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Meccanica dei solidi. — A model of seismic excitation. Nota (*) del Socio PIERO

VILLAGGIO.

ABSTRACT. — The influence of a seismic wave on a building is customarily described as a force, a
function of the time, whose explicit expression is prescribed. We here suggest a one-dimensional model
able to relate this force to the sudden onset of a fault in the rock layer on which the building is built.

KEY WORDS: Seismic waves; Brittle fracture; Impact.

RIASSUNTO. — Un modello di eccitazione sismica. L’influenza di un’onda sismica su un edificio è abi-
tualmente riguardata come una data forza, funzione del tempo, la cui espressione esplicita è assegnata in
base a conoscenze statistiche. Si propone qui un modello monodimensionale capace di mettere in relazio-
ne questa forza con la formazione improvvisa di una faglia nello strato roccioso su cui è costruito
l’edificio.

Engineers concerned with the construction of structures subject to seismic distur-
bances are not particularly interested in the geological causes of earthquaques but
rather in the precise knowledge of the forces acting at the fundation of a building.
Specifically, when it is invested by the front of a an elastic wave emanating from a
given source. But, in order to simplify calculations, engineers have introduced an even
simple method consisting in the substitution of the horizontal seismic action with a
horizontal static force. This procedure is known as the «method of the equivalent
force» (cf. e.g. Wakabayashi [7]).

On the other hand, seismologists, interested in the explanation of the causes of
earthquaques and in the description of their propagation through a stratified medium,
predict the kinematic features of the phenomenon, the global transport of energy, but
cannot estimate the local mechanical effect of a strong seismic perturbation on the
small region where a town is built.

We here suggest a simple elastic model for establishing a deterministic relationship
between the brittle onset of a fault in an elastic layer, modelled as a rectangular panel,
the propagation velocity of the ensuing elastic waves, and the displacement caused by
the front of these waves as they impact the fundation of a house, considered as a sim-
ple elastic oscillator.

The model we have in mind is the following. The rocky layer is modeled as an elas-
tic rectangular plate of length l , height h and thickness b as sketched in fig. 1. The
plate is either confined between two rigid walls (fig. 1a) or clamped at its left end and
subject to a uniform distribution of tensile stresses, say p , at the right end, which can
shift horizontally (fig. 1b). In the case (a) the rod is gradually uniformly strained by a
displacement d of its right clamp, while, in the case (b), the uniform strain is induced
by the tensions p , whose resultant is a force P. According to a definition introduced by
E r i c k s e n [ 4 ] , w e s h a l l c a l l t h e s e t w o c o n d i t i o n s o f l o a d i n g « h a r d » a n d « s o f t » , r e -

(*) Presentata nella seduta del 12 dicembre 2003.
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Fig. 1. – Hard and soft device of loading.

s p e c t i v e l y . L e t u s d e n o t e t h e d i s t a n c e o f a ge n e r i c c r o s s s e c t i o n f r o m t h e l e f t
c l a m p b y x , so th a t t h e r i g h t e n d o c c u p i e s t h e p o s i t i o n x4 l b e f o r e t h e d e f o r m a -
t i o n . T h e l i n e a r e l a s t i c b e h a v i o u r o f t h e r o c k i s c h a r a c t e r i z e d b y Y o u n g ’ s m o d u l u s
E a n d a Po i s s o n r a t i o n.

As long as the stress state in the layer is low it will undergo a homogeneous exten-
sional strain, increasing with the load. But, at a certain level of loading, it may happen
that a small fault, modelled as an initially microscopic cut situated at the clamped end
as we may always obtain after suitable choice of the origin (fig. 1), instantaneously
propagates into the interior of the panel for a length c. If the layer is long the modeling
of a fault by such a vertical cut if perfectly plausible (cf. Mandtl [5]). The sudden cre-
ation of a vertical fracture releases a longitudinal wave travelling in the positive x-di-
rection. This wave is eventually reflected by the end x4 l , but, if this point is suffi-
ciently far from the source, x40, the reflected wave will spend a long time before
reaching the source again.



A MODEL OF SEISMIC EXCITATION 121

This assumption permit the treatment of the problem through a simplified quasi-
static theory proposed by Cox [3] more than 150 years ago, but still very effective in
catching some essential features of the solution.

