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Geometria. — On the space of real algebraic morphisms. Nota di RICCARDO GHILO-
NI, presentata (*) dal Socio C. De Concini.

ABSTRACT. — In this Note, we announce several results concerning basic properties of the spaces of
morphisms between real algebraic varieties. Our results show a surprising intrinsic rigidity of Real Alge-
braic Geometry and illustrate the great distance which, in some sense, exists between this geometry and
Real Nash one. Let us give an example of this rigidity. An affine real algebraic variety X is rigid if, for ea-
ch affine irreducible real algebraic variety Z , the set of all nonconstant regular morphisms from Z to X is
finite. We are able to prove that, given a compact smooth manifold M of positive dimension, there exists
an uncountable family ]Mi(i� I of rigid affine nonsingular real algebraic varieties diffeomorphic to M
such that, for each ic j in I , Mi is not biregularly isomorphic to Mj .

KEY WORDS: Real algebraic morphisms; Real algebraic rigidity; Arithmetic of dominating real alge-
braic morphisms.

RIASSUNTO. — Sullo spazio dei morfismi algebrici reali. In questa Nota, annunciamo alcuni risultati ri-
guardanti proprietà basilari degli spazi di morfismi tra varietà algebriche reali. I nostri risultati mostrano
una sorprendente rigidità intrinseca della Geometria Algebrica Reale ed illustrano la grande distanza
che, in un certo senso, esiste tra questa geometria e quella Nash reale. Diamo un esempio di questa rigi-
dità. Una varietà algebrica reale affine X è rigida se, per ogni varietà algebrica reale affine irriducibile Z ,
l’insieme dei morfismi regolari noncostanti da Z in X è finito. Siamo in grado di dimostrare che, data una
varietà differenziabile compatta M di dimensione positiva, esiste una famiglia non-numerabile ]Mi(i� I di
varietà algebriche reali affini nonsingolari rigide diffeomorfe a M tali che, per ogni ic j in I , Mi non è bi-
regolarmente isomorfa a Mj .

1. INTRODUCTION

In this Note, we announce several results concerning basic properties of the spaces
of morphisms between real algebraic varieties. Making use of new algebraic invariants,
we study the topology and the finiteness properties of these spaces, and the arithmetic
of dominating morphisms. Our results show a surprising intrinsic rigidity of Real Al-
gebraic Geometry and illustrate the great distance which, in some sense, exists be-
tween this geometry and Real Nash one. In order to simplify the exposition, we will
present only a part of our results giving our definitions and theorems in a weak form:
for example, we will consider only affine real algebraic varieties. Furthermore, for
each new result, we will give a sketch of the proof.

Let us start recalling some classical notions.
A real algebraic subset of Rn is defined as the set of zeros of a collection of polynomials
in R[x1 , R , xn ]. Let S be a subset of Rn , let T be a subset of Rm and let f : SKT be a
map. We say that f is regular if, for each x�S , there are a Zariski neighborhood V of x
in Rn , two polynomials p : RnKRm and q : RnKR such that q 21 (0)OSOV4¯

and f4p/q on SOV . An affine real algebraic variety is a topological space X
equipped with a sheaf RX of real-valued functions, isomorphic to a real algebraic sub-

(*) Nella seduta dell’11 aprile 2003.
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set of some Rn with its Zariski topology, equipped with its sheaf of regular functions.
The topology of X is called Zariski topology. Given a subset Y of X , we indicate by
ZclX (Y) the Zariski closure of Y in X . A point x of X is nonsingular of dimension d if
the ring of germs RX , x is a regular local ring of dimension d . The dimension dim (X)
of X is the largest dimension of nonsingular points of X . We denote by Nonsing (X)
the set of all nonsingular points of X of dimension dim (X) and we say that X is non-
singular if X4Nonsing (X). A morphism between two affine real algebraic varieties is
called a regular map. Let Y and Z be two affine real algebraic varieties. We will indi-
cate by R(Y , Z) the set of all regular maps from Y to Z . A projective real algebraic set
and a projective real algebraic variety can be defined in a similar way; in any case, such
real algebraic varieties are always affine.

