent system-function.

Conditions (13) and (14) give

.
/
´

F Sinh (ks)1G Cosh (ks) 42 1
s 2

F Cosh (h 0 ks)1G Sinh (h 0 ks) 40
(15)

and then

F42 1
s 2

Sinh (h 0 ks)
D

G4 1
s 2

Cosh (h 0 ks)
D
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where

D42Cosh [ (12h 0 ) ks] .(16)

Solution (12) becomes then

n×(h , s) 4 1
s 2

Cosh [ (12h 0 ) ks]2Cosh [ (h2h 0 )ks]

Cosh [ (12h 0 ) ks]
.(17)

We can retrieve n(h , T) by inverting the Laplace transform by means of the
integral

n(h , T) 4 1
2pi

�
c2 iQ

c1 iQ

e sT n×(h , s) ds .(18)

Expression (17) has a first order pole in s40 and a countable infinity of first order
poles when

Cosh [ (12h 0 ) ks] 40 ;

thus when

s4 sk42 p 2

4 g 2k11
12h 0

h2
(19)

where k40, 1 , 2 , R .
Applying to (18) the residue theorem we have

n(h , T) 4! Res [e sT n×(h , s) ] .

For s40 we obtain

Res [e sT n×(h , s) ]s404 lim
sK0

sn×(h , s) e sT4 1
2

[ (12h 0 )22 (h2h 0 )2 ] ,

and for s4 sk

Res [e sT n×(h , s) ]s4 sk
4 lim

sK sk
(s2 sk ) n×(h , s) e sT4

42(21)k 16(12h 0 )2

p 3 (2k11)3
expy2 p 2

4 g 2k11
12h 0

h2
Tz cosk h2h 0

12h 0

p
2

(2k11)l .

Consequently

(20) n(h , T) 4 1
2

[ (12h 0 )22 (h2h 0 )2 ]2

2
16(12h 0 )2

p 3
!

k40

Q (21)k

(2k11)3
exp y2 p 2

4 g 2k11
12h 0

h2
Tz cosk h2h 0

12h 0

p
2

(2k11)l ;
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equation (20) allows to calculate n(h , T) at time T when the plug amplitude is
h 0 (T).

To obtain h 0 (T) we observe that at the interface, i.e. as h4h 0 , the acceleration,
and thus ¯u/¯h must be continuous; then, recalling (8) and (9):

¯ 2 n

¯h 2 N
h4h 0

1
4 ¯u

¯h N
h4h 0

1
4 ¯u

¯h N
h4h 0

2
42

u 0

h 0
.(21)

From (20) we have

¯ 2 n(h , T)

¯h 2
4211 4

p !
k40

Q (21)k

2k11
expy2 p 2

4 g 2k11
12h 0

h2
Tz cosk h2h 0

12h 0

p
2

(2k11)l
which in h4h 0 gives

¯ 2 n(h , T)

¯h 2 N
h 0

1
4211 4

p !
k40

Q (21)k

2k11
exp y2 p 2

4 g 2k11
12h 0

h2
Tz .(22)

Inserting (22) in (21), we have

h 0 (T) 4
2u 0

¯ 2 n
¯h 2 N

h 0

4u 0{12 4
p !

k40

Q (21)k

(2k11)
expy2 p 2

4 g 2k11
12h 0

h2
Tz}21

;(23)

we may either assign a value to T and then solve (23) numerically in respect to h 0 (T)
or assign a value to h 0 (T) and solve it in respect to T; as TKQ h 0Kh Q4
4u 0 .

If TK01 and thus h 0K1 (21) gives

¯ 2 n

¯h 2 N
h 0

42u 0

and thus we obtain

(24) lim
TK0

¯ 2 n(h , T)

¯h 2 N
h 0

4

4211 4
p !

k40

Q (21)k

2k11
expy2 p 2 (2k11)2

4
T

(12h 0 )2
z42u 0 .

The term T/(12h 0 )2 tends to a limit, which depends on u 0 , as TK0 and h 0K1;
it is easy to verify that for small values of time T h 0C12C kT, as Safronchik de-
monstrated in his paper [7]. Calculating numerically from (24) the value of z4
4 lim

TK0
[T/(12h 0 )2 ] as a function of u 0 we obtain the plot of fig. 1: if u 040 (Newto-

nian fluid) z40, and if u 0K1 (no motion is possible, because the fluid behaves as a
solid) zKQ.

