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Funzioni di variabili complesse. — Privilege on strictly convex domains. Nota (*)
di MIHAI PUTINAR e SEBASTIAN SANDBERG, presentata dal Socio C. De Concini.

ABSTRACT. — We adapt the privilege theorem of Douady and Pourcin from polydomains to strictly
convex domains in the complex space.

KEY WORDS: Disk algebra; Banach module; Division problem; Convex domain.

RIASSUNTO. — «Privilege» su domini strettamente convessi. Adattiamo il «privilege theorem» di Do-
uady e Pourcin da polidomini ai domini strettamente convessi nello spazio complesso.

1. INTRODUCTION

Let V be a bounded domain of Cn , nF1, and let O(V) be the space of complex
analytic functions in V . For a Banach algebra of analytic functions B4B(V) % O(V),
we denote by M(m , n ; B) the space of m3n matrices with entries in B . Fix a matrix
d�M(m , n ; B) and f�B n . Division problems of the type:

du4 f , u�B m ,(1)

where u is the unknown, are fundamental in complex analysis. In this note we study
conditions under which problem (1) is solvable if and only if the simpler equation,
without control on the boundary behaviour, is solvable:

du 84 fNV , u 8� O(V)m .(2)

Early in the development of modern complex analytic geometry the importance of
such division problems was singled out by A. Douady [3, 4], who applied them as a
technical tool to deformation theory. Later on, developments and ramifications of his
ideas have been considered by Pourcin [9] and Maltsiniotis [8]. It is interesting to re-
mark that very recently, problems in electrical engineering led to similar division ques-
tions, see [2].

The aim of the present Note is to study the division problem (1), and its interior re-
striction (2), on strictly convex domains of Cn . This is done on the disk algebra of the
domain, by using in an essential way the existance of peak functions at points in the
boundary of the domain. The classical results of Douady and collaborators, proved on
convex polydomains, appear in the globalization of the local data. The main theorem
below asserts that, in the case B is the disk algebra, equation (1) is equivalent to (2), if
and only if rk d(z) is constant for z�¯V . In its turn, this geometric condition has deep
implications for the homology of the modules Coker d , and hence the possibility of
classifying them by a manageable moduli space.

(*) Pervenuta in forma definitiva all’Accademia il 6 ottobre 2003.
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2. MAIN RESULT

Let V be a bounded, strictly convex domain of Cn and let A(V) 4C(V)OO(V),
be the associated algebra of analytic functions in V which are continuous up to the
boundary. Then A(V) is a commutative Banach algebra with identity, whose maximal
ideal space coincides with V. We do not assume that the boundary of V is
smooth.

A Banach module Y over A(V) is called privileged if there exists a resolu-
tion

0 KA(V)np K
dp

Q Q QKA(V)n1 K
d1

A(V)n0 KYK0,

where dq�M(nq11 , nq ; A(V) ).

LEMMA 2.1. Suppose that Y is a privileged A(V)-module with a resolution

0 KA(V)np K
dp

Q Q QKA(V)n1 K
d1

A(V)n0 KYK0,

and that a�¯V . Then the complex

0 KCnpK
dp (a)

Q Q QKCn1K
d1 (a)

Cn0(3)

is exact.

PROOF. Suppose that j�Ker dk (a). Let W(z) �A(V) be a peak function for a , that
is

NW(z)NE1, z� V0]a(, W(a) 41.

Since the map dk has closed range, and

lim
nKQ

Vdk (W n j)VQ , V40,

it follows that dist (W n j , Ker dk ) converges to 0 . Since Ker dk4Im dk11 , we can
choose h n�A(V)nk11 such that

VW n j2dk11 h n VQK0,

as nKQ . In particular

j4 lim
nKQ

dk11 (a) h n (a),

and since Im dk11 (a) %Cnk is closed,

j�Im dk11 (a).

Thus, in the conditions of the lemma, for an arbitrary point a�¯V , an Euler char-
acteristic argument shows that:

rk d1 (a) 4n02n11n22R1 (21)p np .

Therefore, for a privileged module Y4Coker (d1 ), the function a O rk d1 (a) is inde-
pendent of a . The remarkable fact is that this rank condition is equivalent to privilege,
and to other rather restrictive properties of the module Y.

The main result is stated as follows.
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THEOREM 2.2. Let V%Cn be a bounded, strictly convex domain and let
d�M(n1 , n0 ; A(V) ). Then the following conditions are equivalent.

(i) The range of d is closed.

(ii) The function z O rk d(z) is constant on ¯V .