A 1-dimensional affine real algebraic variety is called a real algebraic curve and a 1-
dimensional Zariski closed subset of an affine real algebraic variety X is called a real
algebraic curve of X . Let C be an irreducible real algebraic curve. By normalization,
there exists a projective nonsingular irreducible complex algebraic curve CC defined
over R such that C is birationally isomorphic to the set of all real points CC (R) of CC

where CC (R) is viewed as a projective real algebraic curve. We say that CC is a smooth
complexification of C . Since CC is unique up to birational isomorphism over R , we
may define the genus g(C) of C as the genus of CC (see [7, Proposition 7.1]). Further-
more, the following is true. Let r : CKD be a nonconstant regular map between
irreducible real algebraic curves and let CC and DC be smooth complexifications of C
and D respectively. Let H»4Nonsing (C)O r 21 ( Nonsing (D) ) and let r 8 : HK
KNonsing (D) be the restriction of r to H . Identify H with a Zariski open subset of
CC (R) and Nonsing (D) with a Zariski open subset of DC (R). Then there is an unique
nonconstant complex regular map rC : CCKDC which extends r 8 . We call rC a com-
plexification of r .

Observe that every affine real algebraic variety can be equipped with a topology
finer than Zariski’s one, i.e., the euclidean topology induced by Rn . Unless otherwise
indicated, all affine real algebraic varieties used below will be considered equipped
with the euclidean topology.

1. SECTIONAL CURVE GENUS AND EMBEDDED TORIC GENUS

Let X be an affine real algebraic variety of positive dimension, let x�X and let
k�N where N is the set of all nonnegative integers. We denote by C x

k (X) the set of all
irreducible real algebraic curves C of X such that C�x and g(C)4k .

LEMMA 1. Let X be an affine real algebraic variety of positive dimension and let
p�Nonsing (X). Suppose X is irreducible. Then there is an integer k such that 0

C� C p
k (X)

C
is Zariski-dense in X .

PROOF. Suppose X is a r-dimensional algebraic subset of Rn . Let T be the Zariski
tangent space of X at p , let N be the orthogonal vector space of T in Rn , let P(T) be
the projective space associated with T and let s : T0]0(KP(T) be the natural pro-
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jection. Fix n�P(T). Let aN , nb be the vector subspace of Rn generated by N and a
vector v�T0]0( such that s (v)4n and, for each x�X , let Nn , x be the affine (n2
2r11)-plane of Rn defined by Nn , x »4x1 aN , nb. By transversality, the intersection
Nn , pOX is nonsingular of dimension 1 at p . Denote by Cn the irreducible component
of such an intersection containing p . From the Implicit Function Theorem, it follows
the existence of a neighborhood U of p in X such that U% 0

n�P(T)
Cn% 0

k�N
0

C� C p
k (X)

C . In

particular, setting Zk »4Zcl Xg 0
C� C p

k (X)
Ch for each k�N , it follows that U% 0

k�N
Zk . By

the Baire theorem, we have that there is an integer k such that dim Zk4dim X , hence
Zk coincides with X . o

The previous lemma ensures that the following definition is consistent.

DEFINITION (sectional curve genus). Let X be an affine real algebraic variety of po-
sitive dimension. First, suppose X is irreducible. The sectional curve genus ps (X) of X
is defined as follows:

ps (X) »4 min
x�Nonsing (X)

min mk�NNZclXg 0
C� C x

k (X)
Ch4Xn .

If X is reducible and X1 , R , Xr are its irreducible components of positive dimension,
then we put ps (X) »4 max

i�]1, 2,R, r(
ps (Xi ). o

Let X be an affine real algebraic variety, let r»4dim (X) and let e be the maximum
dimension of the Zariski tangent spaces of X . We define the Whitney-Lluis number
WL(X) of X by WL(X) »4max ]2 r11, r1e21(. Let Y be an affine real algebraic
variety and let W : XKY be a topological embedding, i.e., a homeomorphism onto its
image. If W(X) is Zariski locally closed in Y and both W and W21 : W(X)KX are regu-
lar, then we say that W is a biregular embedding of X into Y . Let m»4WL(X). Suppose
X is an algebraic subset of Rn and nFm . By the Generic Projection Theorem (see [6]
and [8, Section 2]), we know that a generic projection p : RnKRm restricted to X is a
biregular embedding of X into Rm . This fact permits to give the following definition
(recall that R is a nonsingular irreducible real algebraic curve).

