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Equazioni a derivate parziali. — Effective saturation for composite porous media.
Nota (*) di MICOL AMAR e ROBERTO GIANNI, presentata dal Socio M. Primicerio.

ABSTRACT. — This paper is devoted to the study of the homogenization of a porous medium, compo-
sed of different materials arranged in a periodic structure. This provides the profile of the saturation fun-
ction for the limit material.

KEY WORDS: Homogenization; Parabolic equations; Filtration; Porous media.

RIASSUNTO. — Saturazione effettiva per mezzi porosi compositi. Questo lavoro è dedicato allo studio
dell’omogeneizzazione di un mezzo poroso, costituito da materiali diversi disposti in struttura periodica.
Questo fornisce il profilo della funzione di saturazione del materiale limite.

1. INTRODUCTION

It is well known that, in absence of gravity, the flow of an incompressible liquid in
a partially saturated porous media is ruled by the equation

s 8 (x , u) ¯u
¯t

4Du in V T ,(1.1)

where s is a bounded function, non decreasing and Lipschitz-continuous with respect
to the second entry. Moreover, for physical reasons, we assume the strict monotonicity
of s (x , Q) for sE0.

Equation (1.1) is a simple consequence of the mass balance equation and of the
Darcy’s law. Here, the unknown u is related to the liquid pressure in the porous me-
dium, while s is the saturation profile, giving the volume fraction occupied by the
liquid as a function of u . Moreover, the spatial dependence of s corresponds to the
fact that the properties of the material are changing with the position.

In particular, we can think of a composite porous medium, made of finely mixed
materials, each of them with a different saturation profile. In this case, s (x , s)4
4!s i (s) x Ei

(x), where each Ei represents the i th-material. Assuming a microscopic
periodic structure of width e , it appears a small parameter in the problem. We investi-
gate the homogenization limit for eK0, proving that the pressure inside the resulting
material satisfies an equation similar to (1.1), where s is replaced by the effective satu-
ration s 0 (s)4!s i (s)NEiN . For a general survey on the homogenization in porous
media, we refer to [6], and for more details on this topic, see, e.g. [4, 8].

It has been discussed for a long time if it makes sense to assume that the
limit for sK02 of the derivative of the saturation profile is strictly positive
(see, e.g., [3, 7]). From the mathematical point of view, this is a relevant question,
since it guarantees the strict parabolicity of the equation (1.1) in the unsaturated
region (see, e.g., [5, 7]). Our result seems to indicate that, at least for finely
mixed materials, this should be the case, since it suffices that this property

(*) Pervenuta in forma definitiva all’Accademia il 23 giugno 2003.
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holds for at least one of the components of the medium, in order to have
that it is satisfied by the homogenized composite.

The paper is organized as follows: Section 2 is devoted to some preliminary esti-
mates for the solution of (1.1), which are crucial for the homogenization result. In Sec-
tion 3 we find the homogenized problem in the case where the saturation has the gen-
eral form s(e21 x , s), with s(Q , s) periodic.

2. PRELIMINARIES

Throughout this paper, C will denote a positive constant which may vary each
time. We denote by LipL (R) the set of those functions which are Lipschitz-continuous
on R , with Lipschitz constant given by L . Set Y4 (0 , 1 )n ; we say that a function de-
fined on Rn is Y-periodic if it is periodic of period 1 with respect to each
variable.

Let V%Rn , nF1, be an open bounded set with Lipschitz boundary and T be a
fixed positive number. We set V T4V3 (0 , T). We denote by L 2 (0 , T ; H 1 (V) ) the
Sobolev space of all L 2-functions g , such that g(Q , t)�H 1 (V) for a.e. t� (0 , T),
equipped with the natural norm

VgVL 2 (0 , T ; H 1 (V) )4 u �
0

T

y �
V

N˜x g(x , t)N2 dxz dtv1/2

1 u �
0

T

y �
V

Ng(x , t)N2 dxz dtv1/2

.

