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Calcolo delle variazioni. — Sets of finite perimeter associated with vector fields and
polyhedral approximation. Nota (*) di FRANCESCOPAOLO MONTEFALCONE, presentata
dal Socio F. Ricci.

ABSTRACT. — Let X4 (X1 , R , Xm ) be a family of bounded Lipschitz continuous vector fields on Rn .
In this paper we prove that if E is a set of finite X-perimeter then his X-perimeter is the limit of the X-pe-
rimeters of a sequence of euclidean polyhedra approximating E in L 1-norm. This extends to Carnot-Ca-
rathéodory geometry a classical theorem of E. De Giorgi.

KEY WORDS: Carnot-Carathéodory metric; Perimeter; Polyhedra.

RIASSUNTO. — Insiemi di perimetro finito rispetto ad una famiglia di campi vettoriali e approssimazione
poliedrale. Sia data in Rn una m-upla X4 (X1 , R , Xm ) di campi vettoriali lipschitziani e limitati. In que-
sto lavoro dimostriamo che se E è un insieme di X-perimetro finito allora l’X-perimetro di E è il limite
degli X-perimetri di una successione di poliedrali euclidee approssimanti E in norma L 1 . Questo risultato
estende alle geometrie di tipo Carnot-Carathéodory un classico teorema di E. De Giorgi.

1. INTRODUCTION

In the last few years, a Geometric Measure Theory in metric spaces of very general
type has been developed. This project, already hidden in Federer’s book [13], has
been explicitly formulated and carried on by several authors. We only mention some
of them: De Giorgi [11, 12], Gromov [20], Preiss and Tisěr [23], David and Semmes
[9], Cheeger [8], Ambrosio and Kirchheim [3, 4], Garofalo and Nhieu [18] and
Franchi, Serapioni and Serra Cassano [16, 17]. In particular, in some papers the
progress in this direction is somehow connected with the development of the theory of
anisotropic Sobolev spaces and that of degenerated elliptic operators of the form sum
of squares (see, for instance, [5, 7, 14, 15, 18]). In connection with this project has
been introduced the notion of function of bounded variation with respect to a family
of vector fields and that related of perimeter (see [16, 18]). To give a notion of func-
tion of bounded variation with respect to a family of vector fields, there are several ap-
proaches, all reminding of the euclidean case, which actually turn out to be equivalent
as proved in [16]. More precisely, let X4 (X1 , R , Xm ) be a family of Lipschitz con-
tinuous vector fields in Rn . We naturally identify these vector fields with first order

differential operators, i.e. Xj (x)4 (c1 j (x), R , cn j (x) )4 !
i41

n

ci j (x) ¯i , j41, R , m ,

where ci j (x) are Lipschitz continuous functions. If V is an open set of Rn , the space
BVX (V) can be defined equivalently in several ways. If u�L 1 (V) we say that
u�BVX (V) if one of the following holds (see [5, 16, 18, 21]):

(D1 ) the distributional gradient Xu is an Rm-valued Radon measure;

(*) Pervenuta in forma definitiva all’Accademia il 4 luglio 2003.
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(D2 ) NXuN(V)EQ where the total variation NXuN(V) is defined to be

NXuN(V)4 sup { �
V

u divX (c) dx : c�C0
1 (V , Rm ), NcNmG1} ,

where divX (c)42 !
j41

m

X *j c j and X *j is the operator formally adjoint to Xj in
L 2 (Rn );

(D3 ) u belongs to the domain of finiteness of the L 1-relaxed of the functional

F(v) »4
.
/
´

�
V
o!j (Xj v)2 dx

1Q

if v�C 1 (V)OL 1 (V),

otherwise .

Consequently we may define the X-perimeter in V of a measurable set E as the total X-
variation in V of the characteristic function of E.

We stress that the last assertion (D3 ) is a particular case of a general definition
given in [21] (see also [1] for the case of Alfhors regular metric measure
spaces).

Moreover let us mention that in this framework has been recently proved in [22] a
variational approximation of the perimeter associated with a family of Carnot-
Carathéodory vector fields.

We should remind that some of the most useful results of the euclidean case as the
Anzelotti-Giaquinta Theorem and the coarea formula of Fleming-Rischel, can be nat-
urally extended (see Section 1.1) to BVX with no further restriction on the nature of
vector fields [16, 18].

With reference to the «further restriction» mentioned above we should make a
short comment. Indeed we know that if the family of vector fields X4 (X1 , R , Xm )
satisfies suitable geometric properties as for instance the Hörmander condition (i.e.
the rank of the Lie algebra generated by X1 , R , Xm�C Q (Rn , Rn ) equals n at any
point of Rn), we can canonically associate with X a metric dX , called Carnot-
Carathéodory metric, defined as the minimum time necessary to connect two points of
the space by curves everywhere tangent to the linear space spanned by the vector fields.
Carnot-Carathéodory metrics arise naturally in studying isoperimetric inequalities or
those of Sobolev-Poincaré type, because the intrinsec dimension of the geometry asso-
ciated with a family X of vector fields is given by the asymptotic behavior of the mea-
sure of spheres in the metric dX . Now, instead of a general philosophy which suggests
to adapt the classical tools for the Carnot-Carathéodory geometries, the density theo-
rem and the coarea formula are independent of the geometry itself, since totally de-
generated situations are possible.