DEFINITION (embedded toric genus). Let X be an affine real algebraic variety of
positive dimension. The embedded toric genus ept (X) of X is the largest integer h with
the following properties: there are a positive integer sGWL(X), nonsingular irre-
ducible real algebraic curves C1 , C2 , R , Cs with min

i�]1, 2,R, s(
g(Ci )4h and a biregular

embedding of X into the s-torus »
i41

s

Ci . o

The following lemma gives a basic relation between sectional curve genus and em-
bedded toric genus of an affine real algebraic variety.

LEMMA 2. Let X be an affine real algebraic variety of positive dimension. It holds:
ept (X)Gps (X).
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PROOF. Let k»4ps (X) and h»4ept (X). For simplicity, we may suppose that X is an

irreducible real algebraic subset of a s-torus T»4 »
i41

s

Ci with min
i

g(Ci )4h . Fix

p�Nonsing (X) such that C p
k (X)c¯ and let C� C p

k (X). Choose i� ]1, 2 , R , s( such
that the natural projection p of T onto Ci restricted to C is nonconstant. Define
r : CKCi by r»4pNC and consider a complexification r C : CCKCi , C of r . Since r C

is nonconstant, by Riemann-Hurwitz formula, we have that k4g(CC )Fg(Ci , C )4
4g(Ci )Fh . o

Let X and X
A be two affine real algebraic varieties. We say that X

A
is obtainable by a

weak change of the algebraic structure of X if there exists a Nash isomorphism W : X
AKX

such that W is a regular map and W( Sing (XA) )%Sing (X). For short, we will indicate
such a change of the algebraic structure of X by the symbol X

AKA X .
Up to weak change of the algebraic structure, the embedded toric genus (and

hence the sectional curve genus) of an affine real algebraic variety can assume arbitrar-
ily large values.

LEMMA 3. Let X be an affine real algebraic variety of positive dimension and let
h�N . Then there exists a weak change X

AK
A

X of the algebraic structure of X such that
ept (X

A)Fh .

PROOF. We may suppose that X is a bounded algebraic subset of Rn where n is

less than or equal to WL(X) and XO 0
i41

n

]xi41(4¯. Let d be an odd integer such that

(d21)(d22)/2Fh , let C be the nonsingular irreducible real algebraic curve de-
fined by C»4](x , y)�R2 Nx d1y d41( and let W : CKR be the restriction to C of
the projection p : R2KR defined by p(x , y) »4x . The product map W n : C nKRn re-
stricted from X

A
»4 (W n )21 (X) to X is the desired weak change of the algebraic struc-

ture of X. o

2. TOPOLOGY OF REAL ALGEBRAIC MORPHISM SPACE

Let N and M be metric spaces (resp. smooth manifolds). We denote by C 0 (N , M)
(resp. C Q (N , M)) the set of all continuous (resp. smooth) maps from N to M
equipped with the topology of uniform convergence (resp. the Whitney C Q-topology,
see [5]). We need the notion of trivial subset of C 0 (N , M).

DEFINITION. Let N and M be metric spaces. We indicate by Isol (N) the set of all
isolated points of N . The trivial subset Triv (N , M) of C 0 (N , M) is the set of the maps
f�C 0 (N , M) such that f (N0Isol (N) )%Isol (M). o

The trivial set defined above is easily described.

LEMMA 4. Let N and M be two metric spaces such that Isol (N), Isol (M) and the set
8 of all connected components of N0Isol (N) are finite ( for example when N and M
are affine real algebraic varieties). Suppose l--l Isol (N)4a , l--l Isol (M)4b and l--l 84c .
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Then Triv (N , M) is open and closed in C 0 (N , M) and is homeomorphic to the product
M a3]1, 2 , R , b(]1, 2 , R , c( where both M 0 and ¯¯ are considered equal to a point.

DEFINITION. Let N and M be metric spaces and let L be a subset of C 0 (N , M). We
say that L is nowhere dense up to trivial points in C 0 (N , M) if L0Triv (N , M) is
nowhere dense in C 0 (N , M), i.e., the interior of the closure of L0Triv (N , M) in
C 0 (N , M) is void. o

Before stating our main topological results, we give some other definitions.

DEFINITION. Let N be a topological space. We say that N is euclidean if there exists
a topological embedding of N into some Rn . Suppose N is euclidean. The algebraic di-
mension dimalg N of N is defined as the following integer:

min ]d�NN) a topol . embedding h : N %KRn with dim ZclRn (h(N) )4d( . o

REMARK. If V is an algebraic subset of Rn , then it is evidently euclidean and
dim (V) is equal to the algebraic dimension of V viewed as an euclidean space.