Let sA : RKR be a non-decreasing function belonging to LipL (R), such that
sA(s)G1, for every s�R , sA(s)f1, for every sF0, and sA is strictly increasing for
sE0. Let s : Rn3RKR be a measurable function satisfying the following
conditions:

H1) s(x , Q)�LipL (R)

H2) s(x , s)f1

H3) s(x , s)GsA(s)

H4) sA8 (s)G ¯

¯s
s(x , s)

for a.e. x�Rn ;

(sF0, for a.e. x�Rn ;

(s�R , for a.e. x�Rn ;

(s�R , for a.e. x�Rn .

(2.1)

Note that previous assumptions imply also

H5) s(x , s)G1

H6) 0GsA8 (s)G ¯

¯s
s(x , s)GL

H7) sA8 (s)D0, ¯

¯s
s(x , s)D0

(s�R , for a.e. x�Rn ;

(s�R , for a.e. x�Rn ;

(sE0, for a.e. x�Rn .

(2.2)

For the sake of simplicity, in the sequel we will write ˜ instead of ˜x and s 8 (x , s) in-

stead of ¯

¯s
s(x , s).

Let f�H 1 (V)OL Q (V) and F�H 2 (V T )OL Q (V T ) be such that DF40 in
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V T ; consider the problem

.
/
´

s 8 (x , u) ¯u
¯t

4Du

u(x , 0 )4f(x)

u(x , t)4F(x , t)

in V T ;

on V ;

on ¯V3 (0 , T) .

(2.3)

Note that the first equation in (2.3) can be written also in the form

¯s
¯t

(x , u)4Du in V T ,

which is more convenient in order to state the weak formulation of (2.3). Indeed, we
will say that a function u�L 2 (0 , T ; H 1 (V) ) is a solution of (2.3), if

�
V T

s(x , u)
¯c
¯t

(x , t) dx dt1�
V

s(x , f(x) ) c(x , 0 ) dx4 �
V T

˜u˜c dx dt(2.4)

for every c�C 1 (V T ), such that c(x , T)40 on V and c(x , t)40 on ¯V , and u4F
on ¯V3 (0 , T) in the sense of traces.

By (2.4) it follows that the second equation in (2.3) stands for

s(x , u(x , 0 ) )4s(x , f(x) ) on V ,(2.5)
which implies that u and f have the same sign. Then, (2.5) is always satisfied on the set
where u and f are nonnegative, since in such a case sf1, while it reduces to
u(x , 0 )4f(x) on the set where u and f are strictly negative, since there s(x , Q) is
strictly increasing and then invertible.

We recall that problem (2.3) has always a unique solution u�L 2 (0 , T ; H 1 (V) ), in
the sense of (2.4), whose trace equals F on ¯V3 (0 , T) (see, e.g., [1, 2]).

If we set v4u2F , (2.3) can be equivalently written in the form

.
/
´

s 8 (x , u) ¯v
¯t

4Dv2s 8 (x , u) ¯F
¯t

v(x , 0 )4f(x)2F(x , 0 )

v(x , t)40

in V T ;

on V ;

on ¯V3 (0 , T) .

(2.6)

Multiplying by vt the first equation in (2.6) and integrating by parts over V3 (0 , t),
we obtain

(2.7) 04 �
V3(0, t)

s 8(x, u) vt
2dx dt1 �

V3(0, t)

˜v˜vt dx dt1 �
V3(0, t)

s 8(x, u) F tvtdx dt4

4 �
V3 (0 , t)

s 8 (x , u) vt
2 dx dt1 1

2
�

V3 (0 , t)

¯

¯t
N˜vN2 dx dt1 �

V3 (0 , t)

s 8 (x , u) F t vt dx dt4

4 �
V3 (0 , t)

s 8 (x , u) vt
2 dx dt1 1

2
�

V

N˜vN2 (x , t) dx2

2 1
2
�

V

N˜f(x)2˜F(x , 0 )N2 dx1 �
V3 (0 , t)

s 8 (x , u) F t vt dx dt .
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Recalling that s 8F0 and using Young inequality, this implies

VuVL 2 (0 , T ; H 1 (V) )GVvVL 2 (0 , T ; H 1
0 (V) )1VFVH 1 (V T )GCgVfVH 1 (V)1VFVH 1 (V T )h(2.8)

where C depends only on the dimension n , V and T . Moreover, taking into account
H6) and H7) of (2.2), by (2.7) it follows

