Rendiconti Lincei Matematica e Applicazioni

Viorel Barbu, Giuseppe Da Prato, Arnaud Debussche

Essential m-dissipativity of Kolmogorov operators corresponding to periodic 2D-Navier Stokes equations

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 15 (2004), n.1, p. 29-38.

Accademia Nazionale dei Lincei
http://www.bdim.eu/item?id=RLIN_2004_9_15_1_29_0

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

> Articolo digitalizzato nel quadro del programma
> bdim (Biblioteca Digitale Italiana di Matematica)
> SIMAI \& UMI
> http://www.bdim.eu/

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei Lincei, 2004.

Analisi matematica. - Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2 D$-Navier Stokes equations. Nota (*) di Viorel Barbu, Giuseppe Da Prato e Arnaud Debussche, presentata dal Socio G. Da Prato.

Abstract. - We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space $L^{2}(H, v)$ where v is an invariant measure.

Key words: Stochastic Navier-Stokes equations; Kolmogorov operators; Invariant measures.

Riassunto. - Essenziale m-dissipatività dell'operatore di Kolmogorov associato all'equazione di Na-vier-Stokes stocastica. Si dimostra l'essenziale m-dissipatività dell'operatore di Kolmogorov associato al flusso dell'equazione di Navier-Stokes stocastica con condizioni periodiche in uno spazio $L^{2}(H, v)$ dove v è una misura invariante.

1. Introduction

We are here concerned with the following stochastic Navier-Stokes equation,

$$
\left\{\begin{array}{l}
d X=\left(v_{0} \Delta X+(X \cdot \nabla) X\right) d t+\nabla p d t+\sqrt{C} d W \text { in } D \times \mathbb{R}^{+}, \tag{1.1}\\
\operatorname{div} X=0 \text { in } D \times \mathbb{R}^{+}, \\
X(t, \cdot) \text { is periodic with period } 2 \pi, \int_{D} X(t, \xi) d \xi=0 \\
X(0, \xi)=x(\xi) \text { in } D,
\end{array}\right.
$$

where D is the square $[0,2 \pi]^{2}$. The unknown X represents the velocity and p is the pressure, $C \in L(H)$ is a linear operator and W is a cylindrical Wiener process in H associated with a stochastic basis $\left(\Omega, \mathscr{F}, \mathbb{P},\left\{\mathscr{F}_{t}\right\}_{t \geqslant 0}\right)$. The Hilbert space H is defined as

$$
H=\left\{x \in\left(L^{2}(D)\right)^{2}: \operatorname{div} x=0 \text { in } D, \int_{D} x(\xi) d \xi=0\right\}
$$

Moreover we set

$$
V=\left(H_{\#}^{1}(D)\right)^{2} \cap H
$$

where the subscrit \# means periodicity.
The operator $C \in L(H)$ is nonnegative, symmetric and of trace class and W is H-valued.

Moreover, we introduce the Stokes operator

$$
A=v_{0} P \Delta, \quad D(A)=V \cap\left(H_{\#}^{2}(D)\right)^{2}, \quad V=\left\{y \in\left(H_{\#}^{1}(D)\right)^{2}: \operatorname{div} y=0\right\}
$$

and set

$$
(B y, v)=b(y, y, v), \quad v \in V
$$

where

$$
b(y, z, v)=\sum_{i, j=1}^{2} \int_{D} y_{i} D_{i} z_{j} v_{j} d \xi
$$

Then it is classical that problem (1.1) is equivalent to

$$
\left\{\begin{array}{l}
d X(t)=(A X(t)+B X(t)) d t+\sqrt{C} d W(t) \tag{1.2}\\
X(0)=x
\end{array}\right.
$$

We shall assume in all the paper that

Hypothesis 1.1. $\operatorname{Tr}[C(-A)]<\infty$.

