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Geometria algebrica. — Nesting maps of Grassmannians. Nota di CORRADO DE

CONCINI e ZINOVY REICHSTEIN, presentata (*) dal Socio C. De Concini.

ABSTRACT. — Let F be a field and Gr(i , F n ) be the Grassmannian of i-dimensional linear subspaces
of F n . A map f : Gr(i , F n ) KGr( j , F n ) is called nesting if l% f (l) for every l�Gr(i , F n ). Glover, Homer
and Stong showed that there are no continuous nesting maps Gr(i , Cn ) KGr( j , Cn ) except for a few ob-
vious ones. We prove a similar result for algebraic nesting maps Gr(i , F n ) KGr( j , F n ), where F is an al-
gebraically closed field of arbitrary characteristic. For i41 this yields a description of the algebraic sub-
bundles of the tangent bundle to the projective space PF

n .

KEY WORDS: Grassmannian; Vector bundle; Cohomology ring; Chern class; Tangent bundle.

RIASSUNTO. — Applicazioni «nesting» di Grassmanniane. Sia F un campo e Gr(i , F n ) la Grassmannia-
na dei sottospazi i-dimensionali di F n . Un’applicazione f : Gr(i , F n ) KGr( j , F n ) si dice «nesting» se
l% f (l) per ogni l�Gr(i , F n ). Glover, Homer and Stong hanno dimostrato che non ci sono applicazioni
continue «nesting» da Gr(i , Cn ) KGr( j , Cn ) a parte un piccolo numero di eccezioni. Dimostriamo un
risultato analogo per applicazioni «nesting» algebriche Gr(i , F n ) KGr( j , F n ), nel caso in cui F sia un
campo algebricamente chiuso di caratteristica arbitraria. Per i41 ciò implica una descrizione dei sottofi-
brati algebrici del fibrato tangente allo spazio proiettivo PF

n .

1. INTRODUCTION

Let F be a field. We shall denote the Grassmannian of i-dimensional linear sub-
spaces of F n by Gr(i , F n ). Suppose i , j and n are integers satisfying 1 G iE jGn21.
We shall say that a map of Grassmannians

f : Gr(i , F n ) K Gr( j , F n )(1.1)

is nesting, if l% f (l) for every l� Gr(i , F n ). The starting point for this Note is the fol-
lowing combinatorial result communicated to us by J. Buhler.

THEOREM 1.1. Let F be a finite field and iE j be positive integers such that n4 i1 j .
Then there exists a bijective nesting map (of sets) f : Gr(i , F n ) K Gr( j , F n ).

Theorem 1.1 can be deduced from a theorem of P. Hall about systems of distinct
representatives; for details see Section 6.

It is natural to ask for what n , i and j there exist algebraic (and for F4R , F4C ,
continuous) nesting maps f : Gr(i , F n ) K Gr( j , F n ).

EXAMPLE 1.2. Let n be an even integer and v be an alternating bilinear
form on F n , i.e., a non-degenerate bilinear form v(v , w) such that v(v , v) 40
for every v�F n . (If char (F) c2, then the last condition is equivalent to v(v , w) 42
2v(w , v) for every v , w�F n , so «alternating» is the same as «symplectic»). Then

(*) Nella seduta del 23 aprile 2004.
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f : Gr(1 , F n ) K Gr(n21, F n ), given by f (l) 4 l »v , is an algebraic nesting iso-
morphism. Here l »v is the orthogonal complement with respect to v . p

EXAMPLE 1.3. Suppose nF2 is even, v is an alternating form and H is a positive-
definite Hermitian form on Cn . Then we can define a continuous nesting map
g : Gr(1 , Cn ) 4PC

n21K Gr(2 , Cn ) by l O l5 (l »v )»H .
Note that if n is odd then there is no continuous map g : PC

n21K Gr(2 , Cn ). This
is a special case of Theorem 1.5(a) below, but it can also be seen directly as follows.
Suppose g exists. Then a : l O l »H Og(l) is a continuous fixed point free map PC

n21K
KPC

n21 , contradicting the Lefschetz fixed point theorem; see, e.g., [6, Exercise 30.13]
(note that a is, indeed, well-defined, because l%g(l) implies g(l) %O l »H). o

The following results assert that, over an algebraically closed field F , these are es-
sentially the only examples. First consider the case where iF2.

