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Fisica matematica. — The non-linear macroscopic model of Relativistic Extended
Thermodynamics of an ultra-relativistic gas. Nota (*) di FRANCESCO BORGHERO e SEBA-
STIANO PENNISI, presentata dal Socio T. Ruggeri.

ABSTRACT. — The model for an ultra-relativistic gas is here considered in the framework of Extended
Thermodynamics. The closure, satisfying exactly the principles of relativity and of entropy, is obtained
by following the approach «at a macroscopic level». Our results are compared with the ones of the kine-
tic approach.

KEY WORDS: Extended Thermodynamics; Fluid Models; Ultra-relativistic Gas; Entropy Principle.

RIASSUNTO. — Il modello macroscopico non lineare della Termodinamica Estesa Relativistica di un gas
ultra-relativistico. Il modello di un gas-relativistico viene qui preso in considerazione, nell’ambito della
Termodinamica Estesa. Seguendo l’approccio a «livello macroscopico», viene trovata la chiusura soddi-
sfacente esattamente il principio d’entropia e quello di relatività. I nostri risultati vengono confrontati
con quelli dell’approccio cinetico.

1. INTRODUCTION

In Relativistic Extended Thermodynamics the following balance equations are
proposed by Liu, Müller and Ruggeri [1, 2]

¯a V a40, ¯a T ab40, ¯a A abg4 I bg .(1)

V a (particle number – particle flux vector) and T ab (stress – energy – momentum ten-
sor) are assumed as independent variables, while I bg and A abg are constitutive func-
tions. In the kinetic approach to this theory there is only an unknown, i.e. the distribu-
tion function f (x a , p a ), after that V a , T ab and A abg are defined as its moments

V a4� fp a dP , T ab4� fp a p b dP , A abg4� fp a p b p g dP ,(2)

where p a is the 4-momentum of the particle so that we have p a pa42(m0 )2 with m0

the rest particle mass (the light velocity has been taken as unitary); moreover, dP4

4k2g
dp 1 dp 2 dp 3

p 0
is the invariant element of momentum space.

The eqs. (2) show that T ab and A abg are symmetric with respect to all pairs of in-
dices and that the following «trace condition» hold

A ab
b 42(m0 )2 V a .(3)

Consequently, we have that also I bg is symmetric and traceless, as can be easily seen
from eq. (1).

An important physical situation occurs when the quantity g4m0 /(kT) goes
to zero, where k is the Boltzmann constant and T the absolute temperature.

(*) Pervenuta in forma definitiva all’Accademia il 23 ottobre 2003.
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In this case we are dealing with an ultra-relativistic gas, even if this situation
can be achieved in two ways

1. The absolute temperature T goes to infinity,

2. the rest particle mass m0 is zero.

The first of these cases, can be obtained by taking the limit of the general one with
TKQ , and interesting results to this regard are exposed in [2-4]. The second one
needs an independent treatment. In fact, the eqs. (2) show that the following «trace
conditions» substitute the eq. (3)

T b
b 40, A ab

b 40.(4)

In this way V a and T ab have only 13 independent components, despite the fact that
the eqs. (1) have still 14 independent components. In [5] this problem has been over-
came by taking as independent variables V a , T ab and one of the components of A abg

while I bg and the remaining components of A abg are constitutive functions; after that,
the entropy principle and the relativity principle have been imposed approximately
with respect to thermodynamical equilibrium. In [6] has been noted that the condi-
tions, corresponding to a given order, are independent from those of the other orders;
after that an exact solution has been found, but only up to second order. In the
present paper these conditions are imposed up to whatever order.

So, let us proceed in this direction; it is well known that the entropy principle for
the balance equations (1) amounts to assuming the existence of the Lagrange multipli-
ers j , l b , S bg and of a 4-vectorial function h 8a (related to the entropy – entropy flux)
such that [1, 2]:

V a4
¯h 8a

¯j
, T ab4

¯h 8a

¯l b
, A abg4

¯h 8a

¯S mn
gg b

m g g
n 2

1
4

gmn g bgh,(5)

where the Lagrange multipliers have been taken as independent variables and it has
been taken into account that S bg is symmetric and traceless.

At this point we see that only the representation of h 8a is needed; in fact, from eqs.
(5) one obtains those of V a , T ab , A abg. The symmetry conditions on T ab and A abg ,
and the trace condition (4), give restrictions on the expression of h 8a.