The following two theorems give an accurate description of the relative topology
of the spaces of regular maps between affine real algebraic varieties N and M (resp.
affine nonsingular real algebraic varieties) induced by C 0 (N , M) (resp.
C Q (N , M)).

THEOREM 5 (general case). Let X and Y be affine real algebraic varieties (possibly
singular) of positive dimension. Then the following is true.

a) If ps (X)Eept (Y), then every regular map from X to Y is Zariski-locally constant.

b) If ept (Y)F1, then R(X , Y) is nowhere dense up to trivial points in
C 0 (X , Y).

c) Let ps (X)Fept (Y)F2 and suppose Y compact. Let m»4dim (Y), let k be the num-
ber of Zariski-connected components of X and let r be the number of irreducible com-
ponents of X . Equip R(X , Y) with the relative topology induced by C 0 (X , Y). Then
R(X , Y) is euclidean and kmGdimalg R(X , Y)G rm . Furthermore, if k4 r ( for
example when X is irreducible), then R(X , Y) is closed in C 0 (X , Y).

THEOREM 58 (nonsingular case). Let X and Y be compact affine nonsingular real al-
gebraic varieties of positive dimension. Then previous properties a) and c) with
C 0 (X , Y) replaced by C Q (X , Y) hold again, while property b) must be modified as
follows.

b8) If ept (Y)41, then R(X , Y) is not dense in C Q (X , Y). If ept (Y)F2, then
R(X , Y) is nowhere dense in C Q (X , Y).

Let us give an idea of the proof of the previous theorems.
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SKETCH OF THE PROOF OF THEOREM 5 (general case). For simplicity, suppose that X
and Y are irreducible. Let k»4ps (X) and h»4ept (Y). Fix p�Nonsing (X) such that

ZclXg 0
C� C p

k (X)
Ch4X . Suppose Y is an algebraic subset of a s-torus T»4 »

i41

s

Ci where

each Ci is a nonsingular irreducible real algebraic curve and min
i

g(Ci )4h .

a) Suppose that there exists a nonconstant regular map f from X to Y . Let f [p] »4
»4 f 21 ( f (p) ). Since f [p] is a proper algebraic subset of X and 0

C� C p
k (X)

C is Zariski-

dense in X , there is C� C p
k (X) such that C+ f [p], so the regular map f 8 : CKT , de-

fined by f 8 (x) »4 f (x) for each x�C , is nonconstant. In particular, there exists
i� ]1, 2 , R , s( such that, if p i : TKCi is the natural projection of T onto Ci , then
p i i f 8 : CKCi is nonconstant. By Riemann-Hurwitz formula, we have k4g(C)F
Fg(Ci )Fh which contradicts the assumption of part a) of the theorem.

b) Let dT be a metric for T which induces the topology of T . Fix
f� R(X , Y)0Triv (X , Y). Let X 8 »4Isol (X)N f 21 ( Isol (Y) ) and p�X0X 8 . Let q»4
»4 f (p), let G be an irreducible real algebraic curve of X such that p is an accumula-
tion point of Nonsing (G) (use the Nash Curve Selection Lemma) and let r : UKY
be a continuous retraction from an open neighborhood U of Y in T onto Y (recall that
the Alexandrov compactification of every real algebraic set is a polyedron and each
compact polyedron is an absolute neighborhood retract). Fix a point p 8�Nonsing (G)
arbitrarily close to p and a relatively compact neighborhood V of p 8 in X such that
VOG%Nonsing (G). Let d»4max ]0, 2g(G)21( and let e be a positive real num-
ber. Using an adequate partition of unity on X and the retraction r , we can define a
continuous map g : XKY such that: g4 f on X0V , sup

x�V
dT ( g(x), f (x) )Ee and, for

some i� ]1, 2 , R , s(, the map g 8 »4p i i gNNonsing (G) : Nonsing (G)KCi is smooth,
nonconstant and has at least d distinct critical points of order 2 . We will prove that g
is not approximable in C 0 (X , Y) by regular maps completing the proof of part b).
Suppose on the contrary that there exists a regular map R : XKY arbitrarily close to g
in C 0 (X , Y). Choosing R sufficiently close to g and using Rolle’s theorem, we have
that the map R 8 : Nonsing (G)KCi , defined by R 8 »4p i i R , is regular, nonconstant
and has at least d distinct critical points. This is impossible because, fixed a complexi-
fication R 8C : GCKCi , C of R 8 , R 8C does not satisfy the Riemann-Hurwitz formula.