THEOREM 1.4. Suppose 2 G iE jGn21. Then
(a) there does not exist a continuous nesting map Gr(i , Cn ) K Gr( j , Cn ),
(b) there does not exist an algebraic nesting map Gr(i , F n ) K Gr( j , F n ) for any al-

gebraically closed field F .

For i41 the continuous and the algebraic cases diverge. We shall write PF
n21 in

place of Gr(1 , F n ).

THEOREM 1.5. Suppose 2 G jGn21. Then
(a) a continuous nesting map PC

n21K Gr( j , Cn ) exists if and only if n is even and
j42 or j4n21.

(b) Let F be an algebraically closed field and f : PF
n21K Gr( j , F n ) be an algebraic

nesting map. Then n is even, j4n21, and f is as in Example 1.2.

Nesting maps PF
n21K Gr( j , F n ) are easily seen to be in a natural 1-1-correspon-

dence with rank j21 subbundles of T(PF
n21 ); cf. Lemma 5.1. Using this correspon-

dence, we can rephrase Theorem 1.5 as follows:

COROLLARY 1.6. Let F be an algebraically closed field and T(PF
n21 ) be the tangent

bundle to the projective space PF
n21 .

(a) T(PC
n21 ) has a topological (complex) subbundle of rank 1 G rGn22 if and

only if n is even and r41 or n22.
(b) If n is odd then T(PF

n21 ) has no nontrivial algebraic subbundles. If n is even
then the only non-trivial algebraic subbundle of T(PF

n21 ) (up to an automorphism of
PF

n21 ) is the null correlation bundle of rank n22.

Here the null-correlation bundle on PF
n21 (defined, e.g., in [10, Section 4.2] or [2,

p. 128]) is the rank n22 bundle associated to the nesting map of Example 1.2 (note
that different choices of the alternating form in Example 1.2 give rise to bundles that
differ by an automorphism of PF

n21).
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Theorem 1.4(a) is due to Stong [13, Theorem 2]. For a field F of characteristic
zero, part (b) follows from part (a) by the Lefschetz principle. Theorem 1.5(a) and
Corollary 1.6(a) are due to Glover, Homer and Stong [5, Theorem 2(ii) and Theorem
1.1(ii)] (a special case of Corollary 1.6(a) was considered earlier by Bott [2, Corollary
1.5]). For fields F of characteristic zero, part (b) can be deduced from these results
and the work of Roan [11, Main Theorem].

The purpose of this note is to give uniform characteristic-free proofs of Theorem
1.4, Theorem 1.5 and Corollary 1.6. We also include a proof of Theorem 1.1 in a short
appendix. An application of Theorem 1.5 can be found in a recent paper of
Bergman [1].

2. PROOF OF THEOREM 1.4

We begin by recalling some well-known facts about the cohomology of the Grass-
mannian; for details we refer the reader to [4, Chapter 14] (see also [3] or [8]).

Let s i be the ith elementary symmetric polynomial in the independent variables
x1 , R , xn . The cohomology ring H *(Gr(i , F n ), Z) is isomorphic to the quotient of
Z[s 1 , R s i ], by the ideal generated by the Schur functions Sl , where l ranges over
the partitions of n whose Young tableaux are not contained in a rectangle with i rows
and n2 i columns. Here, by convention, s i is the Schur function for a column with i
rows.

Two remarks are now in order. First of all, the cohomology class corresponding to
s i lies in H 2 i (Gr(i , F n ), Z); however, for notational convenience, we will continue to
use the natural grading induced from Z[x1 , R , xn ], so that deg(s i ) 4 i . Secondly,
since Z[s 1 , R s i ] is generated over Z by the Schur functions Sl , where l ranges over
partitions with at most i rows, we identify H *(Gr(i , F n ), Z) with Z[s 1 , R s i ]/I ,
where I is a homogeneous ideal generated by elements of degree Dn2 i .

We will prove both parts of Theorem 1.4 by the same computation (if char (F) D0
in part (b), we replace the cohomology ring H *(Gr(i , F n ), Z) by the Chow ring; our
computation will remain valid there, cf. [4, Chapter 14]).