Let us start to solve these conditions; to this regard it is useful to remind that in [7,
8] it was shown that the symmetry condition on T ab amounts to assuming the exis-
tence of the scalar function f such that

h 8a4
¯f
¯l a

,(6)

so that only the representation of f , satisfying all the other conditions, is needed. At
this stage there are three ways in which to proceed:

1) Approach at a macroscopic level: the kinetic approach is used only to obtain the
above mentioned information on the form of eqs. (1) and (4); after that the most gen-
eral expression f is searched such that A abg is symmetric and the trace conditions are
satisfied.
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2) Approach at a kinetic level: it is always kept into account that the fields in the
equation (1) are defined from (2) in terms of the distribution function f , which is se-
lected according to the entropy principle [3]. The eqs. (2) show that, with this ap-
proach, the symmetry conditions are automatically satisfied.

3) Approach with the Maximum Entropy principle: Another approach followed in
literature imposes the Maximum Entropy principle [9]; it isn’t necessary to dwell up-
on it because, in [3], Boillat and Ruggeri have proved that it is equivalent to their ap-
proach at a kinetic level.

Here we follow the first of these approaches; in this way in Section 2, by imposing
only the symmetry condition on A abg and the trace conditions, the following expres-
sion for f will be obtained

f4 !
n40

Q 1
n!

Bc
n 1 s 1 R n n s n S n 1 s 1

R S n n s n
,(7)

which is expressed in terms of the tensors

Bc
n 1 s 1 R n n s n 4 !

S40

n g2n
2S
h g2(2n12)

2S11
A2n (j) h (n 1 s 1

R h n S s S U n S11 U s S11
R U n n U s n ) ,(8)

where round brackets enclosing some indices denote symmetrization over those in-
dices and the following definitions are used

U a4 (2lm l m )21/2 la , h ab4g ab1U a U b , g4k2la l a ,(9)

and A2n (j) are arbitrary single-variable functions.
In Section 4 it is shown that the exact particular solution, which has been found in

[6], is a particular case of the present one, when A2h (j) 40 for every hF3. In Section
5, the result of the present work is compared with the corresponding one of the ap-
proach at a kinetic level, investigated to a greater extent (see [3, 4, 10, 11]). There it is
obtained that

f4�F(j1l a p a1S ab p a p b ) dP ,(10)

where the single-variable function F(X) can be obtained from the distribution func-
tion at equilibrium, through

F 9 (X) 4 feq .(11)

In particular, Jüttner’s expression [12, 13] for feq can be used; it reads

feq4
v

h 3
(e X/k61)21

,(12)

where the upper and the lower signs refer to Fermions and Bosons respectively, k is
the Boltzmann constant, h is the Planck constant and v42 s11 for particles with
spin s4h/2.

In Section 5, the expansion of eq. (10) is performed around the state with S ab40
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and we find again the result (7) and (8), but A2n (j) are no more arbitrary function; on
the contrary, they are given by

A2n (j) 44p�
0

Q

F (n) (j1s) s 2n11 ds .(13)

We note that from eq. (13), with two integrations by parts, it follows

(14) A 82n (j) 42n(2n11) A2n22 (j)1

14p lim
sK1Q

kF (n) (j1s) s 2n112(2n11) F (n21) (j1s) s 2nl42n(2n11) A2n22 (j),

where we have taken into account eqs. (11) and (12) when calculating the limit in eq.
(14).

If we leave at this stage the kinetic approach, i.e., if we don’t consider any more the
eqs. (11), (12) and (13) but we still keep the recurrence formula (14) (which is one of
their consequences), we obtain the same result (24) of the approach at a macroscopic
level, but only if it is constrained by the further condition which will be considered in
Section 3.