It is well known, see e.g. [6] that (1.1) has a unique solution $X=X(t, x)$. We shall denote by P_{t} the associated transition semigroup

$$
\begin{equation*}
P_{t} \varphi(x)=\mathbb{E}[\varphi(X(t, x))], \quad t \geqslant 0, \quad x \in H, \quad \varphi \in B_{b}(H), \tag{1.3}
\end{equation*}
$$

where $B_{b}(H)$ is the space of all Borel bounded mappings $\varphi: H \rightarrow \mathbb{R}$ and \mathbb{E} means expectation. Under Hypothesis 1.1, there exists at least one invariant measure v for P_{t}. Even if this fact is well known, we shall present a proof in $\$ 2$ for the reader's convenience and also because we shall obtain, as a byproduct, an estimate needed later. Moreover, under some mild non degeneracy conditions, this invariant measure is unique $[2,6-9,11]$. We do not need any non degeneracy condition here and fix one invariant measure v from now on. Therefore, P_{t} can be uniquely extended to a contraction Markov semigroup in $L^{2}(H, v)$, still denoted by P_{t}. We shall denote by N its infinitesimal generator. The main result of this paper is that N is the closure in $L^{2}(H, v)$ of the Kolmogorov operator N_{0}

$$
\begin{equation*}
N_{0} \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[Q D^{2} \varphi(x)\right]-(A x+B(x), D \varphi(x)), \quad x \in H, \quad \varphi \in \mathcal{E}_{A}(H), \tag{1.4}
\end{equation*}
$$

where $\mathscr{E}_{A}(H)$ (the space of exponential functions) is the linear span of all functions (more precisely all real and imaginary parts of all functions)

$$
\varphi_{b}(x)=e^{i(b, x)}, \quad x, b \in D(A) .
$$

In other words, we show that N is an extension of N_{0} and that $\delta_{A}(H)$ is a core for N.

This result generalizes a similar one, see [1] that was proved under the unpleasent assumption that the viscosity ν_{0} is sufficiently large (notice, however, that the result in [1] is valid also for Dirichlet boundary conditions). In the present paper the viscosity v_{0} will not play any role, it will be put equal to 1 in what follows.

This result of m-dissipativity allows to identify the abstract generator N with the closure of a concrete differential operator. This has important consequences as the ex-
istence of strong solutions in the sense of Friedrichs of the elliptic Kolmogorov equation

$$
\begin{equation*}
\lambda \varphi-N \varphi=f . \tag{1.5}
\end{equation*}
$$

This means that for any $\lambda>0$ and $f \in L^{2}(H, v)$ there exists a sequence $\left\{\varphi_{n}\right\} \subset \mathcal{S}_{A}(H)$ such that

$$
\lim _{n \rightarrow \infty} \varphi_{n}=\varphi, \quad \lim _{n \rightarrow \infty} N_{0} \varphi_{n}=N \varphi \quad \text { in } L^{2}(H, v) .
$$

Another consequence, see Theorem 4.2 below, is the following integration by parts formula

$$
\begin{equation*}
\int_{H} N \varphi \varphi d v=-\frac{1}{2} \int_{H}\left|C^{1 / 2} D \varphi\right|^{2} d v, \tag{1.6}
\end{equation*}
$$

valid for all $\varphi \in D(N)$. Formula (1.6) is the starting point for studying the Sobolev space $W^{1,2}(H, v)$ and several properties of the measure v. This will be the object of a future research.

Let us conclude this section with some technical remarks that will be used in what follows. First we recall that

$$
\begin{equation*}
b(y, z, z)=0, \quad b(y, z, v)=-b(y, v, z), \quad y, v, z \in V \tag{1.7}
\end{equation*}
$$

and, in view of the periodicity condition, we also have the basic identity

$$
\begin{equation*}
b(y, y, A y)=0, \quad y \in D(A) . \tag{1.8}
\end{equation*}
$$

We shall denote by $|\cdot|$ the norm in H, by (\cdot, \cdot) the inner product in H and by $\|\cdot\|$ the norm in V. It is well known that

$$
\begin{equation*}
\|x\| \geqslant \pi^{2}|x| \tag{1.9}
\end{equation*}
$$

Finally, we recall the Sobolev embedding theorem

$$
\begin{equation*}
H^{\alpha}(D) \subset L^{\frac{2}{1-\alpha}}(D), \quad \alpha \in(0,1) \tag{1.10}
\end{equation*}
$$

and the classical interpolatory estimate

$$
\begin{equation*}
\|x\|_{H^{b}(D)} \leqslant\|x\|_{H^{a}(D)}^{\frac{c-b}{c-a}} \quad\|x\|_{H^{c}(D)}^{\frac{b-a}{c-a}}, \quad 0 \leqslant a<b<c \tag{1.11}
\end{equation*}
$$

where $\|x\|_{H^{b}(D)}=|x|$.