In this paper we want to show that, preserving in this context the classical defini-
tion of polyhedron (see Definition 2.1 below), a satisfying notion of polyhedral ap-
proximation can be given. The result obtained extends a well known theorem of E. De
Giorgi which states (see [10]): the perimeter of a set E is the lower limit of the perime-
ters of the polyhedra approximating E in L 1-norm. Indeed we show that the following
holds
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THEOREM [Polyhedral Approximation Theorem]. Let V be an open subset of Rn

and denote by P n the class of n-dimensional polyhedra of Rn. Let X4 (X1 , R , Xm ) be a
family of bounded Lipschitz continuous vector fields in Rn . Finally let E%Rn be a set of
finite X-perimeter in V such that 1E�L 1 (Rn ). Then there exists a sequence
]S i(i�N% P n such that

(1) lim
iKQ

V1S i
21E VL 1 (V)40,

(2) lim
iKQ

NX1S i
N(V)4NX1EN(V).

We point out that the boundedness assumptions on the family of vector fields can
be dropped if the Carnot-Carathéodory distance associated with X1 , R , Xm is finite,
namely every two points of Rn are accessible from one another, as in the case of Hör-
mander vector fields. We point out also that the assumption 1E�L 1 (Rn ) can be
dropped in many situations. Indeed, if for instance the vector fields satisfy the Hör-
mander condition and the open set V is suitably regular, then by the relative isoperi-
metric inequality (see [18]) we can obtain that either 1E or 1E c belong to
L 1 (Rn ).

In accordance with the definition of perimeter associated with a family of vector
fields we may also give the notion of partial Xj-perimeter, j41, R , m. More precisely
we say that E has finite Xj-perimeter in V if NXj 1EN(V)EQ where

NXj 1EN(V)4 sup { �
V

1E Xj*(c) dx : c�C0
1 (V), NcNG1} .

This definition allows us to give immediately a further characterization of sets of finite
X-perimeter which generalizes the first one given by Caccioppoli [6, 10].

COROLLARY. Let X4 (X1 , R , Xm ) be a family of bounded Lipschitz continuous vec-
tor fields in Rn and let V’Rn be open. Let E%Rn be a measurable set such that
1E�L 1 (V). If for any j41, R , m , there exists a sequence ]S i

j (i�N% P n such
that

(1) lim
iKQ

V1S i
j 21E VL 1 (V)40,

(2) there exists Cj�R1 such that sup
i

NXj 1S i
jN(V)GCj ,

then E has finite X-perimeter in V and there exists a sequence ]S i(i�N% P n such
that

(3) lim
iKQ

V1S i
21E VL 1 (V)40;

(4) lim
iKQ

NXj 1S i
N(V)4NXj 1EN(V).

This results are analogous to the corresponding theorems of the euclidean
setting. Nevertheless we should notice that this is not a priori obvious. Indeed
one could imagine to have to handle with an intrinsec notion of polyhedra,
shaped to the vector fields but actually, what is obtained agrees with the role
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played in this context by the classical Friedrichs’ mollifiers, which turn out to
be independent of the geometry of the vector fields [16, 18].

1.1. Functions with bounded X-variation and sets of finite X-perimeter.

Throughout this paper V’Rn is an open set. If x , y�Rn , we denote by NxNn and
ax , yb the euclidean norm and the scalar product, respectively. Br (x) denotes the open
euclidean ball of radius r centered at x . If A%Rn , 1A denotes the characteristic func-
tion of A , NANn its n-dimensional Lebesgue measure and Hn21 (A) its (n21)-dimen-
sional Hausdorff measure. We denote by C k (V , Rm ) the space of Rm-valued func-
tions k times continuously differentiable, by Lip (V , Rm ) the space of Rm-valued Lip-
schitz continuous functions and by C k

0 (V , Rm ) that of Rm-valued functions k times
continuously differentiable with compact support contained in V . We will use spheri-

cally symmetric mollifiers Je defined by Je (x)4e2n J g x
e h , where J�C Q

0 (Rn ), JF0,
spt J%B1 (0) and s

Rn
J(x) dx41.

