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Meccanica dei solidi. — An example of a non-degenerate precession possessing two
distinct pairs of axes. Nota di GIANCARLO CANTARELLI e CORRADO RISITO, presentata (*)
dal Socio S. Rionero.

ABSTRACT. — In the present paper we provide an interesting example of a non-degenerate precession
possessing two distinct pairs (p , f ), (p 8 , f 8 ) of axes of precession and figure. Thus the problem arises of
the existence of classes of precessions possessing a unique axis of precession and a unique axis of figure.
In the fourth section we show that the class of non-degenerate regular precessions enjoys this
property.
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RIASSUNTO. — Esempio di precessione non degenere con due coppie distinte di assi. Nel presente lavoro
si fornisce un interessante esempio di precessione non degenere che possiede due coppie distinte
(p , f ), (p 8 , f 8 ) di assi di precessione e di figura. Si pone perciò il problema dell’esistenza di classi di pre-
cessioni aventi un solo asse di precessione ed un solo asse di figura. Nel quarto paragrafo si dimostra che
la classe delle precessioni regolari non degeneri gode della suddetta proprietà.

1. INTRODUCTION

In the Kinematics of rigid bodies a precession is the motion of a rigid body around
a fixed point – the centre (or pole) of the precession – in which two distinct axes exist
through the fixed point, forming a constant angle during the motion: an axis p , fixed
in the frame of reference R (the axis of precession), and an axis f , fixed in the body
(the axis of figure) [3, Chap. III, Section 11]. A precession is non-degenerate if it is not
a rotational motion.

As a consequence of the above definition, the angular velocity v
K of a precession

can be expressed, at any instant, as the vector sum of a vector v
K

1 parallel to the preces-
sion axis p , and a vector v

K
2 parallel to the figure axis f . Moreover, if the vector prod-

uct of v
K

1 and v
K

2 is different from zero, at all times, then the precession is
non-degenerate.

In the following section we give a simple example of a non-degenerate precession
which possesses two distinct pairs of axes. In the third section we report a known the-
orem by Grioli, which provides a necessary and sufficient condition (recognizable on
the vector function v

K4v
K(t)) for a rigid motion with a fixed point to be a precession.

In the fourth section of the present paper we consider the class of non-degenerate reg-
ular precessions (i.e. the precessions where, during the motion, v

K
1 (t) is constant in R,

whereas v
K

2 (t) is constant in the body, with v
K

1 (t)3v
K

2 (t)c0 at any instant), and we
prove that, for this class of precessions, the precession axis and the figure axis are
unique.

(*) Nella seduta dell’11 aprile 2003.
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2. EXAMPLE

Consider a rigid plane lamina having the shape of a right-angled triangle ABC

(A×4a , B×4 p
2

: see fig. 1). Suppose the vertex A is constantly placed upon the origin

O of a rectangular positively oriented system of axes Oxyz , with respective unit vec-
tors e

K
1 , e

K
2 , e

K
3 . Let the cathetus AB of the lamina be constrained to move in the half-

plane p 1 : y sin a1z cos a40, zF0, whereas the hypotenuse AC is constrained to
move in the half-plane p 2 : z40, yG0.

In the figure we have denoted by c1 (%p 1 ) the half-circle on which B is constrained
to move and by B0 , B1 its end points, which belong to the x axis (see fig. 1). Moreover,
we have denoted by c2 (%p 2 ) the arc of the circumference (with centre at O and radius
NACN) on which C is constrained to move, whose end points C0 , C1 are symmetric
with respect to the y axis, with C 0 O×B04B 1 O×C14a (see fig. 1).

A first pair of axes is given by: the z axis which is orthogonal to p 2 (the axis of pre-
cession p) and the line AC (the axis of figure f ).

A second pair of axes is given by: the fixed line n1 through the origin O , orthogo-
nal to p 1 (the axis of precession p 8) and the line AB (the axis of figure f 8).