2. Existence of invariant measure

It is convenient to introduce the following approximating problems,

$$
\left\{\begin{array}{l}
d X_{\varepsilon}(t)=A X_{\varepsilon}(t) d t+B_{\varepsilon}\left(X_{\varepsilon}(t)\right) d t+\sqrt{C} d W(t) \tag{2.1}\\
X_{\varepsilon}(0)=x \in H
\end{array}\right.
$$

where

$$
B_{\varepsilon}(x)=\left\{\begin{array}{cl}
B(x) & \text { if }\|x\| \leqslant \frac{1}{\varepsilon} \tag{2.2}\\
\frac{B(x)}{\varepsilon^{2}\|x\|^{2}} & \text { if }\|x\|>\frac{1}{\varepsilon}
\end{array}\right.
$$

Since, for $\varepsilon>0, B_{\varepsilon}$ is regular and bounded, problem (2.2) has a unique solution which we denote by $X_{\varepsilon}(t, x)$. Moreover, it is well known that there exists an invariant measure v_{ε} for problem (2.1).

We shall denote by N_{ε} the Kolmogorov operator,

$$
\begin{equation*}
N_{\varepsilon}(x)=L \varphi(x)-\left(B_{\varepsilon}(x), D \varphi(x)\right), \quad x \in H, \varphi \in \mathcal{E}_{A}(H) \tag{2.3}
\end{equation*}
$$

where L is the Ornstein-Uhlenbeck operator in $C_{b}(H)$, the Banach space of all uniformly continuous and bounded real functions in H, and $D(L)$ is its domain,

$$
\begin{equation*}
L \varphi(x)=\frac{1}{2} \operatorname{Tr}\left[C D^{2} \varphi(x)\right]-(A x, D \varphi(x)), \quad x \in H, \varphi \in D(L) . \tag{2.4}
\end{equation*}
$$

We recall that $D(L)$ can be defined troughout its resolvent as follows, see [3]; we consider the Laplace transform of P_{t},

$$
F(\lambda) f(x):=\int_{0}^{+\infty} e^{-\lambda t} P_{t} f(x) d t, \quad f \in C_{b}(H), \lambda>0, x \in H
$$

Then, it is easy to see that $F(\lambda)$ is one-to-one and that fulfills the resolvent identity. Consequently, there exists a unique closed operator L in $C_{b}(H)$ such that $F(\lambda)=$ $=(\lambda-L)^{-1}$ for any $\lambda>0$.

To prove the existence of an invariant measure v for P_{t} we need the following lemma.

Lemma 2.1. Let $\delta<\delta_{0}:=\frac{1}{\|C\|}$. Then, there exists $C>0$ independent of δ such
that

$$
\begin{equation*}
\int_{H}|A x|^{2} e^{\delta \|\left. x\right|^{2}} v_{\varepsilon}(d x) \leqslant C \tag{2.5}
\end{equation*}
$$

Proof. Let us compute $N_{\varepsilon} \varphi$ for $\varphi(x)=e^{\delta\|x\|^{2}}$ with $\delta<\delta_{0}$. (Notice that φ does not belong to $D(L)$, however it can easily approximated by functions of $D(L)$).

We have

$$
D \varphi(x)=-2 \delta e^{\delta\|x\|^{2}} A x, \quad D^{2} \varphi(x)=4 \delta^{2} e^{\delta\|x\|^{2}} A x \otimes A x-2 \delta e^{\delta\|x\|^{2}} A
$$

It follows, in view of (1.8), that

$$
\begin{aligned}
N_{\varepsilon} \varphi=\left(\delta \operatorname{Tr}[(-A) C]+2 \delta^{2} \mid\right. & \left.\left.C^{1 / 2} A x\right|^{2}-2 \delta|A x|^{2}\right) e^{\delta\|x\|^{2}} \leqslant \\
& \leqslant\left(\delta \operatorname{Tr}[(-A) C]+2 \delta^{2}\|C\||A x|^{2}-2 \delta|A x|^{2}\right) e^{\delta\|x\|^{2}}
\end{aligned}
$$