From now on we assume that X1 , R , Xm are locally Lipschitz continuous vector
fields on Rn , where Xj4 (c1 j , R , cn j ), j41 R , m . We shall identify these vector
fields with first order differential operators, i.e. Xj (x)4 (c1 j (x), R , cn j (x) )4

4 !
i41

n

ci j (x) ¯i , j41, R , m , where ci j (x) are Lipschitz continuous functions and we set

C4row [ X1 , R , Xm ].
Given Y�Liploc (Rn , Rn ) we denote by Y * the operator formally adjoint in

L 2 (Rn ), i.e. the operator which for all W , c�C0
Q (Rn ) satisfies

�
Rn

WYc dx4 �
Rn

cY * W dx .

Moreover we define the X-divergence of W�C0
Q (Rn , Rm ) as follows

divX (W) »42 !
j41

m

X *j W j .

Finally we introduce the following test functions

F(V , Rm ) »4]W�C0
1 (V , Rm ) : NWNmG1( .

DEFINITION 1.1. We say that u�Lloc
1 (V) has bounded X-variation in V if

NXuN(V) »4 sup
W�F(V , Rm )

�
V

u divX (W) dxEQ ,

and we put

BVX (V)4]u�L 1 (V) : NXuN(V)EQ( .

REMARK 1.2. The space BVX (V) can be equivalently defined as the set of all
u�L 1 (V) such that there exists an m-vector valued Radon measure m4 (m 1 , R , m m )
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on V such that for all W�C0
1 (V , Rm )

�
V

u divX (W) dx42�
V

aW , dmb

where aW , dmb4 !
j41

m

W j dm j . Notice that by Riesz Theorem it follows that NXuN(V)4
4NmN(V).

REMARK 1.3 [16]. Let u and Xu be in L 1 (V) and set Xu4 (X1 u , R , Xm u). Then
we have

NXuN(V)4�
V

NXuNm dx .

DEFINITION 1.4. We say that a measurable subset E of Rn has finite X-perimeter in
V if NXuN(V) is finite and we call X-perimeter of E in V the quantity

N¯ENX (V) »4NX1EN(V) .

If E is a set of finite X-perimeter in V then by Remark 1.2 it follows that the distri-
butional derivative m4X1E

is a m-vector valued Radon measure and NmN(U)4
4NX1E

N(U)4N¯ENX (U), for any open ULV . Moreover, by the polar decomposition
theorem (see [2]) there exists a NmN-measurable function n E : VKRm such that m4
4n E NmN and also that Nn EN41 NmN-a.e.; we call n E the X-generalized inner normal of E .

REMARK 1.5 [7]. Suppose that the boundary of E%Rn is an (n21)-dimensional C 2-
manifold in V , then

N¯ENX (V)4 �
VO¯E

NC(x) n(x)Nm d Hn21 (x) ,

where n denotes the inner unit normal of ¯E . In this case we have that the X-general-
ized inner normal of E is

n E4
C(x) n(x)

NC(x) n(x)Nm
,

whenever C(x)n(x)c0, and 0 otherwise, for N¯ENX-a.e. x�V . Now if X4
4 (¯1 , R , ¯n ), then the above identity reduces to the well known formula

N¯EN(V)4 Hn21 (VO¯E) ,

where the left-hand side is the classical perimeter of E in V (see [19] for the euclidean
case).

Now let us remind some properties of bounded X-variation functions that we will
used later on (see also [16, 18, 21]).



F. MONTEFALCONE284

PROPOSITION 16 [Lower semicontinuity]. Let u , uh�L 1 (V), h�N , such that
ukKu in L 1

loc (V). Then

NXuN(V)G lim inf
hKQ

NXuhN(V) .

As in classical case smooth functions are dense in BVX in the following weak
sense

THEOREM 1.7 [Density for BVX functions]. Let X4 (X1 , R , Xm ) as above and let
V%Rn be open. If u�BVX (V) there exists a sequence ]uh(h�N%C Q (V)OBVX (V)
such that

lim
hKQ

Vuh2uVL 1 (V)40 and lim
hKQ

�
V

NXuhNm dx4NXuN(V).

Finally we can prove the following generalized coarea formula.

THEOREM 1.8 [Coarea formula for BVX functions]. Let X4 (X1 , R , Xm ) as above
and let V%Rn be open. Let u�BVX (V) and set Et4]x�V : u(x)D t(. Then

(1) Et has finite X-perimeter for almost every t�R;

(2) NXuN(V)4 s
2Q

1Q

N¯Et NX (V) dt .

Conversely, if u�L 1 (V) and s
2Q

1Q

N¯EtNX (V) dtEQ , then u�BVX (V) and (2)
holds.

2. POLYHEDRAL APPROXIMATION

DEFINITION 2.1. Let denote by Hn the family of all affine hyperplanes of Rn . We say
that S is a n-dimensional polyhedron of Rn if there exists mS�N and ]Hi(i41

mS %Hn such
that

¯S’ 0
i41

mS

Hi .

By P n we denote the family of n-dimensional polyhedra of Rn .

We state now the main result of this paper and some first consequences.