(2.9) �
V T

g ¯

¯t
sA(u)h2

dx dt4 �
V T

gsA8 (u)h2 ut
2 dx dtG

GC y �
V T

gsA8 (u)h2 vt
2 dx dt1�

V T

gsA8 (u)h2 F t
2 dx dtzGCgVfVH 1 (V)1VFVH 1 (V T )h

where C depends only on L , n , V and T . Finally,

�
V T

N˜sA(u)N2 dx dt4 �
V T

gsA8 (u)h2 N˜uN2 dx dtGCgVfVH 1 (V)1VFVH 1 (V T )h(2.10)

where, again, C depends only on L , n , V and T . Note that estimates (2.8), (2.9) and
(2.10) actually hold for fE0 on V , but they can be achieved by approximation and
semicontinuity also for general f .

3. HOMOGENIZATION

The aim of this paper is to study an hogenization problem related to (2.3). To this
purpose, let Y4 (0 , 1 )n be the unit cell in Rn . A function f , defined on Rn , is said to
be Y-periodic if it is periodic of period 1 with respect to each variable xi , with 1G iG
Gn . Assume that s : Rn3RKR is a measurable function satisfying the previous as-
sumptions H1)-H4) in (2.1), which is also Y-periodic with respect to the variable
x�Rn . Let eD0, define s e (x , s)4s(e21 x , s) and consider the family of prob-
lems

.
/
´

s 8e (x , ue )
¯ue

¯t
4Due

ue (x , 0 )4f(x)

ue (x , t)4F(x , t)

in V T ;

on V ;

on ¯V3 (0 , T) .

(3.1)

By (2.8), which is clearly independent of e , we obtain that there exists a function
u�L 2 (0 , T ; H 1

0 (V) ) such that, up to a subsequence,

ue � u weakly in L 2 (0 , T ; H 1 (V) ) , when eK01 ,(3.2)

and u4F on ¯V3 (0 , T) in the sense of traces.
Moreover, by (2.9) and (2.10) it follows that VsA(ue )VH 1 (V T )GC , where C depends

on L , f and F , but not on e . Hence, there exists a function v�H 1 (V T ) such that, up
to a subsequence,

sA(ue )Kv strongly in L 2 (V T ) , when eK01 .(3.3)

Note that vG1 almost everywhere in V T .
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PROPOSITION. 3.1. Let v�H 1 (V T ) and u�L 2 (0 , T ; H 1
0 (V) ) be the functions de-

fined in (3.2) and (3.3), respectively. Then

v4sA(u) .

PROOF. Since sA(ue )Kv strongly in L 2 (V T ), when eK01 , for every dD0 we
may found a set Nd%V , with NNdNEd , in such a way that sA(ue )Kv uniformly in
V T

d »4V T 0Nd . Let us fix hD0 and define

V T , h
d , 1 4](x , t)�V T

d : vG12h( ,

V T , h
d , 2 4](x , t)�V T

d : vF122h( .
Clearly, V T , h

d , 1 NV T , h
d , 2 4V T

d and their intersection is in general non empty.
By the uniform convergence, it follows that there exists e 0 sufficiently small and

depending on d and h , such that, for every eGe 0 , sA(ue )G12h/2 in V T , h
d , 1 . This im-

plies that

(i) ueG2C1 (h) almost everywhere in V T , h
d , 1 , for a proper value C1 (h)D0;

(ii) ue4sA21 (sA(ue ) )KsA21 (v) uniformly in V T , h
d , 1 ;

(iii) since ue � u weakly in L 2 (0 , T ; H 1
0 (V) ), we have that, almost everywhere in

V T , h
d , 1 , sA21 (v)4u; i.e.,

v4sA(u) a.e. in V T , h
d , 1 .(3.4)

Moreover, by (ii) and (iii), it follows

ueKu uniformly in V T , h
d , 1 .(3.5)

In V T , h
d , 2 , still using the uniform convergence of sA(ue )Kv , we have that there exists e 0

sufficiently small and depending on d and h , such that, for every eGe 0 , sA(ue )F12
23h in V T , h

d , 2 . This implies that

(iv) ueF2C2 (h) almost everywhere in V T , h
d , 2 , for a proper value C2 (h)D0;

(v) by the weak convergence, uF2C2 (h) almost everywhere in V T , h
d , 2 ;

(vi) by the continuity of sA, it follows that, for a proper C3 (h)D0, sA(u)F12
2C3 (h), which gives

VsA(ue )2sA(u)VLQ (V T , h
d , 2 )G3h1C3 (h) .