Since $\int_{H} N_{\varepsilon} \varphi d v_{\varepsilon}=0$ due to the invariance of v_{ε}, we have

$$
\begin{equation*}
\int_{H}|A x|^{2} e^{\delta\|x\|^{2}} v_{\varepsilon}(d x) \leqslant \frac{\operatorname{Tr}[(-A) C]}{2(1-\delta\|C\|)} \int_{H} e^{\delta\|x\|^{2}} v_{\varepsilon}(d x) . \tag{2.6}
\end{equation*}
$$

It follows that for any $R>0$ we have

$$
\begin{aligned}
\int_{H} e^{\delta\|x\| \|^{2}} \boldsymbol{v}_{\varepsilon}(d x) & =\int_{\{\| \| x \| \leqslant R\}} e^{\delta\| \| \|^{2}} \boldsymbol{v}_{\varepsilon}(d x)+\int_{\{\|x\|>R\}} e^{\delta\|x\|^{2}} \boldsymbol{v}_{\varepsilon}(d x) \leqslant \\
& \leqslant e^{\delta R^{2}}+\frac{1}{R^{2}} \int_{H}\|x\|^{2} e^{\delta\| \| \|^{2}} v_{\varepsilon}(d x) \leqslant e^{\delta R^{2}}+\frac{1}{\pi^{2} R^{2}} \int_{H}|A x|^{2} e^{\delta\|x\|^{2}} \boldsymbol{v}_{\varepsilon}(d x) .
\end{aligned}
$$

Now, taking into account (2.6), it follows that

$$
\int_{H} e^{\delta\| \| \|^{2}} \boldsymbol{v}_{\varepsilon}(d x) \leqslant e^{\delta R^{2}}+\frac{\operatorname{Tr}[(-A) C]}{2\left(\pi^{2} R^{2}(1-\delta\|C\|)\right)} \int_{H} e^{\delta\| \| \|^{2}} \boldsymbol{v}_{\varepsilon}(d x)
$$

and choosing

$$
R^{2}=\frac{\operatorname{Tr}[(-A) C]}{2\left(\pi^{2}(1-\delta\|C\|)\right)},
$$

we see that

$$
\int_{H} e^{\delta\| \| \|^{2}} \boldsymbol{v}_{\varepsilon}(d x) \leqslant 2 e^{\frac{\delta \operatorname{Tr}[(-A) C]}{2\left(\pi^{2}(1-\delta\| \| \|)\right)}} .
$$

Finally, the conclusion follows using again (2.6).
Since the embedding $D(A) \subset H$ is compact, we find by (2.5) that $\left\{v_{\varepsilon}\right\}$ is tight and consequently it has a weak limit ν. The following result is straightforward.

Proposition 2.2. The measure v is invariant for P_{t}. Moreover for any $\delta<\delta_{0}:=$ $:=\frac{1}{\|C\|}$ we have

$$
\begin{equation*}
\int_{H}|A x|^{2} e^{\left.\delta\|x\|\right|^{2}} v(d x)<+\infty . \tag{2.7}
\end{equation*}
$$

3. A priori estimates

Lemma 3.1. Assume that $\alpha \leqslant \frac{1}{\|C\|}$. Then we have

$$
\begin{equation*}
\mathbb{E}\left(e^{\alpha \int_{0}^{t}|A X(s, x)|^{2} d s}\right) \leqslant e^{\alpha\|x\| \|^{2}} e^{t \operatorname{Tr}[(-A) C]}, \quad x \in H, t \geqslant 0 . \tag{3.1}
\end{equation*}
$$

Proof. Fix $\alpha \leqslant \frac{1}{\|C\|}$. Let us estimate, using the Itô formula,

$$
\mathbb{E}\left(e^{\alpha\|X(t, x)\|^{2}+\alpha \int_{0}^{f}|A X(s, x)|^{2} d s}\right)
$$

Set

$$
V(t)=\|X(t)\|^{2}+\int_{0}^{t}|A X(s)|^{2} d s
$$

We have, taking into account (1.3),

$$
\begin{aligned}
d\|X(t)\|^{2}=-2(A X(t), A X(t) & +b(X(t))) d t+\operatorname{Tr}[(-A) C]-(A X(t), \sqrt{C} d W(t))= \\
& =-2|A X(t)|^{2} d t+\operatorname{Tr}[(-A) C]-(A X(t), \sqrt{C} d W(t))
\end{aligned}
$$