THEOREM 2.2. Let X4 (X1 , R , Xm ) be a family of bounded Lipschitz continuous
vector fields in Rn and let V’Rn be open. Let E%Rn be a set of finite X-perimeter in V
such that 1E�L 1 (Rn ). Then there exists a sequence ]S i(i�N% P n such that

(1) lim
iKQ

V1S i
21E VL 1 (V)40,

(2) lim
iKQ

N¯S iNX (V)4N¯ENX (V).

The proof of this theorem will be given in Section 2.2. We stress that the bounded-
ness assumptions on the family of vector fields are not necessary if the Carnot-
Carathéodory distance associated with X1 , R , Xm is finite, i.e. every two points of Rn
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are accessible from one another, as for instance in the case of Hörmander vector fields
(see also Remark 2.11 below).

REMARK 2.3. If S is a n-dimensional polyhedron, then by definition we have

¯S4 0
h41

mS

S h
n21 ,

where ]S h
n21 : h41, R , mS( is a finite set of n21-dimensional polyhedra of Rn with

mutually disjoint relative interiors and from Remark 1.5 we get

N¯SNX (V)4 !
h41

mS

�
VO¯E

NC(x) n hNm d Hn21 (x) ,

where n h is the inner unit normal vector of S h
n21 , which turns out to be con-

stant.

From Theorem 2.2 this formula yields a concrete expression for a numerical ap-
proximation of the X-perimeter of any subset of Rn . Together with the definition of
X-perimeter we may give that of partial perimeter along a vector field.

DEFINITION 2.4. Let X4 (X1 , R , Xm ) be a family of bounded Lipschitz continuous
vector fields in Rn and let V’Rn be open. We say that E has finite Xj-perimeter in V if
1E�L 1 (V) and NXj 1EN(V)EQ , where

NXj 1EN(V)4 sup { �
V

1E Xj*(c) dx : c�C0
1 (V), NcNG1} .

In this case we call partial Xj-perimeter of E in V the quantity

N¯ENXj
(V) »4NXj 1E N(V) .

This definition agrees with Definition 1.3 and it is the same if the family
X4 (X1 , R , Xm ) reduces to a unique vector field. Therefore the partial perimeter
along a vector field enjoys the same properties of the X-perimeter established in Sec-
tion 1.1.

REMARK 2.5. Let V be open and let E%Rn such that 1E�L 1 (V). Then

N¯ENX (V)G !
j41

m

N¯ENXj
(V) .

This easily follows by definitions. Indeed if W4 (W 1 , R , W m )�F(V , Rm ) we
get

�
VOE

divX (W) dx4

42 �
VOE

!
j41

m

X *(W j ) dxG !
j41

m

sup { �
VOE

X *j (c j ) dx : c h�C0
1 (V), Nc jNG1} .
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Therefore, taking the supremum with respect to W�F(V , Rm ), we get

N¯ENX (V)G !
j41

m

sup { �
VOE

X *j (c j ) dx : c j�C0
1 (V), Nc jNG1}4 !

j41

m

N¯ENXj
(V) .

From what proven we can easily deduce the following simple characterization for sets
of finite X-perimeter (see also [6, 9]).

COROLLARY 2.6. Let X4 (X1 , R , Xm ) be a family of bounded Lipschitz continuous
vector fields in Rn and let V’Rn be open. Let E be a measurable subset of Rn such that
1E�L 1 (V). If for any j� ]1, R , m( there exists ]S i

j (i�N% P n such that

(1) lim
iKQ

V1S i
j 21E VL1 (V)40;

(2) there exists CjD0 such that sup
i�N

N¯S i
jNXj

(V)ECj ;

then E has finite X-perimeter in V and there exists ]S i(i�N% P n such that

(3) lim
iKQ

V1S i
21E VL1 (V)40;

(4) lim
iKQ

N¯S iNX (V)4N¯ENX (V).

PROOF. The first part of the statement follows from the above remark observing
that

N¯ENX (V)G !
j41

m

N¯ENXj
(V)G !

j41

m

lim inf
iKQ

N¯S i
j NXj

(V)E !
j41

m

CjEQ ,

whereas the second part is just a reformulation of Theorem 2.2. o

2.1. An approximation lemma.

Let us fix now some notations. Let An (R) denote the affine group of Rn i.e. the
group of trasformations of Rn onto itself, represented by the equations j(x)4Ax1b ,
det Ac0, where A and b are n3n and n31 matrices, respectively. By On (R) we de-
note the orthogonal group, i.e. the group of all n3n real matrices A such that AA T4
4I , where I denotes the n3n unit matrix. Let us denote by Mn (R) the group of the mo-
tions of Rn , i.e. the subgroup of the affine group, defined by the equations j(x)4
4Ax1b , A�On (R). Let conv (A) denote the convex hull of A’Rn . If v , w�Rn ,
[v , w] denotes the close line segment joining them. If r�R and t�Rn , we denote by
d r the dilation with center the origin and ratio r and by t t the translation defined by t .
We set Qn »4](x1 , R , xn )�Rn : max

i
NxiNG1( that is the unit n-cube of Rn and if

aD0 we put Q n
a »4d a Qn4](x1 , R , xn )�Rn : max

i
NxiNGa(.