This implies that, for every dD0, every hD0 and every eGe 0 ,

�
V T

NsA(u)2vN dx dt4 �
V T

d

NsA(u)2vN dx dt1�
Nd

NsA(u)2vN dx dtG

G �
V T , h

d , 1

NsA(u)2vN dx dt1 �
V T , h

d , 2

NsA(u)2vN dx dt1�
Nd

NsA(u)2vN dx dtG

G01 �
V T , h

d , 2

NsA(u)2sA(ue )N dx dt1 �
V T , h

d , 2

NsA(ue )2vN dx dt1�
Nd

NsA(u)2vN dx dtG

G [3h1C3 (h) ]NV TN1 �
V T

NsA(ue )2vN dx dt1�
Nd

NsA(u)2vN dx dt ,



M. AMAR - R. GIANNI302

where we used (3.4). Using 3.3 and letting first eK01 , then hK01 and finally
dK01 , we obtain that sA(u)4v almost everywhere in V T , and this concludes the
proof. o

For every s�R , assume that s(Q , s) is Y-periodic and define

s 0 (s)4�
Y

s(y , s) dy ;

i.e., the mean value of s(Q , s), with respect to the first variable, when s is fixed.

REMARK 3.2. Clearly, s 0�LipL (R). It is well known that, due to the periodicity of
the function s(Q , s), for every s�R , s(e21 x , s) � s 0 (s) ˜-weakly in L Q (R), when
eK01 . Moreover, taking into account the Lipschitz continuity of s(e21 x , Q) and
s 0 (Q) and recalling that every L 2-function can be strongly approximated by step func-
tions, it is possible to prove that, for every u�L 2 (V T ),

s (e21 x , u) � s 0 (u) ˜-weakly in L Q (V T )

when eK01 .
In order to prove the homogenization result (see Theorem (3.4) below), we need

the following lemma.

LEMMA 3.3. Assume that s : Rn3RKR is a measurable function satisfying all the
hypotheses in (2.1) and such that s(Q , s) is Y-periodic. For every eD0, set s e (x , s)4
4s(e21 x , ue ) and let ue�L 2 (0 , T ; H 1

0 (V) ) be the solution of (3.1). Then, for every
eK01 , we have

s e (x , ue ) � s 0 (u) ˜-weakly in L Q (V T ) .

PROOF. We have that Vue VLQ (V T )GM , with M in dependent of e , which is a conse-
quence of the maximum principle. This implies that there exists M

AD0, such that
Vs e (x , ue )VLQ (V T )GM

A, for every eD0. Hence, up to a subsequence, it follows that
there exists w�L Q (V T ) such that

s e (x , ue ) �w ˜-weakly in L Q (V T ) .(3.6)

In order to prove that w4s 0 (u), we proceed in a similar way as in Proposition 3.1.
For every dD0 and every hD0 let V T , h

d , 1 , V T , h
d , 2 and Nd be the sets constructed in the

proof of Proposition 3.1, using the strong convergence of the sequence ]sA(ue )(. By
(iv) and (v) of Proposition 3.1 we have that, for e small enough, u , ueF2C2 (h), in
V T , h

d , 2 . By the continuity of s(x , Q), uniformly with respect to x , this implies that
s e (x , ue )F12C4 (h) and s e (x , u)F12C4 (h), for a suitable C4 (h)D0. Hence,

Ns e (x , ue )2s e (x , u)NGC4 (h) .(3.7)
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Then, using H1), (3.7) and (2.8), it follows