c) STEP I. Fix i� ]1, 2 , R , s(. By hypothesis, g(Ci )F2. Let us recall an im-
proved version of de Franchis’ finiteness theorem (see [9] and the next section of this
paper): The number of all nonconstant holomorphic maps from a Riemann surface A of
genus a to a Riemann surface B of genus bF2 is less than or equal to an integer N(a , b)
depending only on a and b . Let Ni »4N(k , g(Ci ) ). Let us prove that the number of all
nonconstant regular maps from X to Ci is less than or equal to Ni . Suppose on the con-
trary that there exist Ni11 distinct nonconstant regular maps f1 , f2 , R , fNi11 from X

to Ci . Let D»4 0
j41

Ni11

fj
21 ( fj (p) )N 0

jc j 8
] fj4 fj 8 (. D is a proper algebraic subset of X so

there exist C� C p
k (X) such that C+D . It follows that f 81 »4 f1 NC , R , f 8Ni11 »4 fNi11 NC

are distinct nonconstant regular maps from C to Ci , so the corresponding complexifi-
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cations f 81, C , R , f 8Ni11, C are distinct nonconstant complex regular maps from CC to
Ci , C . This contradicts the mentioned improved version of de Franchis’ theorem.

STEP II. For each i� ]1, 2 , R , s(, let r i : YKCi be the restriction to Y of the nat-
ural projection of T onto Ci and let ]gi , 1 , R , gi , ni

( be the set of all nonconstant regu-
lar maps from X to Ci . For each x% ]1, 2 , R , s(, let x* »4]1, 2 , R , s(0x , let
Tx* »4 »

i�x*
Ci , let r x* : YKTx* be the restriction to Y of the natural projection of T

onto Tx* and, if xc¯ , let F(x) be the set of all functions c : xKN such that, for each
i�x , c(i)� ]1, 2 , R , ni(. For each x% ]1, 2 , R , s( with xc¯ and for each
c�F(x), define

Rx , c »4] f� R(X , Y)Nr i i f4gi , c(i) (i�x , r i i f is constant (i�x*( .

If x4¯ , then we denote by R¯ the set of all constant maps from X to Y . We have that:
R(X , Y)4 R¯2 2

¯cx%]1, 2,R, s(, c�F(x)
Rx , c , R¯ and every Rx , c are open and closed in

C 0 (X , Y) and R¯ is homeomorphic to Y. In this way, it suffices to prove that each
Rx , c is euclidean and its algebraic dimension is less than or equal to dim Y . Fix xc¯

and c�F(x). For each f� Rx , c , define a( f ) as the point of Tx* such that
r x* ( f (X) )4]a( f )(. The map W : Rx , cKTx* defined by W( f ) »4a( f ) is a topologi-
cal embedding, so Rx , c is euclidean and dimalg Rx , cGdim r x* (Y)Gdim Y . o

Piecing together Lemma 3 and Theorem 5, we have the following result.

COROLLARY 6. Let X and Y be affine real algebraic varieties (possibly singular) of
positive dimension. Then we have:

a) there exists a weak change Y
AKA Y of the algebraic structure of Y such that every regu-

lar map from X to Y
A

is Zariski-locally constant,
b) if R(X , Y) is dense in C 0 (X , Y) (or in C Q (X , Y) if both X and Y are nonsingular),

then ept (Y)40.

2. ARITHMETIC OF DOMINATING REAL ALGEBRAIC MORPHISMS

In this section, we will present some real versions of the following famous theorem
of de Franchis [4].

THEOREM 7 (de Franchis). Let C and D be two compact Riemann surfaces. Suppose
the genus g(D) of D is greater than or equal to 2. Then the set of all nonconstant (and
hence surjective) holomorphic maps from C to D is finite.

In the situation of the previous theorem, it is possible to estimate the number of
nonconstant holomorphic maps by means of g(C) and g(D). In fact, in [9], it is proved
the following result (see the references of [9] also).
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THEOREM 8 (Tanabe). Let C and D be compact Riemann surfaces with g(D)F2.
Define the Hurwitz-Tanabe function HT : N3 (N0]0, 1()KN by

HT(a , b) »4
.
/
´

84(a21)

2(2b21)(a21) g4 a21
b21

11h2a

0

if a4bF2

if aDbF2

otherwise .

