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Analisi matematica. — Essential m-dissipativity of Kolmogorov operators corre-
sponding to periodic 2 D-Navier Stokes equations. Nota (*) di VIorReL Barsu, GIUSEPPE
Da Prato e Arnaup DEBUSSCHE, presentata dal Socio G. Da Prato.

AsstracT. — We prove the essential 7z-dissipativity of the Kolmogorov operator associated with the
stochastic Navier-Stokes flow with periodic boundary conditions in a space L?(H, v) where v is an inva-
riant measure.

Key worps: Stochastic Navier-Stokes equations; Kolmogorov operators; Invariant measures.

Riassunto. — Essenziale m-dissipativita dell’operatore di Kolmogorov associato all’equazione di Na-
vier-Stokes stocastica. Si dimostra I'essenziale 7z-dissipativita dell’operatore di Kolmogorov associato al
flusso dell’equazione di Navier-Stokes stocastica con condizioni periodiche in uno spazio L?(H, v) dove
v ¢ una misura invariante.

1. INTRODUCTION
We are here concerned with the following stochastic Navier-Stokes equation,
(dX = (vyAX + (X-V) X) dt + Vpdt +\/CAW in DxR*,
divX=0 in DXR™",

(LD X4, ) is periodic with period 277, [xte, &) dg=0
D

| X(0, &) =x(& in D,

where D is the square [0, 27712 The unknown X represents the velocity and p is the
pressure, C e L(H) is a linear operator and W is a cylindrical Wiener process in H as-
sociated with a stochastic basis (2, &, P, {J;},>,). The Hilbert space H is defined
as

H=lxe (L2(D))? divx=0 in D,jx@)dg:o].
D

Moreover we set
V= (HiD))*NH,

where the subscrit # means periodicity.

The operator Ce L(H) is nonnegative, symmetric and of trace class and W is
H-valued.

Moreover, we introduce the Stokes operator

A=v,P4, D(A)=VN(HzD)), V={ye(HiD)?: divy=0},

(*) Pervenuta in forma definitiva all’Accademia il 30 ottobre 2003.
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and set
(By, v) =b(y,y,v), veV,

where

,7=1

2
by, z,v)= 2 Jy,'Dl-z/v/-dS.

D
Then it is classical that problem (1.1) is equivalent to

12 { dX(¢) = (AX(¢) + BX(2)) dt + \/CAW/(2)

X(0) = x.

We shall assume in all the paper that
Hyrorhesis 1.1. Tr[C(—=A)] < .

It is well known, see e.g. [6] that (1.1) has a unique solution X = X(¢#, x). We shall
denote by P, the associated transition semigroup

(1.3) P,o(x) =E[ep(X(t, x))], t=0, xeH, @eB,(H),

where B, (H) is the space of all Borel bounded mappings ¢ : H—R and [E means ex-
pectation. Under Hypothesis 1.1, there exists at least one invariant measure v for P,.
Even if this fact is well known, we shall present a proof in §2 for the reader’s conve-
nience and also because we shall obtain, as a byproduct, an estimate needed later.
Moreover, under some mild non degeneracy conditions, this invariant measure is
unique [2, 6-9, 11]. We do not need any non degeneracy condition here and fix one
invariant measure v from now on. Therefore, P, can be uniquely extended to a con-
traction Markov semigroup in L?(H, v), still denoted by P,. We shall denote by N its
infinitesimal generator. The main result of this paper is that N is the closure in
L%(H, v) of the Kolmogorov operator N,

(14) Noqo(x)z%Tr[Qqua(x)]—(Ax+B(x),D(p(x)), xeH, ged&,(H),

where 84 (H) (the space of exponential functions) is the linear span of all functions
(more precisely all real and imaginary parts of all functions)

@(x)=em¥ x, heDA).

In other words, we show that N is an extension of N, and that §,(H) is a core
for N.

This result generalizes a similar one, see [1] that was proved under the unpleasent
assumption that the viscosity v is sufficiently large (notice, however, that the result in
[1] is valid also for Dirichlet boundary conditions). In the present paper the viscosity
v, will not play any role, it will be put equal to 1 in what follows.