2. THE SYMMETRY CONDITION ON A abg
AND THE TRACE CONDITIONS

Let us consider the tensor

(15) B a 1 R a p 4 !
S40

[p/2] g p
2S
h 1

2S11
gp , 2S (j , g) h (a 1 a 2

R h a 2S21 a 2S U a 2S11
R U a p ) ,

where the definitions (9) are used. In [14, Appendix A], it has been proved that the

tensor C a 1 R a p11 4
¯B a 1 R a p

¯l a p11

is symmetric iff gp , 2S satisfies the following recurrence
formula

gp , 2S224
21

2S11
yg ¯gp , 2S

¯g
1 (p22S11) gp , 2Sz .(16)

Moreover, it has been obtained that

(17) ¯B a 1 R a p

¯l a p11

4

4 !
S40

[ (p11)/2]gp11
2S

h 1
2S11

Gp11, 2S (j , g) h (a 1 a 2
R h a 2S21 a 2S U a 2S11

R U a p11 ) ,

with Gp11, 2S satisfying the eq. (16) and its value with the greatest value of S is

Gp11, p42 ¯

¯g
gp , p

Gp11, p114
p12

g gp , p21

if p is even

if p is odd.
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We have also that D a 1 R a p12 4
¯C a 1 R a p11

¯l a p12

is symmetric because Gp11, 2S satisfies the
eq. (16).

Similarly, with the same passages of [14, Appendix B] we obtain that the
relation

B mnn 1 s 1 R n N s N gmn40,(18)

holds iff gp , 2S satisfies the equation

gp , 2S2gp , 2S2240 for S41, R , [p/2].(19)

Substitution of gp , 2S22 from eq. (19) allows us to rewrite eq. (16) as

g
¯gp , 2S

¯g
1 (p12) gp , 2S40,

which can be integrated and gives

gp , 2S4g2(p12) Ap (j)(20)

where Ap (j) are constants, with respect to g , arising from integration. They don’t de-
pend on S for eq. (19).

The derivative of eq. (18) with respect to l a is

C amnn 1 s 1 R n N s N gmn40.(21)

Similarly, the derivative of this equation with respect to l b is

D abmnn 1 s 1 R n N s N gmn40.(22)

If the above conditions are satisfied, by eqs. (6), (5)2, 3 and (7) we have that

h 8a4 !
n40

Q
1
n!

C an 1 s 1 R n n s n S n 1 s 1
R S n n s n

,

T ab4 !
n40

Q
1
n!

D abn 1 s 1 R n n s n S n 1 s 1
R S n n s n

,

A abg4
¯h 8a

¯S mn
gg b

m g g
n 2

1
4

gmng bgh4!
n41

Q
1

(n21)!
C abgn 1 s 1 R n n21 s n21S n 1 s 1

RS n n21 s n21
1

2
1
4

g bg !
n41

Q
1

(n21)!
C amnn 1 s 1 R n n21 s n21 gmn S n 1 s 1

R S n n21 s n21
4

4 !
n41

Q
1

(n21)!
C abgn 1 s 1 R n n21 s n21 S n 1 s 1

R S n n21 s n21
,

where eqs. (4)2 and (20) have been used. From eq. (22) we see also that the above ex-
pression of T ab satisfies the trace condition (4)1 . Moreover, the symmetry conditions
on T ab and A abg hold. By using eqs. (15) and (20), it results the expression (8).

3. A FURTHER CONDITION DUE TO THE PRESENCE OF THE ELECTROMAGNETIC FIELD

For the sake of completeness, we recall that in literature [15, 16], a further condi-
tion has been found for the case of a charged gas and when the electromagnetic field
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acts as an external body force. For our case it reads

V[a l b]12T g
[a S b]g40.(23)

Regarding this condition, we have to say that it has been studied in [17] for the non
ultra-relativistic case, leading to many identities and to some equations which deter-
mine the functions A4 , A6 , A8 as polynomials in the variable j , except for a corre-
sponding number of constants; here the same result is obtained, for every one of the
functions A2h (j), i.e.

(24) A2h (j) 4 (2h11)! B2h (j), where the B2h satisfy the recurrence formula

B44C4 , B2h12 (j) 4�B2h (j) dj1C2h12 ,

for hF2 and with C4 , C2h12 constants arising from integration.
In order to prove this result, it is useful to note that from eq. (20) it

follows

Gp11, p4g2(p13) A 1
p11 (j)

with A 1
p114 (p12) Ap (j), and this is true in both cases, p even or p odd. Moreover,

also C a 1 R a p11 satisfies the conditions to have a symmetric derivative with respect to
l a and a zero trace; it follows that Gp11, 2S doesn’t depend on S. Therefore,

Gp11, 2S4g2(p13) A 1
p11 (j).(25)

Similarly, we have

(26) ¯ 2 B a 1 R a p

¯l a p11
¯l a p12

4

4 !
S40

[ (p12)/2]gp12
2S

h 1
2S11

u p12, 2S h (a 1 a 2
R h a 2S21 a 2S U a 2S11

R U a p U a p11 U a p12 ) ,

with

u p12, 2S4g2(p14) A 2
p12 (j) 4g2(p14) (p13) A 1

p11 (j) 4g2(p14) (p13)(p12) Ap (j).