As TKQ (20) gives the known asymptotic velocity distribution for hFh Q ,
where h Q is the asymptotic value of h 0

lim
TKQ

n(h , T) 4n Q (h) 4 1
2

[ (12h Q )22 (h2h Q )2 ] .(25)
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Fig. 1. – z4 lim
TK0

[T/(12h 0 )2 ] versus u 0 .

Analogously, if we let TK0 in equation (20) and recall that it is usable only in the re-
gion hFh 0K1, we obtain n40; using (20) and (23) we may easily calculate the ve-
locity profile for hFh 0 .

We evaluate the rate of flow Q , which is made up of the contribution Q1 of the
solid plug (of amplitude 2h 0):

Q1 (T) 42h 0 n(h 0 , T) 4

4h 0{(12h 0 )22
32(12h 0 )2

p 3
!

k40

Q (21)k

(2k11)3
expy2 p 2

4 g 2k11
12h 0

h2
Tz}

and of the contribution Q2 of the fluid region:

Q2 (T) 42 �
h 0

1

n(h , T) dh4

4 2
3

(12h 0 )32
64(12h 0 )3

p 4
!

k40

Q
1

(2k11)4
expy2 p 2

4 g 2k11
12h 0

h2
Tz ;

and thus

(26) Q(T) 4Q1 (T)1Q2 (T) 4 (12h 0 )2g 21h 0

3
h2

2
32(12h 0 )2

p 3
!

k40

Q {yh 0 (21)k1
2(12h 0 )

(2k11) p
z 1

(2k11)3
expy2 p 2

4 g 2k11
12h 0

h2
Tz} ;
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as TKQ (26) gives the asymptotic value QQ of the rate of flow:

QQ4 lim
TKQ

Q(T) 4 (12h Q )2g 21h Q

3
h .

Using (4) we obtain the value of the shear stress in the Newtonian region:

(27) u42u 02 m(h2h 0 )2 8
p 2

(12h 0 ) Q

Q !
k40

Q (21)k

(2k11)2
exp y2 p 2

4 g 2k11
12h 0

h2
Tz sink h2h 0

12h 0

p
2

(2k11)ln .

If u 040 i.e. if the fluid is a Newtonian one, equations (20), (26) and (27) give the
known results for Newtonian fluids.

4. FINAL REMARKS

Equations (20) and (23) which gives the analytical solution of the problem, allow
an easy calculation of the velocity profile and of the thickness of the plug: equations
(26) and (27) allow the calculation of the rate of flow in the whole layer, and of the
shear stress in the Newtonian region respectively. As an example, we have drawn the

Fig. 2. – Velocity profile: yield stress u 0 40.5, asymptotic plug semi-amplitude h Q40.5 (dimensionless
variables); from left to right: h 0 40.9 T40.00426, h 0 40.8 T40.0198, h 0 40.7 T40.0545, h 0 40.6 T4

40.0132, h 0 40.5 T4Q.
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Fig. 3. – Velocity profile: yield stress u 0 40.05, asymptotic plug semi-amplitude h Q40.05 (dimension-
less variables); from left to right: h 0 40.8 T40.00431, h 0 40.6 T40.0193, h 0 40.4 T40.0519, h 0 40.2

T40.0136, h 0 40.1 T40.307, h 0 40.05 T4Q.

Fig. 4. – Shear stress profile; yield stress u 0 40.5, asymptotic plug semi-amplitude h Q40.5 (dimension-
less variables); from right to left: h 0 40.9 T40.00426, h 0 40.8 T40.0198, h 0 40.7 T40.0545, h 0 40.6

T40.0132, h 0 40.05 T4Q.
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Fig. 5. – Shear stress profile: yield stress u 0 40.05, asymptotic plug semi-amplitude h Q40.05 (dimen-
sionless variables); from right to left: h 0 40.8 T40.00431, h 0 40.6 T40.0193, h 0 40.4 T40.0519,

h 0 40.2 T40.0136, h 0 40.01 T40.307, h 0 40.05 T4Q.

Fig. 6. – Semi-amplitude of h Q /h 0 versus time T for two values of the yield stress: u 0 40.5 and u 0 40.05
(dimensionless variables).
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velocity (figs. 2, 3) and stress profiles (figs. 4, 5) for two values of the dimensionless
yield stress u 040.5 and u 040.05. In fig. 6 and in fig. 7 we have plotted the values of
h Q /h 0 and of Q/QQ respectively, as function of T for the same values of u 0 .

Fig. 7. – Rate of flow Q/QQ versus time T for two values of the yield stress: u 0 40.5 and u 0 40.05 (di-
mensionless variables).
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