Note that the axes of each pair form a right-angle, and that a is the (minimum)
angle between the two precession axes p , p 8 (because n

K
14sin a e

K
21cos a e

K
3 is a unit

vector orthogonal to p 1), as well as between the two figure axes f , f 8 .
We introduce now a rectangular positively oriented system of axes Ojhz , with re-

spective unit vectors i
K

, j
K

, k
K

, rigidly connected with the lamina, choosing as third axis

Fig. 1.
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z the figure axis f (fAC), oriented from A to C , and as second axis h the line orthogo-
nal to the lamina with the same orientation as AC3AB (it follows that the first axis j

belongs to the plane of the lamina and its unit vector i
K

forms the angle g p
2
2ah with

AB). Let w , c , W be the three Euler angles of the moving axes j , h , z with respect to
the fixed ones x , y , z . Since the angle of nutation w coincides, at any instant of time,
with the right-angle formed by p and f , the angular velocity v

K of the lamina, expressed
by means of the Euler angles, takes up the following form

v
K4c

.
e
K

31W
.

k
K

(1)

where c is the angle of precession.
The last two Euler angles are not independent parameters, because the degree of

freedom of the lamina is n41. The simplest way to get the constraint equation is to
express the cartesian coordinates y and z of the vertex B as functions of c and W (by
means of a change of cartesian coordinates, it being known that: j B4NABNsin a ,

h B40, z B4NABNcos a , and expressing the direction cosines of i
K

and k
K

by means of
the Euler angles), and substitute them into the equation: y sin a1z cos a40 of p 1 , on
which B is constrained to move. We get the following constraint equation

cos a sin W2cos a cos c1sin a sin c cos W40 .(2)

Note that while the vertex B describes the half-circle c1 , from B1 to B0 , the third Euler
angle W ranges from zero to p . Moreover, the angle formed by the radius vector OB
with the unit vector e

K
1 of the fixed axis x , coincides with W (see Remark 1). This ob-

servation enables us to set up a one to one correspondence between the points of c1

and the values of W in the interval [0 , p]. For this reason it is more convenient to
choose W as lagrangian coordinate, rather than c .

Now, in order to show the existence of non-degenerate precessions of the lamina,
we take a suitable time equation W4W(t), defined on a time interval I»4 [t0 , t1 ], with
(0G) t0E t1EQ , and of class R 1 (I), satisfying the following conditions

W(t0 )4p , W(t1 )4g , W
.
(t)E0 (t� I(3)

where g is an arbitrary (constant) obtuse angle: p
2
EgEp .

Finally, substituting W4W(t) into (2), this equation determines uniquely the func-
tion of time c4c(t) of class R 1 (I), in the following form

sin c(t)4
cos a cos W(t)

11sin a sin W(t)
(t� I(4)

cos c(t)4
sin a1sin W(t)

11sin a sin W(t)
(t� I .(5)

In fact, substituting these two time functions, together with W4W(t), into (2), the
constraint equation is identically satisfied for all time instants t of I . Moreover, at the
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initial time instant t0 , the formulas (4) and (5) give

sin c(t0 )42cos a , cos c(t0 )4sin a(6)

which agrees with the initial value of the precession angle: c(t0 )4 g 3p
2

1ah , since

in the initial configuration OB0 C0 of the lamina (see fig. 1), corresponding to W(t0 )4
4p , the cathetus OB0 lies on the negative x semiaxis, and the moving axis j 0 is super-
posed on the nodal line, but is opposite to it (i.e. N

K
042 i

K
0).

Due to the time equation W4W(t), the vertex B describes the arc B0 Bg of the half-
circle c1 (%p 1 ), where B0 and Bg are the points of c1 corresponding to W4p and W4
4g , respectively, whereas the other vertex C describes the arc C0 Cg of c2 , which belongs
to the third quadrant of the coordinate plane xy , where, taking into account (6), the
initial point C0 is defined by OC

K
042NACN]cos a e

K
11sin a e

K
2(, and the end point

Cg is defined by

OC
K

g4NACN{ cos a cos g e
K

12 ( sin a1sin g) e
K

2

11sin a sin g
}

taking into account (4), (5).
Finally, differentiating with respect to the time either the identity (4) or the identi-

ty (5), and then dividing both members by cos c(t) or sin c(t) respectively, we
obtain

c
.
(t)4

2W
.
(t) cos a

11sin a sin W(t)
D0 (t� I .(7)

From (7) it follows that: gc. (t) e
K

3h3 gW. (t) k
Khc0 (t� I , which ensures that all the

precessions of the rigid lamina ABC with a time equation W4W(t) satisfying the con-
ditions (3), are non-degenerate.