If a�Rn
14](x1 , R , xn )�Rn : xiD0, i41, R , n(, we set

Rn
a »4 m(x1 , R , xn )�Rn : !

i41

n xi

ai
G1, xiF0, i41, R , nn ,

and we call standard n-tetrahedron of Rn relative to the vector a any subset of Rn iso-
metric to Rn

a . Finally we denote by V the set of vertices of Rn
a , that is Va4]0(N ]vi4
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4ai ei : i41, R , n(, where e1 , R , en is the standard basis of Rn . Clearly one has Rn
a 4

4conv (Va ). The following elementary lemma will be used in the proof of Lemma 2.8
and it shows that the unit n-cube of Rn can be covered by means of a fixed number of
isometric standard n-tetrahedra.

LEMMA 2.7. Let us fix nF2 and set In4]1, R , 2n21 n!(. Then there exist a�Rn
1

and a family of motions G4]g i(i� In
%Mn (R) satisfying

(1) Qn4 0
i� In

g i (Rn
a );

(2) int g i (Rn
a )O int g j (Rn

a )4¯ for all i , j� In , ic j ;

(3) conv (g i (Va )Og j (Va ) )4g i (Rn
a )Og j (Rn

a ) for all i , j� In , ic j .

Explicitly g i (x)4Ai x1bi , x�Rn , where Ai�On (R) and bi�Rn , for i� In .

PROOF. The proof is straightforward when n42. In this case we simply triangulate
the unit square by tracing its diagonals. Then we can use an inductive argument to
find such triangulations in the following way: after triangulating the faces of the unit
n-cube we get the required n-tetrahedra by connecting the center of the n-cube to all
the vertices of the (n21)-tethraedra forming the triangulation of the faces. Now if we
choose a tetrahedron, then all the others can be obtained by means of a motion of this
one. o

We state now one of the main ingredients in the proof of our Polyhedral Approxi-
mation Theorem.

LEMMA 2.8. Let X4 (X1 , R , Xm ) be a family of Lipschitz continous vector fields
in Rn . Fix aD0 and let Q n

a be as above. Let W�C Q (Q n
a ), WF0. Then for any e 1 ,

e 2 , e 3D0 there exists a piecewise linear function c : Q n
aKR , cF0, c4

4c(W , a , e 1 , e 2 , e 3 ), satisfying

(1) 0Ec(x)2W(x)Ee 1 for all x� Q n
a ;

(2) Vc2WVL 1 (Q n
a )Ee 2 ;

(3) s
Q

n
a

NXcNm dxG s
Q

n
a

NXWNm dx1e 3 .

REMARK 2.9. By setting

C4 m(x1 , R , xn11 )� Q n
a3R : 0Gxn11Gc(x), x4 (x1 , R , xn )n ,

we have that C� P n11 , i.e. C is a polyhedral set of Rn11 .

PROOF OF LEMMA 2.8. Choose a positive k�N and set

a
k

Zn »4 mt�Rn : t4 a
k

z , z�Znn and D»4 mt� a
k

Zn : 0
t

t t i d a/k (Qn )4 Q n
an .

Let G4]g i(i� In
%Mn (R) the family of motions of Lemma 2.7, where g i (x)4Ai x1

1bi . Now we define a family of functions j i , k , t : RnKR depending on i� In , kD0 and
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t�D , by setting

j i , k , t (y) »4 a
k

Ai y1
a
k

bi1 t , y�Rn .

Clearly j i , k , t�An (R) and we have

Q n
a4 0

t�D
0

i� In

j i , k , t (Rn
a ) ,

where Rn
a is defined in Lemma 2.7. Let Va4]0(N ]vi : i41, R , n( be the set of the

vertices of Rn
a . From now on we set v040 and thus we have

vi4
.
/
´

0

ai ei

if i40,

if i41, R , n .

Moreover we set L4 ml i�L(Rn , R) : l i (vj )4d i , j , i , j40, 1 , R , nn, where
L(Rn , R) denotes the space of linear functionals on Rn . Then

l 0 (y)412 !
i41

n

ai
21 yi and l i4ai

21 yi , i41, R , n .

From these expressions it follows that ˜l 04 (2a1
21 , R , 2an

21 ) and ˜l i4ai
21 ei ,

for any i41, R , n . Fix now k and let us define the function c
A

i , t : RnKR , as
follows

c
A

i , t (x) »4 !
h40

n

(W i j i , k , t )(vh )(l h i j i , k , t
21 )(x), x�Rn .