Consequently

$$
d V(t)=-|A X(t)|^{2} d t+\operatorname{Tr}[(-A) C] d t-(A X(t), \sqrt{C} d W(t))
$$

Moreover

$$
d e^{\alpha V(t)}=\alpha e^{\alpha V(t)} d V(t)+\frac{1}{2} \alpha^{2} e^{\alpha V(t)}|\sqrt{C} A X(t)|^{2} d t
$$

So,

$$
\begin{aligned}
d e^{\alpha V(t)} & =\alpha e^{\alpha V(t)}\left(-|A X(t)|^{2} d t+\operatorname{Tr}[(-A) C] d t-(A X(t), \sqrt{C} d W(t))\right)+ \\
& +\frac{1}{2} \alpha^{2} e^{\alpha V(t)}|\sqrt{C} A X(t)|^{2} d t \leqslant \\
& \left.\leqslant \frac{1}{2} \alpha e^{\alpha V(t)}(\alpha\|C\|-1)|A X(t)|^{2} d t+\operatorname{Tr}[(-A) C] d t-(A X(t), \sqrt{C} d W(t))\right) \leqslant \\
& \left.\leqslant \operatorname{Tr}[(-A) C] e^{\alpha V(t)} d t-(A X(t), \sqrt{C} d W(t))\right) e^{\alpha V(t)},
\end{aligned}
$$

since $\alpha \leqslant \frac{1}{\|C\|}$. Consequently, we have that

$$
\mathbb{E}\left(e^{\alpha V(t)}\right) \leqslant e^{\alpha|x|^{2}}+\operatorname{Tr}[(-A) C] \int_{0}^{t} \mathbb{E}\left(e^{\alpha V(s)}\right) d s
$$

and the conclusion follows from the Gronwall lemma.
We now set, for any $h \in H, \eta^{h}(t, x)=D_{x} X(t, x) \cdot h$. It can be checked that $\eta^{h}(t, x)$ is a solution of the following problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} \eta^{h}(t, x)=A \eta^{b}(t, x)+X(t, x) \cdot \nabla \eta^{h}(t, x)+\eta^{h}(t, x) \cdot \nabla X(t, x) \tag{3.2}\\
\eta_{\varepsilon}^{h}(0, s)=b
\end{array}\right.
$$

Lemma 3.2. There exists $\kappa>0, q \in(0,2)$ such that

$$
\begin{equation*}
\left|\eta^{b}(t, x)\right|^{2} \leqslant e^{K \int_{0}^{t}|A X(s, x)|^{q} d s}|h|^{2}, \quad x, b \in H \tag{3.3}
\end{equation*}
$$

Proof. Multiplying both sides of (3.2) by $\eta^{b}(t, x)$ and taking into account (1.7) yields, for $p>2$ and $p^{-1}+q^{-1}=1$,

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left|\eta^{b}(t, x)\right|^{2}+\left\|\eta^{h}(t, x)\right\|^{2}=b\left(\eta^{b}(t, x), X(t, x), \eta^{b}(t, x)\right) \leqslant \tag{3.4}\\
& \quad \leqslant|\nabla X(t, x)|_{L^{p}(D)}\left|\left(\eta^{b}(t, x)\right)^{2}\right|_{L^{q}(D)}=|\nabla X(t, x)|_{L^{p}(D)}\left|\eta^{b}(t, x)\right|_{L^{2 q}(D)}^{2} .
\end{align*}
$$

By the Sobolev embedding theorem (1.10) there exists $c>0$ such that

$$
|\nabla X(t, x)|_{L^{p}(D)} \leqslant c|A X(t, x)|
$$

and

$$
\left|\eta^{b}(t, x)\right|_{L^{2 q}(D)} \leqslant c\left|\eta^{b}(t, x)\right|_{1-\frac{1}{q}}
$$

Moreover, in view of (1.11),

$$
\left|\eta^{b}(t, x)\right|_{1-\frac{1}{q}} \leqslant c\left|\eta^{b}(t, x)\right|^{\frac{1}{q}}\left\|\eta^{b}(t, x)\right\|^{1-\frac{1}{q}}
$$

and consequently

$$
|\nabla X(t, x)|_{L^{p}(D)}\left|\left(\eta^{b}(t, x)\right)^{2}\right|_{L^{q}(D)} \leqslant c|A X(t, x)|\left|\eta^{h}(t, x)\right|^{\frac{2}{q}}\left\|\eta^{b}(t, x)\right\|^{2\left(1-\frac{1}{q}\right)}
$$