Let us consider now eq. (23). We see that by use of eqs. (6) and (5)1,2 , it can be written
as

¯ 2 f
¯j¯l [a

l b]12
¯ 2 f

¯l g ¯l [a
S b]g40.(27)

Now the following identity holds, as a consequence of only the representation
theorems,

¯ 2 f
¯j¯l [a

l b]12
¯ 2 f

¯j¯S g[a
S b]g40.(28)

It is simply a consequence of the fact that f depends on j , l a , S ga through j , G04

4l a la , G14l g Sga l a , G24l g Sgb S ba la , G34l g Sgb S bd Sda l a , Q24Sgb S bg ,
Q34Sgb S bd Sd

g , Q44Sgb S bd Sde S eg.
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The identity (28) allows us to write the condition (27) as

u ¯ 2 f
¯l g ¯l [a

2
¯ 2 f

¯j¯S g[a

v S b]g40,(29)

and this is surely satisfied, if

¯ 2 f
¯l g ¯l a

4
¯ 2 f

¯j¯S ga
1Dg ga ,(30)

holds, where the presence of the scalar D is due to the fact that the components of S ga

are not independent because its trace is zero. By using eq. (7), we see that eq. (30)
becomes

!
n40

Q
1
n!

¯ 2

¯l g ¯l a
Bc

n 1 s 1 R n n s n S n 1 s 1
R S n n s n

4

4 !
n41

Q
1

(n21)!
¯

¯j
B n 1 s 1 R n n21 s n21 ga S n 1 s 1

R S n n21 s n21
1D * g ga4

4 !
N40

Q
1

N!
¯

¯j
B n 1 s 1 R n N s N ga S n 1 s 1

R S n N s N
1D * g ga ,

which is surely satisfied if D *40 and

¯ 2 B n 1 s 1 R n n s n

¯l g ¯l a
4

¯B n 1 s 1 R n n s n ga

¯j
.(31)

From eqs. (26) and (10) we see that eq. (31) is equivalent to

u 2n12, 2S4
¯g2n12, 2S

¯j
, i.e., A 82n124 (2n12)(2n13) A2n .(32)

Eq. (32) can be rewritten by use of the definition (24)1 as

B 82n124B2n .(33)

This equation can be integrated to give eq. (24)2 , which we wanted to prove.

4. A COMPARISON WITH THE SECOND ORDER APPROXIMATION

In [6] the same problem has been considered of the present work, but restricting
to search only one of the exact solutions, and up to second order with respect to equi-
librium. We want now to verify that those results are a particular case of the corre-
sponding ones in the present paper. In [6], the following expression has been found
for f (the apex «2» indicates that it is an expression up to second order with respect
to S mn)

(34) f
2

4G0
21 k0 (j)1k1 (j)18G0

23 q0 (j) S mn lm ln1

1g0 (j)[24G0
25 (S mn lm ln )2212G0

24 l m Smn S nd ld1G0
23 S mn Smn ]1g1 (j) S mn Smn ,

with G04l mlm so that, in the notation of the present work, we have G042g 2.
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Instead of this, the corresponding expression for f , which has been found in the
present paper, is

f
2

4g22 A0 (j)1g24 A2 (j) gU n 1 U s 1 1
1
3

h n 1 s 1h S n 1 s 1
1

1
1
2

g26 A4 (j) gU n 1 U s 1 U n 2 U s 2 12h (n 1 s 1 U n 2 U s 2 )1
1
5

h (n 1 s 1 h n 2 s 2 )h S n 1 s 1
S n 2 s 2

4

4g22 A0 (j)1
4
3

g24 A2 (j) U n 1 U s 1 S n 1 s 1
1

1
1
2

g26 A4 (j) gU n 1 U s 1 U n 2 U s 2 1
2
3

h n 1 s 1 U n 2 U s 2 1
4
3

h n 1 n 2 U s 1 U s 2 1

1
1
15

h n 1 s 1 h n 2 s 2 1
2
15

h n 1 n 2 h s 1 s 2h S n 1 s 1
S n 2 s 2

4

4g22 A0 (j)1
4
3

g24 A2 (j) U n 1 U s 1 S n 1 s 1
1

1
1
2

g26 A4 (j)g 16
5

U n 1 U s 1 U n 2 U s 21
8
5

g n 1 n 2 U s 1 U s 21
2
15

g n 1 n 2 g s 1 s 2h S n 1 s 1
S n 2 s 2

.