Then the number of nonconstant holomorphic maps from C to D is less than or equal to
HT(g(C), g(D) ).

We will consider two kinds of dominating maps: the «weakly dominating regular
maps» and the «weakly open regular maps». Let us give precise definitions.

DEFINITION. Let X and Y be affine algebraic varieties and let f� R(X , Y). We
say that f is weakly dominating if, for each irreducible component X 8 of X , there exists
an irreducible component Y 8 of Y such that ZclY ( f (X 8 ) )4Y 8 . We denote
by wDom R(X , Y) the set of all weakly dominating regular maps from X
to Y . o

DEFINITION. Let X and Y be affine algebraic varieties. A regular map f from X to Y
is weakly open if, for each irreducible component X 8 of X , there exists an irreducible
component Y 8 of Y such that f (X 8 )%Y 8 and the interior of f ( Nonsing (X 8 ) ) in Y 8 is
nonvoid. We indicated by wo R(X , Y) the set of all weakly open regular maps from X
to Y . o

REMARK. If a regular map is open in the usual sense, then it is weakly open.

Let us state our real generalizations of de Franchis’ theorem.

THEOREM 9 (weakly dominating regular maps). Let X and Y be affine algebraic vari-
eties of positive dimension with ept (Y)F2. Suppose that: a is the number of positive-
dimensional irreducible components of X , b is the number of 0-dimensional irreducible
components of X , c is the number of positive-dimensional Zariski-connected compo-
nents of X , A is the number of positive-dimensional irreducible components of Y , B is
the number of 0-dimensional irreducible components of Y and C is the number of posi-
tive-dimensional Zariski-connected components of Y . Then wDom R(X , Y) is finite
and it holds:

l--l wDom R(X , Y)GA a B b C c (B1HT(ps (X), ept (Y) )WL(Y) )a

where 00 is considered equal to 1.

We sketch the proof of this theorem supposing that X and Y are irre-
ducible.

SKETCH OF THE PROOF OF THEOREM 9. Let k»4ps (X) and h»4ept (Y). Let s be the
smallest positive integer such that sGWL(Y) and there is a biregular embedding of Y
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into a s-torus »
i41

s

Ci where C1 , R , Cs are nonsingular irreducible real algebraic curves

with min
i

g(Ci )4h . Fix i� ]1, 2 , R , s(. Piecing together Step I of the proof of

part c) of Theorem 5 with Theorem 8, it follows that the number of all nonconstant
regular maps from X to Ci is less than or equal to HT(k , g(Ci ) ). By an explicit calcu-
lation, it is possible to verify that HT(k , g(Ci ) )GHT(k , h). Using the notations of
Step II of the proof of part c) of Theorem 5 and bearing in mind both the defini-
tion of s and the definition of weakly dominating regular map, we have that

wDom R(X , Y)% 2
c�F(]1, 2,R, s()

R]1, 2,R, s(, c so l--l wDom R(X , Y)G »
i41

s

HT(k , g(Ci ) )G

GHT(k , h)sGHT(k , h)WL(Y) as required. o

THEOREM 10 (weakly open regular maps). Let X and Y be affine algebraic varieties
of positive dimension with ept (Y)F2. Then wo R(X , Y) is finite.

The proof of the latter theorem is quite complicated so we omit it.

COROLLARY 11 (biregular automorphisms). Let X be an affine nonsingular irre-
ducible algebraic variety of positive dimension with ept (X)F2. Then the set Aut (X) of
all biregular automorphisms of X is finite and it holds:

l--l Aut (X)GHT(ps (X), ept (X) )2 dim (X)11 .

Piecing together Lemma 3 and Theorem 9, we obtain the following result.

COROLLARY 12. Let X be an affine nonsingular irreducible algebraic variety of posi-
tive dimension. Then there exists a weak change X

AKA X of the algebraic structure of X
such that Aut (XA) is finite.

3. RIGIDITY OF REAL ALGEBRAIC MORPHISMS

First, let us give the notion of rigid varieties.

DEFINITION. An affine real algebraic variety X is rigid if, for each affine irreducible
real algebraic variety Z , the set of all nonconstant regular maps from Z to X is
finite. o

THEOREM 13 (rigidity). Each affine real algebraic variety X admits a weak change
X
AKA X of its algebraic structure in such a way that X

A
is rigid.