(iii) The natural morphism

Coker (d : A(V)n1 KA(V)n0 ) O Coker (d : O(V)n1 KO(V)n0 )

is injective.

(iv) There exists a finite, free resolution of finite type, Banach A(V)-mod-
ules:

0 KA(V)np K
dp

Q Q QK
d2

A(V)n1 K
d

A(V)n0 KCoker dK0.

(v) There exists a linear, continuously C-split resolution:

0 KA(V)np K
dp

Q Q QK
d2

A(V)n1 K
d

A(V)n0 KCoker dK0.

PROOF. Trivially (v) ¨ (iv) ¨ (i).
An adaptation of the proof of Lemma 2.1 yields (i) ¨ (ii). Indeed, assume that the

map d : A(V)n1 KA(V)n0 has closed range, and consider the exact sequence:

Ker dK
i

A(V)n1 K
d

A(V)n0 ,

where i is the inclusion map. Fix a point a�¯V and a vector j�Ker d(a). Arguing as
in the proof of Lemma 2.1, there exists a sequence h n�Ker d with the property that
lim

nKQ
(h n2f n j) 40. In particular, lim

nKQ
(h n (a)2j) 40 in Cn1 . Thus j� i(a) Ker d ,

since the inclusion and evaluation map i(a) : Ker dKCn1 has closed range. Remark
that i(a) depends continuosuly on a , in the operator norm.

Hence, for every point a�¯V we have proved the equality:

Im i(a) 4Ker d(a).

But the dimensions of the two sides are lower, respectively upper semicontinuous. In
conclusion the function dim Ker d(a) is constant, therefore the rank of the matrix d(a)
is also constant for all a�¯V .

By Cartan’s theory, the module Coker (d : O(V)n1 K O(V)n0 ) carries a natural
Fréchet space topology which makes the map (iii) continuous. Consequently,
(iii) ¨ (i).

PROOF of (ii) ¨ (v). Let E be the subset of V where d(z) has less than maximal
rank m . The set E is analytic and contained in V , hence it is finite. For every point
z� V 0E there is a fundamental system of neighbourhoods Uz of z such that

Coker (d : A(Uz )n1 KA(Uz )n0 ) CA(Uz )m .(4)

Let a�E be a jumping point for the rank function. Then there exist polydisks Ua

centered at a and relatively compact in V , so that

rk d(z) 4m , z� Ua 0]a(.
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By Douady’s privilege theorem, [3, Proposition 6], or [9, Theorem 3.2], there exists a
topologically C-split resolution:

0 KA(Ua )mq K
dq

Q Q QK
d2

A(Ua )m1 K
d

A(Ua )m0 KCoker dNA(Ua )K0,(5)

where the dimensions m0 , m1 , R , mq may depend on a .
Next we divide the space by a rectangular grid, parallel to the real coordinate axes,

so that each cell intersects V into a convex set contained in one of the neighbourhoods
Uz , z� V 0E , or Ua , a�E . Since the domain V was supposed to be convex, a repeat-
ed application of Cartan’s lemma of invertible matrices (see for details [3, Théorème
6.3]) allows us to «glue» together the resolutions (4) or (5) into a single, topologically
C-split, finite free resolution of Coker d, as in the statement (5).

PROOF of (v) ¨ (iii). This part of the proof requires a localization argument. We
repeat, with minor modifications, the corresponding proof in [9], combined with a
standard sheaf localization of the disk algebra borrowed from local spectral theory,
see [5].

Let U%Cn be an arbitrary Stein open set, and let:

A(U) 4 O(UOV)OC(UOV).

The existence of local, Fréchet analytic soft resolutions of the disk algebra prove that
A is a sheaf of Fréchet modules over O, with

H 0 (Cn , A) 4A(V), supp A 4 V,

and

A NV4 OV .
Moreover, A is acyclic on Stein open subsets of Cn . For proofs and further applica-
tions of such localization techniques see Chapter 4 of [5].

We assume that the complex of Banach A(V)-modules:

0 KA(V)np K
dp

Q Q QK
d2

A(V)n1 K
d

A(V)n0 KYK0(6)

is split (topologically and C-linearly), where Y4Coker d. We can assume that 0 �V ,
so that, by convexity, the homothety z O rz , 0 E rG1, maps V into itself.