The graph of this function is an affine hyperplane of Rn11 which interpolates the
points of the graph of W representing the images of the n-tetrahedron j i , k , t (Rn

a ).
Starting from the family of functions ]c

A
i , t(i , t where i� In and t�D , we can construct

a unique map c
A : Q n

aKR , continuous and piecewise linear, c
A4c

A(k , a , W), such
that

c
ANj i , k , t (Rn

a )4c
A

i , t Nj i , k , t (Rn
a ) .

STEP 1. There exists a constant C D0, C 4 C(W , a), such that

NXc
ANmGNXWNm1k 21 C for a.e. x� Q n

a .(1)

PROOF OF STEP 1. Let us observe that the function c
A, by Rademacher’s theorem, is

differentiable for a.e. x� Q n
a and that Xc

A4C˜c
A, where C4row [X1 , R , Xm ] is the

matrix of the coefficients of the vector fields. Thus we can proceed directly, looking
for a local expression of ˜c

A. Then by definition we have

c
A(x)4 !

h40

n

(W i j i , k , t )(vh )(l h i j i , k , t
21 )(x) for x� int j i , k , t (Rn

a ).

Now since

¯

¯xj
(l h i j i , k , t

21 )(x)4 o˜l h (j i , k , t
21 (x) ), k

a Ai
21 ejp ( j41, R , n)
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if x� int j i , k , t (Rn
a ) we get

˜c
A(x)4 k

a Ai!
h40

n

(W i j i , k , t )(vh ) ˜l h (j i , k , t
21 (x) )4

4 k
a Aig(W i j i , k , t )(v0 )(2a1

21 , 2a2
21 , R , 2an

21 )1!
h41

n

ah
21 (W i j i , k , t )(vh ) ehh4

4 k
a Ai!

h41

n

ah
21 ((W i j i , k , t )(vh )2 (W i j i , k , t )(v0 ) ) eh .

By Taylor’s formula, for h� ]1, R , n( there exists zh� k a
k

bi1t ,
a
k

bi1 t1 a
k

Ai vhl% int j i , k , t (Rn
a ) such that

W i j i , k , t (vh )2W i j i , k , t (v0 )4W g a
k

Ai vh1
a
k

bi1 th2W g a
k

bi1 th4
4 o˜W g a

k
bi1 th , a

k
Ai vhp1 a 2

2k 2
aHW (zh ) Ai vh , Ai vh b .

Since vh4ah eh (h41, R , n) we get

˜c
A(x)4 k

a Ai!
h41

n

ah
21uah

a
k oAi

21 ˜W g a
k

bi1 th , ehp1 a 2

2k 2
aHW (zh ) Ai vh , Ai vh bv eh .

Therefore

˜c
A(x)4˜W g a

k
bi1 th1 a

2k
!

h41

n

aHW (zh ) Ai vh , Ai eh b Ai eh .

Applying Taylor’s formula again, we have

˜W g a
k

bi1 th4˜W(x)2 !
h41

n

oHW (zAh ) eh , x2 a
k

bi2 tp eh ,

where zh
A� k a

k
bi1 t , xl , for h41, R , n . Setting y4j i , k , t

21 (x) and substituting we
find

˜c
A(x)4˜W(x)1 a

k
!

h41

n m 1
2
aHW (zh ) Ai vh , Ai eh b Ai eh2 aHW (zAh ) eh , Ai yb ehn .

Therefore by definition of X-gradient it follows that for any x� int j i , k , t (Rn
a )

Xc
A(x)4XW(x)1 a

2k
!

h41

n mC(x)gaHW (zh )Ai vh , Ai eh bAi eh22aHW (zAh ) eh , Ai yb ehhn .

For i� In , t�D , we set

Fi , k , t (x) »4 a
2
!

h41

n mC(x)gaHW (zh )Ai vh , Ai eh bAi eh22aHW (zAh ) eh , Ai b ehhn ,

and also

F (x) »4 Fi , k , t (x) for x� int j i , k , t (Rn
a ) .
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Then

Xc
A(x)4XW(x)1 1

k
F (x) for a.e. x� Q n

a ,

and we have

max
x� Q

n
a

NF (x)NmG
a
2

max
x� Q

n
a

VC(x)VVHW (x)V !
h41

n

(NAi vhNn NAi ehN12NAi yNn)G

G2na max
i

NaiNmax
x� Q

n
a

VC(x)VVHW (x)V4 C 4 C(W , a)EQ ,

and (1) of Step 1 follows. o

Let now e4min ]e 1 , e 2 NQ n
aNn

21( and eA D0 be such that 2 eA Ee . Then by the

uniform continuity of W on Q n
a and since diam gt t i d a/k (Qn )h42 a

k
kn , we may

choose k
A4k(eA, a , W)�N such that, if kD k

A, then

max
t�D

osc gW ; t t i d a/k (Qn )hE eA .