In order to give an idea of the proof of the previous rigidity theorem, we need
some preliminary notions and results.
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DEFINITION. Let X be a r-dimensional Zariski-locally closed subset of Rn , let
j� ]0, 1 , R , n2 r( and let L be a j-dimensional vector plane of Rn . We say that L is
good for X in Rn if sup

x�Rn
l--l ](x1L)OX( is finite. o

DEFINITION. Let X be a r-dimensional Zariski-locally closed subset of Rn and let B
be a base of Rn . Let j� ]1, R , n(. A coordinate j-plane of B is a vector subspace of Rn

generated by j vectors of B . The coordinate 0-plane of B is defined to be ]0(. We say
that B is good for X in Rn if, for each j� ]0, 1 , R , n2 r(, all coordinate j-planes of B
are good for X in Rn . o

LEMMA 14. Let X be a r-dimensional Zariski-locally closed subset of Rn . Then there
is a base B of Rn good for X in Rn .

PROOF. A proof of this lemma can be obtained by means of arguments similar to
the ones used by Whitney in [11, Section 10, Chapter 7]. o

DEFINITION. Let T»4 »
i41

s

Ci be a s-torus where C1 , R , Cs are real algebraic curves

and let X be a r-dimensional Zariski-locally closed subset of T . Let x% ]1, 2 , R , s(.
Define Tx »4 »

i�x
Ci where T¯ is considered to be a point and let r x be the natural pro-

jection of T onto Tx . We say that X is in good position into T if, for each
x% ]1, 2 , R , s( with l--l xF r , the following is true: sup

x�Tx

l--l ]XOr x
21 (x)( is fi-

nite. o

LEMMA 15. Let X be a r-dimensional Zariski-locally closed subset of Rn . Then there
are a nonsingular irreducible real curve C with g(C)F2 and a Zariski-locally closed
subset X

A
of the n-torus C n in good position into C n such that X

A
is obtainable by a weak

change of the algebraic structure of X .

PROOF. By Lemma 14, we may suppose that the canonical base of Rn is good for X
in Rn . Now, repeating the proof of Lemma 3, we have this lemma. o

SKETCH OF THE PROOF OF THEOREM 13. Suppose X is a r-dimensional algebraic
subset of Rn and nF2 r21. Let us apply Lemma 15 to X obtaining a nonsingular ir-
reducible real curve C with g(C)F2 and a Zariski-locally closed subset X

A of the n-
torus T»4C n in good position into T such that X

A is obtainable by a weak change of
the algebraic structure of X . Fix an affine irreducible real algebraic variety Z of positi-
ve dimension. Let R*(Z , X) be the set of all nonconstant regular maps from Z to X .
Recalling Step II of the proof of part c) of Theorem 5, we know that
R*(Z , X)% 2

¯cx%]1, 2,R, s(, c�F(x)
Rx , c . Using the good position of X

A into T and the in-

equality nF2 r21, we see that each Rx , cOR*(Z , X) is finite. o

Let X be an affine real algebraic variety of positive dimension. Applying Theorem
13 to X3R , we can prove the following theorem.
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THEOREM 16 (algDnash). Let X be an affine real algebraic variety of positive dimen-
sion. Then there exists an uncountable family ]Xi(i�I of rigid affine real algebraic varieties
such that each Xi is Nash isomorphic to X , but, for each ic j in I , Xi is not biregularly iso-
morphic to Xj . More precisely, each Xi is obtainable by a weak change of the algebraic
structure of X and, for each ic j in I , Xi is not birationally isomorphic to Xj .

The latter result, together with theorems of Tognoli [10] and Akbulut and King
[1], generalizes a well-known result by Bochnak and Kucharz [3] and Ballico [2].

COROLLARY 17. Let M be a smooth manifold of positive dimension. Suppose M is
diffeomorphic to the interior of a compact smooth manifold with (possibly empty)
boundary. Then there exists an uncountable family ]Mi(i� I of rigid affine nonsingular
real algebraic varieties such that each Mi is diffeomorphic to M , but, for each ic j in I ,
Mi is not birationally isomorphic to Mj .

The author is a member of GNSAGA of CNR, partially supported by MURST and European Re-
search Training Network RAAG 2002-2006 (HPRN-CT-00271).
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