This result of #-dissipativity allows to identify the abstract generator N with the
closure of a concrete differential operator. This has important consequences as the ex-
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istence of strong solutions in the sense of Friedrichs of the elliptic Kolmogorov
equation

(1.5) Ap —No =/.
This means that for any 2 > 0 and fe L?(H, v) there exists a sequence {¢ , } C §4(H)
such that

”li_)mm Q,=@, nli_)nlo No@,=Ng in L*(H, v).

Another consequence, see Theorem 4.2 below, is the following integration by parts
formula

(1.6) JN(p(pdV= —%J|C1/2Dg0|2dv,
H H
valid for all ¢ € D(N). Formula (1.6) is the starting point for studying the Sobolev
space W'?(H, v) and several properties of the measure v. This will be the object of a
future research.
Let us conclude this section with some technical remarks that will be used in what
follows. First we recall that

(L.7) bly,z,2) =0, bly,z,v)=—-bly,v,2), p,v,zeV
and, in view of the periodicity condition, we also have the basic identity
(1.8) bly,y, Ay) =0, yeD(A).

We shall denote by |- | the norm in H, by (-, -) the inner product in H and by [|-|| the
norm in V. It is well known that

(1.9) [[o| = 722 | x| .
Finally, we recall the Sobolev embedding theorem
(1.10) HY(D)cLT7(D), ae(0,1),

and the classical interpolatory estimate

(1.11) el oy < [l

c—
=

b-a
fe(D) ”x‘ (D> 0<a<b<c,

where [|x/lip) = ||

2. EXISTENCE OF INVARIANT MEASURE
It is convenient to introduce the following approximating problems,

[ dX,(¢) = AX,(£) dt + B, (X, (1)) dt + \/CAW(2)

@.1) 1Xg(0)=er

where
B(x) if ||lx] <
(2.2) B.(x) =1 B(x)

&? [l

1
8 )
if I > ¢
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Since, for € > 0, B, is regular and bounded, problem (2.2) has a unique solution which
we denote by X, (¢, x). Moreover, it is well known that there exists an invariant mea-
sure v, for problem (2.1).

We shall denote by N, the Kolmogorov operator,

(2.3) N,.(x) = Lp(x) — (B, (x), Dp(x)), xeH, pe &,(H),

where L is the Ornstein-Uhlenbeck operator in C,(H), the Banach space of all uni-
formly continuous and bounded real functions in H, and D(L) is its domain,

(2.4) Lo(x) = %Tr[Cquz(x)] — (Ax, Dp(x)), xeH, geD(L).

We recall that D(L) can be defined troughout its resolvent as follows, see [3]; we con-
sider the Laplace transform of P,,

F(A) f(x) := j e MP, f(x)dt, feC,(H), >0, xeH.

0

Then, it is easy to see that F(A) is one-to-one and that fulfills the resolvent identity.
Consequently, there exists a unique closed operator L in C,(H) such that F(1) =
=(A—L)"! for any 1>0.

To prove the existence of an invariant measure v for P, we need the following
lemma.

Lemma 2.1, Let 6 < = ”—é” Then, there exists C> 0 independent of O such
that
2.5) [ 1ax2 ey (dv) < C
H

Proor. Let us compute N, ¢ for ¢(x) = M with & < 8. (Notice that ¢ does not
belong to D(L), however it can easily approximated by functions of D(L)).
We have

Do(x) = —20e%F Ax,  D2gp(x) = 402 Ax ® Ax — 20 4.
It follows, in view of (1.8), that
N.g=(0Tr[(—A) Cl+206% |C2 Ax|> = 20| Ax|?) M <
< (OTr[(—A) Cl+2062|C]||Ax|? — 20| Ax|?) e,

Since [N, @dv,=0 due to the invariance of v,, we have
i}

Tr[(=A)C]

2.6) f | Ax|2 ey (dy) < A ey (),

H
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It follows that for any R >0 we have

f ey () = ey () + ey (dy) <
i (<R} R

<o s L [Ipeny, o <o+ —Lo [ |axprenie, o
H

.7'[2R2

Now, taking into account (2.6), it follows that
Jeé”xl'zvg(dx) < orey (=4 Jeanxnzvg(dx)
2(7*R2(1 = o dl]))

H H

and choosing

g Tel=aC
2(72(1 - ol
we see that
) ) oTr[(-A) C]
Jeé\\xH v, (dx) <2e220-old .