REMARK 1. The angle formed by the radius vector OB
K

with the unit vector e
K

1 of the

x axis coincides with W . In fact, since OB
K

NOBN
4sin a i

K
1cos a k

K
, we have

OB
K

NOBN
Q e
K

14 ( e
K

1 Q i
K

) sin a1 ( e
K

1 Q k
K

) cos a4sin a cos c cos W1cos a sin c .(8)

Now, eliminating sin c and cos c by means of (4) and (5), we get

OB
K

NOBN
Q e
K

14cos W(9)

which proves our statement.
Let us remark that the element a11 of the jacobian matrix, which is obtained by dif-

ferentiating with respect to c the first member of the constraint equation (2), coin-

cides with OB
K

NOBN
Q e
K

1 , as can be seen from (8). Therefore, taking into account (9), dur-

ing the motion of the lamina a11 (t) is given by

a11 (t)4cos W(t)E0 (t� I(10)
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which ensures that, at any instant t of the time interval I , the rank of the jacobian ma-
trix is maximum.

On the other hand, for the value W4 p
2

(to which corresponds c42p) the rank

of the jacobian matrix is zero. This is the case when B is at the middle point of the half-
cir cle c1 , and C belongs to the negative y semiaxis. This is the reason why we have re-
stricted the trajectory of the vertex B to the arc B0 Bg of c1 instead of extending it to the
whole half-circl e c1 .

3. GRIOLI’S FORMULAS

Grioli has proved [1 , 2] that the following identity

v
K3v

K
.
Q u
K1(vK Q u

K) Vv
K3 u

K
V

24cotg wVv
K3 u

K
V

3(11)

is a necessary and sufficient condition which must be satisfied by the angular velocity
v
K(t), during a spherical rigid motion, in order that the motion be a precession, where
u
K is a unit vector of an (arbitrary) figure axis f . Moreover, the second Grioli’s
formula

c
K4 sin w

Vv
K3 u

K
V

kvK2(v
K Q u

K) u
Kl1cos w u

K(12)

allows us to determine a unit vector c
K of the precession axis p , corresponding to the

figure axis f . In both the above formulas w is the (constant) angle between c
K and u

K.
We want to apply the formulas (11) and (12) to the example given in the previous

Section 2. The axes of the first pair (p , f ), which we have chosen as third axes z and z ,

form an angle w4 p
2

, and have unit vectors: c
K4 e

K
3 and u

K4 k
K

respectively. It is

easy to verify that both the above formulas are satisfied, at every instant t of the time
interval I .

Now, utilizing Grioli’s formulas, we shall determine the unit vectors c
K8 and u

K8 of
the second pair of axes (p 8 , f 8 ) of the previous example, and the (constant) angle w 8
between c

K8 and u
K8 . In order to simplify the lengthy calculations, we choose the mov-

ing axis j in the plane ff 8 , and moreover, we restrict ourselves to searching for a unit
vector u

K8 parallel to the coordinate plane jz , by putting

u
K84sin x i

K
1cos x k

K
(13)
where x(0ExEp) is the unknown angle between u

K8 and k
K

. We exclude: x40 and
x4p , because we would get again the first pair of axes.

Expressing the components p , q , r of the angular velocity v
K
fc

.
(t) e

K
31W

.
(t) k

K

of the rigid lamina with respect to the moving axes j , h , z , as functions of the Euler
angles, and then eliminating c

.
(t) by means of formula (7), we obtain the following ex-

pression for the first member of (11)

v
K3v

K
.
Q u
K81 (v

K Q u
K8)Vv

K3 u
K8 V24P( sin W) u W

.