Due to the stability of exactness of split complexes under small perturbations of
the boundaries, see for instance [5], there exists eD0 with the property that the
complex:

0 KA(V)npK
dp (rz)

Q Q QK
d2 (rz)

A(V)n1K
d(rz)

A(V)n0

is still exact and has separated 0-th order homology, for every z�V and 12eE rE1.
But this is equivalent to the fact that the complex

0 KA(rV)np K
dp

Q Q QK
d2

A(rV)n1 K
d

A(rV)n0

is exact and has separated 0-th order homology for 12eE rE1.
Since the topology of the nuclear Fréchet space O(V) can be given by the sup-

norms on rV, rE1, a Mittag-Leffler type argument (and Cartan’s theorem A) shows
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that the complex of sheaves:

0 K OV
np K

dp

Q Q QK
d2

OV
n1 K

d
OV

n0

is exact.
On the other hand, since rk d(z) is constant for z close to the boundary of V , for

every point a�¯V , there exists a fundamental system of Stein neighbourhoods Ua ,
with the property that the complex:

0 KA(Ua )np K
dp

Q Q QK
d2

A(Ua )n1 K
d

A(Ua )n0

is split exact.
Thus, by putting together these local observations, we infer that the complex of

Fréchet analytic sheaves

0 K Anp K
dp

Q Q QK
d2

An1 K
d

An0 K Y K0

is exact.
An application of the long exact sequence of cohomology shows that Y 4

4Coker (d : An1 K An0 ) is acylic on Stein open sets, it is supported by V and

H 0 (Cn , Y) 4Y .

Moreover, Y is locally A-free on an open neighbourhood of ¯V . In conclusion, the re-
striction map

r : Y K Y NV ,

is injective. And it remains injective at the level of global sections:

r : H 0 (Cn , Y) KH 0 (V , Y).

Finally, since:

Coker (d : A(V)n1 KA(V)n0 ) 4H 0 (Cn , Y)

and

Coker (d : O(V)n1 KO(V)n0 ) 4H 0 (V , Y),

assertion (iii) follows.
This finishes the proof of the theorem.
To illustrate the theorem, we give a simple application, in the spirit of the Gleason

problem.

PROPOSITION 2.3. Let V be a bounded strictly convex domain in Cn and let
f1 , f2 , R , fk�A(V), not all identically equal to zero. The map:

( f1 , f2 , R , fk ) : A(V)kKA(V)

has closed range if and only if:

inf
a�¯V

(Nf1 (a)N1R1Nfk (a)N) D0.(7)

In this case a function g�A(V) belongs to the ideal generated by f1 , f2 , R , fk in
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A(V) if and only if:

gz� ( f1 , f2 , R , fk ) Oz ,

in the sense of germs of analytic functions, for every common zero z�V: f1 (z) 4 f2 (z) 4

4R4 fk (z) 40.
Similarly, for every k-tuple of non-identically to zero functions f1 , f2 , R , fk in

A(V), the map:

( f1 , f2 , R , fk )T : A(V) KA(V)k ,

has closed range if and only if the same non-vanishing condition (7) holds.
It would be interesting to know whether conditions (i)-(v) in the theorem are also

equivalent to the closure of the range of d : X(V) KX(V), where X(V) is the
Bergman, Hardy, or a similar Banach space of analytic functions on V .

To end this Note we add a few simple examples. First we remark that the main re-
sult of this Note does not hold on non-strictly convex domains, as for instance the case
of a polydisk shows. Indeed, take for instance the polydisk D 24 ]z ; Nz1N , Nz2NG1(

in two complex variables. Then the multiplication map:

z1 : A(D 2 ) KA(D 2 ),

has closed range, although the rank of the 131 matrix z1 has discontinuities on the
boundary of D 2 . The key point is that the rank of z1 is constant on the distinguished
boundary of D 2 , see [3] and [9].

On the other hand, for the unit ball B� C 2 , we have just proved that the
map:

z1 : A(B) KA(B),

does not have closed range.
The same conclusion holds for the map:

z1 : A 2 (B) KA 2 (B),

where A 2 (B) stands for the Bergman space of the ball. Indeed,

Vz1
p z2

q
V

24�
B

Nz1
p z2

qN2 dArea4
p 2 p! q!

(21p1q) !
.

This shows that the sequence in q:

Vz1
p11 z2

q
V

2

Vz1
p z2

q
V

2
4

p11
31p1q

,

does not remain bounded from below. Therefore the injective multiplication map z1

cannot have closed range.
Finally we observe that the corresponding picture for the algebra A Q (B) 4

4 CQ (B)O O(B) is simpler. It is known that the map

z1 : A Q (B) KA Q (B),

has closed range. For a proof and a discussion of analytic divisibility problems in
A Q (V) we refer to [1].
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