H
Finally, the conclusion follows using again (2.6). O

Since the embedding D(A) c H is compact, we find by (2.5) that {v} is tight and
consequently it has a weak limit v. The following result is straightforward.

ProPOSITION 2.2. The measure v is invariant for P,. Moreover for any 6 <9 1=

1

= —— we have

Il 2
2.7) [ 14x[2 M u(d) < + o0

H
3. A PRIORI ESTIMATES

LemMma 3.1. Assume that a < ﬁ Then we have

(3.1) E(eao“AX(:’XHZdI) < eaH"HzelTr[“A)C], xeH, t=0.

. 1 . . R
Proor. Fix a < HEH Let us estimate, using the It6 formula,

3
2 2
E(eaHX(t,x)H +abf\/lX(.r,x)\ ds).

Set

V(o) = [X(IF + [ |AX(s) |2 ds.
0
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We have, taking into account (1.3),
dIX(2)|P = —2(AX(2), AX(2) + b(X(2))) dt + Tr[(—A) C] — (AX(2), \/CAW(2))
= —2|AX(2) |2dt + Tr[(—A) C1 — (AX(2), VCAW(2))

Consequently
AV(t) = — |AX(2) |2de + Tr [(—A) Cl dt — (AX(2), \/TIW(2)).
Moreover
de ™) = gV JV(s) + ; 2V |NCAX(2) |2 dt.
So,
de™"V = ae™ (— |AX(2) | dt + Tr [(— A) Cl dt — (AX(2), \/CAW(2))

+%a26“‘” IVCAX(1) |2 dr <

$%a WO (g[Cll = 1) |AX(2) |2de + Tr [(—A) Clds — (AX(2), JCAW(2))

STr[(—A)Cle®™dr — (AX(¢ \/EdW ) @V

since a < Consequently, we have that

1
Iicl
t
E(e®V0) < o’ 1 Ty [(—A)C] JE(&‘“W’Y)) ds
0
and the conclusion follows from the Gronwall lemma. D

We now set, for any heH, n”(¢, x) =D, X(¢, x)-h. It can be checked that
n”(¢, x) is a solution of the following problem

(3.2) %"b(”’ x) =An" (¢, x) + X(¢, x)-Vn’ (¢, x) + n° (2, x)-VX(2, x)
n2(0,s)=h.

LemMA 3.2. There exists k>0, ge (0, 2) such that

Kf|AX(x,x)|“dx |/?|2)

(3.3) |77/’(t,x)|2$ew x,heH.

Proor. Multiplying both sides of (3.2) by #”(¢, x) and taking into account (1.7)
yields, for p>2 and p ' +4 '=1,
64 2L I = by, 0, XU, 20, (6, 20) <

< | VX, %) | 1oy | (P2, )P | Loy = | VX2, %) Loy |97 (2, %) |F200m)
By the Sobolev embedding theorem (1.10) there exists ¢ >0 such that
|VX(f, X) |L]J(D) < C|AX(Z‘, X) |
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and
[7" (2, %) | L20p) < c|m” (2, %) ||,
Moreover, in view of (1.11), "
It )|, <elnt e | b 0l
and consequently '
|VX(2, %) Loy | (17 (2, %)) | Loy < €| AX(2, 2) | |9" (2, %) |%||77b(1«‘, X
Since for any @, » =0 the following inequality holds

ab< laq+(1—l)bﬁ,
q q

1
2(1—7)'

there exists ¢’ >0 such that
[VX(2, %) | Loy | (0P (2, )P | Loy S ¢ |AX(2, %) |7 |nP (2, %) |2 + %Hn”(r, x)|P.
Then by (3.4) we obtain that
% 175 (1, %) |2 <2¢" |AX(2, %) |7 7P (2, %) |2
and the conclusion follows. O

The following corollary is a straightforward consequence of Lemma 3.2.

CorOLLARY 3.3. For any 0> 0 there exists k5> 0 such that

K, ()'/ 5, X ZX
(3.5) PR R R L VAL 155 23

By Corollary 3.3 and Lemma 3.1 we obtain immediately the following basic
estimate.

CoroLLARY 3.4, For any a < ”—é” there exists w , >0 such that

(3.6) E(|n”(z, x) |?) < e?@e’e™ |52, 120 x, heH.