N �
V T

[w2s 0 (u) ] c dx dtNGN �
V T

[s e (x , ue )2w] c dx dtN1

1N �
V T

[s e (x , ue )2s 0 (u) ] c dx dtNGN �
V T

[s e (x , ue )2w] c dx dtN1

1VcVLQk �
V T , h

d , 1

Ns e (x , ue )2s e (x , u)N dx dt1 �
V T , h

d , 2

Ns e (x , ue )2s e (x , u)N dx dt1

1�
Nd

Ns e (x , ue )2s e (x , u)N dx dtl1N �
V T

[s e (x , u)2s 0 (u) ] c dx dtNG

GN �
V T

[s e (x , ue )2w] c dx dtN1

1VcVLQyL �
V T , h

d , 1

Nue2uN dx dt1C4 (h)NV TN1L�
Nd

Nue2uN dx dtz1

1N �
V T

[s e (x , u)2s 0 (u) ] c dx dtNGN �
V T

[s e (x , ue )2w] c dx dtN1

1CVcVLQy �
V T , h

d , 1

Nue2uN dx dt1C4 (h)1NNdNz1N �
V T

[s e (x , u)2s 0 (u) ] c dx dtN
for every test function c�C 0 (VT ), such that c(x , T)40 on V and c(x , t)40 on
¯V3 (0 , T). Taking into account (3.6), (3.5) and Remark 3.2, and letting eK01 ,
hK01 and finally dK01 , we obtain that the right hand side in the previous inequal-
ity converges to 0 . This implies that w4s 0 (u) and that the whole sequence (not only
a subsequence) converges. So the required result is achieved. o

THEOREM 3.4. Assume that s : Rn3RKR is a measurable function satisfying
all the hypotheses in (2.1) and such that s(Q , s) is Y-periodic. Let f�H 1 (V)OL Q (V)
and F�H 2 (V T )OL Q (V T ), with DF40 in V T . For every eD0, let
ue�L 2 (0 , T ; H 1

0 (V) ) be the solution of (3.1). Then, the sequence ]ue(, converges
weakly in L 2 (0 , T ; H 1 (V) ) to the solution u�L 2 (0 , T ; H 1 (V) ) of the problem

.
/
´

s 80 (u) ¯u
¯t

4Du

u(x , 0 )4f(x)

u(x , t)4F(x , t)

in V T ;

on V ;

on ¯V3 (0 , T) .

(3.8)
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PROOF. Taking into account the weak formulation of (3.1), we have that, for every
eD0,

(3.9) �
V T

s e (x , ue )
¯c
¯t

(x , t) dx dt1�
V

s e (x , f(x) ) c(x , 0 ) dx4 �
V T

˜ue ˜c dx dt

for every test function c�C 1 (V T ), such that c(x , T)40 on V and c(x , t)40 on
¯V3 (0 , T), with ue4F on ¯V3 (0 , T) in the sense of traces. Taking into account
Lemma 3.3, (3.2) and passing to the limit in (3.9) for eK01 , we obtain

�
V T

s 0 (u)
¯c
¯t

(x , t) dx dt1�
V

s 0 (f(x) )c(x , 0 ) dx4 �
V T

˜u˜c dx dt

which implies that u is a weak solution of (3.8). Hence, the whole sequence converges
and the thesis is accomplished. o

REMARK 3.5. In the framework of physical applications, the model we have in mind
is given by

s(x , s)4 !
i41

N

s i (s) x Ei
(x)

where, for every i41, R , N , s i�LipL (R), s i (s)G1 for every s�R , s i (s)f1 for
every sF0, s i8 is strictly positive for sE0, Ei%Y , NEi4Y , OEi4¯ and x Ei

is the
characteristic function of the set Ei , extended by periodicity to the whole space Rn . It
follows that s satisfies all the required assumptions in (2.1), with sA defined by the rela-
tion sA8 (s)4min s i8 (s). Hence, by Theorem 3.4, we obtain the homogenization result,
where now the function s 0 in (3.8) is given by s 0 (s)4!

i
s i (s)NEiN .

REMARK 3.6. Clearly, Theorem 3.4 continues to hold, if we assume that, for every
eD0, s e (x , s) satisfies all the hypotheses in (2.1) and there exists s(x , s) such that,
for every s�R ,

s e (Q , s) � s(Q , s) ˜-weakly in L Q (V)

when eK01 . Note that, in this more general setting, the limit saturation can depend
on the position.

As an example, we can think of a microstructure of concentric sperical layers of
two different alternating materials; note that, also in this case, the effective saturation
does not depend on x .
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