Let V be the trivial bundle of rank n on Gr(i , F n ) and let Ri be the tautological
bundle of rank i (the fiber of Ri over l� Gr(i , F n ) consists of the vectors in l). Since f
is a nesting map,

Ri% f *(Rj ) and f *(Rj ) %V ,

where % means «subbundle of». In other words,

B 4 f *(Rj ) /Ri is a subbundle of A 4V/Ri ,(2.1)

where rank(A) 4n2 i and rank(B) 4 j2 i .
Now recall that the rth Chern class of the tautological bundle is given by cr (Ri ) 4

4 (21)r s r (cf., e.g., [8, p. 111]), so that the total Chern class is

ctot (Ri ) 4 (12s 11s 22R1 (21)i s i ) .
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Since A »4V/Ri , we have

ctot (A)(12s 11s 22R1 (21)i s i ) 41,(2.2)

where ctot (A) is the total Chern class of A, and 1 represents the total Chern class of the
trivial bundle V on Gr(i , F n ).

Since A has a subbundle B or rank n2 j , ctot (A) factors as a product of elements
of degree n2 j and j2 i in H *(Gr(i , F n ), Z). We will show that this is impossible.
Consider the degree-preserving homomorphism

f : Z[x1 , R , xi , R , xn ] KZ[x1 , R , xi ]

given by f(xr ) 4xr if 1 G rG i and f(xr ) 40 if i11 G rGn . Under this homomor-
phism Z[s 1 , R , s i ] maps isomorphically to Z[f(s 1 ), R , f(s i ) ], where f(s r ) is
the rth elementary symmetric function in x1 , R , xi . Thus it is enough to prove that
f(ctot (A) ) is irreducible in Z[f(s 1 ), R , f(s i ) ]. We will, in fact, prove that
f(ctot (A) ) is irreducible in Z[x1 , R , xi ] and even in C[x1 , R , xi ]. Applying f to
both sides of (2.2), we see that

1 4f(ctot (A) )(12f(s 1 )1f(s 2 )2R1 (21)i f(s i ) ) 4

4f(ctot (A) )(12x1 )(12x2 )R(12xi )

in Z[x1 , R , xi ]/f(I). Since f(ctot (A) ) has degree Gn2 i , and I (and thus f(I)) is
generated by homogeneous elements of degree Dn2 i ,

(2.3) f(ctot (A) ) 4 g(12x1 )21 (12x2 )21
R(12xi )21hNn2 i4

4 g(11x11x1
21R)(11x21x2

21R)R(11xi1xi
21R)hNn2 i4

411u 1 (x1 , R , xi )1u 2 (x1 , R , xi )1R1u n2 i (x1 , R , xi ),

where Nn2 i means that we cut the series at the terms of degree at most n2 i and
u d (x1 , R , xi ) denotes the sum of all monomials of degree d in x1 , R , xi . It remains to
show that 11u 1 (x1 , R , xi )1R1u n2 i (x1 , R , xi ) is irreducible in C[x1 , R , xi ].
Homogenizing this polynomial with respect to an additional variable x0 , we obtain
u n2 i (x0 , x1 , R , xi ). Thus Theorem 1.4 is a consequence of the following:

LEMMA 2.1. u d (x0 , x1 , R , xi ) is irreducible in C[x0 , R , xi ] for any iF2 and
dF1.

PROOF. It suffices to consider the case i42. For notational convenience, we will
write x , y and z for x0 , x1 and x2 . In other words, we want to prove that the projective
curve Xd%P2 given by u d (x , y , z) 40 is irreducible. It suffices to show that Xd is non-
singular. We proceed by induction on d .

The base case, d41, is trivial, since u 1 (x , y , z) 4x1y1z cuts out a line in P2 .
The inductive step will rely on the formulas

u d (x , y , z) 4xu d21 (x , y , z)1u d (y , z)(2.4)
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and

g ¯

¯x
1 ¯

¯y
1 ¯

¯z h u d (x , y , z) 4 (d12) u d21 (x , y , z) .(2.5)

Suppose p4 (x0 : y0 : z0 ) is a singular point of Xd . By (2.5),

u d21 (p) 40, i.e., p�Xd21 .(2.6)

We claim that x0 y0 z0c0. Indeed, assume the contrary, say, p4 (0 : 1 : z0 ). Then for-
mulas (2.4), and (2.6) tell us that u d (1 , z0 ) 40, i.e., z0c1 is a (d11)th root of unity.
On the other hand, by (2.6),