Since for any $a, b \geqslant 0$ the following inequality holds

$$
a b \leqslant \frac{1}{q} a^{q}+\left(1-\frac{1}{q}\right) b^{\frac{q}{q-1}}
$$

there exists $c^{\prime}>0$ such that

$$
|\nabla X(t, x)|_{L^{p}(D)}\left|\left(\eta^{b}(t, x)\right)^{2}\right|_{L^{q}(D)} \leqslant c^{\prime}|A X(t, x)|^{q}\left|\eta^{b}(t, x)\right|^{2}+\frac{1}{2}\left\|\eta^{b}(t, x)\right\|^{2} .
$$

Then by (3.4) we obtain that

$$
\frac{d}{d t}\left|\eta^{b}(t, x)\right|^{2} \leqslant 2 c^{\prime}|A X(t, x)|^{a}\left|\eta^{b}(t, x)\right|^{2}
$$

and the conclusion follows.
The following corollary is a straightforward consequence of Lemma 3.2.
Corollary 3.3. For any $\sigma>0$ there exists $\kappa_{\sigma}>0$ such that

$$
\begin{equation*}
\left|\eta^{h}(t, x)\right|^{2} \leqslant e^{K_{\sigma} t+\sigma \int_{0}^{t}|A X(s, x)|^{2} d s}|h|^{2}, \quad x, b \in H . \tag{3.5}
\end{equation*}
$$

By Corollary 3.3 and Lemma 3.1 we obtain immediately the following basic estimate.

Corollary 3.4. For any $\alpha \leqslant \frac{1}{\|C\|}$ there exists $\omega_{\alpha}>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\left|\eta^{h}(t, x)\right|^{2}\right) \leqslant e^{2 \omega_{\alpha} t} e^{\left.\alpha|x|\right|^{2}}|h|^{2}, \quad t \geqslant 0 \quad x, b \in H \tag{3.6}
\end{equation*}
$$

4. m-DISSIPATIVITY

We now consider the transition semigroup P_{t} defined by (1.3) and a fixed invariant measure v for P_{t}. It is well known that P_{t} can be uniquely extended to a strongly continuous semigroup of contractions in $L^{2}(H, v)$, still denoted by P_{t}. We shall denote by N its infinitesimal generator. We first prove that N is an extension of N_{0}.

Proposition 4.1. For any $\varphi \in \mathcal{E}_{A}(H)$, we have $\varphi \in D(N)$ and $N \varphi=N_{0} \varphi$.
Proof. Let $\varphi \in \mathcal{E}_{A}(H)$. Then by the Itô formula we have that

$$
\lim _{h \rightarrow 0} \frac{1}{b}\left(P_{b} \varphi(x)-\varphi(x)\right)=N_{0} \varphi(x), \quad x \in H .
$$

Therefore, it is enough to show that

$$
\sup _{b \in(0,1]} \frac{1}{b}\left\|P_{h} \varphi-\varphi\right\|_{L^{2}(H, v)}<+\infty
$$

We have in fact, again by the Itô formula,

$$
\left|P_{h} \varphi(x)-\varphi(x)\right| \leqslant\|\varphi\|_{1} \int_{0}^{b} \mathbb{E}(|A X(s, x)|+|B(X(s, x))|) d s
$$

It follows that, by the invariance of v, that

$$
\left\|P_{h} \varphi-\varphi\right\|_{L^{2}(H, v)}^{2} \leqslant h^{2}\|\varphi\|_{1}^{2} \int_{H}(|A x|+|B(x)|)^{2} v(d x)<+\infty,
$$

thanks to (2.7).
Finally, we can prove the following result.
Theorem 4.2. Assume that $\operatorname{Tr}[(-A) C]<\infty$ and that there exists an invariant measure v for the transition semigroup P_{t} defined by (1.3). Let N be the infinitesimal generator of P_{t} in $L^{2}(H, v)$. Then N is the closure of the Kolmogorov operator N_{0} defined by (1.4).