By using also the relation la4gU a , we see that the two results agree exactly if and
only if

k1 (j) 40, k0 (j) 42A0 (j), q0 (j) 42
1
6

A2 (j),

g1 (j) 40, g0 (j) 4
21
360

A4 (j).
(35)

Now some of these relations, in particular eqs. (35)2,3,5 give simply the correspondence
between the expressions k0 (j), q0 (j), g0 (j) of [6] and the functions A0 (j), A2 (j),
A4 (j) in the present paper. The eqs. (35)1,4 may induce us to think that the present
work is more restrictive than [6]; however, from eq. (34) we see that the terms with
k1 (j) and g1 (j) don’t depend on la , so that they give a zero contribution to h 8a4

4
¯f
¯l a

. But we know that f contributes to the model only by means of h 8a ; then the

present result isn’t more restrictive than the corresponding one in [6].

5. A COMPARISON WITH THE KINETIC APPROACH

We have already reported, in the introduction, the solution (10) to our problem,
which has been found by Boillat and Ruggeri in the framework of the kinetic ap-
proach; we have also seen that it is a particular solution of the present approach at a
macroscopic level. We have postponed to prove in this section that the expansion of
eq. (10) around S mn40 coincides with eqs. (7) and (8), but with A2n given by eq. (13).
Now it is evident that from eq. (10) it follows eq. (7) with

Bc
n 1 s 1 R n n s n 4�F (n) (j1l m p m ) p n 1 p s 1

R p n n p s n dP .(36)
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To evaluate this tensor, it is useful to calculate the integral

B a 1 R a m 4�F(j1l m p m ) p a 1
R p a m dP .(37)

Let us start by calculating, in the reference frame with Umf (1 , 0 , 0 , 0), the following
tensor

(38) h b 1
a 1

R h b r
a r

Ua r11
R Ua m

B a 1 R a r a r11 R a m4�F(j1gp 0 )(p 0 )m2r (p 0 )r q b 1
R q b r dP ,

where we have used q b j 4h b j
a j

p a j 1
p 0

with j41, 2 , R r. By using the following
change of variables

p 04r , q 14sin u cos f , q 24sin u sin f , q 34cos u ,(39)
the eq. (38) assumes the form

h b 1
a 1

R h b r
a r

Ua r11
R Ua m

B a 1 R a r a r11 R a m 4Gm11 (j , g) I b 1 R b r ,

with

Gm11 (j , g) 4�
0

Q

F(j1gr) rm11 dr

I b 1 R b r 4�
0

2p

df�
0

p

q b 1
R q b r sin udu4

.
/
´

4p
r11

h (b 1 b 2
R h b r21 b r )

0

if r is even

if r is odd,

where, in the last passage, we have used a well known result (a proof can be found in
[18, Appendix A]).

Moreover, the following identity holds (see, for example, [18, Appendix A])

B a 1 a 2 R a m 4 !
r40

m

(21)m2 rgm
r h h (a 1

b 1
R h a r

b r
U a r11

R U a m ) Ub r11
R Ub m

B b 1 R b r b r11 R b m ,

which, for the previous result, becomes (we can put r42 s because we obtain zero
when r is odd)

B a 1 a 2 R a m4 !
S40

[m/2]

(21)m22Sgm
2Sh Gm11 (j , g) 4p

2S11
h (a 1 a 2

R h a 2S21 a 2S U a 2S11
R U a m ) .

Moreover, with the change of variable r4
s
g , we obtain

Gm11 (j , g) 4g2(m12) G
A

m11 (j) with G
A

m11 (j) 4�
0

Q

F(j1s) sm11 ds .

Now from eqs. (36) and (37), it follows

Bc
n 1 s 1 R n n s n 4

¯n

¯j n B n 1 s 1 R n n s n ;

then we find eq. (8), provided that

A2n (j) 44pG
A

2n11
(n) (j) ,

from which eq. (13) follows.
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