0 4u d21 (p) 4u d21 (0 , 1 , z0 ) 4u d21 (1 , z0 ),

so that z0c1 is a dth root of unity, a contradiction. This proves the claim.
Differentiating (2.4) with respect to x , we obtain

¯

¯x
u d (x , y , z) 4u d21 (x , y , z)1x ¯

¯x
u d21 (x , y , z),

and similarly for y and z . Combining this with (2.6), and keeping in mind that
x0 y0 z0c0, we obtain

u d21 (p) 4 ¯

¯x
u d21 (p) 4 ¯

¯y
u d21 (p) 4 ¯

¯z
u d21 (p) 40.

Thus p is a singular point of Xd21 , contradicting our induction assumption. This com-
pletes the proof of Lemma 2.1 and of Theorem 1.4. o

3. THE SCHWARZENBERGER CONDITIONS

Our proof of Theorem 1.5 in the next section will rely on the following result
about vector bundles on projective spaces.

PROPOSITION 3.1. Suppose E is a continuous vector bundle of rank 1 G rGm22 on
PC

m or an algebraic vector bundle on PF
m , where F is an algebraically closed field. Let

p(t) 411c1 t1R1cr t r be the Chern polynomial of E .
Suppose the (complex) roots w1 , R , wr of p(t) are distinct and lie on the unit circle.

Then either r41 and p(t) 416 t or r42 and p(t) 412 t 2 .

Note that by a theorem of Kronecker, w1 , R , wr are necessarily roots of unity;
however, we shall not use this in the proof.

PROOF. Since w1 , R , wr lie on the unit circle each wi
214 wi is also a root of p(t),

so that

p(t) 4 (12w1 t)R(12wr t).

Let Bk , l4 !
i41

r gk2wi
l

h. Our argument is based on the Schwarzenberger condi-

tions, which require that Bs , m should be an integer for every s�Z; see [9, Theorem
22.4.1].

LEMMA 3.2. (a) Bs , m40 for every s41, R , m22.
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(b) B1, k40 for k43, R , m .

PROOF. (a) Since Bs , m is an integer, it is enough to show that NBs , mNE1. Indeed,
for each i41, R , r ,

Ngs2wi

m
h N G 1

m!
(Ns2wiNRN22wiN) Q (N12wiN QN2wiN QN212wiN) Q

Q (N222wiNRNs2m112wiN)G 1
m!

g(s11) Q s QR Q3h QN12w 2N Q g3 Q4 QR Q (m2s)hG

G
(s11)!(m2 s) !

2m!
4

(m11)

2 gm11
s11 h

G
(m11)

2 gm11
2 h 4 1

m .

Note that we have used the inequality gm11
s11 hF gm11

2 h, which is valid for any
s41, R , m22. Now

NBs , mNG !
i41

r

Ngs2wi

m
h N G r 1

m E1,

and part (a) follows.
(b) Combining part (a) with the identity Bs , m2Bs21, m4Bs21, m21 , we conclude

that Bi , m2140 for i41, R , m23. Repeating this argument, we see that for every
j40, R , m23, and every i41, R , m222 j , we have Bi , m2 j40. Now set i41
and k4m2 j , and part (b) follows. o

We now return to the proof of Proposition 3.1. By the Chinese Remainder theo-
rem, the semisimple Q-algebra F4Q[x]/(p(x) ) is isomorphic to Q(w1 )5R5Q(wd )
via p(x) O (p(w1 ), R , p(wd ) ). Thus for every f (x) �F ,

trF/Q f (x) 4 !
i41

r

f (wi ).