11sin a sin W
v3

(14)
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where P( sin W) is the following polynomial of the third degree in sin W

P( sin W) »4c01c1 sin W1c2 sin2 W1c3 sin3 W .(15)

The coefficients of this polynomial have the following expressions

.
`
/
`
´

c04
1
2

sin x[ sin (2x)2sin (2a) ]

c143 sin2 x sin (a2x)

c24
3
2

sin x sin [2(a2x) ]

c34sin x sin (2a2x) sin (a2x)

(16)

which are all zero for x4a . Therefore, for

u
K84sin a i

K
1cos a k

K
(17)
the identity (11) becomes: 04cotg w 8 Vv

K3 u
K8 V3 (t� I , which implies w 84 p

2
, as

v
K3 u

K8c0, because the precession of the example given in Section 2 is a non-degen-
erate one.

By means of Grioli’s first formula we have found the solution (17), which is a unit
vector of the second figure axis f 8 (the cathetus AB), and we have also determined the

angle w 84 p
2

which u
K8 forms with c

K8 . In order to identify a unit vector c
K8 of p 8 ,

we utilize Grioli’s second formula (12), which now takes the simplified form

gas w 84 p
2 h

c
K84

v
K2(v

K Q u
K8) u

K8

Vv
K3 u

K8 V
.(18)

With simple calculations, taking into account the first seven formulas of the previ-
ous Section 2, we get

v
K Q u

K842c
.

, Vv
K3 u

K8 V42W
.

from which it follows that

v
K2(v

K Q u
K8) u

K84c
.

e
K

31W k
K
1c

.
u
K8 .

Substituting u
K8 by means of (17), thereafter expressing the direction cosines of i

K
and

k
K

by means of the Euler angles, and finally eliminating sin c , cos c , c
.

by means of
(4), (5), (7), we obtain the following expression for the vector component of v

K orthog-
onal to f 8

v
K2(v

K Q u
K8) u

K842W
. (sin a e

K
21cos a e

K
3)

which inserted into the second member of (18) gives

c
K84sin a e

K
21cos a e

K
3(19)

which coincides with the unit vector n
K

1 orthogonal to the half-plane p 1 . Therefore
the precession axis corresponding to the second figure axis f 8 is the line n1 through the
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center O , orthogonal to p 1 , i.e. the second precession axis p 8 , which was found geo-
metrically in the previous Section 2.

4. ON THE UNIQUENESS OF AXES FOR THE CLASS

OF NON-DEGENERATE REGULAR PRECESSIONS

In this section we prove the following theorem.

THEOREM. Every non-degenerate regular precession possesses a unique precession
axis and a unique figure axis.

Let P be any non-degenerate regular precession, where (p , f ) is a pair of preces-
sion and figure axes satisfying the definition given in the Introduction. Let us intro-
duce two positively oriented rectangular systems of axes, both with the origin at the
centre O of P : Oxyz , at rest in the frame R, and Ojhz , rigidly connected to the body,
where the third fixed axis z will be the precession axis p , oriented as v

K
1 , and the third

moving axis z will be the figure axis f , oriented as v
K

2 . Then the angular velocity
v
K(fv

K
11v

K
2 ) of the body, expressed by means of the Euler angles, becomes

v
K4c

.
0 e
K

31W
.

0 k
K

(t�D(20)

where c
.

0 and W
.

0 are both strictly positive constants. Moreover, let w (0EwEp) be
the (constant) angle between the unit vectors e

K
3 (of z) and k

K
(of z).

Now, let us suppose, ab absurdo, that the given precession P possesses another
pair of axes (p 8 , f 8 ), different from the previous one (p , f ). Let c

K8 and u
K8 be two unit

vectors of the axis of precession p 8 and the axis of figure f 8 respectively, and let us de-
note by w 8 (0Ew 8Ep) the (constant) angle between c

K8 and u
K8 .