The procedure suggested is energetic. Let us first consider the case of the hard de-
vice sketched in fig. 1a. The panel is clamped at its end x40 while the other end x4 l
is subject to a slowly increasing displacement d(t), where t denotes the time. At each
instant t , the bar transmits an axial tensile force N(t) 4E h b d/l and stores the strain
energy

W04 1
2

E h b d 2

l
.(1)

As long as this energy is small, the bar will undergo a slow static elongation without
causing cracks. But, as soon as W0 attains a certain critical value, a further possible in-
crease of the strain energy, due to an increment of d , is converted into an equivalent
amount of fracture energy generated by the propagation of the small crack situated at
the clamped section x40 of the panel. This is just an application of Griffith’s criteri-
on of brittle fracture.

In order to determine the critical value of d , let us assume, according to the so
called linear theory of fracture, that an advancement c of the fracture localized at the
clamp requires a dissipation U14gcb of energy. At the same time the strain energy, as
a consequence of the reduction of the height of the left terminal cross-section from h
to (h2c), assume the value

W14 1
2

E(h2c) b d 2

l
.(2)

The equilibrium becomes critical as soon as the equation

¯

¯c
(W11U1 ) 40 ,(3)

is satisfied. Equation (3) yields the value d cr defining the onset of propagation of the

crack, namely d cr4o 2gl
E b h

.

Let us now consider the case of «catastrofic» detachment [2], in which the initially
microscopic fracture istantaneously spreads from the upper to the lower chord of the
cross-section as soon as d attains the critical value d cr . In this case the initial strain en-
ergy W0 , is suddendly converted into kinetic energy T1 according to the conservation
equation

W04T1 .(4)

The kinetic energy, aquired after the detachment, is T14 1
2

s
0

l

r h b v 2 (x) dx , where r

is the density and v(x) the longitudinal velocity of a typical cross-section after the
detachment. In equation (4) all terms are known except the function v(x). In order to
determine v(x) we apply the approximate Cox’ method, according to which dynamic
axial displacements are proportional to static displacements [6, §24]. Since the latter
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are linear, we take

v(x) 4v0g12 x
l
h ,(5)

where v0 is a constant. With this expression for v(x) we calculate

T14 1
2
�

0

l

r h b v0
2g12 x

l
h2

dx4 1
2

r h b l
3

v0
2 .(6)

Then, from equation (4), we obtain the value

v0
24 3E

r
d cr

2

l 2
4

6g
rl

,(7)

and hence, from formula (5), we can estimate the initial velocity of the ground at the
foot of the building as soon as complete detachment has occured:

v(j) 4o 6g
rl

g12
j
l
h .(8)

We now examine the case of soft device, shown in fig. 1b. Here the energy criteri-
on must be modified since we must account for the work of the exterior increasing
force P(t). The total energy stored by the rod, has the form

E04W02L0 ,(9)

where W0 gW04 1
2

P 2 l
E h b

h is the strain energy and L0 gL04 P 2 l
E h b

42W0h the exteri-

or work. After the propagation of a fracture at the clamp for an extent c the total en-
ergy becomes

E14W12L11U142 1
2

P 2 l
E(h2c) b

1g b c .(10)

Propagation occurs as soon as
¯E1

¯c
vanishes, that is when P 2 attains the values P 2

cr 4

42
E g b 2

l
(h2c)2. But, since we have supposed that the initial crack is very small with

respect to h , we obtain the value

Pcr4o 2 E g b 2 h 2

l
.(11)

Assume again that, immediately after reaching the critical state, the crack at the
clamp instantaneously traverses the entire cross-section so that the initial energy E04
4W02L0 is suddendly converted into the energy E14W12L11T1 , where W140,

L14L0 , and T1 is the kinetic energy, equal to 1
2

s
0

l

r h b v 2 (x) dx .

The choice of the function v(x) can be made by applying again Cox’ method, and
the simplest form of v(x) compatible with the end conditions is v4v04const , which
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implies T14 1
2

r h b l v0
2 . Thus, from the equation W04T1 , we find

v0
24

Pcr
2

r E h 2 b 2
4

2g
rl

.(12)

All sections of the rod undergo the same velocity v04o 2g
rl

.

Once the istantaneous velocities of the ground are determined either by (8) or
(12), the subsequent motion of the building can be exactly predicted by the laws of el-
ementary mechanics, and so are the horizontal forces acting on each store.
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