In particular, setting a42(12x)x(212x) �F , and b041, b14222x , b24
4 (222x)(232x), R , bm234 (222x)(232x)R (22m2x) in F , and apply-
ing Lemma 3.2(b), we see that

trF/Q (abi ) 4 (i13)!B1, i1340 for every i40, 1 , R , m23.(3.1)

Note that since 1 , x , R , x r21 are Q-linearly independent in F , so are b0 , R , br21 .
Since we are assuming rGm22, this implies that b0 , b1 , R , bm23 span F . But the
trace form ax, yb 4 trF/Q (xy) is non-singular on F (viewed as an r-dimensional Q-vec-
tor space); thus (3.1) is only possible if a40 in F . In other words, a(wi ) 4 (12wi ) Q
Q (2wi )(212wi )40 or, equivalently, wi461 for every i41, R , r . Since w1 , R , wr

are assumed to be distinct, we conclude that either r41 and w1461 or r42 and
]w1 , w2( 4 ]21, 1(. This completes the proof of Proposition 3.1. o

4. PROOF OF THEOREM 1.5

From now on we will assume that i41. That is, we will be interested in nesting
maps PF

n21K Gr( j , F n ), where 2 G jGn21.
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LEMMA 4.1. Suppose there exists a continuous nesting map f : PC
n21K Gr( j , Cn )

(respectively, an algebraic nesting map f : PF
n21K Gr( j , F n ) ), where 2 G jGn21 and

F is an algebraically closed field.
(a) There exists topological (respectively, algebraic) vector bundles B and C on

PC
n21 (respectively, PF

n21 ) of ranks n2 j and j21 with Chern polynomials p(t) and
q(t) �Z[t] such that p(t)q(t) 411 t1R1 t n21 . In fact, we can take C 4 A / B,
where A and B are defined in (2.1).

(b) n is even and either j4n21 and p(t) 4 t11 or j42 and q(t) 4
4 t11.

PROOF. (a) We specialize the argument of Section 2 to the case where i41. In this
case the cohomology ring H *(Pn21 , F n ) 4H *(Gr(i , F n ), Z) reduces to
Z[h]/(h n40), where h is the class of a hyperplane section in Pn21 (in Section 2 we
denoted h by f(s 1 )). Defining A and B as in (2.1) (with i41), setting C 4 A / B, and
writing t for x1 , we see that

p(t)q(t) 4f(ctot (A) ) 411u 1 (t)1R1u n21 (t) 411 t1R1 t n21 ;

cf. (2.3).
(b) If n43, the polynomial 11 t1 t 2 is irreducible, contradicting part (a). Thus

we may assume nF4. In this case, 1 Gn2 jGn23 or 1 G j21 Gn23, and thus
Proposition 3 (with m4n21) applies to the bundle B or to the bundle C of part (a).
Since p(t) and q(t) have no multiple factors, their roots are nth roots of unity, and
p(1), q(1) c0, we see that the only possibilities for the Chern polynomials are the
ones listed in part (b). o

We now turn to the proof of Theorem 1.5. Part (a) is an immediate consequence of
the above lemma. To prove part (b) of Theorem 1.5, assume that there exists an alge-
braic nesting map

f : PF
n21K Gr( j , F n ).

By Lemma 4.1(b), n is even and j42 or n21. Our goal is to show that (i) j42 is im-
possible, and (ii) if j4n21 then f (l) 4 l »v for some alternating form v on F n , as in
Example 1.2 (for F4C , (ii) was proved in by Roan [11]; we will give a short charac-
teristic-free proof below).

PROOF OF (i). Suppose j42. Consider the exact sequences

0 K OPn21 (21) K OPn21
5n K A K0

0 K B K A K C K0

of algebraic vector bundles on PF
n21 . From the first sequence, we see that

H 0 (PF
n21 , A) 4F n . By Lemma 4.1(b), B is a line bundle with Chern polynomial 11

1t , i.e., B 4 O(1) on PF
n21 . Thus H 0 (PF

n21 , B) 4F n , and the second sequence
yields

(0) KF nKF nKH 0 (PF
n21 , C) K (0),
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which means that C has no global sections. On the other hand, C, being a quotient of
A, is generated by global sections. This contradiction shows that f cannot exist for
j42.