4. 72-DISSIPATIVITY

We now consider the transition semigroup P, defined by (1.3) and a fixed invariant
measure v for P,. It is well known that P, can be uniquely extended to a strongly con-
tinuous semigroup of contractions in L2 (H, v), still denoted by P,. We shall denote by
N its infinitesimal generator. We first prove that N is an extension of Nj.

ProrositioN 4.1. For any ¢ € §4(H), we have ¢ € D(N) and N = Ny@.

Proor. Let ¢ € §4(H). Then by the Itd formula we have that
lim %(P;J @(x) —@(x)) = Nyp(x), xeH.

h—0
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Therefore, it is enough to show that
1
sup ZHPMO — @ll2r, < + 0.
he(0,1]

We have in fact, again by the It6 formula,
b
[Pag() = ) | <llgll [ E(AXCs, )| + [BX(s, ) |) ds.
0

It follows that, by the invariance of v, that

1Py — @llf 261, ) < B? ||§0||2f [Ax| + |Blx) | )?v(dx) < + o,
H

thanks to (2.7). DO
Finally, we can prove the following result.

THEOREM 4.2. Assume that Tr[(—A) Cl < o and that there exists an invariant
measure v for the transition semigroup P, defined by (1.3). Let N be the infinitesimal
generator of P, in L*(H, v). Then N is the closure of the Kolmogorov operator Ny de-
fined by (1.4).

Moreover, if ¢ € DIN) then |C1/2D(p| eL?’(H, v) and

(4.1) ngogadv= —% j|C1/2D¢|2dv.
H H

Proor. We have to prove that Ny = N. Let fe C} (H) and A > 0. Since B, is bound-
ed and regular, there exists a unique qo .€D(L)N C}(H) such that

@ (%) — Lo . (x) — (B.(x), Dg . (x)) = f(x), xeH.
Moreover, ¢, is given by

@, (x)= j MELAX, N1dt, xeH.
0
Fix a e (0, [|C||7!). Then, in view of Corollary 3.4, it follows that for any A > w, we
have

(Dg ,( JEJ “H(DAX, (¢, x)), nhie, x) dt, x,heH
and
|<D¢g<x>,b>|sl_;%e%”*"znfnluﬂa b, xeH.
Thus, by the arbitrariness of 5, we have that
4.2) 1Dy, (x) | < m e Y1l xeH.

We now fix A>w,.
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Claim 1. We have ¢, e D(N,) and

j‘ng_FO(ps:(Be( ) B(X +f
In fact, by [4, Proposition 2.6], there exists a multlsequence {y}e&4(H) such
that

l1m1/) (x) =¢,.(x), xeH,

lim Dy 5(x) =Dg¢, (x), xeH,
lim Ly 5(x) =Lg,.(x), xeH.

By Lemma 2.1 and the dominated convergence theorem, it follows that

lim Now7(x) = Nog.(x) = Lo, + (B.(x), Dp,), xeH.
So, Claim 1 is proved.

Claim 2. We have
hm (B.(x) —B(x), Dgp,)) =0 in L%(H, v).

Once Claim 2 is proved, we deduce that the closure of the range of 2 — N, is dense
in L2(H, v) and so, in view of a theorem by Lumer and Phillips, that N, = N as
claimed.

To prove Claim 2, we notice that, taking into account (4.2), that

J|(B£(x)—B(x),D¢g))|2dv= f (B, (x) — B(x), D)) |dv <

{llll = 172}

<—L Ik | e
A—-w,)
{lIxll = 176}

2 _
W1 e <

el

1 Ll
Sm”ﬂﬁ f |B(x) |? e dv.

{ldl= 1/}
Thus, it is enough to show that

(43) [ 1BGo) [P vdx) < + o0
H
We have in fact

|BG) 2 < [ ]2 | V|2 de < | Ax ]2 [l
D

It follows that if a’' <a

j| ), Do) [2v(dx) < [ |Ax[?lfF e M dv < [ | Ax |2y,
H H
and the conclusmn follows from (2.7). Finally, (4.1) follows integrating with respect to
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v the identity

No(¢?) =2¢Nyg + |Q'? Dy .

The proof is complete. O
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