By taking kFmax ]k
A, e 3

21 CNQ n
aNn(, k�N , and setting

c(x) »4c
A(x)1eA ,

we find that c satisfies (1), (2) and (3). Indeed if x�j i , k , t (Rn
a ), remembering that

!
h40

n

l h41, we have

NW(x)2c
A(x)NGmax

t�D
osc (W ; t t i d a/k (Qn ) )E eA ,

and thus c2W4 eA1c
A2WD0 and we get (1), whereas (2) follows by observing

that

Vc2WVL 1 (Q
n
a )GeNQ n

aNnEe 2 .

Finally, since kFe 3
21 CNQ n

aNn , we get (3) by integrating on Q n
a both sides of the in-

equality (1) of Step 1. o

REMARK 2.10. Let V’Rn be open. We stress that the previous proof of Lemma 2.8
show how, with the same choice of c , one also has

�
VOQ

n
a

NXcNm dxG �
VOQ

n
a

NXWNm dx1e 3 .

2.2. Proof of Theorem 2.2.

This proof will be divided in some steps. We begin with the following

STEP 1. There exists a sequence ]W i(i�N%C Q (V)OBVX (V) such that

(1.1) for all eD0 there exists ie�N such that if iF ie then

VW i21E VL 1 (V)Ge ;
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(1.2) for all h�l0, 1
4
k there exists ih�N such that if iF ih then

�
V

NXW i (x)NdxGN¯ENX (V)1 1
2

h ;

(1.3) for all i�N there exists a constant RiD0 such that W i (x)40 if
NxNnD Ri .

PROOF OF STEP 1. Since 1E�BVX (V) from Theorem 1.7 we immediately get that
there exists a sequence ]WAi(i�N%C Q (V)OBVX (V) satisfying (1.1) and (1.2) with
1
2

h replaced by 1
4

h . Actually to prove (1.3) it is enough to show that there exists a se-

quence ]c h(h�N%C0
Q (Rn ) such that for i�N we have

lim
hKQ

VWAi2WAi c h VL 1 (V)40 ,(2)

and that there exists hi , h�N such that if hFhi , h then

�
V

NX(WA i c h )Nm dxG�
V

NXWA i Nm dx1 1
4

h .(3)

Indeed if (3) holds, then to prove (1.2) it will be enough to put W i4WAi c hi , h
. Let now

w h be a smooth function, w h : [0 , Q[K [0 , 1], such that w h41 on [0 , h], w h40 on
[h11, Q[ , Nw h8 NG2 and put c h (x)4w h (NxNn ). Clearly (2) follows by dominate
convergence theorem. On the other hand

�
V

NX(WA i c h )Nm dxG�
V

c h NXWA iNm dx1�
V

NWA i VXc hNm dxG

G�
V

NXWA iNm dx1�
V

1]hENxNnGh11( NWAiNNXc hNm dx ,

and (3) follows since Xc hK0 as hKQ , for any x�Rn (remember that c h41 on
Bh (0), WAh�L 1 (V) and the supremum of NXc h (x)Nm is finite since the vector fields
have bounded coefficients). o

REMARK 2.11. The boundedness assumptions on the family of vector fields are not
needed if the Carnot-Carathéodory distance associated with X is finite. Indeed in this
case we can replace w h (NxNn ) by a smooth approximation of c h (dX (x , 0 ) ) of the form
Je ˜c h (dX (x , 0 ) ), where dX denotes the Carnot-Carathéodory distance.

By setting

F i , h4 mx�V : W i (x)Fh , h�l0, 1
4
k , i�Nn ,

and applying (1.3) of Step 1 it follows that F i , h is bounded for any h�l0, 1
4
k and

i�N . Since 1E�L 1 (V) and by the boundedness of F i , h we get that if eD0,
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h�l0, 1
4
k and i�N there exists a positive constant a4a(e , h , i) such that

�
(Rn 0 Q

n
a )OV

1E dxEe and W i NRn 0 Q
n
a
Eh .(4)

STEP 2. Let eD0, h�l0, 1
4
k and i�N. Let a4a(e , h , i) be such that (4) holds.

Then there exists a piecewise linear function c : Q n
aKR , cF0, c4c(e , h , i , a),

satisfying

(2.1) C n114 m(x1 , R , xn11 )� Q n
a3R : 0Gxn11Gc(x1 , R , xn )n� P n11 ;

(2.2) 0Ec(x)2W i (x)E 1
2

h for all x� Q n
a ;

(2.3) Vc2W i VL1 (Q
n
a )Ee ;

(2.4) s
Q

n
aOV

NXcNm dxG s
Q

n
aOV

NXW iNm dx1 1
2

h .