Moreover, if $\varphi \in D(N)$ then $\left|C^{1 / 2} D \varphi\right| \in L^{2}(H, v)$ and

$$
\begin{equation*}
\int_{H} N \varphi \varphi d v=-\frac{1}{2} \int_{H}\left|C^{1 / 2} D \varphi\right|^{2} d v \tag{4.1}
\end{equation*}
$$

Proof. We have to prove that $\overline{N_{0}}=N$. Let $f \in C_{b}^{1}(H)$ and $\lambda>0$. Since B_{ε} is bounded and regular, there exists a unique $\varphi_{\varepsilon} \in D(L) \cap C_{b}^{1}(H)$ such that

$$
\lambda \varphi_{\varepsilon}(x)-L \varphi_{\varepsilon}(x)-\left\langle B_{\varepsilon}(x), D \varphi_{\varepsilon}(x)\right\rangle=f(x), \quad x \in H
$$

Moreover, φ_{ε} is given by

$$
\varphi_{\varepsilon}(x)=\int_{0}^{\infty} e^{-\lambda t} \mathbb{E}\left[f\left(X_{\varepsilon}(t, x)\right)\right] d t, \quad x \in H
$$

Fix $\alpha \in\left(0,\|C\|^{-1}\right)$. Then, in view of Corollary 3.4, it follows that for any $\lambda>\omega_{\alpha}$ we have

$$
\left(D \varphi_{\varepsilon}(x), b\right)=\mathbb{E} \int_{0}^{\infty} e^{-\lambda t}\left(D f\left(X_{\varepsilon}(t, x)\right), \eta_{\varepsilon}^{b}(t, x)\right) d t, \quad x, b \in H
$$

and

$$
\left|\left(D \varphi_{\varepsilon}(x), b\right)\right| \leqslant \frac{1}{\lambda-\omega_{\alpha}} e^{\frac{a}{2}\|x\|^{2}}\|f\|_{1}|h|^{2}, \quad h, x \in H
$$

Thus, by the arbitrariness of h, we have that

$$
\begin{equation*}
\left|D \varphi_{\varepsilon}(x)\right| \leqslant \frac{1}{\lambda-\omega_{\alpha}} e^{\frac{\alpha}{2}\|x\|^{2}}\|f\|_{1}, \quad x \in H . \tag{4.2}
\end{equation*}
$$

We now fix $\lambda>\omega_{\alpha}$.

Claim 1. We have $\varphi_{\varepsilon} \in D\left(\overline{N_{0}}\right)$ and

$$
\left.\lambda \varphi_{\varepsilon}-\overline{N_{0}} \varphi_{\varepsilon}=\left(B_{\varepsilon}(x)-B(x), D \varphi_{\varepsilon}\right)\right)+f .
$$

In fact, by [4, Proposition 2.6], there exists a multisequence $\left\{\psi_{\vec{n}}\right\} \in \mathcal{E}_{A}(H)$ such that

$$
\begin{aligned}
\lim _{\vec{n} \rightarrow \infty} \psi_{\vec{n}}(x) & =\varphi_{\varepsilon}(x), \quad x \in H, \\
\lim _{\vec{n} \rightarrow \infty} D \psi_{\vec{n}}(x) & =D \varphi_{\varepsilon}(x), \quad x \in H, \\
\lim _{\vec{n} \rightarrow \infty} L \psi_{\vec{n}}(x) & =L \varphi_{\varepsilon}(x), \quad x \in H .
\end{aligned}
$$

By Lemma 2.1 and the dominated convergence theorem, it follows that

$$
\lim _{\vec{n} \rightarrow \infty} N_{0} \psi_{\vec{n}}(x)=\overline{N_{0}} \varphi_{\varepsilon}(x)=L \varphi_{\varepsilon}+\left\langle B_{\varepsilon}(x), D \varphi_{\varepsilon}\right\rangle, \quad x \in H .
$$

So, Claim 1 is proved.
Claim 2. We have

$$
\left.\lim _{\varepsilon \rightarrow 0}\left(B_{\varepsilon}(x)-B(x), D \varphi_{\varepsilon}\right)\right)=0 \quad \text { in } L^{2}(H, v) .
$$

Once Claim 2 is proved, we deduce that the closure of the range of $\lambda-\overline{N_{0}}$ is dense in $L^{2}(H, v)$ and so, in view of a theorem by Lumer and Phillips, that $\overline{N_{0}}=N$ as claimed.