PROOF OF (ii). Assume j4n21. Consider the exact sequence

0 KRn21K O P
qn21
5n

KLK0,

where Rn21 is the tautological bundle on Gr(n21, F n ) 4 P
qn21 . Pulling back this se-

quence to Pn21 via f , we obtain an exact sequence

0 K f *(Rn21 ) K OPn21
5n K f *(L) K0

of vector bundles on Pn21 . Since L is a line bundle generated by global sections, L4
4 OP

qn21 (d) for some dD0. Since f is nesting, R14 OPn21 (21) % f *(Rn21 ). Recall that
the bundles B and C in the statement of Lemma 4 are defined by B 4 f *(Rn21 ) /R1

and C 4 A / B, where A 4 OPn21
5n /R1; cf. (2.1). Thus the line bundle C is isomorphic to

OPn21 /f *(Rn21 ) 4 f *(L). By Lemma 4.1(b), the Chern polynomial of C is 11 t; in
other words, C 4 OPn21 (1 ). On the other hand, C 4 f *(L) 4 f *(OP

qn21 (d) ). This is
only possible if d41 and f is induced by a non-singular linear map

f * : H 0 (P
qn21 , OP

qn21 (1 ) ) KH 0 (Pn21 , OPn21 (1 ) ).

In other words, f is induced by a non-singular linear map f * : F nK (F n )* , where
(F n )* is the dual vector space to F n , Pn214P(F n ) and P

qn214P( (F n )*). Now
v(x , y) 4 f *(x)(y) is a non-singular bilinear form on F n . Since f is nesting, v(x , x) 4
40 for every x�F n , i.e., v is alternating. This shows that f is obtained by the construc-
tion in Example 1.2, as claimed. The proof of Theorem 1.5 is now com-
plete. o

5. PROOF OF COROLLARY 1.6

Corollary 1.6 is an immediate consequence of Theorem 1.5 and the lemma
below.

LEMMA 5.1. The following are in natural (i.e., PGLn-equivariant) correspon-
dence:

(a) algebraic nesting maps f : PF
n21K Gr( j , F n ),

(b) algebraic subbundles of rank j21 of the bundle A 4 On11 / O(21) on
PF

n21 ,
(c) algebraic subbundles of rank j21 of the tangent bundle T(PF

n21 ).
For F4R or C the lemma remains true if «algebraic» is replaced by «continu-

ous».

PROOF. Let Rj be the tautological bundle on Gr( j , F n ) (as in Section 2); in particu-
lar, R14 O(21) is the tautological line bundle on PF

n21 . Given a nesting map
f : PF

n21K Gr( j , F n ), we associate to it the subbundle B 4 f *(Rj ) / O(21) of A of
rank j21; cf. (2.1).
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Conversely, a subbundle B of A of rank j21 lifts to a subbundle B8 of On of rank j
containing O(21), and we can define a nesting map

f : PF
n21K Gr(i , F n )

by p O B8(p). This establishes a natural bijective correspondence between (a) and (b).
To show that (b) and (c) are in a natural bijective correspondence, note that A 4

4T(PF
n21 )(21); see, e.g., [10, p. 6] or [7, p. 409]. The same argument works in the con-

tinuous case.

6. APPENDIX: PROOF OF THEOREM 1.1

For every l� Gr(i , F n ), let

Xl4 ]L� Gr( j , F n )Nl%L(.

Since the sets Gr(i , F n ) and Gr( j , F n ) have the same cardinality, a bijective nesting
map f : Gr(i , F n ) K Gr( j , F n ) may be viewed as a system of distinct representatives
for the collection of subsets ]XlNl� Gr(i , F n )( of Gr( j , F n ). Indeed, given a system
of distinct representatives ]xl(, with xl�Xl , the map defined by f (l) 4xl is nesting
and bijective. Conversely, given f , as in Theorem 1.1, the elements xl4 f (l) form a sys-
tem of distinct representatives for ]Xl(.

Thus, by a theorem of P. Hall (see, e.g., [12, Theorem 5.1.1]), we only need to
check that

NXl1 NRNXlk NFk(6.1)

for every choice of distinct elements l1 , R , lk� Gr(i , F n ).
Let N be the number of j-planes in F n containing a given i-plane. Since

i1 j4n ,

N4NGr( j2 i , F n2 i )N4NGr(n2 j , F n2 i )N4NGr(i , F j)N

is also the number of i-planes in F n contained in a given j-plane. To prove (6.1), we
will count the number of elements in the set

W4 ]( l , L)N where l%L and l4 l1 , R , lk(

in two ways. On the one hand, projecting to the first component, we see that NWN4
4kN . On the other hand, projecting to the second component, we obtain NWNG
GNXl1 NRNXlk NN . Thus

NWN4kNGNXl1 NRNXlk NN

and (6.1) follows. o
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