Observing that W i NQ
n
a
�C Q (Q n

a ) and W iF0, this is just the content of Lemma 2.8
combined with Remark 2.9 and Remark 2.10. Moreover from (1.2) of Step 1 and (2.4)
of Step 4 the following statement holds:

STEP 3. Let h�l0, 1
4
k and ih be as in (1.2) of Step 1 and i�N , iF ih . Let a , c be as

in Step 2. Then we have

�
Q

n
aOV

NXcNm dxGN¯ENX (V)1h .

Furthermore from (4) and (2.2) of Step 2 we get that

c(x)E2h for all x�¯Q n
a .(5)

Let ]Ht(t�R be the family of affine hyperplanes of Rn11 that are parallel to the sub-
space spanned by the first n vectors e1 , R , en of the standard basis of Rn11 , i.e. for
t�R ,

Ht4 m(x1 , R , xn11 )�Rn11 : xn114 tn .

Let us denote C t4 mx� int (Q n
a ) : c(x)D tn. If we choose t�]2h , 1[, then by (5) we

get C t % int Q n
a . Indeed whenever x�C t, we have

c(x)F tD2hDmax
¯Q

n
a

c .

If t it is not a local maximum for c , then

S t »4p n11 (HtOC n11 )4C t ,(6)

where p n11 denotes the orthogonal projection on the hyperplane H0 . Notice that the
number of local maxima of c is finite. Denote by Ic this set.

STEP 4. For any t�]2h , 1[ 0Ic we have

N¯S tNX (V)4N¯S tNX ( int (Q n
a )OV)4N¯C tNX ( int (Q n

a )OV).
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The first equality above follows by observing that S t% int (Q n
a ) whereas the second

one follows from the definition of S t by observing that NC t !S tNn40 (see [19] for
the classical case and [21] for the generalized statement).

STEP 5. Let eD0, h�l0, 1
4
k and ih be as in Step 1. Let i�N , iF ih . Finally let

aD0 be as in Step 2. Then there exists tA�]2h , 12h[, tA4 tA(e , h , i), such that

(123h)N¯S tANX (V)GN¯ENX (V)1h .(7)

PROOF OF STEP 5. By applying Theorem 1.8 and the above Step 4 we get

�
int (Q

n
a )OV

NXcNm dx4 �
2Q

1Q

N¯C tNX ( int (Q n
a )OV) dtF

F �
2h

12h

N¯C tNX ( int (Q n
a )OV) dt4 �

2h

12h

N¯S tNX (V) dt .

By virtue of Step 3, being iF ih , we obtain

�
2h

12h

N¯S tNX (V) dtEN¯ENX (V)1h .

Then, let us show that there exists t
A
�]2h , 12h[ such that (7) holds. To this end it is

enough to show that

�
2h

12h

N¯S tNX (V) dtFN¯ENX (V)1h .

Suppose by contradiction there is an h�l0, 1
4
k such that, whenever s�]2h ,

12h[,

�
2h

12h

N¯S tNX (V) dtE (123h)N¯S sNX (V) .

By integrating both sides of this equation for s�]2h , 12h[ we get a contradic-
tion. o

STEP 6. Let eD0, h�l0, 1
4
k and iFmax ]ie , ih(, where ie and ih are determined

as in Step 1. Let t
A
�]2h , 12h[, tA4 tA(e , h , i), be as in Step 5. Then

N(EOV) !S tA NnEeg11 2
h h .(8)

PROOF OF STEP 6. By definition of S t it follows that for any t�]2h , 12h[

.
/
´

c(x)F t ,

c(x)E t ,

x�S t ,

x� Q n
a 0S t .
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Hence

.
/
´

c(x)21E (x)F tAD2h ,

1E (x)2c(x)F12 tADh ,

x�S tA 0(EOVOS tA ),

x� (EOVOQ n
a )0(EOVOS tA ).

From (1.1) of Step 1 and (2.3) of Step 2 we have Vc21E VL 1 (V)G2e . Therefore

hN( (EOVOQ n
a )NS tA )0(EOVOS tA )NnEVc21E VL 1 (V)G2e .

Finally, by the first statement of (4) the claim follows. o

At this point we may achieve the proof as follows. Let ]e i(i�N be a vanishing se-
quence and let ]h i(i�N be the sequence obtained from the previous one by setting
h i4ke i . From what was proven above, for any i�N there exists a sequence
]ti(i�N%]2h i , 12h i [ which defines, according to (6), a sequence of polyhedra
]S i(i�N% P n , where we have set S i4S ti

, satisfying (1) and (2) of Theorem 2.2. In
fact for (1) it is enough to observe that (8) implies

lim
iKQ

N(EOV) !S ti
Nn4 lim

iKQ
V1S i

21E VL 1 (V)40 .

Finally from Step 5 it follows that

lim sup
iKQ

N¯S iNX (V)GN¯ENX (V) ,

which together with Proposition 1.6 proves (2). o
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