To prove Claim 2, we notice that, taking into account (4.2), that

$$
\begin{aligned}
\left.\int_{H} \mid\left(B_{\varepsilon}(x)-B(x), D \varphi_{\varepsilon}\right)\right)\left.\right|^{2} d v & \left.=\int_{\{\|x\| \geqslant 1 / \varepsilon\}} \mid\left(B_{\varepsilon}(x)-B(x), D \varphi_{\varepsilon}\right)\right)\left.\right|^{2} d v \leqslant \\
& \leqslant \frac{1}{\left(\lambda-\omega_{\alpha}\right)^{2}}\|f\|_{1}^{2} \int_{\{\|x\| \geqslant 1 / \varepsilon\}}|B(x)|^{2} \frac{\varepsilon\|x\|^{2}-1}{\varepsilon\|x\|^{2}} e^{\alpha|x|^{2}} d v \leqslant \\
& \leqslant \frac{1}{\left(\lambda-\omega_{\alpha}\right)^{2}}\|f\|_{1}^{2} \int_{\{\|x\| \geqslant 1 / \varepsilon\}}|B(x)|^{2} e^{\alpha|x|^{2}} d v .
\end{aligned}
$$

Thus, it is enough to show that

$$
\begin{equation*}
\int_{H}|B(x)|^{2} e^{\alpha|x|^{2}} v(d x)<+\infty \tag{4.3}
\end{equation*}
$$

We have in fact

$$
|B(x)|^{2} \leqslant \int_{D}|x|^{2}|\nabla x|^{2} d \xi \leqslant|A x|^{2}\|x\|^{2} .
$$

It follows that if $\alpha^{\prime}<\alpha$

$$
\int_{H}|(B(x), D \varphi)|^{2} v(d x) \leqslant \int_{H}|A x|^{2}\|x\|^{2} e^{\alpha^{\prime}|x|^{2}} d v \leqslant c \int_{H}|A x|^{2} e^{\alpha|x|^{2}} d v,
$$

and the conclusion follows from (2.7). Finally, (4.1) follows integrating with respect to
v the identity

$$
N_{0}\left(\varphi^{2}\right)=2 \varphi N_{0} \varphi+\left|Q^{1 / 2} D \varphi\right|^{2} .
$$

The proof is complete.

References

[1] V. Barbu - G. Da Prato, The transition semigroup of stochastic Navier-Stokes equations in 2-D. Infinite Dimensional Analysis, Quantum Probability and related topics, to appear.
[2] J. Bricmont - A. Kupiainen - R. Lefevere, Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Commun. Math. Phys., 230, n. 1, 2002, 87-132.
[3] S. Cerrar, A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367.
[4] G. Da Prato - L. Tubaro, Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126, 2001, 685-699.
[5] G. Da Prato - J. Zabczyk, Second Order Partial Differential Equations in Hilbert spaces. London Mathematical Society Lecture Notes n. 293, Cambridge University Press, 2002.
[6] F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1, 1994, 403-423.
[7] F. Flandoli - B. Maslowski, Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Commun. Math. Phys., 171, 1995, 119-141.
[8] S. Kuksin - A. Shirikyan, A coupling approach to randomly forced nonlinear PDE's. I. Commun. Math. Phys., 221, n. 2, 2001, 351-366.
[9] S. Kuksin - A. Piatniski - A. Shirikyan, A coupling approach to randomly forced nonlinear PDE's. II. Commun. Math. Phys., 230, n. 1, 2002, 81-85.
[10] R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland, 1977.
[11] E. Weinan - J.C. Mattingly - Ya. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys., 224, n. 1, 2001, 83-106.
V. Barbu:

University of Iasi
6600 IAsi (Romania)
barbu@uaic.ro
G. Da Prato:

Scuola Normale Superiore
Piazza dei Cavalieri, 7-56126 PisA
daprato@sns.it
A. Debussche:

Ecole Normale Supérieure de Cachan
Antenne de Bretagne, Campus de Ker-Lann
35170 Bruz (Francia)
debussche@bretagne.ens-cachan.fr