Consider first the particular case in which f 8 coincides with f , i.e. u
K846 k

K
. Then

from the scalar identity (11) we get: w 84w for u
K84 k

K
or w 84p2w for u

K842 k
K

.
Thereafter, from the vector identity (12) we obtain c

K84 e
K

3 , both in the case: u
K84 k

K
,

w 84w and in the case: u
K842 k

K
, w 84p2w . Thus we have proved that: if f 8 coin-

cides with f , then also p 8 coincides with p , and so we get again the first pair of
axes.

Now we consider the general case: f 8c f . Denoting by l the (constant) angle be-
tween u

K8 and k
K

, we have: 0ElEp , as u
K83 k

K
c0. In order to simplify the subse-

quent long calculations, we choose without loss of generality the first moving axis j
belonging to the moving plane ff 8 and so oriented that: u

K8 Q i
K
D0. This implies

u
K84sin l i

K
1cos l k

K
.(21)

Expressing the components p , q , r of v
K as functions of the Euler angles, we

get

p4c
.

0 sin w sin W , q4c
.

0 sin w cos W , rf r0 »4c
.

0 cos w1W
.

0(22)
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where W is a linear function of the time (whereas: w , c
.

0 and W
.

0 are real constants).
Therefore, taking into account (21) and (22), and putting

a»4c
.

0 sin w sin l (4const .D0)(23)

we have

v
K Q u

K84a sin W1 r0 cos l .(24)

Moreover:

Vv
K3 u

K8 V4o2a 2 sin2 W22ar0 cos l sin W1 (r0
2 sin2 l1c

.
0
2 sin2 w)2(25)

and

v
K3v

K
.
Q u
K84ar0 W

.
0 sin W2c

.
0
2 W

.
0 sin2 w cos l .(26)

Putting the three expressions (24), (25), (26) into Grioli’s scalar identity (11)
(where u

K is replaced by u
K8 and cotg w by cotg w 8 ), we obtain in the first member a

polynomial P3 ( sin W) of the third degree in sin W , whereas in the second member ap-
pears the square root of a polynomial P6 ( sin W) of the sixth degree in sin W . Rationaliz-
ing the above identity (i.e. squaring both members), and thereafter assembling togeth-
er the terms of the same degree in sin W , we obtain an algebraic equation of the sixth
degree for the unknown x»4sin W , where all the coefficients are constant during the
motion. In particular, the coefficient of x 6 is

a 6 (11cotg2 w 8 )

which is a finite, non-zero real number, owing to (23) and to the non vanishing of
sin w 8 . Thus, the algebraic equation is not an identity, and therefore possesses six con-
stant roots (real or complex). But this is in contradiction with the fact that W

.
0 is a

strictly positive constant, and so the theorem is proved.

5. FINAL REMARKS

The aim of the present section is to show that the non-degenerate precessional mo-
tions of the rigid lamina ABC , with two pairs of precession and figure axes (see Sec-
tion 2), can be defined also on a unbounded interval of time.

In fact, let us consider as an example, the following time equations

(i) W(t)4g1 (p2g) e 2k(t2 t0 ) ( t� [t0 , Q) (kD0)

(ii) W(t)4p2 (p2g) sin2 k(t2 t0 ) ( t�D (k41)

where k is a constant, whose dimensions are [k]4 [T 21 ].
During the precession of the lamina with the time equation (i), the vertex B de-

scribes the arc B0 Bg of the half-circle c1 (see the figure of Section 2), starting at B0 and
tending asymptotically to Bg , without inversions of the motion, as W

.
(t)E0 (tF t0 .

Therefore, due to (7), we have: v
K

1 (t)3v
K

2 (t)c0 (tF t0 , which ensures that the pre-
cession is a non-degenerate one.
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On the other hand, during the precession of the lamina with the time equation (ii),
the vertex B oscillates indefinitely between the end points B0 and Bg of the arc B0 Bg ,
because the motion is periodic. It is easy to recognize that we have: v

K
1 (t)3v

K
2 (t)40

only at the instants of time at which the vertex B is on the end points of the arc B0 Bg .
But these instants of time are isolated points of the time interval D , and therefore the
periodic motion of the lamina is a non-degenerate precession (possessing two distinct
pairs of axes of precession and figure).
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